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ABSTRACT. Let (M,ω) be a compact symplectic manifold whose first Chern class c1(M) is divisi-
ble by a positive integer n. We construct a Z2n-action on its Fukaya category. In particular, it induces
an action on its local mirror Landau-Ginzburg models.

1. INTRODUCTION

Let (M,ω) be a compact symplectic manifold . One studies a symplectic invariant Fuk(M,ω)
which is an A∞ category called the Fukaya category of (M,ω).

Let ζ be a complex number. Define a ζ-twisted A∞ functor or simply twisted A∞ functor to be
an A∞ functor of the form

Φ : Fuk(M,ω)→ Fuk(M,ω)(ζ)

where Fuk(M,ω)(ζ) is the A∞ category whose objects and morphism spaces are the same as those
of Fuk(M,ω), and whose A∞ product (m(ζ))k is defined by

(m(ζ))k = ζk−2mk, k > 0

where mk is the A∞ product of Fuk(M,ω). Clearly, a twisted A∞ functor can also be regarded as
an A∞ functor Fuk(M,ω)(ζi) → Fuk(M,ω)(ζi+1) for any i ∈ Z.

Our main result asserts the existence of a twisted cyclic group action on Fuk(M,ω).

Theorem 1.1. Suppose the first Chern class c1(M) ∈ H2(M ;Z) of (M,ω) is divisible by a positive
integer n. Put ζ = e

2πi
2n . There exists a ζ-twistedA∞ functor Φ on Fuk(M,ω) whose (2n)-th power

is A∞ homotopic to the identity functor idFuk(M,ω).

The version of the Fukaya category we use is due to Akaho and Joyce [2] who constructed an
A∞ algebra over Q associated to an immersed Lagrangian submanifold L which could have clean
self-intersection. We modify their construction to define an A∞ category, and including relative
spin structures σ and C×-local systems E . See Section 2 for details. Theorem 1.1 is expected to
hold for other versions by similar arguments.

Following [15], we define Mweak(L) to be the space of all weak bounding cochains on a La-
grangian submanifold L of (M,ω) modulo the gauge equivalence. We call it a local mirror. By a
formal argument, Theorem 1.1 implies the following

Corollary 1.2. Φ induces a morphism τL :Mweak(L)→Mweak(L) such that τnL = id and

m0 ◦ τL = ζ2m0. (1.1)
1
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Now let X be a Fano manifold of index n1. Mirror symmetry [e.g. 21, 27] predicts that there
exists a mirror of X , called the Landau-Ginzburg model, which is a pair (X̌,W ) consisting of a
variety X̌ and a regular function W defined on X̌ such that the complex and symplectic geometry
of X and (X̌,W ) are dual to each other. Corollary 1.2 is closely related to the following folklore

Conjecture 1.3. There exists a Zn-action on X̌ with respect to which W is equivariant, i.e. we
have

W (τ · x) = e
2πi
n W (x) for any x ∈ X̌

where τ is a generator of the action.

When X is toric Fano, it is well known [6, 11, 17] that its mirror LG model is given by

(X̌,W ) = (Mweak(L),m0)

for a Lagrangian torus fiber L. In this case, Corollary 1.2 implies Conjecture 1.3.

In general, (X̌,W ) may be constructed using more than one L in which case one has to compute
the wall-crossing formulae serving as the transition functions for the gluing of the local mirrors
Mweak(L). See [1, 3, 5, 18, 22], and also [7, 8, 9, 10] where a gluing technique is developed. In this
case, if one can show that the morphisms τL commute with the transition functions derived from the
wall-crossing formulae, then they combine to give a morphism τ : X̌ → X̌ , verifying Conjecture
1.3. Examples for which this commutativity holds include X = P2, the complex projective plane
[3] and X = Gr(2, 2n), the complex Grassmannian of 2-planes in C2n [20]. Hence, our result
provides supporting evidence for this conjecture.

Remark 1.4. Conjecture 1.3 has also been mentioned by Kuznetsov and Smirnov [23, 24] who
considered the residual categories associated to Lefschetz decompositions of the derived categories
of coherent sheaves on Fano manifolds.

Let us discuss how Theorem 1.1 is proved.

On the object level, Φ sends an object L = (L, σ, E) to Φ(L) = (L, σ, E ⊗ EL) where EL is a
C×-local system on L which is defined as follows. Denote by LM the Lagrangian Grassmannian
bundle of (M,ω) parametrizing at every point x ∈ M all Lagrangian subspaces of (TxM,ωx). By
a lemma in [26], the condition c1(M) ≡ 0 (modn) implies that LM admits a fiberwise Z2n-cover
L′M → LM . Let θL be a section of LM |L defined by θL(x) = TxL for any x ∈ L. Then EL is
defined to be the inverse image of θL with respect to the fiberwise covering map L′M |L → LM |L.
It is a principal Z2n-bundle but we regard it as a C×-local system via the inclusion Z2n ↪→ C× :
1 (mod2n) 7→ ζ .

On the morphism level, let Li = (Li, σi, Ei), i = 0, 1 be two objects. Let us assume for simplicity
that L0 and L1 intersect transversely (instead of cleanly). The morphism space A(L0,L1) of A :=
Fuk(M,ω) is defined by

A(L0,L1) :=
⊕

x∈L0∩L1

Hom((E0)x, (E1)x).

1The index of a Fano manifold X is the greatest integer dividing its first Chern class c1(X).
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Then we have

A(Φ(L0),Φ(L1)) =
⊕

x∈L0∩L1

Hom((E0 ⊗ EL0)x, (E1 ⊗ EL1)x)

=
⊕

x∈L0∩L1

Hom((E0)x, (E1)x)⊗Hom((EL0)x, (EL1)x).

Thus, to describe Φ1 : A(L0,L1) → A(Φ(L0),Φ(L1)), it suffices to specify, for each x ∈
L0 ∩ L1, an element of Hom((EL0)x, (EL1)x) which we take to be the lift of the “canonical short
path” [4], from θL0(x) to θL1(x) in (LM)x, with respect to Z2n-covering map (L′M)x → (LM)x.
In the case of clean intersection, we use a family version of the canonical short path defined in
Appendix B, and details are given in Section 3.2.

Define the higher maps Φk>1 to be zero. Then it is clear that the (2n)-th power of Φ is equal to
idA. Our theorem follows if Φ satisfies the twisted version of A∞ equations:

mk ◦ (Φ⊗k1 ) = ζ2−kΦ1 ◦mk, k > 0. (1.2)

The proof of (1.2) is based on a geometric argument which we now illustrate by verifying the case
k = 0. For simplicity, we assume

(1) L is embedded; and
(2) m0 counts Maslov index 2 rigid holomorphic disks only.

Since L and Φ(L) have the same underlying Lagrangian submanifold and relative spin structure,
the moduli spaces involved are identical. The only difference is the weight associated to each disk
being counted. By definition, the weight for m0(L) (resp. m0(Φ(L))) is the holonomy of E (resp.
E ⊗ EL) along the boundary of the disk.

Thus, to prove (1.2) for k = 0, it suffices to show that for a disk u : (D, ∂D) → (M,L)
representing the relative homotopy class β, the holonomy holEL(∂u) is equal to ζµ(β) where µ(β)
is the Maslov index of β. To see this, notice that the domain D of u is contractible, and hence the
bundle u∗L′M has a fiberwise Z-cover L′′ → u∗L′M . Thus, over D we have three bundles

L′′ Z−→ u∗L′M
Z2n−−−→ u∗LM .

Consider the lifts of u∗θL in u∗L′M and in L′′ with respect to the fiberwise covering maps u∗L′M →
u∗LM and L′′ → u∗LM which are paths whose endpoints are related by some group elements
a ∈ Z2n and b ∈ Z respectively. It is clear that ζa = ζb. By definition, holEL(∂u) = ζa and
µ(β) = b, and hence the result follows.

It should be emphasized that the construction of mk in [2] does not rely on rigid but abstract
counts of holomorphic disks. Moreover, these counts only give the geometric product mk,geom

which is not an A∞ product. One needs additional sophisticated algebraic arguments to turn
mk,geom into the desired product mk. Thus, in order to prove Theorem 1.1 rigorously, one has
to examine each of these arguments to show that Φ constructed above can also be turned into an
honest A∞ functor. See Section 3.3 for the complete proof.

Remark 1.5. The idea of twisting objects by C×-local systems has been used by Fukaya [12] in a
different context. See also [16] and [25] for other applications of these local systems. An important
difference is that their local systems are defined on the whole M whereas ours cannot be extended
to an ambient one unless L is monotone.
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Remark 1.6. In Appendix C, we will show that the complex conjugation of C gives rise to a
conjugate automorphism R of Fuk(M,ω) which satisfies

R ◦ Φ ◦R ◦ Φ = idFuk(M,ω), (1.3)

where Φ is the A∞ functor in Theorem 1.1. Thus, we have

Theorem 1.7. There is an action on Fuk(M,ω) by the dihedral group D2n.
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2. FUKAYA CATEGORY OF IMMERSED LAGRANGIAN SUBMANIFOLDS

We need to define the Fukaya category before we can talk about any (twisted) A∞ functors
defined on it. The version we will take is the one given by Akaho and Joyce [2] with some modifi-
cations which are:

(1) An A∞ category is constructed, instead of an A∞ algebra;
(2) C×-local systems on the Lagrangian submanifolds are introduced.

