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Induced subgraphs of hypercubes and
a proof of the Sensitivity Conjecture

By Hao Huang

Abstract

In this paper, we show that every (2n−1 + 1)-vertex induced subgraph

of the n-dimensional cube graph has maximum degree at least
√
n. This is

the best possible result, and it improves a logarithmic lower bound shown

by Chung, Füredi, Graham and Seymour in 1988. As a direct consequence,

we prove that the sensitivity and degree of a boolean function are polyno-

mially related, solving an outstanding foundational problem in theoretical

computer science, the Sensitivity Conjecture of Nisan and Szegedy.

1. Introduction

Let Qn be the n-dimensional hypercube graph, whose vertex set consists

of vectors in {0, 1}n. Two vectors are adjacent if they differ in exactly one

coordinate. For an undirected graph G, we use the standard graph-theoretic

notation ∆(G) for its maximum degree, and we use λ1(G) for the largest eigen-

value of its adjacency matrix. In 1988, Chung, Füredi, Graham, and Seymour

[3] proved that if H is an induced subgraph of more than 2n−1 vertices of

Qn, then the maximum degree of H is at least (1/2 − o(1)) log2 n. Moreover,

they constructed a (2n−1+1)-vertex induced subgraph whose maximum degree

is d
√
n e.
In this short paper, we prove the following result, establishing a sharp

lower bound that matches their construction. Note that the 2n−1 even vertices

of Qn induce an empty subgraph. This theorem shows that any subgraph with

just one more vertex would have its maximum degree suddenly jump to
√
n.

Theorem 1.1. For every integer n ≥ 1, let H be an arbitrary (2n−1 + 1)-

vertex induced subgraph of Qn. Then

∆(H) ≥
√
n.

Moreover this inequality is tight when n is a perfect square.
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950 HAO HUANG

The induced subgraph problem is closely related to one of the most im-

portant and challenging open problems in theoretical computer science: the

Sensitivity vs. Block Sensitivity Problem. In his 1989 paper, Nisan [12] gave

right bounds for computing the value of a boolean function in the CREW-

PRAM model. These bounds are expressed in terms of two complexity mea-

sures of boolean functions. For x ∈ {0, 1}n and a subset S of indices from

[n] = {1, . . . , n}, we denote by xS the binary vector obtained from x by flip-

ping all indices in S. For f : {0, 1}n → {0, 1}, the local sensitivity s(f, x) on the

input x is defined as the number of indices i, such that f(x) 6= f(x{i}), and the

sensitivity s(f) of f is maxx s(f, x). The sensitivity measures the local chang-

ing behavior of a boolean function with respect to the Hamming distance. It

can be viewed as a discrete analog of the smoothness of continuous functions.

(See [7] for more in-depth discussions.) The local block sensitivity bs(f, x) is the

maximum number of disjoint blocks B1, . . . , Bk of [n], such that for each Bi,

f(x) 6= f(xBi). Similarly, the block sensitivity bs(f) of f is maxx bs(f, x). Ob-

viously bs(f) ≥ s(f). A major open problem in complexity theory was posed

by Nisan and Szegedy [13], asking whether they are polynomially related.

Conjecture 1.2 (Sensitivity Conjecture). There exists an absolute con-

stant C > 0, such that for every boolean function f ,

bs(f) ≤ s(f)C .

Although seemingly unnatural, the block sensitivity is known to be poly-

nomially related to many other important complexity measures of boolean

functions, including the decision tree complexity, the certificate complexity,

the quantum and randomized query complexity, and the degree of the boolean

function (as real polynomials), and the approximate degree [10]. It is notewor-

thy that some of these relationships are quite subtle. For instance, although the

degree and approximate degree both concern algebraic properties of boolean

functions, the only known proof of their polynomial relationship goes through

other more combinatorial notions.

The Sensitivity Conjecture, if true, would place the sensitivity in the same

category with the other complexity measures listed above. Computationally,

it would imply that “smooth” (low-sensitivity) functions are easy to compute

in some of the simplest models like the deterministic decision tree model. Al-

gebraically, it asserts that such functions have low degree as real polynomials.

