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Low-M-Rank Tensor Completion and
Robust Tensor PCA

Bo Jiang , Shiqian Ma , and Shuzhong Zhang

Abstract—In this paper, we propose a new approach to solve low-
rank tensor completion and robust tensor PCA. Our approach is
based on some novel notion of (even-order) tensor ranks, to be
called the M-rank, the symmetric M-rank, and the strongly sym-
metric M-rank. We discuss the connections between these new
tensor ranks and the CP-rank and the symmetric CP-rank of an
even-order tensor. We show that the M-rank provides a reliable
and easy-computable approximation to the CP-rank. As a result,
we propose to replace the CP-rank by the M-rank in the low-CP-
rank tensor completion and robust tensor PCA. Numerical results
suggest that our new approach based on the M-rank outperforms
existing methods that are based on low-n-rank, t-SVD, and KBR
approaches for solving low-rank tensor completion and robust ten-
sor PCA when the underlying tensor has low CP-rank.

Index Terms—Low-rank tensor completion, robust tensor PCA,
matrix unfolding, CP-rank, Tucker-rank, M-rank.

I. INTRODUCTION

T ENSOR data have appeared frequently in applications
such as computer vision [1], psychometrics [2], [3], dif-

fusion magnetic resonance imaging [4]–[6], quantum entangle-
ment problem [7], spectral hypergraph theory [8] and higher-
order Markov chains [9]. Tensor-based multi-dimensional data
analysis has shown that tensor models can take full advantage
of the multi-dimensionality structures of the data, and generate
more useful information. A common observation for huge-scale
data analysis is that the data exhibits a low-dimensionality prop-
erty, or its most representative part lies in a low-dimensional
subspace. To take advantage of this low-dimensionality feature
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of the tensor data, it becomes imperative that the rank of a ten-
sor, which is unfortunately a notoriously thorny issue, is well
understood and computationally manageable. The most com-
monly used definition of tensor rank is the so-called CP-rank,
where “C” stands for CANDECOMP and “P” corresponds to
PARAFAC and these are two alternate names for the same ten-
sor decomposition. The CP-rank is the most natural notion of
tensor rank, which is also very difficult to compute numerically.

Definition 1.1: Given a d-th order tensorF ∈ Cn1 ×n2 ×···×nd

in complex domain, its CP-rank (denoted as rankC P (F)) is the
smallest integer r exhibiting the following decomposition

F =
r∑

i=1

a1,i ⊗ a2,i ⊗ · · · ⊗ ad,i , (1)

where ak,i ∈ Cni for k = 1, . . . , d and i = 1, . . . , r and ⊗ de-
notes outer product. Similarly, for a real-valued tensor F ∈
Rn1 ×n2 ×···×nd , its CP-rank in the real domain (denoted as
rankR

C P (F)) is the smallest integer r such that there exists a
real-valued decomposition (1) with ak,i ∈ Rni for k = 1, . . . , d
and i = 1, . . . , r.

An extreme case is r = 1, where F is called a rank-1 tensor
in this case. For a given tensor, finding its best rank-one approx-
imation, also known as finding the largest eigenvalue of a given
tensor, has been studied in [10]–[14]. It should be noted that
the CP-rank of a real-valued tensor can be different over R and
C; i.e., it may hold that rankC P (F) < rankR

C P (F) for a real-
valued tensor F . For instance, a real-valued 2 × 2 × 2 tensor F
is given in [15] and it can be shown that rankR

C P (F) = 3 while
rankC P (F) = 2. In this paper, we shall focus on the notion of
CP-rank in the complex domain and discuss two low-CP-rank
tensor recovery problems: tensor completion and robust tensor
PCA.

Low-CP-rank tensor recovery problem seeks to recover a low-
CP-rank tensor based on limited observations. This problem can
be formulated as

min
X∈Cn 1 ×n 2 ···×n d

rankC P (X ), s.t. L(X ) = b, (2)

where L : Cn1 ×n2 ···×nd → Cp is a linear mapping and b ∈ Cp

denotes the observations of X under L. Low-CP-rank tensor
completion is a special case of (2) where the linear mapping in
the constraint picks certain entries of the tensor. The low-CP-
rank tensor completion can be formulated as

min
X∈Cn 1 ×n 2 ···×n d

rankC P (X ), s.t. PΩ(X ) = PΩ(X0), (3)

1932-4553 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on April 26,2020 at 17:46:18 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-8924-3185
https://orcid.org/0000-0003-1967-1069
mailto:isyebojiang@gmail.com
mailto:sqma@math.ucdavis.edu


JIANG et al.: LOW-M-RANK TENSOR COMPLETION AND ROBUST TENSOR PCA 1391

where X0 ∈ Cn1 ×n2 ···×nd , Ω is an index set and

[PΩ(X )]i1 ,i2 ,...,id
=

{
Xi1 ,i2 ,...,id

, if (i1 , i2 , . . . , id) ∈ Ω,
0, otherwise.

In practice, the underlying low-CP-rank tensor data F ∈
Cn1 ×n2 ···×nd may be heavily corrupted by a sparse noise tensor
Z . To identify and remove the noise, one can solve the following
robust tensor PCA problem:

min
Y,Z∈Cn 1 ×n 2 ···×n d

rankC P (Y) + λ‖Z‖0 , s.t. Y + Z = F ,

(4)
where λ > 0 is a weighting parameter and ‖Z‖0 denotes the
number of nonzero entries of Z .

Solving (2) and (4), however, are nearly impossible in prac-
tice. In fact, determining the CP-rank of a given tensor is known
to be NP-hard in general [16]. Worse than an average NP-hard
problem, computing the CP-rank for small size instances re-
mains a difficult task. For example, a particular 9 × 9 × 9 ten-
sor is cited in [17] and its CP-rank is only known to be in
between 18 and 23 to this date. The above low-CP-rank tensor
recovery problems (2) and (4) thus appear to be quite hopeless.
One way out of this dismay is to approximate the CP-rank by
some more reasonable objects. Since computing the rank of a
matrix is easy, a classical way for tackling tensor optimization
problem is to unfold the tensor into certain matrix and then
resort to some well established solution methods for matrix-
rank optimization. A typical matrix unfolding technique is the
so-called mode-n matricization [18]. Specifically, for a given
tensor F ∈ Cn1 ×n2 ×···×nd , we denote its mode-n matricization
by F (n), which is obtained by arranging the n-th index of F
as the column index of F (n) and merging other indices of F as
the row index of F (n). The Tucker rank (or the mode-n-rank)
of F is defined as the vector (rank(F (1)), . . . , rank(F (d))).
For simplicity, the averaged Tucker rank is often used, to be
denoted as

rankn (F) :=
1
d

d∑

j=1

rank(F (j)).

As such, rankn (F) is much easier to compute than the CP-
rank, since it is just the average of d matrix ranks. Therefore, the
following low-n-rank minimization model has been proposed
for tensor recovery [19], [20]:

min
X∈Cn 1 ×n 2 ···×n d

rankn (X ), s.t. L(X ) = b, (5)

where L and b are the same as the ones in (2). Since minimizing
the rank function is still difficult, it was suggested in [19] and
[20] to convexify the matrix rank function by the nuclear norm,
which has become a common practice due to the seminal works
on matrix rank minimization (see, e.g., [21]–[24]). That is, the
following convex optimization problem is solved instead of (5):

min
X∈Cn 1 ×n 2 ···×n d

1
d

d∑

j=1

‖X(j)‖∗, s.t. L(X ) = b, (6)

where the nuclear norm ‖X(j)‖∗ is defined as the sum of sin-
gular values of matrix X(j).