This section contains a sketch of how they are done. This is straightforward and involves no new
ideas. See also [13] where a similar A∞ category is constructed, using de Rham models.

The main result is

Theorem 2.1. Let (M,ω) be a compact symplectic manifold. Let S be a finite collection of pairwise
cleanly intersecting compact orientable immersed Lagrangian submanifolds of (M,ω) with clean
self-intersection. There is an A∞ category, denoted by Fuk(M,ω), whose objects are triples L =
(L, σ, E) whereL ∈ S, σ is a relative spin structure onL and E is an isomorphism class of C×-local
systems on L. It is well defined up to a unique A∞ homotopy class of A∞ quasi-isomorphisms.

Readers may now skip to Section 3 for the proof of Theorem 1.1, and return to this section for
the definition of some notations.

Remark 2.2. When constructing the A∞ algebra in [2], the notions of AN,K algebras, morphisms
and homotopies were introduced. What we need is their categorical analogue, namely AN,K cate-
gories, functors and homotopies. A brief review of them is given in Appendix A.

2.1. Lagrangians with clean self-intersections. Let (M,ω) be a compact symplectic manifold
of dimension 2m. Let (L, ι) be an immersed Lagrangian submanifold of (M,ω), i.e. a smooth
manifold L together with an immersion ι : L→ M such that the image dι(TpL) of the differential
dι is a Lagrangian subspace of (Tι(p)M,ωι(p)) for every p ∈ L. We sometimes drop ι in our
discussion. The following definition is taken from [13].
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Definition 2.3. We say that (L, ι) has clean self-intersection if the fiber product

L×ι L := {(p, q) ∈ L× L| ι(p) = ι(q)}
is a smooth manifold such that for every point (p, q) ∈ L×ι L,

T(p,q)(L×ι L) = TpL×dι TqL.

Let S be a finite collection of compact orientable immersed Lagrangian submanifolds of (M,ω)
with the property that the disjoint union

∐
L∈S L has clean self-intersection. In other words, each

L ∈ S has clean self-intersection, and any two different L0, L1 ∈ S intersect cleanly in the usual
sense.

Next, we deal with the notion of relative spin structure which is used to orient the moduli spaces
of holomorphic disks. Fix a triangulation of M and a triangulation of each L ∈ S such that⋃
L∈S ι(L) is a sub-complex of M and ι : L → M is a simplicial map for any L ∈ S . Fix an

oriented real vector bundle V on the 3-skeleton M[3] of M such that ι∗(w2(V )) = w2(TL) for any
L ∈ S. The following definition is due to [13].

Definition 2.4. A V -relative spin structure σ on L ∈ S consists of an orientation on L and a spin
structure on (TL⊕ ι∗(V ))|L[2]

where L[2] is the 2-skeleton of L.

Notations 2.5.
(1) Denote by ObS the set of all triples L = (L, σ, E) where L ∈ S, σ is a V -relative spin

structure on L and E is an isomorphism class of C×-local systems on L.
(2) For any L0, L1 ∈ S, put C(L0, L1) := π0(L0 ×ι L1).
(3) For any Li = (Li, σi, Ei) ∈ ObS , i = 0, 1, put C(L0,L1) := C(L0, L1) which we distin-

guish from C(L′0,L′1) even if the underlying Lagrangian of L′0 (resp. L′1) is equal to that of
L0 (resp. L1).

(4) For c ∈ C(L0, L1) (resp. γ ∈ C(L0,L1)), define L(c) (resp. L(γ)) to be the connected
component of L0 ×ι L1 represented by c (resp. γ).

For each γ ∈ C(L0,L1), there is a Z2-local system Θγ on L(γ) which depends on the V -relative
spin structures σ0, σ1 on L0, L1 respectively. See [13] for the construction of Θγ which is Θ−γ there.
The use of Θγ is to describe the orientation bundles of the moduli spaces of holomorphic disks
(Proposition 2.13).

Let (L0,L1) ∈ Ob2
S . Recall that for i = 0, 1, Ei is a C×-local system on Li as part of the data

defining Li. By restriction, both E0 and E1 can be regarded as C×-local systems on L(γ), for each
γ ∈ C(L0,L1). Define

Eγ := Θγ ⊗OL(γ) ⊗Hom(E0, E1)

where OL(γ) is the orientation bundle of L(γ). Notice that any Z2-local system can be regarded
canonically as a C×-local system, via the inclusion Z2 ' {±1} ↪→ C×.

For any L0, L1 ∈ S , there is a diffeomorphism τ : L0 ×ι L1 → L1 ×ι L0 defined by switching
the coordinates. It induces maps τ : C(L0, L1) → C(L1, L0) and τ : L(c) → L(τ(c)) which we
have also denoted by τ , by an abuse of notation. There are also analogous maps on C(L0,L1) and
L(γ) which we also denote by τ . It is clear that τ ◦ τ = id in any sense.

Lemma 2.6. [13, Lemma-Definition 3.10] For each γ ∈ C(L0,L1), we have

Θγ = τ ∗Θτ(γ) ⊗ τ ∗OL(τ(γ)).
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2.2. Singular homology with local coefficients. Let X be a smooth manifold. Let Singsm(X)
be the set of all smooth singular simplices f : ∆r → X of arbitrary dimension r.

Let X ⊆ Singsm(X) be a subset with the property that all the faces of each f ∈ X lie in X .
Then X can be regarded as a ∆-complex whose geometric realization |X | is obtained by gluing the
domain simplices of all f ∈ X along their common faces so that the simplices of |X | are in 1-1
correspondence with the elements of X . This comes with a continuous map fX : |X | → X whose
restriction to a simplex is equal to the singular simplex f to which this simplex corresponds.

Recall the simplicial homologyH•(X ; E) of the ∆-complexX with coefficients in a local system
E on X is defined to be the homology of the chain complex

C•(X ; E) :=

(⊕
f∈X

Γflat(f
∗(E)), ∂

)
where Γflat(f

∗(E)) is the space of flat sections of f ∗(E) on the domain simplex of f and ∂ is the
boundary operator, i.e. for any f : ∆r → X and s ∈ Γflat(f

∗(E))

∂(s) :=
r∑
i=0

(−1)is|∂i∆r (2.1)

where ∂i∆r is the i-th boundary face of ∆r.

It is well known that H•(X ; E) ' H•(|X |; f ∗XE), the singular homology of |X | with coefficients
in f ∗XE .

The following proposition is a slight generalization of [2, Proposition 2.13] which we need in
order to extend the main results in loc. cit. which hold over Q to ones which hold over any C×-local
systems. [15] also contains a similar result where the outcome is a countable infinite set.

Proposition 2.7. LetX be a compact smooth manifold. LetX be a finite subset of Singsm(X) such
that all the faces of each f ∈ X lie in X . There exists a finite set X ′ with X ⊆ X ′ ⊆ Singsm(X)
such that all the faces of each f ∈ X ′ lie in X ′, and the map fX ′ : |X ′| → X is a homotopy
equivalence. In particular, for any local system E on X , we have the isomorphism

H•(X ′; E) ' H•(X; E).

Proof. The case when X is 0-dimensional is trivial. Assume from now on the dimension of X is
positive. Triangulate X . Denote by N r(X ) the r-th barycentric subdivision of X . It is known that
N2(X ) is a simplicial complex. By the simplicial approximation theorem, for any sufficiently large
r there is a simplical map g : N r+2(X )→ X homotopic to fX .

Form the simplicial mapping cylinder M(g) of g. (Recall that M(g) is a simplicial complex
whose geometric realization is homeomorphic to the usual mapping cylinder of g and which con-
tains, as sub-complexes,N r+3(X ) at one end andX at the other end. See [19].) Then the projection
map M(g)→ X is a homotopy equivalence.

Next by considering the iterated simplicial mapping cylinders of the identity on X , we obtain a
∆-complex structure on Y := |X | × [0, 1] which contains X at one end and N r+3(X ) at the other
end. Glue it to M(g) along N r+3(X ) and call the resulting ∆-complexWX . By projecting the part
belonging to Y down to X using g, we obtain a homotopy equivalence G :WX → X .

Now homotope G to a map F whose restriction to X is equal to fX , by the homotopy extension
property of CW-pairs. Perturb F to get F ′ such that (I) the restriction of F ′ to each simplex is
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smooth and (II) different simplices correspond to different restrictions. This is possible since X
has positive dimension. Then F ′ is also a homotopy equivalence since the target is a manifold. This
map gives us a finite set X ′ of singular simplices of X . Condition (I) implies X ′ ⊆ Singsm(X).
Condition (II) implies that the singular simplices in X ′ do not repeat so that we have H•(X ′; E) '
H•(WX ; E). �

Remark 2.8. In order to extend the main results in [2], we also need, as in [2], a generalization of
Proposition 2.7 which allows X to have boundary and corners. In that case, the singular simplices
involved are also required to satisfy some delicate transversality and combinatorial conditions near
the boundary and corners.

2.3. Moduli spaces of holomorphic disks. Let (M,ω),S, V be given as in Section 2.1.

Definition 2.9. Let k > 0 be an integer. A Lagrangian label of length k + 1 is a pair (
−→
L , ~γ)

consisting of

•
−→
L = (L0, . . . ,Lk) with Ls = (Ls, σs, Es) ∈ ObS ;

• ~γ = (γ0, . . . , γk) with γs ∈ C(Ls−1,Ls).

