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Abstract We analyze the convergence rate of the alternating direction method of
multipliers (ADMM) for minimizing the sum of two or more nonsmooth convex
separable functions subject to linear constraints. Previous analysis of the ADMM
typically assumes that the objective function is the sum of only two convex functions
defined on two separable blocks of variables even though the algorithm works well
in numerical experiments for three or more blocks. Moreover, there has been no rate
of convergence analysis for the ADMM without strong convexity in the objective
function. In this paper we establish the global R-linear convergence of the ADMM
for minimizing the sum of any number of convex separable functions, assuming that a
certain error bound condition holds true and the dual stepsize is sufficiently small. Such
an error bound condition is satisfied for example when the feasible set is a compact
polyhedron and the objective function consists of a smooth strictly convex function
composed with a linear mapping, and a nonsmooth �1 regularizer. This result implies
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the linear convergence of the ADMM for contemporary applications such as LASSO
without assuming strong convexity of the objective function.

Keywords Linear convergence · Alternating directions of multipliers · Error bound ·
Dual ascent

Mathematics Subject Classification 49 · 90

1 Introduction

Consider the problem of minimizing a separable potentially nonsmooth convex func-
tion subject to linear equality constraints:

minimize f (x) = f1(x1) + f2(x2) + · · · + fK (xK )

subject to Ex = E1x1 + E2x2 + · · · + EK xK = q
xk ∈ Xk, k = 1, 2, . . . , K ,

(1.1)

where each fk is a nonsmooth convex function (possibly with extended values), x =
(xT

1 , . . . , xT
K )T ∈ �n is a partition of the optimization variable x , X = ∏K

k=1 Xk is
the feasible set for x , and E = (E1, E2, . . . , EK ) ∈ �m×n is an appropriate partition
of matrix E (consistent with the partition of x) and q ∈ �m is a vector. Notice that the
model (1.1) can easily accommodate general linear inequality constraints Ex ≥ q by
adding one extra block. In particular, we can introduce a slack variable xK+1 ≥ 0 and
rewrite the inequality constraint as Ex − xK+1 = q. The constraint xK+1 ≥ 0 can
be enforced by adding a new convex component function fK+1(xK+1) = i�m+(xK+1)

to the objective function f (x), where i�m+(xK+1) is the indicator function for the
nonnegative orthant �m+

i�m+(xK+1) =
{
0, if xK+1 ≥ 0 (entry wise),
∞, otherwise.

In this way, the inequality constrained problem with K blocks is reformulated as an
equivalent equality constrained convex minimization problem with K + 1 blocks.

Optimization problems of the form (1.1) arise in many emerging applications
involving structured convex optimization. For instance, in compressive sensing appli-
cations, we are given an observation matrix A and a noisy observation vector b ≈ Ax .
The goal is to estimate the sparse vector x by solving the following �1 regularized
linear least squares problem:

minimize ‖z‖2 + λ‖x‖1
subject to Ax + z = b,

where λ > 0 is a penalty parameter. Clearly, this is a structured convex optimization
problem of the form (1.1) with K = 2. If the variable x is further constrained to be
nonnegative, then the corresponding compressive sensing problem can be formulated
as a three block (K = 3) convex separable optimization problem (1.1) by introducing
a slack variable.
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On the linear convergence of the alternating direction… 167

A popular approach to solving the separable convex optimization problem (1.1) is
to attach a Lagrange multiplier vector y to the linear constraints Ex = q and add a
quadratic penalty, thus obtaining an augmented Lagrangian function of the form

L(x; y) = f (x) + 〈y, q − Ex〉 + ρ

2
‖q − Ex‖2, (1.2)

where ρ ≥ 0 is a constant. The augmented dual function is given by

d(y) = min
x∈X

f (x) + 〈y, q − Ex〉 + ρ

2
‖q − Ex‖2 (1.3)

and the dual problem (equivalent to (1.1) under mild conditions) is

max
y

d(y). (1.4)

Moreover, if ρ > 0, then Ex is constant over the set of minimizers of (1.3) (see
Lemma 2.1 in Sect. 2). This implies that the dual function d(y) is differentiable with

∇d(y) = q − Ex(y)

where x(y) is a minimizer of (1.3); see Lemma 2.1 for a proof of this claim. Given
the differentiability of d(y), it is natural to consider the following dual ascent method
to solve the primal problem (1.1)

y := y + α∇d(y) = y + α(q − Ex(y)), (1.5)

where α > 0 is a suitably chosen stepsize. Such a dual ascent strategy is well suited
for structured convex optimization problems that are amenable to decomposition. For
example, if the objective function f is separable (i.e., of the form given in (1.1))
and if we select ρ = 0, then the minimization in (1.3) decomposes into K inde-
pendent minimizations whose solutions frequently can be obtained in a simple form.
In addition, the iterations can be implemented in a manner that exploits the sparsity
structure of the problem and, in certain network cases, achieve a high degree of paral-
lelism. Popular choices for the ascent methods include (single) coordinate ascent (see
[3,7,9,31,38,40,46,47,53]), gradient ascent (see [31,40,48]) and gradient projection
[22,29]. (See [4,31,44] for additional references.)

For large scale optimization problems, it is numerically advantageous to select
ρ > 0. Unfortunately, this also introduces variable coupling in the augmented
Lagrangian (1.2), which makes the exact minimization step in (1.3) no longer decom-
posable across variable blocks even if f has a separable structure. In this case, it ismore
economical tominimize (1.3) inexactly by updating the components of x cyclically via
the coordinate descent method. In particular, we can apply the Gauss–Seidel strategy
to inexactly minimize (1.3), and then update the multiplier y using an approximate
optimal solution of (1.3) in a manner similar to (1.5). The resulting algorithm is called
the Alternating Direction Method of Multipliers (ADMM) and is summarized in the
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following table (see [16–19]). In the general context of sums of monotone operators,
the work of [15] describes a large family of splitting methods for K ≥ 3 blocks which,
when applied to the dual, result in similar but not identical methods to the ADMM
algorithm (1.6).

Alternating Direction Method of Multipliers (ADMM)

At each iteration r ≥ 1, we first update the primal variable blocks in the
Gauss–Seidel fashion and then update the dual multiplier using the updated
primal variables:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xr+1
k = arg min

xk∈Xk
L
(

xr+1
1 , . . . , xr+1

k−1, xk, xr
k+1, . . . , xr

K ; yr
)

, k = 1, 2, . . . , K ,

yr+1 = yr + α(q − Exr+1) = yr + α

(

q −
K∑

k=1

Ek xr+1
k

)

,
(1.6)

where α > 0 is the stepsize for the dual update.

Notice that if there is only one block (K = 1) and ρ = 0, then the ADMM reduces
to the standard dual gradient ascent method (see e.g., [1]). In particular, it is known
that, under mild assumptions on the problem and with certain assumptions on the
stepsize, this type of dual gradient ascent methods generate a sequence of iterates
whose limit points must be optimal solutions of the original problem (see [7,44,46]).
For the special case of ordinary network flow problems, it is further known that an
associated sequence of dual iterates converges to an optimal solution of the dual (see
[3]). The rate of convergence of dual ascent methods has been studied in the reference
[34] which showed that, under mild assumptions on the problem, the distance to
the optimal dual solution set from any y ∈ �m near the set is bounded above by
the dual optimality ‘residual’ ‖∇d(y)‖. By using this bound, it can be shown that
a number of ascent methods, including coordinate ascent methods and a gradient
projection method, converge at least linearly when applied to solve the dual problem
(see [32,33]; also see [2,10,27] for related analysis). (Throughout this paper, by ‘linear
convergence’ we mean root-linear convergence, denoted by R-linear convergence, in
the sense of Ortega and Rheinboldt [39].)

When there are two blocks (K = 2), the convergence of the ADMM was studied
in the context of Douglas–Rachford splitting method [12–14] for finding a zero of
the sum of two maximal monotone operators. It is known that in this case every
limit point of the iterates is an optimal solution of the problem. The recent work
of [20,21,25,37] have shown that, under some additional assumptions, the objective
values generated by theADMMalgorithm and its accelerated version (which performs
some additional line search steps for the dual update) converge at a rate of O(1/r)

and O(1/r2) respectively, where r is the iteration index. Moreover, if the objective
function f (x) is strongly convex and the constraint matrix E is row independent,
then the ADMM is known to converge linearly to the unique minimizer of (1.1) [30].
[One notable exception to the strong convexity requirement is in the special case of
linear programming for which the ADMM is linearly convergent [13].] More recent
convergence rate analysis of the ADMM still requires at least one of the component
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On the linear convergence of the alternating direction… 169

functions ( f1(x1) or f2(x2)) to be strongly convex and have a Lipschitz continuous
gradient. Under these and additional rank conditions on the constraint matrix E , some
linear convergence rate results can be obtained for a subset of primal and dual variables
in the ADMM algorithm (or its variant); see [5,11,23]. However, when there are more
than two blocks involved (K ≥ 3), the convergence (or the rate of convergence) of
the ADMM method is unknown, and this has been a key open question for several
decades. The recent work [35] describes a list of novel applications of the ADMM
with K ≥ 3 and motivates strongly for the need to analyze the convergence of the
ADMM in the multi-block case. The recent monograph [6] contains more details of
the history, convergence analysis and applications of the ADMM and related methods.

A main contribution of this paper is to establish the global (linear) convergence of
the ADMMmethod for a class of convex objective functions involving any number of
blocks (K is arbitrary). Two key requirements for the global (linear) convergence are
the choice of a sufficiently small dual stepsize and the satisfaction of a certain error
bound condition that is similar to that used in the analysis of [34]. This error bound
estimates the distance from an iterate to the optimal solution set in terms of a certain
proximity residual. The class of problems that are known to satisfy this error bound
condition has a bounded polyhedral feasible set, and an objective that can be written as
f (x) = �(Ax)+h(x), where �(·) is a smooth and strictly convex function, A is a linear
mapping not necessarily of full column rank, and h(x) is the �1 regularization term.
This family of problem includes many contemporary applications such as LASSO as
special cases.