However, to the best of our knowledge, the relationship be-
tween the CP-rank and the Tucker rank of a tensor is still unclear
so far, although it is easy to see (from similar argument as in
Theorem 3.3) that the averaged Tucker rank is a lower bound
for the CP-rank. In fact, there is a substantial gap between the
averaged Tucker rank and the CP-rank. In Proposition 3.4, we
present an n × n × n × n tensor whose CP-rank is n times the
averaged Tucker rank. Moreover, in the numerical experiments
we found two types of tensors whose CP-rank is strictly larger
than the averaged Tucker rank; see Table I and Table II. The
theoretical guarantee of model (6) has been established in [25],
which states that if the number of observations is at the or-
der of O(rnd−1), then with high probability the original tensor
with Tucker rank (r, r, . . . , r) can be successfully recovered
by solving (6). Therefore, model (6) and its variants have be-
come popular in the area of tensor completion. However, our
numerical results show that unless the CP-rank is extremely
small, (6) usually fails to recover the tensor; see Table III. As
a different tensor unfolding technique, the square unfolding
was proposed by Jiang et al. [14] for the tensor rank-one ap-
proximation problem. This technique was also considered by
Mu et al. [26] for tensor completion problem. Mu et al. [26]
showed that when the square unfolding is applied, the number
of observations required to recover the tensor is of the order
of O(r�

d
2 �n	 d

2 
), which is significantly less than that required
by (6). Recently, Yuan and Zhang [27] proposed to minimize
the tensor nuclear norm for tensor completion and the sample
size requirement for successful recovery can be further reduced
to O(r

1
2 n

d
2 log(n)). However, the corresponding optimization

problem is computationally intractable as computing tensor nu-
clear norm itself is NP-hard [28]. To alleviate this difficulty,
Barak and Moitra [29] proposed a polynomial time algorithm
based on the sixth level of the sum-of-squares hierarchy and the
required sample size is almost as low as the one for the exact ten-
sor nuclear norm minimization. However, this algorithm is more
of a theoretical interest as the size of resulting SDP is exceed-
ingly large. For instance, to recover an n × n × n tensor, the
matrix variable could be of the size n3 × n3 , which is undoubt-
edly polynomial in n but is already very challenging to solve
when n ≥ 20.

Note that in the definition of CP-rank, F ∈ Cn1 ×n2 ×···×nd is
decomposed into the sum of asymmetric rank-one tensors. If
F is a super-symmetric tensor, i.e., its component is invariant
under any permutation of the indices, then a natural extension
is to decompose F into the sum of symmetric rank-one tensors,
and this leads to the definition of symmetric CP-rank (see, e.g.,
[30]).

Definition 1.2: Given a d-th order n-dimensional super-
symmetric complex-valued tensor F , its symmetric CP-rank
(denoted by rankSC P (F)) is the smallest integer r such that

F =
r∑

i=1

ai ⊗ · · · ⊗ ai

︸ ︷︷ ︸
d

,

with ai ∈ Cn , i = 1, . . . , r.
It is obvious that rankC P (F) ≤ rankSC P (F) for any given

super-symmetric tensor F . In the matrix case, i.e., when d = 2,
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it is known that the rank and symmetric rank are identical.
However, in the higher order case, whether or not the CP-rank
equals the symmetric CP-rank has remained an interesting and
challenging open problem, known as Comon’s conjecture [30].
Very recently a counterexample disproving Comon’s conjecture
was claimed; see [31]. Some earlier attempts to settle Comon’s
conjecture include [32], [33].

At this point, it is important to remark that the CP-rank stems
from the idea of decomposing a general tensor into a sum of sim-
pler – viz. rank-one in this context – tensors. The nature of the
“simpler components” in the sum, however, can be made flexi-
ble and inclusive. In fact, in many cases it does not have to be a
rank-one tensor as in the CP-decomposition. In particular, for a
2d-th order tensor, the “simple tensor” being decomposed into
could be the outer product of two tensors with lower degree,
which is d in this paper, and we call this new decomposition
the M-decomposition. It is easy to see (will be discussed in
more details later) that after square unfolding, each term in the
M-decomposition is actually a rank-one matrix. Consequently,
the minimum number of such simple terms can be regarded as
a rank, or indeed the M-rank in our context, to be differenti-
ated from other existing notions of tensor ranks. By imposing
further symmetry on the “simple tensor” that composes the
M-decomposition, the notion of symmetric M-decomposition
(symmetric M-rank), and strongly symmetric M-decomposition
(strongly symmetric M-rank) naturally follow. We will intro-
duce the formal definitions later. The merits of the M-rank are
twofold. First, for some structured tensors, we can show, through
either theoretical analysis or numerical experimentations, that
the M-rank is much better than the averaged Tucker rank in
terms of approximating the CP-rank. Second, for low-CP-rank
tensor recovery problems, the low-M-rank approach can im-
prove the recoverability and our numerical tests suggest that the
M-rank remain a good approximation to the CP-rank even in
the presence of some gross errors.

A. Related Work

For tensor completion problems, efficient algorithms such
as alternating direction method of multipliers and Douglas-
Rachford operator splitting methods were proposed in [19] and
[20] to solve (6). Mu et al. [26] suggested to minimize the
nuclear norm of a matrix obtained by a square unfolding of the
original tensor. The idea of square unfolding also appeared
earlier in [14] for tensor eigenvalue problem. Recently, more
sophisticated tensor norms are proposed (see [27], [29]) to
approximate the CP-rank in tensor completion problems.
However, these norms are often computationally expensive
or even intractable [28]. Recently, matrix (tensor) completion
algorithms have been used to find a background scene known
as the background-initialization problem. In [34], [35], many
matrix completion and tensor completion algorithms are com-
paratively evaluated under the Scene Background Initialization
data set. More recently, a spatiotemporal low-rank modeling
method [36] and SVD-based tensor-completion technique [37]
were further studied with the aim to enhance the performance
of the background-initialization.

There exist comprehensive reviews for matrix robust PCA
with a comparative evaluation in surveillance video data [38],
[39]. Convexifying the robust tensor PCA problem (4) was also
studied by Tomioka et al. [40] and Goldfarb and Qin [41].
Specifically, they used the averaged Tucker rank to replace the
CP-rank of Y and ‖Z‖1 to replace ‖Z‖0 in the objective of
(4). However, we observe from our numerical experiments (see
Table VI) that this model cannot recover Y well when Y is
of low CP-rank. Other works on this topic include [42]–[44].
Specifically, [42] compared the performance of the convex re-
laxation of the low-n-rank minimization model and the low-rank
matrix completion model on applications in spectral image re-
construction. [43] proposed a Riemannian manifold optimiza-
tion algorithm for finding a local optimum of the Tucker rank
constrained optimization problem. [44] studied some adaptive
sampling algorithms for low-rank tensor completion. There have
been many recent works [45]–[49] on background subtraction of
surveillance video via robust tensor PCA. In particular, an Out-
lier Iterative Removal algorithm [45] was proposed to reduce
the video size and extract the background from the discrimina-
tive frame set. [46] used the low-rank approximation to exploit
the inherent correlation of tensor data. In [47], an adaptive rank
adjustment procedure was incorporated in the regularized tensor
decomposition method to obtain accurate background compo-
nent when the scene is changing at different time or places.
Recently, t-SVD based tensor rank [48], [50] and KBR based
tensor rank [49] have been proposed and applied in both ten-
sor completion and robust tensor PCA. In [48], [50], the ten-
sor was transformed to the Fourier domain through the fast
Fourier transform, and then the decomposition was conducted
in the Fourier domain. The KBR based tensor rank [49] pro-
moted the low-rankness of the target tensor via the sparsity of
the associated core tensor. These two newly proposed tensor
norms were well justified by the surveillance video examples
(see the numerical results in [48]–[50] and also Figures 1 and 2
in this paper). The interested readers are referred to LRSLi-
brary [51] (https://github.com/andrewssobral/lrslibrary) for a
nice summary of many state-of-the-art algorithms for matrix
(tensor) completion and robust PCA.