(Here the subscripts are considered modulo k + 1.)

Let (
−→
L , ~γ) be a Lagrangian label of length k+1. Let J be a compatible almost complex structure

on (M,ω) and β ∈ π2(M,∪ks=0ι(Ls)).

Definition 2.10.
(1) Define M̃k+1(

−→
L , ~γ, β, J) to be the set of quintuples (Σ, ~z, u, `, ũ) where

• Σ is a bordered Riemann surface of genus zero;
• ~z = (z0, . . . , zk) are distinct non-singular marked points on ∂Σ;
• u : Σ→M is a J-holomorphic map such that (Σ, ~z, u) is stable in the usual sense;
• ` : S1 → ∂Σ is an orientation-preserving parametrization of ∂Σ for which the preim-

ages ξs := `−1(zs) ∈ S1, s = 0, . . . , k are labelled in cyclic, counterclockwise order;
and
• ũ : S1 − {ξ0, . . . , ξk} →

∐k
s=0 Ls is a continuous map such that ι ◦ ũ = u ◦ `,

which satisfy
• u∗([Σ]) = β;
• for s = 0, . . . , k, the image of ũ|(ξs,ξs+1) lies in Ls where (ξs, ξs+1) denotes the interval

in S1 drawn from ξs to ξs+1 in the counterclockwise direction; and

• ũ(ξs) :=

 lim
ξ→ξs

ξ∈(ξs−1,ξs)

ũ(ξ), lim
ξ→ξs

ξ∈(ξs,ξs+1)

ũ(ξ)

 lies in L(γs).

(2) DefineMk+1(
−→
L , ~γ, β, J) to be the quotient of M̃k+1(

−→
L , ~γ, β, J) by isomorphisms:

(Σ, ~z, u, `, ũ) and (Σ′, ~z′, u′, `′, ũ′) are isomorphic if there is a biholomorphism φ : Σ→ Σ′

and an orientation-preserving homeomorphism ψ : S1 → S1 such that
• u′ ◦ φ = u;
• φ(zs) = z′s for s = 0, . . . , k;
• φ ◦ ` = `′ ◦ ψ; and
• ũ = ũ′ ◦ ψ on S1 − {ξ0, . . . , ξk}.

Elements ofMk+1(
−→
L , ~γ, β, J) are denoted by [(Σ, ~z, u, `, ũ)].



8 CHI HONG CHOW AND NAICHUNG CONAN LEUNG

Definition 2.11. For s = 0, . . . , k, the map

evs :Mk+1(
−→
L , ~γ, β, J)→ L(γs)

[(Σ, ~z, u, `, ũ)] 7→ ũ(ξs)

is called the s-th evaluation map.

By [15],Mk+1(
−→
L , ~γ, β, J) is a compact Kuranishi space with tangent bundle and the evaluation

maps evs, s = 0, . . . , k are strongly smooth and weakly submersive.

Remark 2.12. We require that the Kuranishi structure onMk+1(
−→
L , ~γ, β, J) depends only on the

underlying (
−→
L ,~c) of (

−→
L , ~γ), i.e. independent of the C×-local systems Es.

Now given ~f := (f1, . . . , fk) where for each s = 1, . . . , k, fs : ∆rs → L(γs) is a smooth singular
simplex. The fiber product

Mk+1(
−→
L , ~γ, β, J ; ~f) :=Mk+1(

−→
L , ~γ, β, J)×ev1×···×evk (f1 × · · · × fk)

is also a compact Kuranishi space with tangent bundle and the evaluation map

ev0 :Mk+1(
−→
L , ~γ, β, J ; ~f)→ L(γ0)

is also strongly smooth and weakly submersive.

In [14], Fukaya and Ono introduce the notion of perturbation data for a pair (M, e) whereM is
a compact oriented Kuranishi space with tangent bundle and e :M→ K is a strongly smooth map
fromM to an orbifold K. This allows us to perturbM, in an abstract way, to a nearby compact
oriented smooth non-Hausdorff manifoldM′ on which e remains well-defined. A triangulation of
M′ gives the so-called virtual chain which is an element in Singsm(K;Q).

We are going to apply this to the pair
(
Mk+1(

−→
L , ~γ, β, J ; ~f), τ ◦ ev0

)
. However, it should be

pointed out that in our situation, the moduli spaces are not necessarily oriented and C×-local sys-
tems are present. As a result, the virtual chains should not be defined over Q but over certain
local systems, and in order to make sense of it, it is necessary to have knowledge of the orientation
bundle ofMk+1(

−→
L , ~γ, β, J ; ~f).

The following proposition describes the orientation bundle of Mk+1(
−→
L , ~γ, β, J) in terms of

Θγs , s = 0, . . . , k which are defined in the previous section.

Proposition 2.13. [13, Proposition 3.29] There is an isomorphism of Z2-local systems

OMk+1(
−→
L ,~γ,β,J)

'
k⊗
s=0

ev∗sΘγs

which depends on the V -relatively spin structures as part of the data defining
−→
L .

Let fs : ∆rs → L(γs) be given as before. By the standard formula for the orientation bundles of
fiber products, we have

OMk+1(
−→
L ,~γ,β,J ;~f)

' OMk+1(
−→
L ,~γ,β,J)

⊗
k⊗
s=1

(
OL(γs) ⊗O∆rs

)
. (2.2)

Notice that this isomorphism depends on a convention which we shall follow [2].
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It follows from Proposition 2.13 that

OMk+1(
−→
L ,~γ,β,J ;~f)

'

(
k⊗
s=0

ev∗sΘγs

)
⊗

k⊗
s=1

(
OL(γs) ⊗O∆rs

)
. (2.3)

We would like to simplify the right-hand side of (2.3). However, this is impossible unless we fix
additional data which we now describe.

First of all, it is easy to eliminate the term O∆rs by specifying an orientation on the domain
simplex ∆rs of fs which we have already done when we define singular homologies. Second, to
eliminate the terms ev∗sΘγs and OL(γs), we need to specify, for each s = 1, . . . , k, a trivialization
(as local systems) of f ∗s (Θγs ⊗ OL(γs)) over ∆rs . But since we would like to introduce C×-local
systems in the Floer cochain complexes, we trivialize f ∗s Eγs instead, where Eγs := Θγs ⊗OL(γs) ⊗
Hom(Es−1, Es) is defined in Section 2.1. This is equivalent to specifying a flat section sfs ∈
Γflat(f

∗
s (Eγs)) which we fix from now on.

Finally, we need a further simplification of the C×-local systems we have introduced. This is
done by considering parallel transports of these local systems along the boundary of the holomor-
phic disks: for s = 0, . . . , k and [(Σ, ~z, u, `, ũ)] ∈ Mk+1(

−→
L , ~γ, β, J ; ~f), the parallel transport of

u∗Es along the segment [ξs, ξs+1] gives rise to an isomorphism of C×-local systems

1 ' Hom(ev∗sEs, ev∗s+1Es),

where 1 is the trivial local system.

Combining these isomorphisms for all s, we obtain an isomorphism

1 '
k⊗
s=0

Hom(ev∗sEs, ev∗s+1Es) (2.4)

or equivalently,
k⊗
s=1

Hom(ev∗sEs−1, ev∗sEs) ' Hom(ev∗0E0, ev∗0Ek). (2.5)

Now we are ready for the simplification:

OMk+1(
−→
L ,~γ,β,J ;~f)

'

(
k⊗
s=0

ev∗sΘγs

)
⊗

k⊗
s=1

(
OL(γs) ⊗O∆rs

)
' ev∗0Θγ0 ⊗

k⊗
s=1

(
ev∗sΘγs ⊗OL(γs)

)
' ev∗0Θγ0 ⊗

k⊗
s=1

Hom(ev∗sEs−1, ev∗sEs)

' ev∗0Θγ0 ⊗Hom(ev∗0E0, ev∗kEk)
' (τ ◦ ev0)∗

(
Θτ(γ0) ⊗OL(τ(γ0)) ⊗Hom(E0, Ek)

)
' (τ ◦ ev0)∗Eτ(γ0)
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The first isomorphism is (2.3). The second involves a rearrangement of terms and the standard
orientation on ∆rs . The third is induced by the given flat sections sfs . The fourth follows from
(2.5). The fifth is given by Lemma 2.6 and, finally, the sixth follows from the definition of Eτ(γ0).

Overall, we see that every singular simplex in the triangulation as part of the given perturbation
data for

(
Mk+1(

−→
L , ~γ, β, J ; ~f), τ ◦ ev0

)
is given a flat section in (τ ◦ev0)∗Eτ(γ0). Hence, these sim-

plices define an element in C•(L(τ(γ0)); Eτ(γ0)), denoted by V C
(
Mk+1(

−→
L , ~γ, β, J ; ~f), ~s

)
where

~s = (sf1 , . . . , sfk). (Notice that this element depends on the chosen perturbation data which we
shall drop from the notation.)

To conclude this subsection, we remark that there is a generalization of the moduli spaces
Mk+1(

−→
L , ~γ, β, J) and Mk+1(

−→
L , ~γ, β, J ; ~f) to any smooth family J = {Jτ}τ∈T of compatible

almost complex structures on (M,ω) parametrized by a compact oriented smooth manifold T ,
possibly with boundary and corners. We denote these moduli spaces by Mk+1(

−→
L , ~γ, β,J ) and

Mk+1(
−→
L , ~γ, β,J ; ~f) respectively. Notice that the singular chain simplices fs are now singular

chain simplices in L(γs) × T . See Section 4.5 in [2] for more details. All the results we have
covered, namely the orientation and virtual chains, have natural analogues for this family version.