2 Technical preliminaries

Let f be a closed proper convex function in �n , let E be an m × n matrix, let q be a
vector in �m . Let dom f denote the effective domain of f and let int(dom f ) denote
the interior of dom f . We make the following standing assumptions regarding f :

Assumption (a) The global minimum of (1.1) is attained and so is its dual optimal
value. The intersection X ∩ int(dom f ) ∩ {x | Ex = q} is nonempty.

(b) f = f1(x1) + f2(x2) + · · · + fK (xK ), with each fk further decomposable as

fk(xk) = gk(Ak xk) + hk(xk)

where gk and hk are both convex and continuous relative to their domains, and
Ak’s are some given matrices (not necessarily full column rank, and can be zero).

(c) Each gk is strictly convex and continuously differentiable on int(dom gk) with a
uniform Lipschitz continuous gradient

∥
∥
∥AT

k ∇gk(Ak xk) − AT
k ∇gk(Ak x ′

k)

∥
∥
∥ ≤ L‖xk − x ′

k‖, ∀ xk, x ′
k ∈ Xk

where L > 0 is a constant.
(d) The epigraph of each hk(xk) is a polyhedral set.
(e) Each gk and hk is a proper convex function.
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(f) Each submatrix Ek has full column rank.
(g) The feasible sets Xk , k = 1, . . . , K are compact polyhedral sets.

We have the following remarks regarding to the assumptions made.

1. Each fk might only consist of the convex function hk . That is, the strictly convex
part gk may effectively be absent by having Ak = 0. Also, since the matrices
Ak’s are not required to have full column rank, the overall objective function f (x)

is not necessarily strictly convex. In fact, under Assumption A, the optimization
problem (1.1) can still have multiple primal or dual optimal solutions. This makes
the convergence (and rate of convergence) analysis of ADMM difficult.

2. Assumption (d) allows hk to be a simple linear function of the form 〈bk, xk〉, as its
ephigraph is polyhedral. Moreover, from the assumption that Xk is polyhedral, the
feasibility constraint xk ∈ Xk can be absorbed into hk by adding to it an indicator
function iXk (xk). To simplify notations, we will not explicitly write xk ∈ Xk in
the ADMM update (1.6) from now on.

3. Assumption (f) is made to ensure that the subproblems for each xk is strongly
convex. This assumption will be relaxed later when the subproblems are solved
inexactly; see Sect. 4.1.

4. Assumption (g) requires the feasible set of the variables to be compact. This con-
dition is not needed in conventional analysis of ADMM, but is required here to
ensure that certain error bounds of the primal and dual problems of (1.1) hold.
This assumption is usually satisfied in practical applications (e.g. the consensus
problems) whenever a priori knowledge on the variable domain is available. This
assumption can be further relaxed; see the discussion at the end of Sect. 3. Addi-
tionally, with x being in a compact set, one can add a nonnegative bounded slack
variable xK+1 and transform a general linear inequality constraint Ex ≥ q into a
linear equality constraint.

Under Assumption (g), the feasible set of problem (1.1) is a polyhedral set. Therefore
both the primal optimum and the dual optimum values of (1.1) are attained and are
equal (i.e., strong duality holds for (1.1)) so that

d∗ = max
y

min
x∈X

L(x; y) = max
y

(
f (x∗) + 〈y, q − Ex∗〉 + ρ

2
‖Ex∗ − q‖2

)

= f (x∗) = min
x∈X, Ex=q

f (x),

where d∗ is the optimal value of the dual of (1.1), and x∗ is the optimal solution
for (1.1). To see why strong duality holds, we first note that the feasible sets are
assumed to be polyhedral, so the feasible set of the entire problem can be written
compactly as Cx ≥ b for some matrix C and vector b. Let x∗ be the optimal solution.
By Assumption (a), the intersection X ∩ int(dom f ) ∩ {x | Ex = q} is nonempty,
this constraint qualification implies that the existence of multiplier vector y∗ and z∗
satisfying KKT condition:

ξ∗ − ET y∗ − CT z∗ = 0, 〈z∗, Cx∗ − b〉 = 0, z∗ ≥ 0

Ex∗ − q = 0, Cx∗ ≥ b, for some ξ∗ ∈ ∂ f (x∗). (2.1)
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By the convexity of the objective function f , this KKT condition implies that

x∗ = arg min
Cx≥b

(
f (x) + 〈y∗, q − Ex〉 + ρ

2
‖Ex − q‖2

)
. (2.2)

Thus, we have from the definition of d(y∗) that

d(y∗) = arg min
Cx≥b

(
f (x) + 〈y∗, q − Ex〉 + ρ

2
‖Ex − q‖2

)
= f (x∗), (2.3)

which is the desired strong duality.
Under Assumption (a)–(g), there may still be multiple optimal solutions for both

the primal problem (1.1) and its dual problem. We first claim that the dual functional

d(y) = min
x∈X

L(x; y) = min
x∈X

f (x) + 〈y, q − Ex〉 + ρ

2
‖q − Ex‖2, (2.4)

is differentiable everywhere. Let X (y) denote the set of optimal solutions for (2.4).

Lemma 2.1 For any y ∈ �m, both Ex and Ak xk, k = 1, 2, . . . , K , are constant over
X (y). Moreover, the dual function d(y) is differentiable everywhere and

∇d(y) = q − Ex(y),

where x(y) ∈ X (y) is any minimizer of (2.4).

Proof Fix y ∈ �m .We first show that Ex is invariant over X (y). Suppose the contrary,
so that there exist optimal solutions x and x ′ from X (y) with the property that Ex �=
Ex ′. Then, we have

d(y) = L(x; y) = L(x ′; y).

Due to the convexity of L(x; y) with respect to the variable x , the solution set X (y)

must be convex, implying x̄ = (x + x ′)/2 ∈ X (y). By the convexity of f (x), we have

1

2

[
( f (x) + 〈y, q − Ex〉) + ( f (x ′) + 〈y, q − Ex ′〉)] ≥ f (x̄) + 〈y, q − Ex̄〉.

Moreover, by the strict convexity of ‖ · ‖2 and the assumption Ex �= Ex ′, we have

1

2

(
‖Ex − q‖2 + ‖Ex ′ − q‖2

)
> ‖Ex̄ − q‖2.

Multiplying this inequality by ρ/2 and adding it to the previous inequality yields

1

2

[
L(x; y) + L(x ′; y)

]
> L(x̄; y),
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which further implies

d(y) > L(x̄; y).

This contradicts the definition d(y) = minx L(x; y). Thus, Ex is invariant over X (y).
Notice that d(y) is a concave function and its subdifferential is given by [1, Section 6.1]

∂d(y) = Closure of the convex hull {q − Ex(y) | x(y) ∈ X (y)}.

Since Ex(y) is invariant over X (y), the subdifferential ∂d(y) is a singleton. By Dan-
skin’s Theorem, this implies that d(y) is differentiable and the gradient is given by
∇d(y) = q − Ex(y), for any x(y) ∈ X (y).

A similar argument (and using the strict convexity of gk) shows that Ak xk is also
invariant over X (y). The proof is complete. ��

By using Lemma 2.1, we show below a Lipschitz continuity property of∇d(y), for
any y in dom(d).

Lemma 2.2 For all y, y′ ∈ dom (d), there holds ‖∇d(y′) − ∇d(y)‖ ≤ 1
ρ
‖y′ − y‖.

Proof Fix any y and y′ in dom (d). Let x = x(y) and x ′ = x(y′) be two minimizers
of L(x; y) and L(x; y′) respectively. By convexity, we have

z − ET y + ρET (Ex − q) = 0 and z′ − ET y′ + ρET (Ex ′ − q) = 0,

where z and z′ are some subgradient vectors in the subdifferential ∂ f (x) and ∂ f (x ′)
respectively. Thus, we have

〈z − ET y + ρET (Ex − q), x ′ − x〉 = 0

and

〈z′ − ET y′ + ρET (Ex ′ − q), x − x ′〉 = 0.

Adding the above two equalities yields

〈z − z′ + ET (y′ − y) − ρET E(x ′ − x), x ′ − x〉 = 0.

Upon rearranging terms and using the convexity property

〈z′ − z, x ′ − x〉 ≥ 0,

we get

〈y′ − y, E(x ′ − x)〉 = 〈z′ − z, x ′ − x〉 + ρ‖E(x ′ − x)‖2 ≥ ρ‖E(x ′ − x)‖2.

Thus, ρ‖E(x ′ − x)‖ ≤ ‖y′ − y‖ which together with ∇d(y′) − ∇d(y) = E(x − x ′)
(cf. Lemma 2.1) yields

‖∇d(y′) − ∇d(y)‖ = ‖E(x ′ − x)‖ ≤ 1

ρ
‖y − y′‖.
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The proof is complete. ��
To show the linear convergence of the ADMMmethod, we need certain local error

bounds around the optimal solution set X (y) aswell as around the dual optimal solution
set Y ∗. To describe these local error bounds, we first define the notion of a proximity
operator. Let h : dom (h) �→ � be a (possibly nonsmooth) convex function. For every
x ∈ dom (h), the proximity operator of h is defined as [42, Section 31]

proxh(x) = argmin
u∈�n

h(u) + 1

2
‖x − u‖2.

Notice that if h(x) is the indicator function of a closed convex set X , then

proxh(x) = projX (x),

so the proximity operator is a generalization of the projection operator. In particular,
it is known that the proximity operator satisfies the nonexpansiveness property:

‖proxh(x) − proxh(x ′)‖ ≤ ‖x − x ′‖, ∀ x, x ′ ∈ domh. (2.5)

The proximity operator can be used to characterize the optimality condition for a
nonsmooth convex optimization problem. Suppose a convex function f is decomposed
as f (x) = g(Ax) + h(x) where g is strongly convex and differentiable, h is a convex
(possibly nonsmooth) function, then we can define the proximal gradient of f with
respect to h as

∇̃ f (x) := x − proxh(x − ∇( f (x) − h(x))) = x − proxh(x − AT ∇g(Ax)).

If h ≡ 0, then the proximal gradient ∇̃ f (x) = ∇ f (x). In general, ∇̃ f (x) can be
used as the (standard) gradient of f for the nonsmooth minimization minx∈X f (x).
For example, ∇̃ f (x∗) = 0 iff x∗ is a global minimizer.