B. Our Contributions

The main contributions of this paper are as follows. First,
we introduce several new notions of tensor decomposition for
even-order tensors, followed by the new notions of tensor M-
rank, symmetric M-rank and strongly symmetric M-rank. Sec-
ond, we prove the equivalence of these three rank definitions
for even-order super-symmetric tensors. Third, we establish the
connection between these new ranks and the CP-rank and sym-
metric CP-rank. Specifically, we show that for a fourth-order
tensor, both the CP-rank and the symmetric CP-rank can be
lower and upper bounded (up to a constant factor) by the M-rank,
and the bound is tight for asymmetric tensors. As a byproduct,
we present a class of tensors whose CP-rank can be exactly com-
puted easily. Finally, we solve low-M-rank tensor completion
and low-M-rank robust tensor PCA problems for both synthetic
and real data. The results demonstrate that our low-M-rank ap-
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proach outperforms the existing low-n-rank approach, which
further confirm that M-rank is a much better approximation to
CP-rank.

Notation: We use Cn to denote the n-dimensional complex-
valued vector space. We adopt calligraphic letter to denote
a tensor, i.e., A = (Ai1 i2 ···id

)n1 ×n2 ×···×nd
. Cn1 ×n2 ×···×nd de-

notes the space of d-th order n1 × n2 × . . . × nd dimensional
complex-valued tensor. π(i1 , i2 , . . . , id) denotes a permutation
of indices (i1 , i2 , . . . , id). We use Aπ to denote the tensor ob-
tained by permuting the indices of A according to permuta-
tion π. Formally speaking, a tensor F ∈ Cn1 ×n2 ×···×nd is called
super-symmetric, if n1 = n2 = . . . = nd and F = Fπ for any
permutation π. The space where n × n × . . . × n︸ ︷︷ ︸

d

super-

symmetric tensors reside is denoted by Snd
. We use ⊗ to denote

the outer product of two tensors; that is, forA1 ∈ Cn1 ×n2 ×···×nd

and A2 ∈ Rnd+1 ×nd+2 ×···×nd+� , A1 ⊗A2 ∈ Cn1 ×n2 ×···×nd + �

and (A1 ⊗A2)i1 i2 ···id + �
= (A1)i1 i2 ···id

(A2)id + 1 ···id + �
.

II. M-RANK, SYMMETRIC M-RANK AND STRONGLY

SYMMETRIC M-RANK

In this section, we shall introduce the M-decomposition
(correspondingly M-rank), the symmetric M-decomposition
(correspondingly symmetric M-rank), and the strongly sym-
metric M-decomposition (correspondingly strongly symmetric
M-rank) for tensors, which will be used to provide lower and
upper bounds for the CP-rank and the symmetric CP-rank.

A. The M-Rank of Even-Order Tensor

The M-decomposition of an even-order tensor is defined as
follows.

Definition 2.1: For an even-order tensor F ∈ Cn1 ×n2 ···×n2 d ,
the M-decomposition is to find some tensors Ai ∈ Cn1 ×···×nd ,
Bi ∈ Cnd+1 ×···×n2 d with i = 1, . . . , r such that

F =
r∑

i=1

Ai ⊗ Bi . (7)

The motivation for studying this decomposition stems from
the following novel matricization technique called square un-
folding that has been considered in [14], [26], [52].

Definition 2.2: The square unfolding of an even-
order tensor F ∈ Cn1 ×n2 ···×n2 d (denoted by M(F) ∈
C(n1 ···nd )×(nd + 1 ···n2 d )) is a matrix that is defined as

M(F)k� := Fi1 ···i2 d
,

where

k =
d∑

j=2

(ij − 1)
j−1∏

q=1

nq + i1 , 1 ≤ ij ≤ nj , 1 ≤ j ≤ d,

� =
2d∑

j=d+2

(ij − 1)
j−1∏

q=d+1

nq + id+1 , 1≤ ij ≤nj , d + 1≤j≤2d.

In Definition 2.2, the square unfolding merges d indices of F
as the row index of M(F), and merges the other d indices of F

as the column index of M(F). In this pattern of unfolding, we
observe that the M-decomposition (7) can be rewritten as

M(F) =
r∑

i=1

ai(bi)
,

where ai = V (Ai), bi = V (Bi) for i = 1, . . . , r, and V (·) is
the vectorization operator. Specifically, for a given tensor F ∈
Cn1 ×n2 ···×nd , V (F)k := Fi1 ···id

with

k =
d∑

j=2

(ij − 1)
j−1∏

q=1

nq + i1 , 1 ≤ ij ≤ nj , 1 ≤ j ≤ d.

Therefore, the M-decomposition of F is exactly the rank-one
decomposition of the matrix M(F). Apparently, unless F is
super-symmetric, there are different ways to unfold the tensor
F by permuting the 2d indices. Taking this into account, we now
define two types of M-rank (namely, M+ -rank and M−-rank) of
an even-order tensor as follows.

Definition 2.3: Given an even-order tensor F ∈
Cn1 ×n2 ···×n2 d , its M−-rank (denoted by rankM −(F)) is
the smallest rank of all possible square unfolding matrices, i.e.,

rankM −(F) = min
π∈Π(1,...,2d)

rank (M(Fπ )) , (8)

where Π(1, . . . , 2d) denotes the set of all possible permuta-
tions of indices (1, . . . , 2d), and Fπ is the tensor obtained
by permuting the indices of F according to permutation π.
In other words, rankM −(F) is the smallest integer r such
that Fπ =

∑r
i=1 Ai ⊗ Bi , holds for some permutation π ∈

Π(1, . . . , 2d), Ai ∈ Cni 1 ×···×ni d , Bi ∈ Cni d + 1 ×···×ni 2 d with
(i1 , . . . , i2d) = π(1, . . . , 2d), i = 1, . . . , r. Similarly, the M+ -
rank (denoted by rankM + (F)) is defined as the largest rank
of all possible square unfolding matrices: rankM + (F) =
maxπ∈Π(1,...,2d) rank (M(Fπ )) .

B. Symmetric M-Rank and Strongly Symmetric M-Rank of
Even-Order Super-Symmetric Tensor

Note that if F is an even-order super-symmetric tensor,
rankM + (F) = rankM −(F). In this case, we can simplify the
notation without causing any confusion by using rankM (F) to
denote the M-rank of F .

As we mentioned earlier, the decomposition (7) is essentially
based on the matrix rank-one decomposition of the matricized
tensor. In the matrix case, it is clear that there are different ways
to decompose a symmetric matrix; for instance,

ab
 + ba
 =
1
2
(a + b)(a + b)
 − 1

2
(a − b)(a − b)
.

In other words, a given symmetric matrix may be decom-
posed as a sum of symmetric rank-one terms, as well as a sum
of non-symmetric rank-one terms, however yielding the same
rank: the minimum number of respective decomposed terms.
A natural question arises when dealing with tensors: Does the
same property hold for the super-symmetric tensors? The M-
decomposition of a tensor is in fact subtler: the decomposed
terms can be restricted to symmetric products, and they can also
be further restricted to be super-symmetric.
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Therefore, we can define the symmetric M-rank and the
strongly symmetric M-rank for even-order super-symmetric ten-
sor as follows.

Definition 2.4: For an even-order super-symmetric tensor
F ∈ Sn2 d

, its symmetric M-decomposition is defined as

F =
r∑

i=1

Bi ⊗ Bi , Bi ∈ Cnd

, i = 1, . . . , r. (9)

The symmetric M-rank of F (denoted by rankSM (F)) is
the rank of the symmetric matrix M(F), i.e., rankSM (F) =
rank (M(F)) = rankM (F); or equivalently rankSM (F) is the
smallest integer r such that (9) holds.