2.4. A∞ structure. Let (M,ω),S, V be given as in Section 2.1. Fix a compatible almost complex
structure J on (M,ω).

Definition 2.14. Let G be a submonoid of R>0 × Z such that G ∩ ({0} × Z) = {(0, 0)} and
G ∩ ([0, C]× Z) is finite for any C > 0. Define || · || : G → Z>0 by ||(0, 0)|| = 0 and

||(λ, µ)|| := sup

{
m

∣∣∣∣∣ (λ, µ) =
m∑
i=1

(λi, µi), (λi, µi) ∈ G − {(0, 0)}

}
+ bλc, (λ, µ) 6= 0.

By Gromov compactness, we can choose G in Definition 2.14 such that it contains all elements
of the form

(∫
β
ω, µ(β)

)
for any β withMk+1(

−→
L , ~γ, β, J) 6= ∅ for some Lagrangian label (

−→
L , ~γ).

It is also possible to choose such a G if J is allowed to vary within a compact family. However, it
is impossible if J is arbitrary. To see how this issue is addressed, see [2, Theorem 11.2].

Our goal is to construct the Fukaya category Fuk(M,ω) which is an A∞ category. The con-
struction consists of geometric inputs and algebraic inputs. Let us start with the geometric inputs.
The following theorem plays the key role:

Theorem 2.15. [2, Theorem 6.1] For any integer N > 0, and for i = 0, . . . , N , there exist finite
sets

Xi,N =
∐

(L0,L1)∈S2

∐
c∈C(L0,L1)

Xi,N(c)

such that

(1) for any c, X0,N(c) ⊆ · · · ⊆ XN,N(c) ⊆ Singsm(L(c));
(2) for any c and i, all the faces of each f ∈ Xi,N(c) lie in Xi,N(c);
(3) for any c and i, the map fXi,N (c) : |Xi,N(c)| → L(c) is a homotopy equivalence (so

H•(Xi,N(c); E) ' H•(L(c); E) for any local system E on L(c)); and
(4) for any k > 0, i1, . . . , ik > 0 and (λ, µ) ∈ G such that

i1 + · · ·+ ik + ||(λ, µ)||+ k − 1 6 N,
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and for any Lagrangian label (
−→
L , ~γ) of length k+ 1, ~f = (f1, . . . , fk) with fs ∈ Xis,N(γs),

s = 1, . . . , k and β ∈ π2(M,∪ks=0ι(Ls)) with Mk+1(
−→
L , ~γ, β, J ; ~f) 6= ∅, perturbation

data for (Mk+1(
−→
L , ~γ, β, J ; ~f), τ ◦ ev0) is chosen such that every singular simplex in the

triangulation as part of this data lies in X∗,N(τ(γ0)) where ∗ = i1 + · · ·+ ik + ||(λ, µ)||+
k − 1.
Moreover, the chosen perturbation data for (Mk+1(

−→
L , ~γ, β, J ; ~f), τ ◦ ev0) is compatible

with the choice made for each of its boundary strata. (Some words are needed in order to
make this sentence precise. See [2] for details.)

The proof goes in exactly the same way as in loc. cit. except that we use Proposition 2.7 instead
of Proposition 2.13 in loc. cit. so that the isomorphism in (3) above holds for any local system E
(which holds over Q only in loc. cit.).

Remark 2.16. Theorem 2.15 has a generalization to any smooth family J = {Jτ}τ∈T of compat-
ible almost complex structures parametrized by a compact oriented smooth manifold T , possibly
with boundary and corners. Singular chains in L(c) are replaced by singular chains in L(c) × T
and the moduli spaces are replaced byMk+1(

−→
L , ~γ, β,J ; ~f). A new feature of this generalization

is the requirement of certain input which, however, can be taken to be the output of the theorem for
the restriction of J to the codimension 1 strata of T which are compatible over the codimension 2
strata. See [2, Sections 8 and 10].

Let N > 0 and let X0,N(c) ⊆ · · · ⊆ XN,N(c) be the outcome of Theorem 2.15. For any
(L0,L1) ∈ Ob2

S , 0 6 i 6 N , define

A•i,N(L0,L1) :=
⊕

γ∈C(L0,L1)

CdimL(γ)−•(Xi,N(γ); Eγ) =
⊕

γ∈C(L0,L1)

⊕
f∈Xi,N (γ)

Γflat(f
∗Eγ).

Let k > 0, i1, . . . , ik > 0 and (λ, µ) ∈ G such that

i1 + · · ·+ ik + ||(λ, µ)||+ k − 1 6 N.

Let (
−→
L , ~γ) be a Lagrangian label of length k + 1. For any ~f = (f1, . . . , fs), ~s = (sf1 , . . . , sfk)

where fs ∈ Xis,N(γs), sfs ∈ Γflat(f
∗
s Eγs), s = 1, . . . , k. Define

mλ,µ
k,geom(sfk , . . . , sf1) :=

∑
β∈π2(M,∪ks=0ι(Ls))

(
∫
β ω,µ(β))=(λ,µ)

V C
(
Mk+1(

−→
L , ~γ, β, J ; ~f), ~s

)
(2.6)

if (k, λ, µ) 6= (1, 0, 0) and (−1)m∂(sf1) if (k, λ, µ) = (1, 0, 0) where ∂ is the boundary operator
(2.1). This extends to a graded C-multilinear map

mλ,µ
k,geom : A•ik,N(Lk−1,Lk)⊗ · · · ⊗ A•i1,N(L0,L1)→ A•∗,N(L0,Lk) (2.7)

of degree 2− k − µ, where ∗ = i1 + · · ·+ ik + ||(λ, µ)||+ k − 1.

Now replace N in the above discussion by N(N + 2). The multilinear maps mλ,µ
k,geom allow us

to define an AN,0 category (AJN ,mN) by following the homological perturbation procedure in [2]
which we now briefly describe.

Let (L0,L1) ∈ Ob2
S . Observe that the inclusion

(A•N,N(N+2)(L0,L1),m0,0
1,geom) (A•N(N+2),N(N+2)(L0,L1),m0,0

1,geom)ι
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is a quasi-isomorphism. It follows that we can choose a pair (H,P ) of C-linear maps

(A•N,N(N+2)(L0,L1),m0,0
1,geom) (A•N(N+2),N(N+2)(L0,L1),m0,0

1,geom)ι

P

H

of degree −1 and 0 respectively such that ι ◦ P − id = m0,0
1,geom ◦H +H ◦m0,0

1,geom and P ◦ ι = id.

After fixing a choice of (H,P ) for each pair (L0,L1) ∈ Ob2
S , we apply the “summing over planar

trees” procedure. The outcome will be an AN,0 category (AJN ,mJ
N) whose set of objects is ObS ,

whose morphism spaces areA•N,N(N+2)(L0,L1), and whose AN,0 structure mJ
N = (mλ,µ

k ) coincides
with (mλ,µ

k,geom) over all tensor products

A•ik,N(N+2)(Lk−1,Lk)⊗ · · · ⊗ A•i1,N(N+2)(L0,L1)

with i1 + · · ·+ ik + ||(λ, µ)||+ k − 1 6 N . See [2] for more details.

The next step is to apply the generalization of Theorem 2.15 to three cases:

T J = {Jτ}τ∈T Input of the theorem

1 [0, 1] Jt ≡ J

output of Theorem 2.15 (N replaced
byN(N+2)) at {0} and output of The-
orem 2.15 (N replaced by (N+1)(N+
3)) at {1}.

2 [0, 1]
Jt = any smooth path con-
necting given J0 and J1

output of Theorem 2.15 (N replaced
by N(N + 2), J by J0) at {0} and out-
put of Theorem 2.15 (N replaced by
N(N + 2), J by J1) at {1}.

3 [0, 1]× [0, 1] Js,t = Jt where Jt is given in
case 2

output of above cases (details omitted)

TABLE 1. Generalization of Theorem 2.15 applied to various cases.

What we obtain will be

(1) an AN,0 quasi-isomorphism F J
N,N+1 : (AJN ,mJ

N)→ (AJN+1,m
J
N+1);

(2) an AN,0 quasi-isomorphism F J0→J1
N : (AJ0N ,m

J0
N )→ (AJ1N ,m

J1
N );

(3) the commutativity (up to AN,0 homotopy) of the diagram(
AJ0N ,m

J0
N

) (
AJ0N+1,m

J0
N+1

)
(
AJ1N ,m

J1
N

) (
AJ1N+1,m

J1
N+1

)
F
J0
N,N+1

F
J0→J1
N

F
J0→J1
N+1

F
J1
N,N+1

. (2.8)

Remark 2.17. The constriction of these functors is actually not completely geometric: Theorem
A.11 has already been used to “invert” quasi-isomorphisms. See Lemma 3.8 in Section 3.3 for
more details.

Now we come to the algebraic inputs which allow us to construct an A∞ structure mJ onAJ0 using
the AN,0 structures mJ

N on AJN and the AN,0 functors F J
N,N+1. Using the AN,0 functors F J0→J1

N and
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the commutative diagram (2.8), we can show that the A∞ categories thus constructed using J0 and
J1 are A∞ quasi-isomorphic.