For the Lagrangian minimization problem (2.4) and under assumptions (a)–(g), the
work of [34,45,52] suggests that the size of the proximal gradient

∇̃x L(x; y) := x − proxh (x − ∇x (L(x; y) − h(x)))

= x − proxh

(
x − AT ∇g(Ax) + ET y − ρET (Ex − q)

)
(2.6)

can be used to upper bound the distance to the optimal solution set X (y) of (2.4).
Here

h(x) :=
K∑

k=1

hk(xk), g(Ax) :=
K∑

k=1

gk(Ak xk)

represent the nonsmooth and the smooth parts of f (x) respectively.
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In our analysis of ADMM, we will also need an error bound for the dual function
d(y). Notice that a y ∈ �m solves (1.4) if and only if y satisfies the system of nonlinear
equations

∇d(y) = 0.

This suggests that the norm of the ‘residual’ ‖∇d(y)‖ may be a good estimate of how
close y is from solving (1.4). The next lemma says if the nonsmooth part of fk takes
certain forms, then the distance to the primal and dual optimal solution sets can indeed
be bounded.

Lemma 2.3 Suppose assumptions (a)–(e) hold.

(a) If in addition X is a polyhedral set, then for any y, there exists positive scalars
τ and δ such that the following primal error bound holds

dist (x, X (y)) ≤ τ‖∇̃x L(x; y)‖, (2.7)

for all x such that ‖∇̃x L(x; y)‖ ≤ δ, where the proximal gradient ∇̃x L(x; y) is
given by (2.6).

(b) If X is polyhedral and compact, then for any y, there exists some τ > 0 such
that the error bound (2.7) holds for all x ∈ X ∩ dom(h).

(c) If assumption (g) also holds, and further if the epigraph of hk is polyhedral (which
includes �1 norm and indicator function for polyhedral sets), then for any scalar
ζ , there exist positive scalars δ and τ such that the following dual error bound
holds

dist (y, Y ∗) = ‖y − y∗‖ ≤ τ‖∇d(y)‖, whenever d(y) ≥ ζ and ‖∇d(y)‖ ≤ δ.

(2.8)
(d) In all three cases stated above the constant τ is independent of the choice of y

and x.

Proof For any fixed y, the proof for the first part of Lemma 2.3 is a simple extension
to those of [34,45,52], each of which shows the error bound with different objective
function f (e.g., smooth composite function in [34], smooth composite plus �1 penalty
in [45]). In particular, it was shown that for any given y, (2.7) holds for all x with
‖∇̃x L(x; y)‖ ≤ δ (i.e., sufficiently close to X (y)).

The second part of the claim says that for any fixed y, the error bound holds over
the compact set X ∩ dom(h). This can be seen in two steps as follows: (1) for all
x ∈ X ∩ dom(h) such that ‖∇̃x L(x; y)‖ ≤ δ, the error bound (2.7) is already known
to hold; (2) for all x ∈ X ∩ dom(h) such that ‖∇̃x L(x; y)‖ ≥ δ, the ratio

dist (x, X (y))

‖∇̃x L(x; y)‖
is a continuous function and well defined over the compact set X ∩ dom(h) ∩{

x | ‖∇̃x L(x; y)‖ ≥ δ
}

. Thus, the above ratio must be bounded from above by a
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constant τ ′ (independent of y). Combining (1) and (2) yields the desired error bound
over the set X ∩ dom(h).

Dual error bounds like the one stated in the third part of the lemma have been studied
previously by Pang [41] and by Mangasarian and Shiau [36], though in different
contexts. The above error bound is ‘local’ in that it holds only for those y that are
bounded or near Y ∗ (i.e., when ‖∇d(y)‖ ≤ δ as opposed to a ‘global’ error bound
which would hold for all y in �m). However if in addition y also lies in some compact
set Y , then the dual error bound hold true for all y ∈ Y (using the same argument as
in the preceding paragraph). The proof of this claim is given in the “Appendix”.

The last part of theLemma2.3 claims that the constants δ and τ are both independent
of the choice of y. This property follows directly from a similar property of Hoffman’s
error bound [26] (on which the error bounds of [34,45,52] are based) for a feasible
linear system P := {x | Ax ≤ b}:

dist (x, P) ≤ τ‖[Ax − b]+‖, ∀ x ∈ �n,

where τ is independent of b. In fact, this property is implicitly shown in the proofs of
[34,45,52]. Interested readers are referred to these works for proof. From the proof
of the third part of the lemma, it is clear that the value of τ in the dual error bound is
indeed independent of x and y. ��

As a remark, we mention that both the primal and dual error bounds described in
Lemma 2.3 hold true for a wider class of nonsmooth functions than Assumption (d).
For example, it can also include the group LASSO penalization hk(xk) = λk‖xk‖1 +∑

J wJ ‖xk,J ‖2, where xk = (. . . , xk,J , . . .) is a partition of xk with wJ ≥ 0 and J
being the partition index. The proof of error bound for this type of functions follows
[52], and we omit the proof of this more general case for space consideration.

Under Assumption (f), the augmented Lagrangian function L(x; y) (cf. (1.2)) is
strongly convex with respect to each subvector xk . As a result, each alternating mini-
mization iteration of ADMM (1.6)

xr+1
k = argmin

xk

L
(

xr+1
1 , . . . , xr+1

k−1, xk, xr
k+1, . . . , xr

K ; yr
)

, k = 1, . . . , K ,

has a unique optimal solution. Thus the sequence of iterates {xr } of the ADMM are
well defined. The following lemma shows that the alternating minimization of the
Lagrangian function gives a sufficient descent of the Lagrangian function value.

Lemma 2.4 Suppose assumptions (b) and (f) hold. Then fix any index r , we have

L(xr ; yr ) − L(xr+1; yr ) ≥ γ ‖xr − xr+1‖2, (2.9)

where the constant γ > 0 is independent of r and yr .

Proof By assumptions (b) and (f), the augmented Lagrangian function

L(x; y) =
K∑

k=1

( fk(xk) + 〈yk, qk − Ek xk〉) + ρ

2

∥
∥
∥
∥
∥

K∑

k=1

Ek xk − q

∥
∥
∥
∥
∥

2
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176 M. Hong, Z.-Q. Luo

is strongly convex in each variable xk and has a uniform modulus ρλmin(ET
k Ek) > 0.

Here, the notation λmin(·) denotes the smallest eigenvalue of a symmetric matrix. This
implies that, for each k, the following is true

L(x; y) − L(x1, . . . , xk−1, x̄k, xk+1, . . . , xK ; y) ≥ ρλmin

(
ET

k Ek

)
‖xk − x̄k‖2,

(2.10)
for all x , where x̄k is the minimizer of minxk L(x; y) (when all other variables {x j } j �=k

are fixed).
Fix any index r . For each k ∈ {1, . . . , K }, by ADMM (1.6), xr+1

k is the minimizer
of L(xr+1

1 , . . . , xr+1
k−1, xk, xr

k+1, xr
k+2, . . . , xr

K ; yr ). It follows from (2.10)

L
(

xr+1
1 , . . . , xr+1

k−1, xr
k , . . . , xr

K ; yr
)

− L
(

xr+1
1 , . . . , xr+1

k , xr
k+1, . . . , xr

K ; yr
)

≥ γ

∥
∥
∥xr

k − xr+1
k

∥
∥
∥
2
, ∀ k, (2.11)

where

γ = ρ min
k

λmin

(
ET

k Ek

)

is independent of r and yr . Summing this over k, we obtain the sufficient decrease
condition

L(xr ; yr ) − L(xr+1; yr ) ≥ γ ‖xr − xr+1‖2.

This completes the proof of Lemma 2.4. ��
To prove the linear convergence of the ADMM algorithm, we also need the follow-

ing lemma which bounds the size of the proximal gradient ∇̃L(xr ; yr ) at an iterate
xr .

Lemma 2.5 Suppose assumptions (b)–(c) hold. Let {xr } be generated by the ADMM
algorithm (1.6). Then there exists some constant σ > 0 (independent of yr ) such that

‖∇̃L(xr ; yr )‖ ≤ σ‖xr+1 − xr‖ (2.12)

for all r ≥ 1.

Proof Fix any r ≥ 1 and any 1 ≤ k ≤ K . According to the ADMM procedure (1.6),
the variable xk is updated as follows

xr+1
k = argmin

xk

⎛

⎜
⎝hk(xk) + gk(Ak xk) − 〈yr , Ek xk〉

123



On the linear convergence of the alternating direction… 177

+ ρ

2

∥
∥
∥
∥
∥
∥

Ek xk +
∑

j<k

E j xr+1
j +

∑

j>k

E j xr
j − q

∥
∥
∥
∥
∥
∥

2
⎞

⎟
⎠ .