In a similar vein, the strongly symmetric M-decomposition is
defined as

F =
r∑

i=1

Ai ⊗Ai , Ai ∈ Snd

, i = 1, . . . , r, (10)

and the strongly symmetric M-rank of F (denoted by
rankSSM (F)) is defined as the smallest integer r such that (10)
holds.

The fact that the M-rank and the symmetric M-rank of an
even-order super-symmetric tensor are always equal follows
from the similar property of the symmetric matrices. (Note how-
ever the M-decompositions may be different). Interestingly, we
can show that rankSM (F) = rankSSM (F) for any even-order
super-symmetric tensor F , which appears to be a new property
of the super-symmetric even-order tensors.

C. Equivalence of Symmetric M-Rank and Strongly Symmetric
M-Rank

To show the equivalence of the symmetric M-rank and the
strongly symmetric M-rank, we need to introduce the concept
of partial symmetric tensors and some lemmas first.

Definition 2.5: We say a tensor F ∈ Cnd
partial symmetric

with respect to indices {1, . . . , m}, m < d, if

Fi1 ,...,im ,im + 1 ,...,id
=Fπ (i1 ,...,im ),im + 1 ,...,id

, ∀π ∈ Π(1, . . . , m).

We use πi,j ∈ Π(1, . . . , d) to denote the specific permutation
that exchanges the i-th and the j-th indices and keeps other
indices unchanged.

The following result holds directly from Definition 2.5.
Lemma 2.1: Suppose tensor F ∈ Cnd

is partial symmetric
with respect to indices {1, . . . , m}, m < d. Then the tensor

F +
m∑

j=1

Fπj , m +1

is partial symmetric with respect to indices {1, . . . , m + 1}.
Moreover, it is easy to verify that for � ≤ k ≤ m,

⎛

⎝
k∑

j=1

(
F − Fπj , m +1

)
⎞

⎠

π� , m +1

= k · Fπ� , m +1 −
∑

j �=�

Fπj , m +1 −F

= −k
(
F − Fπ� , m +1

)
+

∑

j �=�

(
F − Fπj , m +1

)
. (11)

We are now ready to prove the following key lemma.
Lemma 2.2: Suppose F ∈ Sn2 d

and F =
∑r

i=1 Bi ⊗ Bi

with Bi ∈ Cnd
are partial symmetric with respect to

{1, . . . , m},m < d. Then there exist tensors Ai ∈ Cnd
, which

are partial symmetric with respect to {1, . . . , m + 1}, for
i = 1, . . . , r, such that

F =
r∑

i=1

Ai ⊗Ai .

Proof: Define Ai = 1
m+1 (Bi +

∑m
j=1 Bi

πj , m +1
). From

Lemma 2.1 we know that Ai is partial symmetric with respect
to {1, . . . , m + 1}, for i = 1, . . . , r. It is easy to show that

Bi = Ai +
m∑

j=1

Ci
j , with Ci

j =
1

m+1

(
Bi − Bi

πj , m +1

)
.

Because F is super-symmetric, we have F = Fπd + 1 , d + m +1 =
Fπ1 , m +1 = (Fπ1 , m +1 )πd + 1 , d + m +1 , which implies

F =
r∑

i=1

Bi ⊗ Bi =
r∑

i=1

Bi ⊗ Bi
π1 , m +1

=
r∑

i=1

Bi
π1 , m +1

⊗ Bi =
r∑

i=1

Bi
π1 , m +1

⊗ Bi
π1 , m +1

. (12)

By using (11), we have

Bi
π1 , m +1

=

⎛

⎝Ai +
m∑

j=1

Ci
j

⎞

⎠

π1 , m +1

= Ai +
m∑

j=2

Ci
j − m · Ci

1 .

(13)
Combining (13) and (12) yields

F =
r∑

i=1

Bi ⊗ Bi =
r∑

i=1

⎛

⎝Ai +
m∑

j=1

Ci
j

⎞

⎠ ⊗

⎛

⎝Ai +
m∑

j=1

Ci
j

⎞

⎠

(14)
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=
r∑

i=1

Bi ⊗ Bi
π1 , m +1

=
r∑

i=1

⎛

⎝Ai +
m∑

j=1

Ci
j

⎞

⎠ ⊗

⎛

⎝Ai +
m∑

j=2

Ci
j − m · Ci

1

⎞

⎠ (15)

=
r∑

i=1

Bi
π1 , m +1

⊗ Bi

=
r∑

i=1

⎛

⎝Ai +
m∑

j=2

Ci
j − m · Ci

1

⎞

⎠ ⊗

⎛

⎝Ai +
m∑

j=1

Ci
j

⎞

⎠ (16)

=
r∑

i=1

Bi
π1 , m +1

⊗ Bi
π1 , m +1

=
r∑

i=1

⎛

⎝Ai +
m∑

j=2

Ci
j − m · Ci

1

⎞

⎠⊗

⎛

⎝Ai +
m∑

j=2

Ci
j − m · Ci

1

⎞

⎠.

(17)

It is easy to check that (17)+m×(16)+m×(15)+m 2 ×(14)
(1+m )2 yields

F =
∑r

i=1(Ai +
∑m

j=2 Ci
j ) ⊗ (Ai +

∑m
j=2 Ci

j ). Then we re-

peat this procedure. That is, since F ∈ Sn2 d
, we have

F = Fπd + 2 , d + m +1 = Fπ2 , m +1 = (Fπ2 , m +1 )πd + 2 , d + m +1 . By let-

ting Bi = Ai +
∑d

j=2 Ci
j , we can apply the same proce-

dure as above to obtain F =
∑r

i=1(Ai +
∑m

j=3 Ci
j ) ⊗ (Ai +∑m

j=3 Ci
j ). We just repeat this procedure until F =

∑r
i=1 Ai ⊗

Ai and this completes the proof. �
Now we are ready to present the equivalence of symmetric

M-rank and strongly symmetric M-rank.
Theorem 2.3: For an even-order super-symmetric tensor

F ∈ Sn2 d
, its M-rank, symmetric M-rank and strongly sym-

metric M-rank are the same, i.e., rankM (F) = rankSM (F) =
rankSSM (F).

Proof: The equality rankM (F) = rankSM (F) follows di-
rectly from the definition of symmetric M-rank. We thus
only need to prove rankSM (F) = rankSSM (F). Suppose
rankSM (F) = r, which means there exist Bi ∈ Cnd

, i =
1, . . . , r, such thatF =

∑r
i=1 Bi ⊗ Bi . By applying Lemma 2.2

at most d times, we can find super-symmetric tensors Ai ∈
Snd

, i = 1, . . . , r such that F =
∑r

i=1 Ai ⊗Ai . Hence, we
have rankSSM (F) ≤ r = rankSM (F). On the other hand, it
is obvious that rankSM (F) ≤ rankSSM (F). Combining these
two inequalities yields rankSM (F) = rankSSM (F). �

III. BOUNDING CP-RANK FOR EVEN-ORDER TENSOR

USING M-RANK

In this section, we analyze the relation between the CP-rank
and the M-rank. Specifically, for even-order tensor, we establish
the equivalence between the symmetric CP-rank and the M-rank
under the rank-one assumption. Then we particularly focus on
the fourth-order tensors, because many multi-dimensional data
from real practice are in fact fourth-order tensors. For exam-
ple, the colored video completion and decomposition problems

considered in [19], [20], [41] can be formulated as low-CP-rank
fourth-order tensor recovery problems. We show that the CP-
rank and the symmetric CP-rank for fourth-order tensor can be
both lower and upper bounded (up to a constant factor) by the
corresponding M-rank.