Combinatorially, as observed by Gotsman and Linial [9], it is equivalent to the

previous cube problem. We will discuss this connection later.

Despite numerous attempts for almost thirty years, the Sensitivity con-

jecture still remains wide open, and the best upper bound of bs(f) is expo-

nential in terms of s(f). For example, Kenyon and Kutin [11] showed that

bs(f) = O(es(f)
»
s(f)). For the lower bound, Rubinstein [14] first proposed
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INDUCED SUBGRAPHS OF HYPERCUBES 951

a boolean function f with bs(f) = 1
2s(f)2, showing a quadratic separation

between these two complexity measures. Virza [16], and subsequently Ambai-

nis and Sun [1], obtained better constructions that still provide quadratic sep-

arations. For a comprehensive survey with more background and discussions,

in particular the many problems equivalent to the Sensitivity Conjecture, we

refer the readers to the surveys of Buhrman and de Wolf [2], Hatami, Kulkarni

and Pankratov [10], and some recent works [4], [6], [8], [15].

Recall that Qn denotes the n-dimensional cube graph. For an induced

graph H of Qn, let Qn −H denote the subgraph of Qn induced on the vertex

set V (Qn) \ V (H). Let Γ(H) = max{∆(H),∆(Qn − H)}. The degree of a

boolean function f , denoted by deg(f), is the degree of the unique multilinear

real polynomial that represents f . Gotsman and Linial [9] proved the following

remarkable equivalence using Fourier analysis.

Theorem 1.3 (Gotsman and Linial [9]). The following are equivalent for

any monotone function h : N→ R:

(a) For any induced subgraph H of Qn with |V (H)| 6= 2n−1, we have Γ(H) ≥
h(n).

(b) For any boolean function f , we have s(f) ≥ h(deg(f)).

Note that Theorem 1.1 implies that h(n) can be taken as
√
n, since one

of H and Qn −H must contain at least 2n−1 + 1 vertices, and the maximum

degree ∆ is monotone. As a corollary, we have

Theorem 1.4. For every boolean function f ,

s(f) ≥
»

deg(f).

This confirms a conjecture of Gotsman and Linial [9]. This inequality

is also tight for the AND-of-ORs boolean function [10, Example 5.2]. Recall

that the degree and the block sensitivity are polynomially related. Nisan and

Szegedy [13] showed that bs(f) ≤ 2 deg(f)2, and this bound was later improved

by Tal [15] to bs(f) ≤ deg(f)2. Combining these results we have confirmed the

Sensitivity Conjecture.

Theorem 1.5. For every boolean function f ,

bs(f) ≤ s(f)4.

2. Proof of the main theorem

To establish Theorem 1.1, we prove a series of lemmas. Given a n × n
matrix A, a principal submatrix of A is obtained by deleting the same set of

rows and columns from A.
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952 HAO HUANG

Lemma 2.1 (Cauchy’s Interlace Theorem). Let A be a symmetric n × n
matrix, and let B be a m ×m principal submatrix of A for some m < n. If

the eigenvalues of A are λ1 ≥ λ2 ≥ · · · ≥ λn, and the eigenvalues of B are

µ1 ≥ µ2 ≥ · · · ≥ µm, then for all 1 ≤ i ≤ m,

λi ≥ µi ≥ λi+n−m.

Cauchy’s Interlace Theorem is a direct consequence of the Courant-Fischer-

Weyl min-max principle. A direct proof can also be found in [5].

Lemma 2.2. We define a sequence of symmetric square matrices itera-

tively as follows :

A1 =

ñ
0 1

1 0

ô
, An =

ñ
An−1 I

I −An−1

ô
.

Then An is a 2n × 2n matrix whose eigenvalues are
√
n of multiplicity 2n−1,

and −
√
n of multiplicity 2n−1.

Proof. We prove by induction that A2
n = nI. For n = 1, A2

1 = I. Suppose

the statement holds for n− 1, that is A2
n−1 = (n− 1)I, then

A2
n =

ñ
A2

n−1 + I 0

0 A2
n−1 + I

ô
= nI.