The corresponding optimality condition can be written as

xr+1
k = proxhk

⎡

⎣xr+1
k − AT

k ∇xk gk

(
Ak xr+1

k

)

+ ET
k yr − ρET

k

⎛

⎝
∑

j≤k

E j xr+1
j +

∑

j>k

E j xr
j − q

⎞

⎠

⎤

⎦ . (2.13)

Therefore, we have

∥
∥
∥xr+1

k − proxhk

(
xr

k − AT
k ∇xk gk(Ak xr

k ) + ET
k yr − ρET

k

(
Exr − q

))∥∥
∥

=
∥
∥
∥
∥proxhk

[
xr+1

k − AT
k ∇xk gk

(
Ak xr+1

k

)
+ ET

k yr

+ ρET
k

⎛

⎝
∑

j≤k

E j xr+1
j +

∑

j>k

E j xr
j − q

⎞

⎠

⎤

⎦

− proxhk

(
xr

k − AT
k ∇xk gk

(
Ak xr

k

) + ET
k yr + ρET

k

(
Exr − q

))
∥
∥
∥
∥

≤
∥
∥
∥
(

xr+1
k − xr

k

)
− AT

k

(
∇xk gk

(
Ak xr+1

k

)
− ∇xk gk

(
Ak xr

k

))

+ ρET
k

∑

j≤k

E j

(
xr+1

j − xr
j

) ∥
∥
∥

≤
∥
∥
∥xr+1

k − xr
k

∥
∥
∥ + L

∥
∥
∥AT

k

∥
∥
∥ ‖Ak‖

∥
∥
∥xr+1

k − xr
k

∥
∥
∥ + ρ

∥
∥
∥ET

k

∥
∥
∥
∑

j≤k

‖E j‖
∥
∥
∥xr+1

j − xr
j

∥
∥
∥

≤ c‖xr+1 − xr‖, for some c > 0 independent of yr , (2.14)

where the first inequality follows from the nonexpansive property of the prox oper-
ator (2.5), and the second inequality is due to the Lipschitz property of the gradient
vector ∇gk (cf. Assumption (c)). Using this relation and the definition of the proximal
gradient ∇̃L(xr ; yr ), we have

‖∇̃xk L(xr ; yr )‖ =
∥
∥
∥xr

k − proxhk

(
xr

k − AT
k ∇xk gk

(
Ak xr

k

) + ET
k yr − ρET

k

(
Exr − q

))∥∥
∥

≤
∥
∥
∥xr

k − xr+1
k

∥
∥
∥

+
∥
∥
∥xr+1

k − proxhk

(
xr

k − AT
k ∇xk gk

(
Ak xr

k

) + ET
k yr − ρET

k

(
Exr − q

))∥∥
∥

≤ (c + 1)‖xr+1 − xr ‖, ∀ k = 1, 2, . . . , K .
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This further implies that the entire proximal gradient vector can be bounded by ‖xr+1−
xr‖:

‖∇̃L(xr ; yr )‖ ≤ (c + 1)
√

K‖xr+1 − xr‖.

Setting σ = (c + 1)
√

K (which is independent of yr ) completes the proof. ��

3 Linear convergence of ADMM

Let d∗ denote the dual optimal value and {xr , yr } be the sequence generated by the
ADMM method (1.6). Due to Assumption (a), d∗ also equals to the primal optimal
value. Further we denote


r
d = d∗ − d(yr ) (3.1)

which represents the gap from dual optimality at the r th iteration. The primal gap to
optimality at iteration r is defined as


r
p = L(xr+1; yr ) − d(yr ), r ≥ 1. (3.2)

Clearly, we have both 
r
d ≥ 0 and 
r

p ≥ 0 for all r . See Fig. 1 for an illustration of
these gaps.

To establish the linear convergence of ADMM, we need several lemmas to estimate
the sizes of the primal and dual optimality gaps as well as their respective decrease.

Let X (yr ) denote the set of optimal solutions for the following optimization prob-
lem

min
x

L(x; yr ) = min
x

f (x) + 〈yr , q − Ex〉 + ρ

2
‖Ex − q‖2.

We denote

x̄r = argmin
x̄∈X (yr )

‖x̄ − xr‖.

We first bound the sizes of the dual and primal optimality gaps.

Fig. 1 Illustration of primal and
dual gaps
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Lemma 3.1 Suppose assumptions (a)–(e) and (g) hold. Then for any scalar δ > 0,
there exists a positive scalar τ ′ such that


r
d ≤ τ ′‖∇d(yr )‖2 = τ ′‖Ex(yr ) − q‖2, (3.3)

for any yr ∈ �m with ‖∇d(yr )‖ ≤ δ. Moreover, there exist positive scalars ζ and ζ
′

(independent of yr ) such that


r
p ≤ ζ‖xr+1 − xr‖2 + ζ

′ ‖xr − x̄r‖2, for all r ≥ 1. (3.4)

Proof Fix any yr , and let y∗ be the optimal dual solution closest to yr . Then it follows
from the mean value theorem that there exists some ỹ in the line segment joining yr

and y∗ such that


r
d = d(y∗) − d(yr )

= 〈∇d(ỹ), y∗ − yr 〉
= 〈∇d(ỹ) − ∇d(y∗), y∗ − yr 〉
≤ ‖∇d(ỹ) − ∇d(y∗)‖‖y∗ − yr‖
≤ 1

ρ
‖ỹ − y∗‖‖y∗ − yr‖

≤ 1

ρ
‖yr − y∗‖‖y∗ − yr‖

= 1

ρ
‖y∗ − yr‖2

where the second inequality follows from Lemma 2.2. Recall from Lemma 2.3-(c)
there exists some τ such that

dist (yr , Y ∗) = ‖yr − y∗‖ ≤ τ‖∇d(yr )‖.

Combining the above two inequalities yields


r
d = d(y∗) − d(yr ) ≤ τ ′‖∇d(yr )‖2,

where τ ′ = τ 2/ρ is a constant. This establishes the bound on the size of dual gap (3.3).
It remains to prove the bound on the primal gap (3.4). For notational simplicity, let

us separate the smooth and nonsmooth part of the augmented Lagrangian as follows

L(x; y) = g(x) + h(x) + 〈y, q − Ex〉 + ρ

2
‖q − Ex‖2

:= L̄(x; y) + h(x).
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Let xr+1
k denote the kth subvector of the primal vector xr+1. From the way that the

variables are updated (2.13), we have

xr+1
k = proxhk

[

xr+1
k − ∇xk L̄

({
xr+1

j≤k

}
,
{

xr
j

}

{ j>k} ; yr
)]

= proxhk

[

xr
k − ∇xk L̄(xr ; yr ) − xr

k + xr+1
k − ∇xk L̄

({
xr+1

j≤k

}
,
{

xr
j

}

j>k
; yr

)

+∇xk L̄(xr ; yr )

]

:= proxhk

[

xr
k − ∇xk L̄(xr ; yr ) − er

k

]

(3.5)

where the gradient vector∇xk L̄

({
xr+1

j≤k

}
,
{

xr
j

}

{ j>k} ; yr
)

can be explicitly expressed

as

∇xk L̄

({
xr+1

j≤k

}
,
{

xr
j

}

{ j>k} ; yr
)

= AT
k ∇xk gk

(
Ak xr+1

k

)
− ET

k yr

+ ρET
k

⎛

⎝
∑

j≤k

E j xr+1
j +

∑

j>k

E j xr
j − q

⎞

⎠

and the error vector er
k is defined by

er
k := xr

k − xr+1
k + ∇xk L̄

({
xr+1

j≤k

}
,
{

xr
j

}

{ j>k} ; yr
)

− ∇xk L̄(xr ; yr ). (3.6)

Note that we can bound the norm of er
k as follows

∥
∥er

k

∥
∥ ≤

∥
∥
∥xr

k − xr+1
k

∥
∥
∥ +

∥
∥
∥
∥∇xk L̄

({
xr+1

j≤k

}
,
{

xr
j

}

{ j>k} ; yr
)

− ∇xk L̄(xr ; yr )

∥
∥
∥
∥

≤
∥
∥
∥xr

k − xr+1
k

∥
∥
∥ +

∥
∥
∥AT

k

(
∇xk gk

(
Ak xr+1

k

)
− ∇xk gk

(
Ak xr

k

))

+ ρET
k

⎛

⎝
∑

j≤k

E j

(
xr+1

j − xr
j

)
⎞

⎠

∥
∥
∥
∥
∥
∥

≤ c‖xr − xr+1‖, (3.7)

where the constant c > 0 is independent of yr , and can take the same value as in (2.14).
Using (3.5), and by the definition of the proximity operator, we have the following

hk

(
xr+1

k

)
+ 〈xr+1

k − xr
k ,∇xk L̄(xr ; yr ) + er

k〉 + 1

2

∥
∥
∥xr+1

k − xr
k

∥
∥
∥
2

≤ hk
(
x̄r

k

) + 〈x̄r
k − xr

k ,∇xk L̄(xr ; yr ) + er
k〉 + 1

2

∥
∥x̄r

k − xr
k

∥
∥2 . (3.8)
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Summing over all k = 1, . . . , K , we obtain

h(xr+1) + 〈xr+1 − xr ,∇x L̄(xr ; yr ) + er 〉 + 1

2
‖xr+1 − xr‖2

≤ h(x̄r ) + 〈x̄r − xr ,∇x L̄(xr ; yr ) + er 〉 + 1

2
‖x̄r − xr‖2.

Upon rearranging terms, we obtain

h(xr+1) − h(x̄r ) + 〈xr+1 − x̄r ,∇x L̄(xr ; yr )〉 ≤ 1

2
‖x̄r − xr‖2 − 〈xr+1 − x̄r , er 〉.

(3.9)

Also, we have from the mean value theorem that there exists some x̃ in the line
segment joining xr+1 and x̄r such that

L̄(xr+1; yr ) − L̄(x̄r ; yr ) = 〈∇x L̄(x̃; yr ), xr+1 − x̄r 〉.

Using the above results, we can bound 
r
p by


r
p = L(xr+1; yr ) − L(x̄r ; yr )

= L̄(xr+1; yr ) − L̄(x̄r ; yr ) + h(xr+1) − h(x̄r )

= 〈∇x L̄(x̃; yr ), xr+1 − x̄r 〉 + h(xr+1) − h(x̄r )

= 〈∇x L̄(x̃; yr ) − ∇x L̄(xr ; yr ), xr+1 − x̄r 〉
+ 〈∇x L̄(xr ; yr ), xr+1 − x̄r 〉 + h(xr+1) − h(x̄r )

≤ 〈∇x L̄(x̃; yr ) − ∇x L̄(xr ; yr ), xr+1 − x̄r 〉
+ 1

2
‖x̄r − xr‖2 + c

√
K‖xr+1 − xr‖‖xr+1 − x̄r‖

≤
(

K∑

k=1

L‖Ak‖T ‖Ak‖ + ρ‖ET E‖
)

‖x̃ − xr‖‖xr+1 − x̄r‖

+ 1

2
‖x̄r − xr‖2 + c

√
K‖xr+1 − xr‖‖xr+1 − x̄r‖

≤
(

K∑

k=1

L‖Ak‖T ‖Ak‖ + ρ‖ET E‖
)
(
‖xr+1 − xr‖ + ‖x̄r − xr‖

)2

+ 1

2
‖x̄r − xr‖2 + c

√
K‖xr+1 − xr‖

(
‖xr+1 − xr‖ + ‖x̄r − xr‖

)

≤ ζ‖xr+1 − xr‖2 + ζ
′ ‖x̄r − xr‖2, for some ζ, ζ ′ > 0,

where the first inequality follows from (3.9) and (3.7), the second inequality is due
to the Cauchy–Schwartz inequality and the Lipschitz continuity of ∇ L̄ x (x; yr ), while
the third inequality follows from the fact that x̃ lies in the line segment joining xr+1

and x̄r so that ‖x̃ − xr‖ ≤ ‖xr+1 − xr‖ + ‖x̄r − xr‖. This completes the proof. ��

123



182 M. Hong, Z.-Q. Luo

We then bound the decrease of the dual optimality gap.

