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Abstract. In this paper, we generalize our apriori estimates on cscK(constant scalar
curvature Kähler) metric equation [15] to more general scalar curvature type equations
(e.g., twisted cscK metric equation). As applications, under the assumption that the
automorphism group is discrete, we prove the celebrated Donaldson’s conjecture that
the non-existence of cscK metric is equivalent to the existence of a destabilized geodesic
ray where the K-energy is non-increasing. Moreover, we prove that the properness of
K-energy in terms of L1 geodesic distance d1 in the space of Kähler potentials implies
the existence of cscK metric. Finally, we prove that weak minimizers of the K-energy
in (E1, d1) are smooth. The continuity path proposed in [14] is instrumental in this
proof.
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1. Introduction

This is the second of a series of papers discussing constant scalar curvature Kähler
metrics. In this paper, for simplicity, we will only consider the case Aut0(M,J) =
0. Here Aut0(M,J) denotes the identity component of the automorphism group and
Aut0(M,J) = 0 means the group is discrete. Under this assumption, we prove Don-
aldson’s conjecture (mentioned above in the abstract) as well as the existence part of
properness conjecture in this paper. Our main method is to adopt the continuity path
introduced in [14] and we need to prove that the set of parameter t ∈ [0, 1] the continu-
ity path is both open (c.f. [14] ) and closed under suitable geometric constraints. The
apriori estimates obtained in [15] and their modifications (where the scalar curvature
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takes twisted form as in the twisted path introduced in [14]) are the crucial technical
ingredients needed in this paper. In the sequel of this paper, we will prove a suitable
generalization of both conjectures for general automorphism groups (i.e. no longer as-
sume they are discrete).

We will begin with a brief review of history of this problem. In 1982 and 1985, E.
Calabi published two seminal papers [8] [9] on extremal Kähler metrics where he proved
some fundamental theorems on extremal Kähler metrics. His initial vision is that there
should be a unique canonical metric in each Kähler class. Levine(c.f [47]) constructed
examples that there there is no extremal metric on any Kähler class. More examples
and obstructions are found over the last few decades and huge efforts are devoted to
formulate the right conditions (in particular the algebraic conditions) under which we
can “realize” Calabi’s original dream in a suitable format. The well known Yau-Tian-
Donaldson conjecture is one of the important formulations now which states that on
projective manifolds, the cscK metrics exist in a polarized Kähler class if and only if this
class is K-stable. It is widely expected among experts that the stability condition needs
to be strengthened to a stronger notion such as uniform stability or stability through
filtrations, in order to imply the existence of cscK metrics. We will have more in-depth
discussions on this issue in the next paper in this series.

In a seminal paper [38], S. K. Donaldson proposed a beautiful program in Kähler
geometry, aiming in particular to attack Calabi’s renowned problem of existence of cscK
metrics. In this celebrated program, Donaldson took the point of view that the space of
Kähler metrics is formally a symmetric space of non-compact type and the scalar curva-
ture function is the moment map from the space of almost complex structure compatible
with a fixed symplectic form to the Lie algebra of certain infinite dimensional sympletic
structure group which is exactly the space of all real valued smooth functions in the man-
ifold. With this in mind, Calabi’s problem of finding a cscK metric is reduced to finding
a zero of this moment map in the infinite dimensional space setting. From this beautiful
new point of view, S. K. Donaldson proposed a network of problems in Kähler geometry
which have inspired many exciting developments over the last two decades, culminating
in the recent resolution of Yau’s stability conjecture on Kähler-Einstein metrics [18] [19]
[20].

Let H denote the space of Kähler potentials in a given Kähler class (M, [ω]). T.
Mabuchi[52], S. Semmes [53] and S. K. Donaldson [38] set up an L2 metric in the space
of Kähler potentials:

‖δϕ‖2ϕ =

∫
M

(δϕ)2ωnϕ, ∀ δϕ ∈ TϕH.

Donaldson [38] conjectured that H is a genuine metric space with the pathwise distance
defined by this L2 inner product. In [11], the first named author established the existence
of C1,1 geodesic segment between any two smooth Kähler potentials and proved this
conjecture of S.K. Donaldson. He went on to prove (together with E. Calabi) that
such a space is necessarily non-positively curved in the sense of Alexandrov[10]. More
importantly, S. K. Donaldson proposed the following conjecture to attack the existence
problem:
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Conjecture 1.1. [38] Assume Aut0(M,J) = 0. Then the following statements are
equivalent:

(1) There is no constant scalar curvature Kähler metric in H;
(2) There is a potential ϕ0 ∈ H0 and there exists a geodesic ray ρ(t)(t ∈ [0,∞)) in
H0, initiating from ϕ0 such that the K-energy is non-increasing;

(3) For any Kähler potential ψ ∈ H0, there exists a geodesic ray ρ(t)(t ∈ [0,∞)) in
H0, initiating from ψ such that the K-energy is non-increasing.