By induction and applying Theorem A.12(1) at each inductive step, we obtain AN,0 structures
mJ

0,N on AJ0 and AN,0 quasi-isomorphisms F J
0,N : (AJ0 ,mJ

0,N)→ (AJN ,mJ
N) such that

(1) mJ
0,0 = mJ

0 ;
(2) mJ

0,N+1 extends mJ
0,N ;

(3) F J
0,0 is the identity functor; and

(4) F J
0,N+1 extends F J

N,N+1 ◦ F J
0,N .

By induction and applying Theorem A.12(2) at each inductive step, we obtain AN,0 quasi-
isomorphisms F J0→J1

0,N : (AJ00 ,m
J0
0,N)→ (AJ10 ,m

J1
0,N) such that

(1) F J0→J1
0,0 = F J0→J1

0 ;
(2) F J0→J1

0,N+1 extends F J0→J1
0,N ; and

(3) the diagram (
AJ00 ,m

J0
0,N

) (
AJ0N ,m

J0
N

)
(
AJ10 ,m

J1
0,N

) (
AJ1N ,m

J1
N

)
F
J0
0,N

F
J0→J1
0,N F

J0→J1
N

F
J1
0,N

is commutative up to AN,0 homotopy.

It follows that the sequence {mJ
0,N}N>0 induces an A∞ structure mJ on AJ0 and that for any two

compatible almost complex structures J0, J1, the sequence {F J0→J1
0,N }N>0 induces an A∞ quasi-

isomorphism F J0→J1 : (AJ00 ,m
J0)→ (AJ10 ,m

J1). By similar arguments, it can also be shown that
F J0→J1 is independent of any choices made throughout the construction up to A∞ homotopy, and
for any three compatible almost complex structures J0, J1, J2, F J1→J2 ◦ F J0→J1 is A∞ homotopic
to F J0→J2 . See [2] for more details.

Definition 2.18. Choose any compatible almost complex structure J . Define

Fuk(M,ω) := (AJ0 ,mJ)

which, as we have just seen, is an A∞ category well-defined up to a unique A∞ homotopy class of
A∞ quasi-isomorphisms.

3. MAIN CONSTRUCTION

In this section, we prove Theorem 1.1. Let (M,ω),S, V be given as in Section 2.1. Assume
c1(M) is divisible by a positive integer n.

Here is an outline of the construction of the twisted A∞ functor Φ. In Section 3.1, we construct
the map Φob : ObS → ObS . In Section 3.2, we construct Φ0,0

1 . Then we put Φλ,µ
k = 0 for

(k, λ, µ) 6= (1, 0, 0). We show that this gives the desired twisted A∞ functor.

To achieve this, recall that in the construction of Fuk(M,ω), we have made a number of choices
including the compatible almost complex structure J , the outcome of Theorem 2.15, the pair (H,P )
for the homological perturbation, the AN,0 homotopy inverses which are used to construct F J

N,N+1
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(Remark 2.17) and the outcome of Theorem A.12(1). In Section 3.3, we show that for any set of
these choices for the A∞ structure on the source of Φ, there exists another set of choices for the A∞
structure on the target of Φ such that Φ becomes a twisted A∞ functor. Furthermore, the (2n)-th
power

Φ◦2n := Φ ◦ · · · ◦ Φ (2n times)
of Φ is equal to the identity functor.

Remark 3.1. The sets of choices for different factors in the expression Φ◦2n = Φ ◦ · · · ◦ Φ should
be compatible. For example, the one for the source of the second factor should equal the one for
the target of the first factor. Moreover, the set of choices for the target of the last factor turns out to
be equal to the one for the source of the first factor so that it makes sense to talk about the identity
functor.

Remark 3.2. We will see very shortly that Φob is bijective and Φ0,0
1 is a chain isomorphism, and

hence Φ can be made into a twisted A∞ functor artificially by pushing forward the A∞ structure on
the source of Φ to an A∞ structure on the target. The point is to show that the latter can be realized
as the outcome of the construction in Section 2.4 by taking a suitable set of choices described
above, and this is the purpose of Section 3.3.

3.1. Φ on objects. Fix a primitive (2n)-th root of unity ζ . Recall we have imposed the condi-
tion that c1(M) is divisible by n. By Lemma B.1, the Lagrangian Grassmannian bundle LM :=
LG(TM,ω) on M admits a fiberwise Z2n-cover L′M → LM with deck transformation group iso-
morphic to Z2n.

Let L ∈ S. The tangent spaces of points of L define a section θL of LM |L by

θL(x) := TxL ∈ (LM)x, x ∈ L. (3.1)

The inverse image of the subspace θL(L) ⊆ LM |L under the fiberwise covering mapL′M |L → LM |L
is then a Z2n-local system on L, which we denote by EL. We may regard EL as a C×-local system
via the inclusion Z2n ↪→ C× : 1 (mod2n) 7→ ζ .

Definition 3.3. Define Φob : ObS → ObS by

Φob(L) := (L, σ, E ⊗ EL)

for any L = (L, σ, E) ∈ ObS .

This map will be used to define ΦN and Φ in the next subsection.

3.2. Φ on morphisms. Let N > 0 be an integer. Let (L0,L1) ∈ Ob2
S . Recall in Section 2.4, we

defined
A•i,N(L0,L1) :=

⊕
γ∈C(L0,L1)

CdimL(γ)−•(Xi,N(γ); Eγ)

where Xi,N(γ) is the outcome of Theorem 2.15 applied to a compatible almost complex structure
J on (M,ω).

For any i = 0, . . . , N , we want to define a C-linear map

(Φi,N)0,0
1 : A•i,N(L0,L1)→ A•i,N(Φob(L0),Φob(L1))

for any Li = (Li, σi, Ei) ∈ ObS , i = 0, 1.
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First observe that if γ′ is the unique element of C(Φob(L0),Φob(L1)) equal to γ as elements of
C(L0, L1) (see Notations 2.5(3)), then we have

Eγ′ ' Eγ ⊗Hom(EL0 , EL1)|L(γ). (3.2)

Thus, it suffices to specify, for each γ ∈ C(L0,L1), a flat section of Hom(EL0 , EL1)|L(γ), or equiv-
alently an isomorphism of Z2n-local systems EL0|L(γ) → EL1|L(γ).

This is done as follows: consider the “canonical short path” θγt , defined up to homotopy, which
is constructed in Appendix B. The lift of this path with respect to the fiberwise Z2n-covering map
L′M |L(γ) → LM |L(γ) then gives the desired isomorphism EL0|L(γ) → EL1|L(γ) which we denote
by φγ . By an abuse of notation, we also denote its equivalence form which is a section 1 →
Hom(EL0 , EL1)|L(γ) by the same symbol.

Definition 3.4.
(1) Define (Φi,N)0,0

1 : A•i,N(L0,L1)→ A•i,N(Φob(L0), (Φob(L1)) by

(Φi,N)0,0
1 (sf ) := ζr−dimL(γ)(id⊗ φγ)(sf ) (3.3)

for any f : ∆r → L(γ) which lies in Xi,N(γ) and sf ∈ Γflat(f
∗Eγ). Here, id ⊗ φγ is the

morphism of C×-local systems

Eγ → Eγ′ ' Eγ ⊗Hom(EL0 , EL1)|L(γ)

induced by φγ : 1 → Hom(EL0 , EL1)|L(γ) which we have just constructed. Since φγ is an
isomorphism, id⊗ φγ is also an isomorphism.

(2) Define (ΦN)0,0
1 := (ΦN,N(N+2))

0,0
1 and (ΦN)λ,µk = 0 for (k, λ, µ) 6= (1, 0, 0).

(3) Define Φ := Φ0.

Then ΦN and Φ act on the objects and the morphism spaces ofAJN and Fuk(M,ω) respectively.
We will show in the next subsection that they are twisted AN,0 functor and twisted A∞ functor
respectively.

3.3. Φ is an A∞ functor of order 2n. Fix a set of choices described at the beginning of this
section. Since the compatible almost complex structure J will be fixed throughout the discussion,
we will drop it from all the notations such as AJ , mJ , etc.

Proposition 3.5. Let k > 0, i1, . . . , ik > 0 and (λ, µ) ∈ G such that

∗ := i1 + · · ·+ ik + ||(λ, µ)||+ k − 1 6 N.

Let (
−→
L , ~γ) be a Lagrangian label of length k + 1. Recall the C-multilinear map mλ,µ

k,geom (2.7). We
have

mλ,µ
k,geom ◦

(
(Φik,N)0,0

1 ⊗ · · · ⊗ (Φi1,N)0,0
1

)
= ζ2−k(Φ∗,N)0,0

1 ◦m
λ,µ
k,geom. (3.4)

Proof. The case (k, λ, µ) = (1, 0, 0) follows from the functoriality of singular chain complexes
with respect to change of local coefficients. Notice that the factor ζ2−1 = ζ1 in (3.4) corresponds
to the ratio of the factors ζr−dimL(γ) and ζ(r−1)−dimL(γ) both coming from (3.3).

Assume now (k, λ, µ) 6= (1, 0, 0). Recall from (2.6) that

mλ,µ
k,geom(sfk , . . . , sf1) :=

∑
β∈π2(M,∪ks=0ι(Ls))

(
∫
β ω,µ(β))=(λ,µ)

V C
(
Mk+1(

−→
L , ~γ, β, J ; ~f), ~s

)
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for any ~f = (f1, . . . , fs), ~s = (sf1 , . . . , sfk) where fs ∈ Xis,N(γs), sfs ∈ Γflat(f
∗
s Eγs), s =

1, . . . , k.