Lemma 3.2 For each r ≥ 1 and for any α ≥ 0, there holds


r
d − 
r−1

d ≤ −α(Exr − q)T (Ex̄r − q). (3.10)

Proof The reduction of the optimality gap in the dual space can be bounded as follows:


r
d − 
r−1

d = [d∗ − d(yr )] − [d∗ − d(yr−1)]
= d(yr−1) − d(yr )

= L(x̄r−1; yr−1) − L(x̄r ; yr )

= [L(x̄r ; yr−1) − L(x̄r ; yr )] + [L(x̄r−1; yr−1) − L(x̄r ; yr−1)]
= (yr−1 − yr )T (q − Ex̄r ) + [L(x̄r−1; yr−1) − L(x̄r ; yr−1)]
= −α(Exr − q)T (Ex̄r − q) + [L(x̄r−1; yr−1) − L(x̄r ; yr−1)]
≤ −α(Exr − q)T (Ex̄r − q), ∀ r ≥ 1,

where the last equality follows from the update of the dual variable yr−1, and the last
inequality is from the fact that x̄r−1 minimizes L(·, yr−1). ��

Lemma 3.2 implies that if q − Exr is close to the true dual gradient ∇d(yr ) =
q − Ex̄r , then the dual optimal gap is reduced after each ADMM iteration. However,
since ADMMupdates the primal variable by only one Gauss–Seidel sweep, the primal
iterate xr is not necessarily close theminimizer x̄r of L(x; yr ). Thus, unlike themethod
ofmultipliers (forwhich xr = x̄r for all r ), there is noguarantee that the dual optimality
gap 
r

d is indeed reduced after each iteration of ADMM.
Next we proceed to bound the decrease in the primal gap 
r

p.

Lemma 3.3 Suppose assumptions (b) and (f) hold. Then for each r ≥ 1 and any
α ≥ 0, we have


r
p − 
r−1

p ≤ α‖Exr − q‖2 − γ ‖xr+1 − xr‖2 − α(Exr − q)T (Ex̄r − q) (3.11)

for some γ independent of yr .

Proof Fix any r ≥ 1, we have

L(xr ; yr−1) = f (xr ) + 〈yr−1, q − Exr 〉 + ρ

2
‖Exr − q‖2

and

L(xr+1; yr ) = f (xr+1) + 〈yr , q − Exr+1〉 + ρ

2
‖Exr+1 − q‖2.

By the update rule of yr (cf. (1.6)), we have

L(xr ; yr ) = f (xr ) + 〈yr−1, q − Exr 〉 + ρ

2
‖Exr − q‖2 + α‖Exr − q‖2.
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This implies

L(xr ; yr ) = L(xr ; yr−1) + α‖Exr − q‖2.

Recall from Lemma 2.4 that the alternating minimization of the Lagrangian function
gives a sufficient descent. In particular, we have

L(xr+1; yr ) − L(xr ; yr ) ≤ −γ ‖xr+1 − xr‖2,

for some γ > 0 that is independent of r and yr . Therefore, we have

L(xr+1; yr ) − L(xr ; yr−1) ≤ α‖Exr − q‖2 − γ ‖xr+1 − xr‖2, ∀ r ≥ 1.

Hence, we have the following bound on the reduction of primal optimality gap


r
p − 
r−1

p = [L(xr+1; yr ) − d(yr )] − [L(xr ; yr−1) − d(yr−1)]
= [L(xr+1; yr ) − L(xr ; yr−1)] − [d(yr ) − d(yr−1)]
≤ α‖Exr − q‖2 − γ ‖xr+1 − xr ‖2 − α(Exr − q)T (Ex̄r − q), ∀ r ≥ 1,

where the last step is due to Lemma 3.2. ��
Notice that when α = 0 (i.e., no dual update in the ADMM algorithm), Lemma 3.3

reduces to the sufficient decrease estimate (2.9) in Lemma 2.4. When α > 0, the
primal optimality gap is not necessarily reduced after each ADMM iteration due to
the positive term α‖Exr − q‖2 in (3.11). Thus, in general, we cannot guarantee a
consistent decrease of either the dual optimality gap 
r

d or the primal optimality gap

r

p. However, somewhat surprisingly, the sum of the primal and dual optimality gaps
decreases for all r , as long as the dual stepsize α is sufficiently small. This is used to
establish the linear convergence of ADMM method.

Theorem 3.1 Suppose assumptions (a)–(g) hold. Then the sequence of iterates
{(xr , yr )} generated by the ADMM algorithm (1.6) converges linearly to an optimal
primal–dual solution for (1.1), provided the stepsize α is sufficiently small. Moreover,
the sequence of feasibility violation {‖Exr − q‖} also converges linearly.

Proof We show by induction that the sum of optimality gaps
r
d +
r

p is reduced after
each ADMM iteration, as long as the stepsize α is chosen sufficiently small. For any
r ≥ 1, we denote

x̄r = argmin
x̄∈X (yr )

‖x̄ − xr‖. (3.12)

By induction, suppose 
r−1
d + 
r−1

p ≤ 
0
d + 
0

p for some r ≥ 1. Recall that each
Xk is compact and that the indicator function iXk (xk) is included in hk(xk) (see the
discussion afterAssumption (a)–(g)), it follows that xr ∈ X , implying the boundedness
of xr . Thus, we obtain from Lemma 2.3 that

‖xr − x̄r‖ ≤ τ‖∇̃L(xr ; yr )‖ (3.13)
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for some τ > 0 (independent of yr ). To prove Theorem 3.1, we combine the two
estimates (3.10) and (3.11) to obtain

[

r

p + 
r
d

]
−
[

r−1

p + 
r−1
d

]
=
[

r

p − 
r−1
p

]
+
[

r

d − 
r−1
d

]

≤ α‖Exr − q‖2 − γ ‖xr+1 − xr‖2
− 2α(Exr − q)T (Ex̄r − q)

= α‖Exr − Ex̄r‖2 − α‖Ex̄r − q‖2
− γ ‖xr+1 − xr‖2. (3.14)

Now we invoke (3.13) and Lemma 2.5 to lower bound ‖xr+1 − xr‖:

‖xr − x̄r‖ ≤ τ‖∇̃L(xr ; yr )‖ ≤ τσ‖xr+1 − xr‖. (3.15)

Substituting this bound into (3.14) yields

[

r

p + 
r
d

]
−
[

r−1

p + 
r−1
d

]
≤
(
α‖E‖2τ 2σ 2 − γ

)
‖xr+1− xr‖2−α‖Ex̄r −q‖2.

(3.16)
Thus, if we choose the stepsize α sufficiently small so that

0 < α < γ τ−2σ−2‖E‖−2, (3.17)

then the above estimate shows that
[

r

p + 
r
d

]
≤
[

r−1

p + 
r−1
d

]
, (3.18)

which completes the induction. Moreover, the induction argument shows that if the
stepsize α satisfies the condition (3.17), then the descent condition (3.16) holds for all
r ≥ 1.

By the descent estimate (3.16), we have

‖xr+1 − xr‖ → 0, ‖∇d(yr )‖ = ‖Ex̄r − q‖ → 0. (3.19)

We now show that the sum of optimality gaps 
r
d + 
r

p in fact contracts geometri-
cally after a finite number of ADMM iterations. By (3.19), for any δ > 0, there must
exist a finite integer r̄ > 0 such that for all r ≥ r̄ , ‖∇d(yr )‖ ≤ δ. Since 
r

d , 

r
p are

nonnegative and bounded from above (see (3.18)), it follows that d(yr ) is bounded
from below by a constant ζ independent of r . Applying Lemma 2.3-(c), we have that
for all r ≥ r̄ , the dual error bound dist(yr , Y ∗) ≤ τ‖∇d(yr )‖ holds true.

Therefore, it follows fromLemma3.1 thatwehave the following cost-to-go estimate


r
d = d∗ − d(yr ) ≤ τ ′‖∇d(yr )‖2 = τ ′‖Ex̄r − q‖2, (3.20)

for some τ ′ > 0 and for all r ≥ r̄ .
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Moreover, we can use Lemma 3.1 to bound ‖xr+1 − xr‖2 from below by 
r
p. In

particular, we have from (3.15) and Lemma 3.1 that


r
p ≤ ζ‖xr+1 − xr‖2 + ζ

′ ‖x̄r − xr‖2
≤ ζ‖xr+1 − xr‖2 + ζ

′
τ 2σ 2‖xr+1 − xr‖2

=
(
ζ + ζ

′
τ 2σ 2

)
‖xr+1 − xr‖2.

Substituting this bound and (3.20) into (3.16), and assuming thatα > 0 satisfies (3.17),
we obtain

[

r

p + 
r
d

]
−
[

r−1

p + 
r−1
d

]
≤ (

α‖E‖2τ 2σ 2 − γ
) ‖xr+1 − xr‖2 − α‖Ex̄r − q‖2

≤ − (γ − α‖E‖2τ 2σ 2)

ζ + ζ
′
τ 2σ 2


r
p − α(τ ′)−1
r

d

≤ −min

{
(γ − α‖E‖2τ 2σ 2)

ζ + ζ
′
τ 2σ 2

, α(τ ′)−1
} [


r
p + 
r

d

]
.

Since α > 0 is chosen small enough such that (3.17) holds, we have

λ := min

{
γ − α‖E‖2τ 2σ 2

ζ + ζ
′
τ 2σ 2

, α(τ ′)−1
}

> 0.