Therefore, the eigenvalues of An are either
√
n or −

√
n. Since Tr[An] = 0, we

know that An has exactly half of the eigenvalues being
√
n and the rest being

−
√
n. �

Lemma 2.3. Suppose H is an m-vertex undirected graph and A is a sym-

metric matrix whose entries are in {−1, 0, 1} and whose rows and columns are

indexed by V (H), and whenever u and v are non-adjacent in H , Au,v = 0.

Then

∆(H) ≥ λ1 := λ1(A).

Proof. Suppose ~v is the eigenvector corresponding to λ1. Then λ1~v = A~v.

Without loss of generality, assume v1 is the coordinate of ~v that has the largest

absolute value. Then

|λ1v1| = |(A~v)1| =

∣∣∣∣∣∣
m∑
j=1

A1,jvj

∣∣∣∣∣∣ =

∣∣∣∣∣∣∑j∼1A1,jvj

∣∣∣∣∣∣ ≤∑j∼1 |A1,j ||v1| ≤ ∆(H)|v1|.

Therefore |λ1| ≤ ∆(H). �

With the lemmas above, we are ready to prove the main theorem.

Proof of Theorem 1.1. Let An be the sequence of matrices defined in

Lemma 2.2. Note that the entries of An are in {−1, 0, 1}. By the iterative

construction of An, it is not hard to see that when changing every (−1)-entry
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INDUCED SUBGRAPHS OF HYPERCUBES 953

of An to 1, we get exactly the adjacency matrix of Qn, and thus An and Qn

satisfy the conditions in Lemma 2.3. For example, we may let the upper-left

and lower-right blocks of An correspond to the two (n − 1)-dimensional sub-

cubes of Qn, and the two identity blocks correspond to the perfect matching

connecting these two subcubes. Therefore, a (2n−1 + 1)-vertex induced sub-

graph H of Qn and the principal submatrix AH of An naturally induced by H

also satisfy the conditions of Lemma 2.3. As a result,

∆(H) ≥ λ1(AH).

On the other hand, from Lemma 2.2, the eigenvalues of An are known to be
√
n, . . . ,

√
n,−
√
n, . . . ,−

√
n.

Note that AH is a (2n−1 + 1)× (2n−1 + 1) submatrix of the 2n× 2n matrix An.

By Cauchy’s Interlace Theorem,

λ1(AH) ≥ λ2n−1(An) =
√
n.

Combining the two inequalities we just obtained, we have ∆(H) ≥
√
n, com-

pleting the proof of our theorem. �

Remark. From the proof, one actually has λ1(H) ≥ λ1(AH) ≥
√
n. Since

∆(H) ≥ λ1(H), this result strengthens Theorem 1.1. More interestingly, the

inequality λ1(H) ≥
√
n is best possible for all n. This can be seen by taking

all the even vertices and one odd vertex of Qn. Then the induced subgraph

is a copy of the star K1,n, together with many isolated vertices. The largest

eigenvalue of this induced subgraph is exactly
√
n.

3. Concluding remarks

In this paper we confirm the Sensitivity Conjecture by proving its com-

binatorial equivalent formulation discovered by Gotsman and Linial. The fol-

lowing problems might be interesting:

• Given a “nice” graph G with high symmetry, denote by α(G) its indepen-

dence number. Let f(G) be the minimum of the maximum degree of an

induced subgraph of G on α(G) + 1 vertices. What can we say about f(G)?

In particular, for which graphs would the method used in proving Theo-

rem 1.1 provide a tight bound?

• Back to the hypercube problem, let g(n, k) be the minimum t, such that

every t-vertex induced subgraph H of Qn has maximum degree at least k.

In this paper, we show that g(n,
√
n) = 2n−1 + 1. It would be interesting to

determine g(n, k) asymptotically for other values of k.

• Although we have shown a tight bound between the sensitivity and the

degree, at the time of writing this paper, the best separation between the

block sensitivity bs(f) and the sensitivity s(f) is bs(f) = 2
3s(f)2 − 1

3s(f)
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954 HAO HUANG

shown in [1], which is quadratic. Theorem 1.5 only shows a quartic upper

bound. Perhaps one could close this gap by directly applying the spectral

method to boolean functions instead of to the hypercubes.
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