Let ~s ′ := ((id⊗ φγ1)(sf1), . . . , (id⊗ φγk)(sfk)). Then

mλ,µ
k,geom

(
(Φik,N)0,0

1 (sfk), . . . , (Φi1,N)0,0
1 (sf1)

)
=

∑
β∈π2(M,∪ks=0ι(Ls))

(
∫
β ω,µ(β))=(λ,µ)

ζ
∑k
s=1(rs−dimL(γs))V C

(
Mk+1(

−→
L , ~γ, β, J ; ~f), ~s ′

)
.

Hence it suffices to show that

V C
(
Mk+1(

−→
L , ~γ, β, J ; ~f), ~s ′

)
= ζm−dimL(γ0)+µ(β)(id⊗ φτ(γ0))

(
V C

(
Mk+1(

−→
L , ~γ, β, J ; ~f), ~s

))
,

by the dimension formula (B.2). (Recall dimRM = 2m.)

This is an immediate consequence of the following lemma. �

Lemma 3.6. Let [(Σ, ~z, u, `, ũ)] ∈ Mk+1(
−→
L , ~γ, β, J ; ~f). For s = 1, . . . , k + 1 , let ψξs−1→ξs be

the parallel transport map of ELs−1 along the path ũ|[ξs−1,ξs]. (Notice that the limits of ũ(ξ) when ξ
approaches the endpoints of [ξs−1, ξs] exist, see Definition 2.10(1).) Then

ψξk→ξ0 ◦ φγk(ũ(ξk)) ◦ · · · ◦ φγ1(ũ(ξ1)) ◦ ψξ0→ξ1 = ζm−dimL(γ0)+µ(β)φτ(γ0)(τ(ũ(ξ0))) (3.5)

Proof. By the formula φγ0 ◦ φτ(γ0) = ζ−m+dimL(γ0)idEL0
, we see that (3.5) is equivalent to

φγ0(ũ(ξ0)) ◦ ψξk→ξ0 ◦ · · · ◦ φγ1(ũ(ξ1)) ◦ ψξ0→ξ1 = ζµ(β)idEL0
. (3.6)

Recall we have put LM = LG(TM,ω) and L′M → LM is a fiberwise Z2n-cover. Since u∗L′M is a
trivial bundle on Σ, there exists a fiberwise Z-cover L′′ → u∗L′M .

Consider the loop η in u∗LM which is the concatenation of the following paths (in the given
order):

θL0(ũ|[ξ0,ξ1]), θ
γ1
t (ũ(ξ1)), . . . , θLk(ũ|[ξk,ξ0]), θ

γ0
t (ũ(ξ0))

where θL and θγt are given in (3.1) and (B.1) respectively. Then the lifts of η in u∗L′M and in L′′
are paths whose end points are related by some group elements a ∈ Z2n and b ∈ Z respectively.
It is easy to see that ζa = ζb. By definition, ζaidEL0

is equal to the left-hand side of (3.6), and by
Definition B.3, b = µ(β). This completes the proof. �

According to Section 2.4, the AN,0 structure mN on AN is defined by choosing, for each pair
(L0,L1) ∈ Ob2

S , a homotopy operator H and a projection P

(A•N,N(N+2)(L0,L1),m0,0
1,geom) (A•N(N+2),N(N+2)(L0,L1),m0,0

1,geom)ι

P

H

such that ι◦P − id = m0,0
1,geom ◦H+H ◦m0,0

1,geom and P ◦ ι = id, and then applying the homological
perturbation. (Recall AN(L0,L1) := A•N,N(N+2)(L0,L1).)
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Lemma 3.7. There exists a choice (H ′, P ′) which defines an AN,0 structure m′N on AN such that

ΦN : (AN ,mN)→ (AN , (m′N)(ζ))

is an AN,0 functor, where (m′N)(ζ) is defined in Definition A.8.

Proof. We have the following diagram

(A•N,N(N+2)(L0,L1),m0,0
1,geom) (A•N(N+2),N(N+2)(L0,L1),m0,0

1,geom)

(A•N,N(N+2)(L0,L1), ζ−1m0,0
1,geom) (A•N(N+2),N(N+2)(L0,L1), ζ−1m0,0

1,geom)

(ΦN,N(N+2))
0,0
1

ι

P

H

(ΦN(N+2),N(N+2))
0,0
1

ι

(3.7)

such that (ΦN(N+2),N(N+2))
0,0
1 ◦ ι = ι ◦ (ΦN,N(N+2))

0,0
1 .

Observe that (ΦN,N(N+2))
0,0
1 and (ΦN(N+2),N(N+2))

0,0
1 are chain isomorphisms. It follows that

there is a unique choice (H ′, P ′) such that the diagram

(A•N,N(N+2)(L0,L1),m0,0
1,geom) (A•N(N+2),N(N+2)(L0,L1),m0,0

1,geom)

(A•N,N(N+2)(L0,L1), ζ−1m0,0
1,geom) (A•N(N+2),N(N+2)(L0,L1), ζ−1m0,0

1,geom)

(ΦN,N(N+2))
0,0
1

ι

P

H

(ΦN(N+2),N(N+2))
0,0
1

ι

P ′

H′

(3.8)

is commutative. This, together with Proposition 3.5, shows that ΦN is indeed an AN,0 functor
provided the AN,0 structures on the source and the target are defined using choices (H,P ) and
(H ′, P ′) respectively. �

Next, recall the AN,0 functor FN,N+1 : (AN ,mN)→ (AN+1,mN+1) in Section 2.4.

Lemma 3.8. There exists a choice F ′N,N+1 : (AN ,m′N)→ (AN+1,m
′
N+1) such that the diagram

(AN ,mN) (AN+1,mN+1)

(
AN , (m′N)(ζ)

) (
AN+1, (m

′
N+1)(ζ)

)
FN,N+1

ΦN ΦN+1

(F ′N,N+1)(ζ)

(3.9)

is commutative.

Proof. Before we prove this, let us say a few more words on how F J
N,N+1 is constructed. According

to [2], it is done by introducing a third AN,0 category
(
A(0,1)
N,N+1,m

(0,1)
N,N+1

)
which is constructed

using the outcome of Theorem 2.15 applied to the first case of Table 1 in Section 2.4 and a pair
(H,P ) compatible with the ones chosen for the AN,0 structure mN on AN and for the AN+1,0

structure mN+1 on AN+1.
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There areAN,0 quasi-isomorphisms F (0,1)→i
N,N+1 : A(0,1)

N,N+1 → AN+i, i = 0, 1, and FN,N+1 is defined

to be F (0,1)→1
N,N+1 ◦ F

∼(0,1)→0

N,N+1 , where F
∼(0,1)→0

N,N+1 is an AN,0 homotopy inverse of F (0,1)→0
N,N+1 which exists by

Theorem A.11.

Construct anAN,0 functor Φ
(0,1)
N,N+1 :

(
A(0,1)
N,N+1,m

(0,1)
N,N+1

)
→
(
A(0,1)
N,N+1, (m

′(0,1)
N,N+1)(ζ)

)
in the same

way as how ΦN is constructed. Since
(

Φ
(0,1)
N,N+1

)0,0

1
is also a chain isomorphism, there are unique

choices F ′(0,1)→0
N,N+1 and F ′(0,1)→1

N,N+1 such that the following diagram is commutative:

(AN ,mN)
(
A(0,1)
N,N+1,m

(0,1)
N

)
(AN+1,mN+1)

(
AN , (m′N)(ζ)

) (
A(0,1)
N,N+1,

(
m
′(0,1)
N,N+1

)
(ζ)

) (
AN+1,

(
m′N+1

)
(ζ)

)ΦN

F
(0,1)→0
N,N+1 F

(0,1)→1
N,N+1

Φ
(0,1)
N,N+1

ΦN+1

(
F
′(0,1)→0
N,N+1

)
(ζ)

(
F
′(0,1)→1
N,N+1

)
(ζ)

(3.10)

Moreover, the AN,0 homotopy inverse F
∼′(0,1)→0

N,N+1 of F ′(0,1)→0
N,N+1 can be chosen such that Φ

(0,1)
N,N+1 ◦

F
∼(0,1)→0

N,N+1 =
(
F
∼′(0,1)→0

N,N+1

)
(ζ)
◦ ΦN . Define F ′N,N+1 := F

′(0,1)→1
N,N+1 ◦ F

∼′(0,1)→0

N,N+1 . Then the commutativity

of (3.9) follows. �

Now recall theAN,0 structurem0,N onA0 and theAN,0 quasi-isomorphism F0,N : (A0,m0,N)→
(AN ,mN) in Section 2.4. Argued in a similar way and by induction, there exist choices m′0,N and
F ′0,N such that Φ : (A0,m0,N)→ (A0, (m

′
0,N)(ζ)) is an AN,0 functor and the diagram

(A0,m0,N) (AN ,mN)

(A0, (m
′
0,N)(ζ)) (AN , (m′N)(ζ))

F0,N

Φ ΦN

(F ′0,N )(ζ)

(3.11)

is commutative. It follows that the sequence {m′0,N}N>0 induces an A∞ structure m′ on A0 for
which Φ : (A0,m)→ (A0, (m

′)(ζ)) is an A∞ functor.