In the above, H0 = H ∩ {φ : I(φ) = 0}, where the functional I is defined by (2.7).
The reason we need to use H0 is to preclude the trivial geodesic ρ(t) = ϕ0 + ct where c
is a constant.

In the original writing of S. K. Donaldson, he didn’t specify the regularity of these
geodesic rays in this conjecture. In this paper, we avoid this issue by working in the space
E1 in which the potentials have only very weak regularity but the notion of geodesic still
makes sense. Moreover, Theorem 4.7 of [6] shows the definition of K-energy can be
extended to the space E1. The precise version of the result we prove is the following:

Theorem 1.1. (Theorem 5.1) Assume Aut0(M,J) = 0. Then the following statements
are equivalent:

(1) There is no constant scalar curvature Kähler metric in H;
(2) There is a potential ϕ0 ∈ E1

0 and there exists a locally finite energy geodesic
ray ρ(t)(t ∈ [0,∞)) in E1

0 , initiating from ϕ0 such that the K-energy is non
increasing;

(3) For any Kähler potential ψ ∈ E1
0 , there exists a locally finite energy geodesic ray

ρ(t)(t ∈ [0,∞)) in E1
0 , initiating from ψ such that the K-energy is non increasing.

In the above, the space E1 is the abstract metric completion of the space H under the
Finsler metric d1 in H (see section 2 for more details) and the notion of finite energy
geodesic segment was introduced in [4] (c.f. [31]). Also E1

0 = E1 ∩ {φ : I(φ) = 0}, where
the functional I is defined as in (2.7). We learned about the idea of using locally fi-
nite energy geodesic ray from the recent beautiful work of Darvas-He [32] on Donaldson
conjecture in Fano manifold where they use Ding functional instead of the K-energy
functional. From our point of view, both the restriction to canonical Kähler class and
the adoption of Ding functional are more of analytical nature.

Inspired by Donaldson’s conjecture, the first named author introduced the following
notion of geodesic stability [13].

Definition 1.1. (c.f. Definition (3.10) in [13]) Let ρ(t) : [0,∞)→ E1
0 be a locally finite

energy geodesic ray with unit speed such that K(ρ(t)) <∞ for t ≥ 0. One can define an
invariant U([ρ]) as

U([ρ]) = lim
k→∞

K(ρ(k + 1))−K(ρ(k)).

One can check that this is well defined, due to the convexity of K-energy along
geodesics (c.f. Theorem 2.5). Indeed, from the convexity of K-energy along locally
finite energy geodesic ray, one actually has K(ρ(k + 1))−K(ρ(k)) is increasing in k.

Definition 1.2. (c.f. Definition (3.14) in [13]) Let ϕ0 ∈ E1
0 with K(ϕ0) < ∞, (M, [ω])

is called geodesic stable at ϕ0(resp. geodesic-semistable) if for all locally finite energy
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geodesic ray initiating from ϕ0, their U invariant is always strictly positive(resp. non-
negative). (M, [ω]) is called geodesic stable(resp. geodesic semistable) if it is geodesic
stable(resp. geodesic semistable) at any ϕ ∈ E1

0 .

Remark 1.3. It is possible to define the U invariant for a locally finite energy geodesic
ray in Ep0 with p > 1. Note that a geodesic segment in Ep0 is automatically a geodesic
segment in Eq0 for any q ∈ [1, p]. Following the preceding definition, one can also define
geodesic stability in Ep0 (p > 1). Note that for a locally given finite energy geodesic ray in
Ep0 (p > 1), the actual value of U invariant in Ep0 might differ by a positive multiple from
the U invariant considered in E1

0 . However, it will not affect the sign of the U invariant
for a particular locally finite energy geodesic ray. On the other hand, the collection of
locally finite energy geodesic ray in Ep0 (p > 1) might be strictly contained in the collection
of geodesic rays in E1

0 . Therefore, the notion of geodesic stability in the E1
0 is strongest

while the notion of geodesic stability in E∞0 is the weakest. Without going into technical-
ity, we may define geodesic stability in E∞0 as the U invariant being strictly positive for

any locally finite energy geodesic ray which lies in
⋂
p≥1

Ep0 .