Consequently, we have

[

r

p + 
r
d

]
−
[

r−1

p + 
r−1
d

]
≤ −λ

[

r

p + 
r
d

]

which further implies

0 ≤
[

r

p + 
r
d

]
≤ 1

1 + λ

[

r−1

p + 
r−1
d

]
.

This shows that the sequence {
r
p +
r

d}r≥r̄ converges to zero Q-linearly.1 As a result,
we conclude that {
r

p + 
r
d} and hence both 
r

p and 
r
d globally converge to zero

R-linearly.2

We next show that the dual sequence {yr } as well as the dual objective values
{d(yr )} are also R-linearly convergent. To this end, notice that the inequalities (3.15)

1 A sequence {xr } is said to converge Q-linearly to some x̄ if ‖xr+1 − x̄‖/‖xr − x̄‖ ≤ μ for all r , where
μ ∈ (0, 1) is some constant. A sequence {xr } is said to converge to x̄ R-linearly if ‖xr − x̄‖ ≤ cμr for all
r and for some c > 0.
2 To see that such R-linear convergence is in fact global, note that r̄ > 0 is finite, and
r

p +
r
d is Q-linearly

convergent for r ≥ r̄ . Then one can always find an appropriate constant c such that
r
p +
r

d ≤ c(1+λ)−r

for all r = 1, 2, . . ..
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and (3.16) imply

[

r

p + 
r
d

]
−
[

r−1

p + 
r−1
d

]
≤
(
α‖E‖2 − γ τ−2σ−2

)
‖xr − x̄r‖2−α‖Ex̄r −q‖2.

(3.21)
Then by (3.21), we see that both ‖xr − x̄r‖ → 0 and ‖Ex̄r −q‖ → 0 R-linearly. This
implies that Exr − q → 0 R-linearly and ∇d(yr ) → 0 R-linearly. Using the fact that
dist(yr , Y ∗) ≤ τ‖∇d(yr )‖, we conclude that yr converges R-linearly to an optimal
dual solution.

We now argue that the primal iterates {xr } converge to an optimal solution of (1.1).
By the inequality (3.16), we can further conclude that

‖xr+1 − xr‖2 → 0, ‖Ex̄r − q‖ → 0

R-linearly. Notice that the R-linear convergence of ‖xr+1 − xr‖2 → 0 implies that
‖xr+1 − xr‖ → 0 R-linearly. This further shows that xr → x∞ R-linearly for some
x∞. Denote the limit of dual sequence {yr } by y∞. By the preceding argument, we
know y∞ is a dual optimal solution of (1.1). To show that x∞ is a primal optimal
solution of (1.1), it suffices to prove that x∞ ∈ X (y∞). Using (3.15), and the fact that
‖xr − x̄r‖ → 0, we have

‖x∞ − x̄r‖ ≤ ‖xr − x∞‖ + ‖xr − x̄r‖ → 0.

Since x̄r ∈ X (yr ), we have L(x̄r , yr ) ≤ L(x, yr ) for all x ∈ X . Passing limit, we
obtain L(x∞, y∞) ≤ L(x, y∞) for all x ∈ X , that is, x∞ ∈ X (y∞). It then follows
that the sequence {xr } converges R-linearly to a primal optimal solution. ��
Remark Our analysis shows that the ADMM converges globally R-linearly, with a
convergence rate explicitly depending upon the error bound constant τ . When the
problem is strongly convex, the error bound holds globally, and the constant τ as well
as the linear convergence rate can be computed explicitly. In general convex cases,
such rate may not be explicitly known, but its existence offers some useful insights to
the ADMM algorithm. ��

We close this section by providing an example that satisfies the assumptions in
Theorem 3.1. Consider the following �1 minimization problem

min
x

‖x‖1, s.t. Ex = b, a ≤ xk ≤ b, k = 1, . . . , K (3.22)

which can be equivalently written as a K -block problem

min{xk }

K∑

k=1

|xk |, s.t.
K∑

k=1

ek xk = b, a ≤ xk ≤ b, k = 1, . . . , K , (3.23)

where ek is the kth column of E , a and b are some scalars. It is easy to verify that
this problem meets all the conditions listed in assumptions (a)–(g), hence the linear
convergence result in Theorem 3.1 applies.
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4 Variants of ADMM

The convergence analysis of Sect. 3 can be extended to some variants of the ADMM.
We briefly describe two of them below.

4.1 Linearized proximal ADMM

In the originalADMM(1.6), each block xk is updated by solving a convex optimization
subproblem exactly. For large scale problems, this subproblem may not be easy to
solve unless the matrix Ek is unitary (i.e., ET

k Ek = I ) in which case the variables
in xk can be further decoupled (assuming fk is separable). If the matrix Ek is not
unitary, we can still employ a simple proximal gradient step to inexactly minimize
L(xr+1

1 , . . . , xr+1
k−1, xk, xr

k+1, . . . , xr
K ). More specifically, we update each block of xk

according to the following procedure

xr+1
k = argmin

xk

{
hk(xk) + 〈yr , q − Ek xk〉 +

〈
AT

k ∇gk
(

Ak xr
k
)
, xk − xr

k

〉
+ β

2

∥
∥xk − xr

k

∥
∥2

+
〈
ρET

k

(∑

j<k

E j xr+1
j +

∑

j≥k

E j xr
j − q

)
, xk − xr

k

〉}
(4.1)

in which the smooth part of the objective function in the kth subproblem, namely,

gk(Ak xk) + 〈yr , q − Ek xk〉 + ρ

2

∥
∥
∥Ek xk +

∑

j<k

E j xr+1
j +

∑

j>k

E j xr
j − q

∥
∥
∥
2

is linearized locally at xr
k , and a proximal term β

2

∥
∥xk − xr

k

∥
∥2 is added. Here, β > 0 is

a positive constant. With this change, updating xk is easy when hk (the nonsmooth part
of fk) is separable. For example, this is the case for compressive sensing applications
where hk(xk) = ‖xk‖1, and the resulting subproblem admits a closed form solution
given by the component-wise soft thresholding (also known as the shrinkage operator).
We note that the linearized proximal ADMMalgorithm described here is slightly more
general than the proximal ADMM algorithm seen in the literature, in which only the

penalization term ρ
2

∥
∥
∥Ek xk +∑

j<k E j xr+1
j +∑

j>k E j xr
j − q

∥
∥
∥
2
is linearized locally

at xr
k ; see e.g., [49,50].
We claim that Theorem 3.1 holds for the linearized proximal ADMM algorithm

without requiring assumption (f) (the full rankness of Ek’s). Indeed, to establish the
(linear) convergence of the linearized proximal ADMM (4.1), we can follow the same
proof steps as that for Theorem 3.1, with the only changes being in the proof of Lem-
mas 2.4–2.5 and Lemma 3.1. We first show that Lemma 2.4 holds without assumption
(f). Clearly subproblem (4.1) is now strongly convex without the full column rank
assumption of Ek’s made in (f). In the following, we will show that as long as β is
large enough, there is a sufficient descent:

L(xr+1; yr ) − L(xr ; yr ) ≤ −γ ‖xr+1 − xr‖2, for some γ > 0 independet of yr .

(4.2)
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This property can be seen by bounding the smooth part of L(xr+1
1 , . . . , xr+1

k−1,
xk, xr

k+1, . . . , xr
K ), which is given by

L̄k(xk) := gk(Ak xk) + 〈yr , q − Ek xk〉 + ρ

2

∥
∥
∥
∑

j<k

E j xr+1
j +

∑

j>k

E j xr
j + Ek xk − q

∥
∥
∥
2
,

with the Taylor expansion at xr
k :

L̄k

(
xr+1

k

)
≤ L̄k

(
xr

k

) + 〈∇ L̄k
(
xr

k

)
, xr+1

k − xr
k 〉 + ν

2

∥
∥
∥xr+1

k − xr
k

∥
∥
∥
2

(4.3)

where

ν := L‖Ak‖
∥
∥
∥AT

k

∥
∥
∥ + ρ

∥
∥
∥ET

k Ek

∥
∥
∥

is the Lipschitz constant of L̄k(·) and L is the Lipschitz constant of ∇gk(·). Making
the above inequality more explicit yields

L
(

xr+1
1 , . . . , xr+1

k−1, xr+1
k , xr

k+1, . . . , xr
K ; yr

)
− L

(
xr+1
1 , . . . , xr+1

k−1, xr
k , xr

k+1, . . . , xr
K ; yr

)

≤ hk

(
xr+1

k

)
− hk

(
xr

k
) + 〈yr , Ek

(
xr

k − xr+1
k

)
〉 +

〈
AT

k ∇gk
(

Ak xr
k
)
, xr+1

k − xr
k

〉

+
〈

ρET
k

⎛

⎝
∑

j<k

E j xr+1
j +

∑

j≥k

E j xr
j − q

⎞

⎠ , xr+1
k − xr

k

〉

+ ν

2

∥
∥
∥xr+1

k − xr
k

∥
∥
∥
2

≤ −β

2

∥
∥
∥xr+1

k − xr
k

∥
∥
∥
2 + ν

2

∥
∥
∥xr+1

k − xr
k

∥
∥
∥
2

= −γ

∥
∥
∥xr+1

k − xr
k

∥
∥
∥
2
, ∀ k, (4.4)

provided the regularization parameter β satisfies

γ := 1

2
(β − ν) > 0.

In the above derivation of (4.4), the first step is due to (4.3), while the second inequality
follows from the definition of xr+1

k (cf. (4.1)). Summing (4.4) over all k yields the
desired estimate of sufficient descent (4.2).

To verify that Lemma 2.5 still holds for the linearized proximal ADMM algorithm,
we note from the corresponding optimality condition for (4.1)

xr+1
k = proxhk

⎡

⎣xr+1
k − AT

k ∇xk gk
(

Ak xr
k

) + ET
k yr

− ρET
k

⎛

⎝
∑

j<k

E j xr+1
j +

∑

j≥k

E j xr
j − q

⎞

⎠ − β
(

xr+1
k − xr

k

)
⎤

⎦ .
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Using this relation in place of (2.13) and following the same proof steps, we can easily
prove that the bound (2.12) in Lemma 2.5 can be extended to the linearized proximal
ADMM algorithm. Thus, the convergence results in Theorem 3.1 remain true for the
linearized proximal ADMM algorithm (4.1).