Finally, observe that the Z2n-local system EL defined in Section 3.1 satisfies E⊗2n
L = 1 (in fact

E⊗nL = 1 as L is oriented), and that the isomorphism φγ : EL0|L(γ) → EL1|L(γ) defined in Section
3.2 satisfies

φ⊗2n
γ = id ∈ Hom(E⊗2n

L0
|L(γ), E⊗2n

L1
|L(γ)) ' Hom(1,1).

It follows that for any N > 0, Φ◦2nN is equal to the identity functor idAN .

By the commutativity of diagrams (3.9) and (3.11), we conclude that all the choices for the
target of Φ◦2n coincide with the ones for the source of Φ◦2n. In other words, the A∞ structure on
the source and the target coincide. This can also be seen by using the fact that Φ◦2n is an A∞
functor which acts on the objects and the morphism spaces in the same way as the identity functor
idFuk(M,ω). Hence Φ◦2n = idFuk(M,ω). The proof of Theorem 1.1 is complete.
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APPENDIX A. AN,K CATEGORIES, FUNCTORS AND HOMOTOPIES

Definition A.1. Let T and e be two formal variables. Define the universal Novikov ring over C

Λ0 :=

{
∞∑
i=0

aiT
λieµi

∣∣∣∣∣ ai ∈ C, λi ∈ R>0, µi ∈ Z, lim
i→∞

λi = +∞

}
.

We grade Λ0 by declaring T and e to have degree 0 and 1 respectively.

Definition A.2. Define a total order ≺ on Z>0 × Z>0 by

(N,K) ≺ (N,K)⇐⇒ (N +K < N +K) or (N +K = N +K and N < N).

Definition A.3. Let A be given the following data:

• a set Ob(A), called the set of objects; and
• an assignment of a Z-graded C-vector spaceA(L0,L1), called the morphism space, to every

pair (L0,L1) ∈ Ob(A)2.

Let A′ and A′′ be given the similar data. Let Fob : Ob(A) → Ob(A′) be a map. Let G be given as
in Definition 2.14 and (N,K) ∈ Z>0 × Z>0.

(1) Define the AN,K version of Hochschild cochain complex

CC•N,K(A,A′) =
⊕
r∈Z

CCr
N,K(A,A′)

where for each r ∈ Z, CCr
N,K(A,A′) is the Λ0-module consisting of formal sums

F =
∑

(λ,µ)∈G

F λ,µT λeµ

with F λ,µ = (F λ,µ
k ) where

(F λ,µ
k ) ∈

∏
k>0

(||(λ,µ)||−1,k)�(N,K)
L0,...,Lk∈Ob(A)

Homr−k−µ (A(L0, . . . ,Lk),A(Fob(L0), Fob(Lk)))

whereA(L0, . . . ,Lk) = A(Lk−1,Lk)⊗ · · · ⊗A(L0,L1). (Notice that every element F is a
finite sum.)

(2) Let Fi ∈ CCri
N,K(A,A′) , i = 1, 2. Define the AN,K version of Gerstenhaber product

F1 � F2 ∈ CCr1+r2−1
N,K (A,A′)

by

(F1 � F2)λ,µk (ak, . . . , a1)

:=
∑

(λi,µi)∈G, i=1,2
(λ,µ)=(λ1,µ1)+(λ2,µ2)

k−1>j>0, k2>0
k+1=k1+k2

(−1)j+
∑j
i=1 |ak−i+1|(F1)λ1,µ1k1

(
ak, . . . , ak−j+1, (F2)λ2,µ2k2

(ak−j,

(F2)λ2,µ2k (F )λ,µk . . . , ak−j−k2+1), ak−j−k2 , . . . , a1

)

for any (λ, µ) ∈ G, k > 0 with (||(λ, µ)|| − 1, k) � (N,K), L0, . . . ,Lk ∈ Ob(A) and
ai ∈ A|ai|(Li−1,Li), i = 1, . . . , k.
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(3) Let F ′ob : Ob(A′) → Ob(A′′) be a map which gives rise to CC•N,K(A′,A′′). Let Fi ∈
CCri

N,K(A,A′), i = 1, . . . , ` and F ′ ∈ CCr′
N,K(A′,A′′).

Define (F ′|F1, . . . , F`) ∈ CC
r′−`+

∑`
r=1 ri

N,K (A,A′′) by

(F ′|F1, . . . , F`)
λ,µ
k (ak, . . . , a1)

:=
∑

(λi,µi)∈G, i=0,...,`

(λ,µ)=
∑`
i=0(λi,µi)

06k`6···6k1=k

(F ′)
(λ0,µ0)
`

(
(F1)

(λ1,µ1)
k1−k2 (ak1 , . . . , ak2+1), . . . , (F`)

(λ`,µ`)
k`

(ak` , . . . , a1)
)

for any (λ, µ) ∈ G, k > 0 with (||(λ, µ)|| − 1, k) � (N,K), L0, . . . ,Lk ∈ Ob(A) and
ai ∈ A•(Li−1,Li), i = 1, . . . , k.

Definition A.4. A non-unital curved G-gapped filtered AN,K category (A,m) consists of A given
as in Definition A.3 and m ∈ CC2(A,A) (where Fob = id) such that m0,0

0 = 0 and

m�m = 0.

For (N,K) � (N,K), we have the projection CC•
N,K

(A,A)→ CC•N,K(A,A).

Definition A.5. A non-unital curved G-gapped filtered A∞ category (A,m) consists ofA given as
in Definition A.3 and m = (mN)N>0 such that for each N > 0, (A,mN) is a non-unital curved
G-gapped filtered AN,0 category and mN+1 projects to mN .

For simplicity, we shall call (A,m) in Definition A.4 (resp. Definition A.5) an AN,K category
(resp. A∞ category).

Let (A,m) be an AN,K category. Using m0,0
0 = 0 and (m�m)0,0

1 = 0, we have m0,0
1 ◦m

0,0
1 = 0.

In other words, for any L0,L1 ∈ Ob(A), (A(L0,L1),m0,0
1 ) is a cochain complex.

Definition A.6. Let (A,m), (A′,m′) be AN,K categories.

(1) A G-gapped filteredAN,K functor F : (A,m)→ (A′,m′) consists of a map Fob : Ob(A)→
Ob(A′) and F ∈ CC1(A,A′) such that F 0,0

0 = 0 and

F �m =
∞∑
`=0

(m′|F, . . . , F ). (A.1)
` times

(2) The identity functor idA : (A,m)→ (A,m) is defined by putting (idA)ob = id, (idA)0,0
1 =

id and (idA)λ,µk = 0 for (k, λ, µ) 6= (1, 0, 0).
(3) A G-gapped filtered AN,K functor F : (A,m) → (A′,m′) is strict if F λ,µ

k = 0 for all
k 6= 1, (λ, µ) ∈ G.

For simplicity, we shall call F : (A,m) → (A′,m′) in Definition A.6(1) an AN,K functor. We
define an A∞ functor of A∞ categories in a similar fashion as in Definition A.5.

Let F : (A,m) → (A′,m′) be an AN,K functor of AN,K categories. Using F 0,0
0 = 0 and

equation (A.1) for (k, λ, µ) = (1, 0, 0), we have F 0,0
1 ◦m0,0

1 = (m′)0,0
1 ◦ F

0,0
1 . In other words, for

any L0,L1 ∈ Ob(A),

F 0,0
1 : (A(L0,L1),m0,0

1 )→ (A′(Fob(L0), Fob(L1)), (m′)0,0
1 ) (A.2)

is a chain map.



A CYCLIC GROUP ACTION ON FUKAYA CATEGORIES FROM MIRROR SYMMETRY 21

Definition A.7. Let F : (A,m)→ (A′,m′) be an AN,K functor of AN,K categories. We call F an
AN,K quasi-isomorphism if for any L0,L1 ∈ Ob(A), the chain map (A.2) is a quasi-isomorphism.

Definition A.8. Let ζ ∈ C be a complex number.

(1) Let (A,m) be an AN,K category (resp. A∞ category). Write m = (mλ,µ
k ). Define m(ζ) :=

(ζk−2mλ,µ
k ). Then (A,m(ζ)) is also an AN,K category (resp. A∞ category).

(2) Let F : (A,m) → (A′,m′) be an AN,K functor (resp. A∞ functor). Write F = (F λ,µ
k ).

Define F(ζ) := (ζk−1F λ,µ
k ). Then F(ζ) : (A,m(ζ)) → (A′, (m′)(ζ)) is also an AN,K functor

(resp. A∞ functor).

Definition A.9. Let (A,m), (A′,m′), (A′′,m′′) be AN,K categories. Let F : (A,m) → (A′,m′)
and F ′ : (A′,m′) → (A′′,m′′) be AN,K functors. Define the AN,K functor F ′ ◦ F : (A,m) →
(A′′,m′′), called the composite, by putting (F ′ ◦ F )ob := F ′ob ◦ Fob and

F ′ ◦ F :=
∞∑
`=0

(F ′|F, . . . , F ).

` times

Definition A.10.
(1) Let F1, F2 : (A,m) → (A′,m′) be AN,K functors of AN,K categories such that (F1)ob =

(F2)ob. An AN,K homotopy from F1 to F2 is H ∈ CC0(A,A′) such that H0,0
0 = 0 and

F1 − F2 = H �m+
∞∑

`1,`2=0

(m′|F1 . . . , F1, H, F2 . . . , F2)

`1 times `2 times
In this case, we say that F1 is AN,K homotopic to F2.