A. Rank-One Equivalence for Super-Symmetric
Even-Order Tensor

In our previous work [14], we already showed that if a super-
symmetric even-order tensor F is real-valued and the decom-
position is performed in the real domain, then rankC P (F) =
1 ⇐⇒ rank(M(F)) = 1. Here we show that a similar result
can be established when F is complex-valued and the decom-
position is performed in the complex domain. To see this, we
first present the following lemma.

Lemma 3.1: If a d-th order tensor A = a1 ⊗ a2 ⊗ · · · ⊗
ad ∈ Snd

is super-symmetric, then we have ai = cia
1 for

some ci ∈ C,∀ i = 2, . . . , d and A = b ⊗ b ⊗ · · · ⊗ b︸ ︷︷ ︸
d

for some

b ∈ Cn .
Proof: Since A is super-symmetric, construct T =

Ā ⊗ A and it is easy to show that ∀ (j1 · · · jd) ∈
Π(i1 · · · id), (jd+1 · · · j2d) ∈ Π(id+1 · · · i2d),

Ti1 ...id id + 1 ...i2 d
= Tj1 ...jd jd + 1 ...j2 d

,

and ∀1 ≤ i1 ≤ · · · ≤ id ≤ n, 1 ≤ id+1 ≤ · · · ≤ i2d ≤ n,

Ti1 ...id id + 1 ...i2 d
= Tid + 1 ...i2 d i1 ...id

.

Therefore, T belongs to the so-called conjugate partial sym-
metric tensor introduced in [53]. Moreover, from Theorem 6.5
in [53], we know that

max
‖x‖=1

T (x, . . . , x︸ ︷︷ ︸
d

, x, . . . , x︸ ︷︷ ︸
d

)

= max
‖xi ‖=1, i=1,...,d

T (x1 , . . . , xd , x1 , . . . , xd)

= ‖a1‖2 · ‖a2‖2 · · · · · ‖ad‖2 .

So there must exist an x̂ with ‖x̂‖ = 1 such that |(ai)
x̂| = ‖ai‖
for all i, which implies that ai = cia

1 for some ci ∈ C,∀ i =
2, . . . , d, and A = λ a1 ⊗ a1 ⊗ · · · ⊗ a1

︸ ︷︷ ︸
d

for some constant λ =

Πd
i=2ci . Finally by taking b = d

√
λa1 , the conclusion follows. �

The rank-one equivalence is established in the following
theorem.

Theorem 3.2: Suppose F ∈ Sn2 d
and we have

rankM (F) = 1 ⇐⇒ rankSC P (F) = 1.

Proof: Suppose rankSC P (F) = 1 and F = x ⊗ · · · ⊗ x︸ ︷︷ ︸
2d

for

some x ∈ Cn . By constructing A = x ⊗ · · · ⊗ x︸ ︷︷ ︸
d

, we have F =

A⊗A with A ∈ Snd
. Thus, rankM (F) = 1.

To prove the other direction, suppose that we have F ∈ Sn2 d

and its M-rank is one, i.e., F = A⊗A for some A ∈ Snd
. By

similar arguments as in Lemma 2.1 and Proposition 2.3 in [14],
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one has that the Tucker rank of A is (1, 1, . . . , 1) and conse-
quently the asymmetric CP-rank of A is one. This fact together
with Lemma 3.1 implies that the symmetric CP-rank of A is
one as well, i.e., A = b ⊗ · · · ⊗ b︸ ︷︷ ︸

d

for some b ∈ Cn . It follows

from F = A⊗A = b ⊗ · · · ⊗ b︸ ︷︷ ︸
2d

that rankSC P (F) = 1. �

B. Bounds for Asymmetric Fourth-Order Tensors

For an asymmetric fourth-order tensor, the relation between
its CP-rank and the corresponding M-rank is summarized in the
following result.

Theorem 3.3: SupposeF ∈ Cn1 ×n2 ×n3 ×n4 with n1 ≤ n2 ≤
n3 ≤ n4 . Then for any permutation π of (1, 2, 3, 4) it holds that

rank(M(Fπ )) ≤ rankC P (Fπ ) ≤ n1n3 · rank(M(Fπ )).
(18)

Moreover, the inequalities above can be sharpened to

rankM + (F) ≤ rankC P (F) ≤ n1n3 · rankM −(F). (19)

Proof: Suppose rankC P (F) = r. Let the rank-one decom-
position be F =

∑r
i=1 a1,i ⊗ a2,i ⊗ a3,i ⊗ a4,i , with ak,i ∈

Cni for k = 1, . . . , 4 and i = 1, . . . , r. By letting Ai = a1,i ⊗
a2,i and Bi = a3,i ⊗ a4,i , we get F =

∑r
i=1 Ai ⊗ Bi . Thus

rankM (F) ≤ r = rankC P (F). In fact, this holds for Fπ where
π is any permutation of (1, 2, 3, 4).

On the other hand, for any Fπ denote rM = rank(M(Fπ ))
and (j1 , j2 , j3 , j4) = π(1, 2, 3, 4). Then Fπ =

∑rM

i=1 Ai ⊗
Bi with matrices Ai ∈ Cnj 1 ×nj 2 , Bi ∈ Cnj 3 ×nj 4 for i =
1, . . . , rM , and it follows that rank(Ai) ≤ �1 and rank(Bi) ≤ �2
for all i = 1, . . . , rM , where �1 := min{nj1 , nj2 } and �2 :=
min{nj3 , nj4 }. In other words, matrices Ai and Bi admit some
rank-one decompositions with at most �1 and �2 terms, respec-
tively. Consequently, F can be decomposed as the sum of at
most rM �1�2 rank-one tensors, or equivalently

rankC P (Fπ ) ≤ min{nj1 , nj2 } · min{nj3 , nj4 } · rankM (Fπ )

≤ n1n3 · rankM (Fπ ).

Since the bounds (18) hold for all Fπ and rankM −(F) =
minπ rank(M(Fπ )), rankM + (F) = maxπ rank(M(Fπ )), the
sharper bounds (19) follow immediately. �

The following results further show that the bounds in (19) are
actually tight.

Proposition 3.4: Let us consider a fourth order tensor F ∈
Cn1 ×n2 ×n3 ×n4 such that

F = A ⊗ B for some matrices A ∈ Cn1 ×n2 and B ∈ Cn3 ×n4 .
(20)

Denote r1 = rank(A), r2 = rank(B). Then, the following
holds:

i) The Tucker rank of F is (r1 , r1 , r2 , r2);
ii) rankM + (F) = r1 r2 and rankM −(F) = 1;

iii) rankC P (F) = r1 r2 .

Proof: Suppose the singular value decompositions of A and
B are given by

A =
r1∑

i=1

ai ⊗ bi and B =
r2∑

j=1

cj ⊗ dj . (21)

Recall that F (1) denotes the mode-1 unfolding of F . According
to (21), it is easy to verify that

F (1) =
r1∑

i=1

ai ⊗ V (bi ⊗ B). (22)

Moreover we observe that for i �= j, (V (bi ⊗ B))
(V (bj ⊗
B)) = (bi)
bj · tr (B
B) = 0. Thus, (22) is indeed an orthog-
onal decomposition of F (1) and thus, rank(F (1)) = r1 . Simi-
larly we can show that rank(F (2)) = r1 , rank(F (3)) = r2 and
rank(F (4)) = r2 . This proves part i).