An intriguing question motivated from above remark is whether geodesic stability in
E∞0 (in the sense defined in the above remark) implies geodesic stability in E1

0 ? The
first named author believes the answer is affirmative. We will discuss this question and
other stability notions in algebraic manifolds in greater detail in our next paper and
refer interested readers to the following works and references therein: J. Ross [51], G.
Székelyhidi [58], Berman-Boucksom-Jonsson [3], R. Dervan [37].

Using the notion of geodesic stability, we can re-formulate Theorem 1.1 as

Theorem 1.2. Suppose Aut0(M,J) = 0. Then (M, [ω]) admits a cscK metric if and
only if it is geodesic stable.

Given the central importance of the notion of K-energy in Donaldson’s beautiful
program, the first named author proposed the following conjecture, shortly after [11]:

Conjecture 1.2. Assume Aut0(M,J) = 0. The existence of constant scalar curvature
Kähler metric is equivalent to the properness of K-energy in terms of geodesic distance.

Here “properness” means that the K-energy tends to +∞ whenever the geodesic
distance tends to infinity (c.f. Definition 3.1). The original conjecture naturally chose the
distance introduced in [38] which we now call L2 distance. After a series of fundamental
work of T. Darvas on this subject (c.f [30] [31]), we now learn that the L1 geodesic
distance is a natural choice for the properness conjecture. Indeed, we prove

Theorem 1.3. (Theorem 3.1 and 3.2) Assume Aut0(M,J) = 0. The existence of con-
stant scalar curvature Kähler metric is equivalent to the properness of K-energy in terms
of the L1 geodesic distance.

Note that the direction that existence of cscK implies properness has been established
by Berman-Darvas-Lu[5] recently. For the converse (namely the existence part), Darvas
and Rubinstein have reduced this problem in [33] to a question of regularity of minimiz-
ers. In our paper, we will use continuity method to bypass this question and establish
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existence of cscK metrics.

For properness conjecture, we remark that there is a more well known formulation
due to G. Tian where he conjectured that the existence of cscK metrics is equivalent to
the propeness of K-energy in terms of Aubin functional J (c.f. Definition (2.7)). One
may say that Tian’s conjecture is more of analytical nature while Conjecture 1.2 above
fits into Donaldson’s geometry program in the space of Kähler potentials more natu-
rally. According to T. Darvas (c.f. Theorem 5.5 of [30]), Aubin’s J functional and the
L1 distance are equivalent. Therefore, these two properness conjectures are equivalent.
Nonetheless, the formulation in conjecture 1.2 is essential to our proof.

Theorem 1.3 also holds for twisted cscK metric as well (c.f. Theorem 3.1 3.2), which
is the solution to the equation

t(Rϕ −R) = (1− t)(trϕχ− χ).

In the above, 0 < t ≤ 1, χ is a fixed Kähler form, and R is the average of scalar curvature,

and χ =
∫
M nχ∧ωn−1

0∫
M ωn0

. It is well-known that R and χ depends only on the Kähler classes

[ω0] and [χ].
Now we recall an important notion introduced in [14]:

(1.1)
R([ω0], χ) = sup{t0 ∈ [0, 1] : the above equation can be solved for any 0 ≤ t ≤ t0.}

In the same paper, the first named author conjectured that this is an invariant of the
Kähler class [χ]. In this paper, as a consequence of Theorem 3.1 and 3.2, we will show
that if χ1 and χ2 are two Kähler forms in the same class, then one has

R([ω0], χ1) = R([ω0], χ2),

so that the quantity R([ω0], [χ]) is well-defined and gives rise to an invariant between
two Kähler classes [ω0], [χ]. Moreover, when the K-energy is bounded from below, the
twisted path (2.9) can be solved for any t < 1, as long as t = 0 can be solved. Thus in
this case we have

Theorem 1.4. Let χ be a Kähler form. If the K-energy is bounded from below on
(M, [ω0]), then R([ω0], [χ]) = 1 if and only if one can solve trϕχ = χ.

As noted in [14], it is interesting to understand geometrically for what Kähler classes
this invariant is 1 but do not admit constant scalar curvature metrics. More broadly, it is
interesting to estimate the upper and lower bound of this invariant. It is not hard to see
the relation between the invariant introduced in [57] and the invariant introduced above
when restricted to the canonical Kähler class in Fano manifold, where we take [χ] to be
the first Chern class in (1.1) above. Hopefully, the method used there can be adapted
to our setting to get estimate for this new invariant, in particular an upper bound.