It remains to verify that Lemma3.1 still holds true. In fact the first part of Lemma3.1
can be shown to be independent of the iterates, thus it trivially holds true for the
linearized proximal ADMM algorithm. To show that the second part of Lemma 3.1 is
true, note that the optimality condition of the linearized proximal ADMM algorithm
implies that

xr+1
k = proxhk

[

xr+1
k − ∇xk L̄

({
xr+1

j<k

}
,
{

xr
j

}

{ j≥k} ; yr
)

− β
(

xr+1
k − xr

k

)]

:= proxhk

[
xr

k − ∇xk L̄(xr ; yr ) − er
k

]

where in this case er
k is given as

er
k := xr

k − xr+1
k + ∇xk L̄

({
xr+1

j<k

}
,
{

xr
j

}

{ j≥k} ; yr
)

− ∇xk L̄(xr ; yr ) + β
(

xr+1
k − xr

k

)
.

It is then straightforward to show that the norm of er
k can be bounded by c

′ ‖xr − xr+1‖
for some constant c

′
> 0. The rest of the proof follows the same steps as in Lemma 3.1.

4.2 Jacobi update

Another popular variant of the ADMM algorithm is to use a Jacobi iteration (instead
of a Gauss–Seidel iteration) to update the primal variable blocks {xk}. In particular,
the ADMM iteration (1.6) is modified as follows:

xr+1
k = argmin

xk

(
hk(xk) + gk(Ak xk) − 〈yr , Ek xk〉

+ ρ

2

∥
∥
∥
∥
∥
∥

Ek xk

∑

j �=k

E j xr
j − q

∥
∥
∥
∥
∥
∥

2
⎞

⎟
⎠ , ∀ k. (4.5)

The convergence for this direct Jacobi scheme is unclear, as the augmented
Lagrangian function may not decrease after each Jacobi update. In the following,
we consider a modified Jacobi scheme with an explicit stepsize control. Specifically,
let us introduce an intermediate variable w = (wT

1 , . . . , wT
K )T ∈ �n . The modified

Jacobi update is given as follows:

wr+1
k = argmin

xk

⎛

⎜
⎝hk(xk) + gk(Ak xk) − 〈yr , Ek xk〉
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+ ρ

2

∥
∥
∥
∥
∥
∥

Ek xk +
∑

j �=k

E j xr
j − q

∥
∥
∥
∥
∥
∥

2
⎞

⎟
⎠ , ∀ k, (4.6)

xr+1
k = xr

k + 1

K

(
wr+1

k − xr
k

)
, ∀ k. (4.7)

where a stepsize of 1/K is used in the update of each variable block.
With this modification, we claim that Lemmas 2.4–2.5 and Lemma 3.1 still hold.

In particular, Lemma 2.4 can be argued as follows. The strong convexity of L(x; y)

with respect to the variable block xk implies that

L
(
xr
1, . . . , xr

k−1, xr
k , xr

k+1 . . . , xr
K ; yr ) − L

(
xr
1, . . . , xr

k−1, w
r
k, xr

k+1 . . . , xr
K ; yr )

≥ γ

∥
∥
∥wr+1

k − xr
k

∥
∥
∥
2
, ∀ k.

Using this inequality we obtain

L(xr ; yr ) − L(xr+1; yr )

= L(xr ; yr ) − L

(
K − 1

K
xr + 1

K
wr+1; yr

)

= L(xr ; yr ) − L

(
1

K

K∑

k=1

(
xr
1, . . . , xr

k−1, w
r+1
k , xr

k+1 . . . , xr
K

)
; yr

)

≥ L(xr ; yr ) − 1

K

K∑

k=1

L
(

xr
1, . . . , xr

k−1, w
r+1
k , xr

k+1 . . . , xr
K ; yr

)

= 1

K

K∑

k=1

(
L(xr ; yr ) − L

(
xr
1, . . . , xr

k−1, w
r+1
k , xr

k+1 . . . , xr
K ; yr

))

≥ γ

K

K∑

k=1

∥
∥
∥wr+1

k − xr
k

∥
∥
∥
2

= γ

K
‖wr+1 − xr‖2.

where the first inequality comes from the convexity of the augmented Lagrangian
function.

From the update rule (4.7) we have K (xr+1
k − xr

k ) = (wr+1
k − xr

k ),which combined
with the previous inequality yields

L(xr ; yr ) − L(xr+1; yr ) ≥ γ K‖xr+1 − xr‖2.
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The proof of Lemma 2.5 also requires only minor modifications. In particular, we
have the following optimality condition for (4.5)

wr+1
k = proxhk

⎡

⎣wr+1
k − AT

k ∇xk gk

(
Akw

r+1
k

)
+ ET

k yr

− ρET
k

⎛

⎝
∑

j �=k

E j xr
j + Ekw

r+1
k − q

⎞

⎠

⎤

⎦

Similar to the proof of Lemma 2.5, we have

∥
∥
∥wr+1

k − proxhk

[
xr

k − AT
k ∇xk gk

(
Ak xr

k

) + ET
k yr − ρET

k

(
Exr − q

)]∥∥
∥

≤ c‖wr+1 − xr‖.

Utilizing the relationship K (xr+1
k − xr

k ) = (wr+1
k − xr

k ), we can establish Lemma 2.5
by following similar proof steps (which we omit due to space reason).

Lemma 3.1 can be shown as follows. We first express wr+1
k as

wr+1
k = proxhk

[
wr+1

k − ∇xk L̄
({

xr
j �=k

}
, wr+1

k ; yr
)]

= proxhk

[
xr

k − ∇xk L̄
(
xr ; yr ) − er

k

]

where we have defined

er
k := ∇xk L̄

({
xr

j �=k

}
, wr+1

k ; yr
)

− ∇xk L̄
(
xr ; yr ) + xr

k − wr+1
k .

Again by using the relationship K (xr+1
k − xr

k ) = (wr+1
k − xr

k ), we can bound the norm

of er
k by c

′ ‖xr+1 − xr‖, for some c
′
> 0. The remaining proof steps are similar to

those in Lemma 3.1.
Since Lemmas 2.4–2.5 and 3.1 hold for the Jacobi version of the ADMM algorithm

with a stepsize control, we conclude that the convergence results of Theorem 3.1
remain true in this case.

5 Conclusion and discussion

In this paper we have established the convergence and the rate of convergence of the
classical ADMM algorithm when the number of variable blocks are more than two
and without requiring the objective function to be strongly convex. Our analysis is a
departure of the conventional analysis ofADMMalgorithmwhich relies on the descent
of a weighted (semi-)norm of (xr − x∗, yr − y∗) and a contraction argument, see [4,6,
13,14,16–19,24,25,28,30,43]. In our analysis, we require neither the strong convexity

123



192 M. Hong, Z.-Q. Luo

of the objective function nor the row independence assumption of the constrained
matrix E . Instead, we use a local error bound to show that when the stepsize of
dual update is made sufficiently small, the sum of the primal and the dual optimality
gaps decreases after each ADMM iteration, although separately they may individually
increase.

A key insight from our analysis is that proper dual stepsize control for the multi-
block ADMM algorithm (with K ≥ 3) is essential for its convergence. This point is
further illustrated by the example given below. An interesting issue for further research
is to identify good practical stepsize rules for dual update. As (3.17) suggests, the dual
stepsize can be determined explicitly using error bound constants. Unfortunately it
may be too conservative and is cumbersome to compute unless the objective function
is strongly convex. One possible direction is to use an adaptive dual stepsize rule to
guarantee the decrease of the sum of the primal and dual optimality gap.

Example 5.1 We show in this example that without proper dual stepsize control, the
multiple block ADMMwith K ≥ 3 can diverge. Consider a slight modification of the
example proposed in [8], with 3 block variables (x1, x2, x3):

min f (x1, x2, x3) = 0 (5.1)

s.t. E1x1 + E2x2 + E3x3 = 0,

x1 ∈ [−20, 20], x2 ∈ [−20, 20], x3 ∈ [−20, 20] (5.2)

where E is given by

[E1 E2 E3] =
⎡

⎣
1 1 1
1 1 2
1 2 2

⎤

⎦ . (5.3)

It can be checked that x1 = x2 = x3 = 0 is the unique solution.

In Fig. 2, we plot the iterates generated by the ADMM when setting ρ = α = 1.
Clearly the algorithm diverges, even when each primal variable is confined in the
compact set [−20, 20]. In Fig. 3, we plot the iterates generated by the ADMM when
setting ρ = 1 and α = 0.1. We see that this time the algorithm converges to the
globally optimal solution.

Acknowledgements The authors are grateful to Xiangfeng Wang and Dr. Min Tao of Nanjing University
for their constructive comments.

6 Appendix

6.1 Proof of dual error bound (2.8)

The augmented Lagrangian dual function can be expressed as

d(y) = min
x∈X

〈y, q − Ex〉 + ρ

2
‖q − Ex‖2 + g(Ax) + h(x). (6.1)
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Fig. 2 Divergence of ADMM for Problem (5.2), with ρ = α = 1
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Fig. 3 Convergence of ADMM for Problem (5.2), with ρ = 1, α = 0.1

For convenience, define p(Ex) := ρ
2 ‖q − Ex‖2, and let �(x) := p(Ex) + g(Ax) +

h(x). For simplicity, in this proof we further restrict ourselves to the case where the
nonsmooth part has polyhedral level sets, i.e., {x : h(x) ≤ ξ} is polyhedral for each ξ .
More general cases can be shown along similar lines, but the arguments become more
involved.

Let us define

x(y) ∈ argmin
x∈X

�(x) + 〈y, q − Ex〉.
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Let (x∗, y∗) denote a primal and dual optimal solution pair. Let X∗ and Y ∗ denote
the primal and dual optimal solution set. The following properties will be useful in
our subsequent analysis.