Now we consider the square unfoldings of F . Let F (1, 2),
F (1, 3), F (1, 4) be the square unfolded matrices by grouping
indices (1, 2), (1, 3), (1, 4) respectively. Due to (20), we imme-
diately have that rank(F (1, 2)) = 1 and also

F (1, 3) =
r1∑

i=1

r2∑

j=1

V (ai ⊗ cj ) ⊗ V (bi ⊗ dj ). (23)

From the orthogonality of ai’s, bi’s, cj ’s, and dj ’s, it follows that
{V (ai ⊗ cj )}i,j and {V (bi ⊗ dj )}i,j are two orthogonal bases.
In other words, (23) is an orthogonal decomposition of F (1, 3)
and thus rank(F (1, 3)) = r1 r2 . In the same vein we can show
that rank(F (1, 4)) = r1 r2 as well. Since F (1, 2), F (1, 3) and
F (1, 4) form all the square unfoldings of F , we can conclude
that rankM + (F) = rank(F (1, 3)) = rank(F (1, 4)) = r1 r2 and
rankM −(F) = 1. This proves part ii).

Finally, since (20) also implies

F =
r1∑

i=1

r2∑

j=1

ai ⊗ bi ⊗ cj ⊗ dj ,

it then follows that rankC P (F) ≤ r1 r2 . On the other hand, note
that the first inequality in (18) holds for any square unfoldings.
Combining this with rank(F (1, 3)) = r1 r2 , one concludes that
r1 r2 is a lower bound of rankC P F as well, hence rankC P (F) =
r1 r2 . �

Remark 3.5: Now we remark that the bounds in (19) are
tight. Suppose tensor F is given in the form of (20) with
n1 ≤ n2 ≤ n3 ≤ n4 , and rank(A) = n1 , rank(B) = n3 . Ac-
cording to the above results, we have rankM −(F) = 1 and
rankM + (F) = rankC P (F) = n1n3 , which imply that the both
lower bound and upper bound in (19) are essentially tight. More-
over, in this example the Tucker rank is exactly (n1 , n1 , n3 , n3),
which in turn shows that rankM + is a superior approximation of
rankC P in this particular case. Although we are unable to extend
such claim to the more general setting, we present a few exam-
ples in the numerical part for which rankC P is strictly larger
than any component of Tucker rank but is essentially identical
to rankM + . In addition, it is easy to show that by similar argu-
ment the bounds in (18) also hold for the ranks defined for real-
valued decompositions, i.e., rankR(M(Fπ )) ≤ rankR

C P (Fπ ) ≤
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n1n3 · rankR(M(Fπ )). Moreover, for matrix M(Fπ ) we have
rank(M(Fπ )) = rankR(M(Fπ )), thus establishing the follow-
ing bounds:

rankC P (Fπ ) ≤ rankR
C P (Fπ ) ≤ n1n3 · rankR(M(Fπ ))

= n1n3 · rank(M(Fπ )) ≤ n1n3 · rankC P (Fπ ).

Proposition 3.4 can be further extended to exactly compute
the CP-rank for a class of tensors.

Corollary 3.6: Consider an even order tensor F ∈
Cn1 ×n2 ×···×n2 d such that

F = A1 ⊗ A2 ⊗ · · · ⊗ Ad for some matrices Ai ∈ Cn2 i−1 ×n2 i .

Denoting ri = rank(Ai) for i = 1, . . . , d, we have that
rankC P (F) = rankM + (F) = r1r2 · · · rd .

C. Bounds for Super-Symmetric Fourth-Order Tensors

Theorem 3.2 essentially states that the M-rank and the sym-
metric CP-rank are the same in the rank-one case. This equiv-
alence, however, does not hold in general. In this subsection,
we show that although they are not equivalent, the symmetric
CP-rank of F ∈ Sn2 d

can be both lower and upper bounded (up
to a constant factor) by the corresponding M-rank.

Theorem 3.7: For any given F ∈ Sn4
, it holds that

rankM (F) ≤ rankSC P (F) ≤ n2 rankM (F).

Proof: Let us first prove rankM (F) ≤ rankSC P (F). Suppose
rankSC P (F) = r, i.e.,

F =
r∑

i=1

ai ⊗ ai ⊗ ai ⊗ ai with ai ∈ Cn for i = 1, . . . , r.

By letting Ai = ai ⊗ ai , we get F =
∑r

i=1 Ai ⊗ Ai with Ai ∈
Sn2

. Thus rankM (F) ≤ r = rankSC P (F).
We now prove rankSC P (F) ≤ (n + 4n2) rankM (F). Sup-

pose that rankM (F) = r, then from (2.3) it holds that F =∑r
i=1 Ai ⊗ Ai with Ai ∈ Sn2

. Now consider the associated

polynomial F(x, x, x, x) =
∑r

i=1

(
x
Aix

)2
. Since Ai is a

complex symmetric matrix, by letting yi = Ai1/2
x, we have

F(x, x, x, x)

=
r∑

i=1

(
yi
yi

)2
=

r∑

i=1

n∑

j,k=1

(yi
j )

2(yi
k )2

=
r∑

i=1

⎛

⎝
n∑

j≤k

1
4

(
(yi

j + yi
k )4 + (yi

j − yi
k )4

)
−

(n

4
− 1

) n∑

j=1

(yi
j )

4

⎞

⎠.

Note that yi
j is a linear function of x for any i, j. There-

fore, (yi
j + yi

k )4 and (yi
j )

4 correspond to some symmet-

ric rank-one tensors. Therefore, rankSC P (F) ≤ ( 2n(n−1)
2 +

n) r = n2 rankM (F). �
We remark that the rank-one decomposition of

(yi
j )

2(yi
k )2 is related to the Waring rank of polyno-

mial. By involking Proposition 3.1 in [54] yeilds that
rankSC P (yi

j )
2(yi

k )2) ≤ 3 and rankSC P (F) ≤ ( 3n(n−1)
2 + n)

rankM (F) = (3n2 −n
2 ) rankM (F), which is sightly worse than

the bound in Theorem 3.7. If the coefficients of the rank-one
terms in the decomposition of F are required to be nonngetive,
we can resort to the algorithms in [55], [56] to perform such
rank-one decomposition.

IV. THE LOW-M-RANK TENSOR RECOVERY AND

ROBUST TENSOR PCA

In this section, we consider the low-rank tensor recovery
problem (2) and robust tensor PCA (4) with an emphasis on
the fourth-order tensor case. In the context of tensor recovery,
M+ -rank takes a conservative attitude towards estimating the
CP-rank, because when M+ -rank is minimized, the ranks of all
other unfolding matrices are also small. As a result, minimizing
the M+ -rank is like considering the worst case situation. On the
other hand, M−-rank is a more optimistic estimation, because
M−-rank is the smallest rank among all unfolding matrices, and
the matrix is more likely to be recovered using a matrix comple-
tion model. On the middle ground, one may choose to work with
a pre-specified π. In our numerical experiments, for simplicity,
for a fourth-order tensor F , we always choose to group the first
two indices as the row index, and group the last two indices
as the column index for square unfolding (we use M(F) to
denote the corresponding matrix). According to Theorems 3.3
and 3.7, by multiplying a constant factor, rank(M(F)) can pro-
vide an upper bound for the CP-rank and the symmetric CP-rank
of F (if it is also super-symmetric). We denote X = M(X ),
Y = M(Y) and F = M(F). Without loss of generality, we
replace the CP-rank in the objective of (2) and (4) by rank(X),
and it follows from Theorem 3.3 that by minimizing rank(X),
rankC P (X ) will be small as well. In other words, rather than
solving (2) and (4), we solve the following two matrix problems

min
X

rank(X), s.t., L̄(X) = b, (24)

and

min
Y ,Z

rank(Y ) + λ‖Z‖0 , s.t., Y + Z = F, (25)

where L̄ is a linear mapping such that L̄(X) = L(X ).
It is now natural to consider the convex relaxations of the two

matrix problems (24) and (25); i.e., we replace the rank function
by the nuclear norm and replace the cardinality function by the
�1 norm. This results in the following two convex relaxations
for (24) and (25):

min
X

‖X‖∗, s.t., L̄(X) = b, (26)

and

min
Y ,Z

‖Y ‖∗ + λ‖Z‖1 , s.t., Y + Z = F. (27)

Note that all the variables in (26) and (27) are complex-
valued. Thus, the �1 norm is defined as ‖Z‖1 :=∑

ij

√
(Re (Zij ))2 + (Im (Zij ))2 . Although (26) and (27) are

complex-valued problems, they can still be solved by the meth-
ods in [57]–[61] with minor modifications. We omit the details
for succinctness.
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When the tensors are super-symmetric, we can impose the
super-symmetric constraint and get the following formulation:

min
X

‖X‖∗
s.t. L̄(Y ) = b, M−1(X) ∈ Sn4

,

where M−1(X) is the tensor whose square unfolding is X .
Note that the above problem is equivalent to

min
X

‖X‖∗
s.t. M−1(Y ) ∈ Sn4

,

L̄(Y ) = b, X = Y,

(28)

which can be efficiently solved by the standard alternating direc-
tion method of multipliers (see the survey paper [62] for more
details).