(2) We call an AN,K functor F : (A,m)→ (A′,m′) a homotopy equivalence if it has an AN,K
homotopy inverse, i.e. an AN,K functor G : (A′,m′) → (A,m) such that Fob and Gob are
inverse to each other (in particular they are both bijective), F ◦ G is AN,K homotopic to
idA′ , and G ◦ F is AN,K homotopic to idA.

(3) We define an A∞ homotopy in a similar fashion as in Definition A.5.

The following theorems are generalization of [2, Theorem 3.22(c) and Theorem 3.23] which
come from [15]. See also Theorem 13.11 in [13].

Theorem A.11. Let F : (A,m)→ (A′,m′) be anAN,K functor ofAN,K categories. Suppose Fob is
bijective. Then F is an AN,K quasi-isomorphism if and only if it is an AN,K homotopy equivalence.

Theorem A.12. Let (N,K), (N,K) ∈ Z>0 × Z>0 such that (N,K) � (N,K).

(1) Let F : (A,m) → (A′,m′) be an AN,K functor of AN,K categories which is an AN,K
homotopy equivalence. Suppose m′ is the restriction of an AN,K structure m′ on A′. Then
m is the restriction of anAN,K structurem onA and F is the restriction of anAN,K functor
F : (A,m)→ (A′,m′) which is an AN,K homotopy equivalence.

(2) Let F : (A,mA) → (A′,mA′) and G : (B,mB) → (B′,mB′) be AN,K functors of AN,K
categories which are AN,K homotopy equivalence. Let Φ

′
: (A′,mA′) → (B′,mB′) be an

AN,K functor and Φ : (A,mA) → (B,mB) be an AN,K functor such that Φ
′ ◦ F is AN,K

homotopic to G ◦ Φ. Then Φ is the restriction of an AN,K functor Φ : (A,mA)→ (B,mB)

such that Φ
′ ◦ F is AN,K homotopic to G ◦ Φ.
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APPENDIX B. LAGRANGIAN GRASSMANNIAN AND MASLOV INDEX

Let (W0, ω0) be a symplectic vector space of real dimension 2m > 0. Denote by LG(W0, ω0)
the space of Lagrangian subspaces of (W0, ω0). It is well known that

π1(LG(W0, ω0)) ' Z.
For each positive integer k, we call the covering space of LG(W0, ω0) with deck transformation
group isomorphic to Zk (resp. Z) the Zk-cover (resp. Z-cover) of LG(W0, ω0).

Now let (W,ω) be a symplectic vector bundle on a space X . Then we can form the fiber bundle
LG(W,ω) whose fiber at a point x ∈ X is equal to LG(Wx, ωx).

Lemma B.1. [26, Lemma 2.2] If the first Chern class c1(W ) ∈ H2(X;Z) of (W,ω) is divisible by
a positive integer n, then LG(W,ω) admits a fiberwise Z2n-cover.

Let (M,ω),S be given as in Section 2.1. Put LM := LG(TM,ω). Let L ∈ S. As in Section
3.1, denote by θL the section of LM |L parametrizing the tangent spaces of points of L:

θL(x) := TxL ∈ (LM)x, x ∈ L.

Let L0, L1 ∈ S and c ∈ C(L0, L1). We define the family version of the “canonical short path” [4]
from θL0 to θL1 over L(c) as follows. Consider the symplectic vector bundle Vc := TL(c)⊥ω/TL(c)
defined on L(c) with the induced symplectic form [ω] and its associated Lagrangian Grassmannian
bundle LL(c) := LG(Vc, [ω]) which embeds into LM |L(c) through the quotient map TL(c)⊥ω � Vc.
Then the images of θL0 and θL1 lie in LL(c). Choose a compatible almost complex structure Jc on
(Vc, [ω]) such that Jc · TL0/TL(c) = TL1/TL(c). Then the desired path θct is defined to be

θct := e−
πt
2
Jc · TL0/TL(c), t ∈ [0, 1]. (B.1)

Notice that it is a path of sections of LL(c), which are also sections of LM |L(c).

Remark B.2. One can show that θct is independent of the choice of Jc up to homotopy.

Now let (
−→
L , ~γ) be a Lagrangian label (Definition 2.9). Consider the following set-up which is

similar to the one in Definition 2.10(1): let D be the unit disk with k + 1 marked points ξ0, . . . , ξk
on the boundary ∂D ≈ S1 arranged in the counterclockwise order. We also put ξk+1 = ξ0. Let
u : D → M be a continuous map such that u|∂D−{ξ0,...,ξk} has a continuous lift ũ in

∐k
s=0 Ls with

ũ((ξs, ξs+1)) ⊆ Ls. Moreover, we assume that for each s, the limit

ũ(ξs) :=

 lim
ξ→ξs

ξ∈(ξs−1,ξs)

ũ(ξ), lim
ξ→ξs

ξ∈(ξs,ξs+1)

ũ(ξ)


exists and lies in L(γs).

We now define the Maslov index of the homotopy class represented by u. Consider the bundle
L := u∗LM on D. Since D is contractible, L admits a fiberwise Z-cover L′. Consider the loop η
which is the concatenation of the following paths:

θL0(ũ|[ξ0,ξ1]), θ
c1
t (ũ(ξ1)), . . . , θLk(ũ|[ξk,ξ0]), θ

c0
t (ũ(ξ0)).

Then η has a lift in L′ under the fiberwise Z-covering map L′ → L whose endpoints differ by a
deck transformation group element which is an integer. One can show that this integer depends
only on the homotopy class β represented by u.
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Definition B.3. Define µ(β), the Maslov index of β, to be this integer.

Finally, let ~f = (f1, . . . , fk) where fs : ∆rs → L(γs) is a smooth singular simplex.

Lemma B.4. (dimension formula) The virtual dimension ofMk+1(
−→
L , ~γ, β, J ; ~f) is equal to

m+ µ(β)−
k∑
s=1

(dim(L(γs)− rs) + k − 2. (B.2)

APPENDIX C. THE DIHEDRAL GROUP ACTION

Let (M,ω),S, V be given as in Section 2.1. We construct a conjugate automorphism R of
Fuk(M,ω) which satisfies (1.3), proving Theorem 1.7. For any C×-local system E on L ∈ S,
there is a unique C×-local system E whose holonomy is equal to the complex conjugate of the
holonomy of E . Given L = (L, σ, E) ∈ ObS , we put

Rob(L) := (L, σ, E).

In Section 2.4 the morphism spaceA(L0,L1) associated to any two objects Li = (Li, σi, Ei), i =
0, 1 of A := Fuk(M,ω) is defined by

A(L0,L1) =
⊕

γ∈C(L0,L1)

⊕
f∈Xi,N (γ)

Γflat(f
∗Eγ).

Roughly speaking, it is the direct sum, over a finite collection of smooth singular simplices in the
connected components of L0×ιL1, of the spaces of flat sections of the pullbacks of certain C×-local
systems.

For each singular simplex f ∈ Xi,N(γ), there is a canonical complex conjugate isomorphism
Γflat(f

∗Eγ)→ Γflat(f
∗Eγ), and hence we obtain a complex conjugate isomorphism

R0,0
1 : A(L0,L1)→ A(Rob(L0), Rob(L1)).

Put also Rλ,µ
k = 0 for (k, λ, µ) 6= (1, 0, 0). Then one checks easily that R = (Rλ,µ

k ) satisfies
the A∞ equation (A.1) so that it is almost an A∞ functor except that R0,0

1 is not complex linear.
But obviously, it makes sense to talk about the composite of “A∞ functors” of this kind and A∞
functors in the original sense, following Definition A.9.

Proposition C.1. Let Φ be constructed in Section 3. Then we have

R ◦ Φ ◦R ◦ Φ = idA.

Proof. The proof is based on the following two observations.

(1) For any L ∈ S, there is a canonical isomorphism

1 ' EL ⊗ EL. (C.1)

(2) Recall the isomorphism φc : EL0|L(c) → EL1|L(c) associated to any L0, L1 ∈ S and c ∈
C(L0, L1) which is constructed in Section 3.2. The element

φc ⊗ φc ∈ Hom((EL0 ⊗ EL0)|L(c), (EL1 ⊗ EL1)|L(c))

is equal to the identity ∈ Hom(1,1) via the identification (C.1).
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To prove (1), notice that as Z2n-local systems, EL and EL are equal. (The complex conjugation does
not change the principal bundles but the representations.) To regard them as C×-local systems, we
use the inclusion 1 (mod2n) 7→ ζ for EL and 1 (mod2n) 7→ ζ−1 for EL. Hence the result follows.

To prove (2), it suffices to prove the following statement. Let G be a group. Let P1,P2 be
principal G-bundles on a space X and φ : P1 → P2 be an isomorphism. Let λ : G → C× be a
group homomorphism. Then the composite

X × C p−→ (P1 ×X P1)×λ�λ−1 C q−→ (P2 ×X P2)×λ�λ−1 C r−1

−−→ X × C
is equal to the identity, where

p(x, v) = [(z, z) : v]
q([(z1, z2) : v]) = [(φ(z1), φ(z2)) : v]

r(x, v) = [(w,w) : v]

and z (resp. w) is any point on the fiber of P1 (resp. P2) over x ∈ X . But this is obvious.

�

It follows that Theorem 1.7 is proved.
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