(a) There exist positive scalars σg , Lg such that ∀ x(y), x(y′) ∈ X
a-1) 〈AT ∇g(Ax(y′))− AT ∇g(Ax(y)), x(y′)− x(y)〉 ≥ σg‖Ax(y′)− Ax(y)‖2.
a-2) g(Ax(y′)) − g(Ax(y)) − 〈AT ∇g(Ax(y)), x(y′) − x(y)〉 ≥ σg

2 ‖Ax(y′) −
Ax(y)‖2.

a-3) ‖AT ∇g(Ax(y′)) − AT ∇g(Ax(y))‖ ≤ Lg‖Ax(y′) − Ax(y)‖.
(b) All a-1)–a-3) are true for p(·) as well, with some constants σp and L p.
(c) ∇d(y) = q − Ex(y), and ‖∇d(y′) − ∇d(y)‖ ≤ 1

ρ
‖y′ − y‖.

Part (a) is true due to the assumed Lipchitz continuity and strong convexity of the
function g(·). Part (b) is from the Lipchitz continuity and strong convexity of the
quadratic penalization p(·). Part (c) has been shown in Lemmas 2.1 and 2.2.

To proceed, let us rewrite the primal problem equivalently as

d(y) = min
(x,s):x∈X,h(x)≤s

〈y, q − Ex〉 + p(Ex) + g(Ax) + s. (6.2)

Let us write the polyhedral set {(x, s) : x ∈ X, h(x) ≤ s} compactly asCx x +Css ≥ c
for somematricesCx ∈ R

j×n ,Cs ∈ R
j×1 and c ∈ R

j×1, where j ≥ 0 is some integer.
For any fixed y, let (x(y), s(y)) denote one optimal solution for (6.2), note we must
have h(x(y)) = s(y). Due to equivalence, if y∗ ∈ Y ∗, we must also have x(y∗) ∈ X∗.

Define a set-valued function M that assigns the vector (d, e) ∈ R
n × R

m to the
set of vectors (x, s, y, λ) ∈ R

n × R × R
m × R

j that satisfy the following system of
equations

ET y + CT
x λ = d,

CT
s λ = 1,

q − Ex = e,

λ ≥ 0, (Cx x + Css) ≥ c, 〈Cx x + Css − c, λ〉 = 0.

It is easy to verify by using the optimality condition for problem (6.2) that

(x, s, y, λ) ∈ M(ET ∇ p(Ex) + AT ∇g(Ax), e) for some λ

if and only if x = x(y), e = ∇d(y). (6.3)

We can take e = 0, and use the fact that x(y∗) ∈ X∗, we see that (x, s, y, λ) ∈
M(ET ∇ p(Ex) + AT ∇g(Ax), 0) if and only if x ∈ X∗ and y ∈ Y ∗.

The following result states a well-known local upper Lipschitzian continuity prop-
erty for the polyhedral multifunctionM; see [26,33,34].

Proposition 6.1 There exists a positive scalar θ that depends on A, E, Cx , Cs only,
such that for each (d̄, ē) there is a positive scalar δ′ satisfying

M(d, e) ⊆ M(d̄, ē) + θ‖(d, e) − (d̄, ē)‖B, (6.4)
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whenever ‖(d, e) − (d̄, ē)‖ ≤ δ′. (6.5)

where B denotes the unit Euclidean ball in R
n × R

m × R × R
j .

The following is the main result for this appendix. Note that the scalar τ in the
claim is independent the choice of y, x , s, and is independent on the coefficients of
the linear term s.

Claim 6.1 Suppose all the assumptions in Assumption A are satisfied. Then there
exist positive scalars δ, τ such that dist(y, Y ∗) ≤ τ‖∇d(y)‖ for all y ∈ U with
‖∇d(y)‖ ≤ δ.

Proof By the previous claim, M is locally Lipschitzian with modulus θ at
(∇�(x∗), 0) = (ET ∇ p(Ex∗) + AT ∇g(Ax∗), 0).

Let δ ≤ δ′/2. We first show that if ‖∇d(y)‖ ≤ δ, then we must have ‖∇�(x(y)) −
∇�(x∗)‖ ≤ δ′/2. To this end, take a sequence y1, y2, . . ., such that er := ∇d(yr ) → 0.
ByAssumption (g) {x(yr )} lies in a compact set. Due to the fact that s(yr ) = h(x(yr )),
so the sequence {s(yr )} also lies in a compact set (cf. Assumption s(e)). By passing to
a subsequence if necessary, let (x∞, s∞) be a cluster point of {x(yr ), s(yr )}. In light
of the continuity of ∇�(·), we have (∇�(x(yr )), er ) → (∇�(x∞), 0). Now for all r ,
{(x(yr ), s(yr ),∇�(x(yr )), er )} lies in the set

{(x, s, d, e) | (x, s, y, λ) ∈ M(d, e) for some (y, λ)}

which is polyhedral and thus is closed. Then we can pass limit to it and conclude (cf.
Proposition 6.1)

(x∞, s∞, y∞, λ∞) ∈ M(∇�(x∞), 0)

for some (y∞, λ∞) ∈ R
m × R

j . Thus by (6.3) and the discussions that follow, we
have x∞ ∈ X∗ and y∞ ∈ Y ∗. By Lemma 2.1, we have ∇�(x∗) = ∇�(x∞), which
further implies that ∇�(x(yr )) → ∇�(x∗). This shows that the desired δ exists.

Then we let e = ∇d(y), and suppose ‖e‖ ≤ δ. From the previous argument we
have

‖∇�(x(y)) − ∇�(x∗)‖ + ‖e‖ ≤ δ′/2 + δ′/2 = δ′.

Using the results in Proposition 6.1, we have that there exists (x∗, s∗, y∗, λ∗) ∈
M(∇�(x∗), 0) satisfying

‖(x(y), s, y, λ) − (x∗, s∗, y∗, λ∗)‖ ≤ θ
(‖∇�(x∗) − ∇�(x(y))‖ + ‖e‖) .

Since (x(y), s, y, λ) ∈ M(∇�(x(y)), e), it follows from the definition ofM that

ET y + CT
x λ = ∇�(x(y)), (6.6)

CT
s λ = 1, (6.7)
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q − Ex(y) = e, (6.8)

λ ≥ 0, (Cx x(y) + Css(y)) ≥ c, 〈Cx x(y) + Css(y) − c, λ〉 = 0. (6.9)

Since (x∗, s∗, y∗, λ∗) ∈ M(∇�(x∗), 0), we have from the definition of M

ET y∗ + CT
x λ∗ = ∇�(x∗), (6.10)

CT
s λ∗ = 1, (6.11)

q − Ex∗ = 0, (6.12)

λ∗ ≥ 0, (Cx x∗ + Css∗) ≥ c, 〈Cx x∗ + Css∗ − c, λ∗〉 = 0. (6.13)

Moreover, we have

σg‖A(x(y) − x∗)‖2 + σp‖E(x(y) − x∗)‖2
≤ 〈AT ∇g(Ax(y)) − AT ∇g(Ax(y∗)), x(y) − x(y∗)〉

+ 〈ET ∇ p(Ex(y)) − ET ∇ p(Ex(y∗)), x(y) − x(y∗)〉
= 〈∇�(x(y)) − ∇�(x(y∗)), x(y) − x(y∗)〉
= 〈λ − λ∗, Cx x(y) − Cx x∗〉 + 〈y − y∗, Ex(y) − Ex∗〉

where the first inequality comes from the strong convexity of g(·) and p(·); the last
equality is from (6.6) and (6.10). Moreover, we have

〈λ − λ∗, Cx x(y) − Cx x∗〉
= 〈λ − λ∗, Cx x(y) − Cx x∗〉 + 〈λ − λ∗, Css − Css∗〉
= 〈λ − λ∗, (Cx x(y) + Css) − (Cx x∗ + Css∗)〉
= −〈λ∗, Cx x(y) + Css − c〉 − 〈λ, Cx x∗ + Css∗ − c〉 ≤ 0 (6.14)

where in the first equality we have used the fact thatCT
s λ−CT

s λ∗ = 0; see (6.7) (6.11);
in the third equality and in the last inequality we have used the complementary con-
ditions (6.13) and (6.9). As a result, we have

σg‖A(x(y) − x∗)‖2 + σp‖E(x(y) − x∗)‖2
≤ 〈y − y∗, (Ex(y) − q) − (Ex∗ − q)〉 ≤ ‖y − y∗‖‖e‖, (6.15)

where the last step is due to∇d(y) = Ex(y)−q and∇d(y∗) = Ex∗ −q = 0. Finally
we have from Proposition 6.1

‖(x(y), s, y, λ) − (x∗, s∗, y∗, λ∗)‖2
≤ θ2

(‖∇�(x∗) − ∇�(x(y))‖ + ‖e‖)2
≤ θ2

(
2‖∇�(x∗) − ∇�(x(y))‖2 + 2‖e‖2)

≤ 2θ2
(
2‖∇g(x∗) − ∇g(x(y))‖2 + 2‖∇ p(x∗) − ∇ p(x(y))‖2 + ‖e‖2)

≤ 2θ2
(

L2
g‖AT (x(y) − x∗)‖2 + L2

p‖ET (x(y) − x∗)‖2 + ‖e‖2
)
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≤ 2θ2 max

(
2L2

g

σg
,
2L2

p

σp
, 1

)
(
σg‖AT (x(y) − x∗)‖2 + σp‖ET (x(y) − x∗)‖2 + ‖e‖2

)

≤ 2θ2 max

(
2L2

g

σg
,
2L2

p

σp
, 1

)
(‖e‖‖y − y∗‖ + ‖e‖2)

≤ 2θ2 max

(
2L2

g

σg
,
2L2

p

σp
, 1

)
(‖e‖‖(x(y), s, y, λ) − (x∗, s∗, y∗, λ∗)‖ + ‖e‖2) ,

where the second inequality is due to ∇�(x) = ∇g(x) + ∇ p(x) and the fourth step
follows from properties a-3) and b).

We see that the above inequality is quadratic in ‖(x(y), s, y, λ)−(x∗, s∗, y∗, λ∗)‖/
‖e‖, so we have

‖(x(y), s, y, λ) − (x∗, s∗, y∗, λ∗)‖/‖e‖ ≤ τ

for some scalar τ depending on θ , Lg , L p, σg , σp. It is worth noting that τ does not
depend on the choice of the coefficients of the linear term s.We conclude dist(y, Y ∗) ≤
τ‖∇d(y)‖. ��
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