V. NUMERICAL RESULTS

In this section, we shall present the performance of our new
low-M-rank tensor completion and robust tensor PCA models.

A. Approximating the CP-Rank via the M-Rank

In this subsection, we consider the problem of estimating the
CP-rank for some structured tensors. We first construct tensors
in the form of

T =
r∑

i=1

ai ⊗ bi ⊗ ci ⊗ di ∈ Cn1 ×n2 ×n3 ×n4 , (29)

where ai, bi , ci , di , i = 1, . . . , r are randomly generated. Obvi-
ously, the CP-rank of the resulting tensor T is less than or equal
to r. For each set of (n1 , n2 , n3 , n4) and r, we randomly gener-
ate 20 tensors according to (29). Then we compute the Tucker
rank, the M+ -rank and the M−-rank of each tensor, and report
their average value over the 20 instances in Table I.

From Table I, we see that for all instances rankM + (T ) =
rankM −(T ) = r. Thus by Theorem 3.3, rankM + (T ) ≤
rankC P (T ), and from the construction of T , rankC P (T ) ≤ r.
Therefore, we conclude that the CP-rank of these tensors is ex-
actly r and the M-rank equals the CP-rank for these random
instances. Moreover, since r is chosen to be larger than one
dimension of the tensor, some components of the Tucker rank
are strictly less than r.

In another setting, we generate tensors in the following
manner

T =
r∑

i=1

Ai ⊗ Bi, (30)

where matrices Ai,Bi, i = 1, . . . , r are randomly generated in
such a way that rank(Ai) = rank(Bi) = k, i = 1, . . . , r. Con-
sequently, rk2 is an upper bound for the CP-rank of T . From
Proposition 3.4, we know that rankM + (T ) = rankC P (T ) = k2

when r = 1. One may wonder if rankM + (T ) = rankC P (T )
when r > 1. To this end, we let r = k = 2, 3, 4, 5 and generate
20 random instances for different choices of r, k and tensor
dimensions. For each instance, we compute its Tucker rank, the
M+ -rank and the M−-rank, and report the average value over
these 20 instances inTable II.

TABLE I
CP-RANK APPROXIMATION: M-RANK VS TUCKER RANK FOR TENSORS IN (29)

TABLE II
CP-RANK APPROXIMATION: M-RANK VS TUCKER RANK FOR TENSORS IN (30)

From Table II we see that rankM + (T ) = rk2 for all instances.
This further implies that the CP-rank of the generated tensors
is always equal to rk2 and the M+ -rank equals the CP-rank.
Moreover, as shown in the rows that are marked by (*) in Table II,
the CP-rank is strictly less than any dimension size of the tensor,
but the Tucker rank is still strictly less than the CP-rank. This
again confirms that the M+ -rank is a much better approximation
of the CP-rank compared with the averaged Tucker rank.

To summarize, results in both Table I and Table II suggest
that rankM + (T ) = rankC P (T ) when T is randomly generated
from either (29) or (30), while there is a substantial gap between
the averaged Tucker rank and the CP-rank. Therefore, rankM +

is a better estimation than the Tucker rank for estimating the CP-
rank, at least under the settings considered in our experiments.

B. Synthetic Data for Low-Rank Tensor
Optimization Problems

1) Low-M-Rank Tensor Completion: In this subsection we
use the FPCA algorithm proposed in [58] to solve the low-M-
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TABLE III
LOW-M-RANK TENSOR COMPLETION VS. LOW-N-RANK TENSOR COMPLETION

rank tensor completion (26) for fourth-order tensor. We compare
it with the low-n-rank tensor completion (6), t-SVD based ten-
sor completion [50] and KBR based tensor completion [49].
The results are reported in Tables III and IV, respectively. The
testing examples are generated as follows. We generate random
complex-valued tensor X0 based on (29) with various tensor
dimension sizes and different values of r so that the CP-rank of
the resulting tensor is less than or equal to r. Under each setting,
we generate 20 instances and randomly sample 70%, 50%, 30%
of the entries as the observed ones for tensor completion. We
also use the code in [41] to solve the low-n-rank tensor comple-
tion problem (6). We report the average of the Tucker rank, the
average of the M+ -rank and the average of the M−-rank of the
recovered tensor X∗ over the 20 instances in Table III, where
“sr” denotes the sampling ratio, i.e., the percentage of observed
entries. We also report the average of the relative errors for both
approaches in Table III, where the relative error is defined as

Err :=
‖X ∗ − X0‖F

‖X0‖F
.

The CPU times reported are in seconds.
From Table III we see that when the CP-rank is not very small,

the low-n-rank completion approach fails to recover the original
tensor while our low-M-rank method works well and its relative

error is usually at the order of 10−5 or 10−6 . This result is not
surprising. To illustrate this, let us take a 10 × 10 × 10 × 10
tensor as an example. In this case the mode-n unfolding and
the square unfolding will result in a 10 × 1000 and a 100 ×
100 matrices respectively. When the CP-rank of the underlying
tensor is equal to 6, it is a relatively high rank for a 10 × 1000
matrix, while it is a relatively low rank for a 100 × 100 matrix.
This is exactly what happens in the third row-block of Table III
when the dimension of the tensor is 10 × 10 × 10 × 10 and the
CP-rank is 6. In addition, we note that the Tucker rank is often
larger than the CP-rank when it fails to complete the original
tensor. However, the M+ -rank and M−-rank are almost always
equal to the CP-rank except for only two cases. This again
suggests that the M-rank is a good approximation to the CP-
rank. Moreover, the results in Table III also show that the low-M-
rank tensor completion model has a much better recoverability
than the low-n-rank model in terms of the relative error of the
recovered tensors. Furthermore, we conduct similar tests on our
low-M-rank model (26), low-n-rank model, t-SVD based tensor
completion and KBR based tensor completion when the CP-
rank is larger than the size of one dimension of the tensor. This
time we assume only 30% of entries are observed. The averaged
errors and run time in seconds over 20 randomly generated
instances for different tensor dimension sizes are summarized
in Table IV, which show that our low-M-rank tensor completion
model can still recover the tensors very well while the other
three methods struggled.

In another set of tests, we aim to observe the relationship
between the M-rank and the symmetric CP-rank via solving the
super-symmetric tensor completion problem (28). To this end,
we randomly generate 20 complex-valued tensors X0 in the
form (29) for different choice of tensor dimensions and values
of r, so that the symmetric CP-rank of the resulting tensor is
less than or equal to r. For each generated tensor, we randomly
remove 60% of the entries and then solve the tensor comple-
tion problem (28). The results are reported in Table V, which
suggests that the original tensor is nicely recovered (all with the
relative error at the order of 10−6). Moreover, the M-rank and
the symmetric CP-rank shown in the table are always identical,
which implies that the M-rank remains a good approximation
to the symmetric CP-rank for super-symmetric tensor. We also
note that solving problem (28) is much more time consuming
than solving (26), due to the super-symmetric constraint which
is essentially equivalent to O(n4) linear constraints and is costly
to deal with.

2) Low-M-Rank Robust Tensor PCA: In this subsection we
report the numerical results for the robust tensor PCA problem
(27) based on the low-M-rank, the low-n-rank, the t-SVD based
rank and the KBR based rank models. We choose λ = 1/

√
n1n2

in (27), and apply the alternating linearization method in [60] to
solve (27). The low-rank tensor Y0 is randomly generated ac-
cording to formula (29), and a random complex-valued sparse
tensor Z0 is generated with cardinality of 0.05 · n1n2n3n4 .
Then we set F = Y0 + Z0 as the observed data. We conduct
our tests under various settings of tensor dimension sizes and
CP-ranks of Y0 . For each setting, 20 instances are randomly
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TABLE IV
COMPARISON OF 4 TENSOR COMPLETION METHODS FOR RANDOMLY GENERATED INSTANCES

TABLE V
NUMERICAL RESULTS FOR LOW-M-RANK SUPER-SYMMETRIC TENSOR

COMPLETION BY SOLVING (28)

generated. We also apply the code in [41] to solve the low-n-
rank robust tensor PCA problem:

min
Y,Z∈Cn 1 ×n 2 ···×n d

1
d

d∑

j=1

‖Y (j)‖∗ + λ‖Z‖1 , s.t. Y + Z = F .

(31)
The details of the t-SVD based and the KBR based robust tensor
PCA can be found in [48], [49].

Suppose Y∗ and Z∗ are the low-rank tensor and sparse tensor
returned by the algorithms. We define the relative error of the
low-rank part and sparse part as

ErrL :=
‖Y∗ − Y0‖F

‖Y0‖F
, ErrS :=

‖Z∗ − Z0‖F

‖Z0‖F
.

We report the average of these two relative errors, the recovered
low-rank tensor Y∗, and the average run time (in seconds) of
each method over 20 instances in Table VI. Results in Table VI
suggest that in many cases, the low-n-rank, t-SVD based rank
and the KBR based rank robust tensor PCA models fail to ex-
tract the low-rank part while our low-M-rank robust tensor PCA
model can always recover the tensor with relative error at the
order of 10−3 to 10−6 .

C. Colored Video Completion and Decomposition

In this subsection, we apply the low-M-rank tensor com-
pletion and low-M-rank robust tensor PCA to colored video
completion and decomposition. A colored video consists of n4

frames, and each frame is an image stored in the RGB format as
an n1 × n2 × n3 array. As a result, filling in the missing entries
of the colored video and decomposing the video to static back-
ground and moving foreground can be regarded as low-rank
tensor completion (2) and robust tensor PCA (4), respectively.

In our experiment for tensor completion, we chose 50 frames
from a video taken in a lobby, which was introduced by Li
et al. in [63]. Each frame in this video is a colored image with
size 128 × 160 × 3. The images in the first row of Figure 1
are three frames of the video. Basically we chose the 50 frames
such that they only contain static background, and thus the
128 × 160 × 3 × 50 fourth-order tensor formed by them are
expected to have low rank, because the background is almost
the same in each frame. We then randomly remove 70% of the
entries from the video, and the images in the second rows of
Figure 1 are the frames after the removal. We then apply the
FPCA algorithm [58] to solve (26) with the square unfolding
matrix with matrix size 20480 × 150 and with certain single
mode-n unfolding matrix respectively, to complete the missing
entries in the target tensor. In addition, the t-SVD based tensor
completion [50] and KBR based tensor completion [49] are also
performed, and the algorithm in [41] is applied to solve low-n-
rank minimization model (5) for comparison. The images in the
third to seventh rows of Figure 1 are the frames recovered using
the five models/methods respectively. We can see that when 70%
tensor entries are missing the recovery capabilities of square un-
folding, single mode-n unfolding, t-SVD based completion and
KBR based completion are comparable, which are all slightly
better than that of low-n-rank minimization model. This can be
seen from the blurred red flower in the pot pointed by the red
arrow in the fifth row of Figure 1. Next, we further increase the
portion of the missing data to 80% and the recovered videos are
shown in Figure 2. We see that the third row does not retain the
correct color and the fifth row and the sixth row are blurred,
but the images in the fourth row and seventh row are almost as
good as the original images in the first row. This implies that
square unfolding is not necessarily always better than mode-n
unfolding for this kind of problem, which further implies that
the video data may not have low CP-rank. Minimizing the av-
erage nuclear norm of all mode-n unfolding, which is popular
in tensor completion [19], [20], [41], however, is always worse
than an appropriate single mode-n minimization. Determining
the most appropriate mode to unfold the tensor is highly depen-
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TABLE VI
COMPARISON OF 4 ROBUST TENSOR PCA METHODS FOR RANDOMLY GENERATED INSTANCES

Fig. 1. Colored video completion with 70% missing entries.

dent on the structure and the physical meaning of the underlying
tensor model. In conclusion, we observe that for each specific
application, it pays to learn the correct mode of matricization,
square or otherwise.

Fig. 2. Colored video completion with 80% missing entries.

In our experiment for robust tensor PCA, we chose another 50
frames from the same video in [63]. These frames were chosen
such that the frames contain some moving foregrounds. The task
in robust tensor PCA is to decompose the given tensor into two
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Fig. 3. Robust video recovery as robust tensor PCA. The first row are the
3 frames of the original video sequence. The second row are the recovered
background, and the last row are the recovered foreground.

parts: a low-rank tensor corresponding to the static background,
and a sparse tensor corresponding to the moving foreground.
Note that the tensor corresponding to the moving foreground
is sparse because the foreground usually only occupies a small
portion of the frame. Thus this decomposition can be found
by solving the robust tensor PCA problem (4). Here we again
apply the alternating linearization method proposed in [60] to
solve (27) for the task of robust tensor PCA, where λ in (27) is
chosen as 1/

√
n1n2 and n1 , n2 are the first two dimensions of

the fourth-order tensor. The decomposition results are shown in
Figure 3. The images in the first row of Figure 3 are frames of
the original video. The images in the second and third rows of
Figure 3 are the corresponding static background and moving
foreground, respectively. We can see that our low-M-rank robust
tensor PCA approach very effectively decomposes the video,
which is a fourth-order tensor.

VI. CONCLUDING REMARKS

In this paper, we proposed a new approach for solving tensor
completion and robust tensor PCA problems. The approach is
based on the newly defined notion of M-rank of a tensor. We
provided a theoretical foundation for using the M-rank as a
proximity of the CP-rank. Computationally, the M-rank is much
easier to compute than the CP-rank. We then solved the low-
M-rank tensor completion and robust tensor PCA problems by
converting the tensor problems to matrix problems using the
M-decomposition. The numerical results show that our method
can recover the tensors very well, confirming that the M-rank
is a good approximation of the CP-rank in such applications.
Compared to the classical mode-n rank, the new M-rank differs
in its principle to unfold the tensor into matrices: it takes a
balanced approach. Namely, for a 2m-order tensor, the M-rank
unfolding groups the indices by m × m, while the Tucker rank
folding groups the indices in the fashion of 1 × (2m − 1). It is
certainly possible to attempt all groupings such as k × (2m − k)
with k = 1, 2, ...,m, though the computational costs increase

exponentially with the order of the tensor. A balanced folding
can also be extended to odd-order tensors; for an (2m + 1)-
order tensor, leading to grouping the indices by m × (m + 1).
For the tensors of order 3, this reduces to the traditional mode-
n matricization. Most results in this paper, including CP-rank
approximation and low-M-rank tensor recovery, can be easily
generalized to odd-order tensors.
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