T. Darvas and Y. Rubinstein conjectured in [33](Conjecture 2.9) that any minimizer
of K-energy over the space E1 is actually a smooth Kähler potential. This is a bold and
imaginative conjecture which might be viewed as a natural generalization of an earlier
conjecture by the first named author that any C1,1 minimizer of K-energy is smooth
(c.f. [12], Conjecture 3). Under an additional assumption that there exists a smooth
cscK metric in the same Kähler class, Darvas-Rubinstein conjecture is verified in [5]. In
this paper, we establish this conjecture as an application of properness theorem. Note
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that Euler-Lagrange equation is not available apriori in our setting, so that the usual
approach to the regularity problem in the calculus of variations does not immediately
apply. Instead, we need to use the continuity path to overcome this difficulty.

Theorem 1.5. (Theorem 4.1) Let ϕ∗ ∈ E1 be such that K(ϕ∗) = infϕ∈E1 K(ϕ). Then

ϕ∗ is smooth and ωϕ∗ := ω0 +
√
−1∂∂̄ϕ∗ is a cscK metric.

We actually establish a more general result which allows us to consider more general
twisted K-energy and we can show the weak minimizers of twisted K-energy are smooth
as long as the twisting form is smooth, closed and nonnegative.

Remark 1.4. W. He and Y. Zeng [44] proved Chen’s conjecture on the regularity of
C1,1 minimizers of K-energy. Their original proof contains an unnecessary assumption
that the (1, 1) current defined by the minimizer has a strictly positive lower bound which
can be removed by adopting a weak Kähler-Ricci flow method initiated in Section 7 of
Chen-Tian [25]. This will be discussed in an unpublished note [16].

In view of Theorem 1.3, it is important to study, under what conditions, the K-energy
functional is proper in a given Kähler class. In [12], the first named author proposed a
decomposition formula for K-energy:

(1.2) K(ϕ) =

∫
M

log

(
ωnϕ
ωn0

)
ωnϕ
n!

+ J−Ric(ϕ).

where the functional J−Ric is defined through its derivatives:

(1.3)
d J−Ric
d t

=

∫
M

∂ϕ

∂t
(−Ric ∧

ωn−1
ϕ

(n− 1)!
+R

ωnϕ
n!

).

One key observation in [12] (based on this decomposition formula) is that K-energy
has a lower bound if the corresponding J−Ric functional has a lower bound. Note that
when the first Chern class is negative, one can choose a background metric such that
−Ric > 0. Then, J−Ric is convex along C1,1 geodesics in H and is bounded from
below if it has a critical point. In [54], Song-Weinkove further pointed out that, J−Ric
functional being bounded from below is sufficient to imply the properness of K-energy.
The research in this direction has been very active and intense (c.f. Chen[12], Fang-Lai-
Song-Weinkove [40], Song-Weikove [55], Li-Shi-Yao [48], R. Dervan [36], and references
therein). Combining these results with Theorem 1.3, we have the following corollary.

Corollary 1.5. There exists a cscK metric in (M, [ω]) if any one of the following con-
ditions holds:

(1) There exists a constant ε ≥ 0 such that ε < n+1
n αM ([ω]) and πC1(M) < ε[ω] such

that (
−nC1(M) · [ω]n−1

[ω]n
+ ε

)
· [ω] + (n− 1)C1(M) > 0.

Here αM (ω) denotes the α-invariant of the Kähler class (M, [ω]) (c.f. [59]).
(2) If

αM ([ω]) >
C1(M) · [ω]n−1

[ω]n
· n

n+ 1

and

C1(M) ≥ C1(M) · [ω]n−1

[ω]n
· n

n+ 1
· [ω].
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Here part (i) of Corollary 1.5 follows Theorem 1.3 and Li-Shi-Yao [48] (c.f. Fang-Lai-
Song-Weinkove [40] Song-Weinkove [55]), part (ii) of Corollary 1.5 follows Theorem 1.3
and R. Dervan [36].

Following Donaldson’s observation in [39], if a Kähler surface M admits no curve of
negative self intersections and has C1(M) < 0, then the condition

2[ω] · [−C1(M)]

[ω]2
· [ω]− [−C1(M)] > 0

is satisfied automatically for any Kähler class [ω] (c.f. Song-Weinkove [54]). Conse-
quently, on any Kähler surface M with C1(M) < 0 with no curve of negative self-
intersection, the K-energy is proper for any Kähler class (c.f. Song-Weinkove [55]). It
follows that on these surfaces, every Kähler class admits a cscK metric. Albeit restric-
tive, this is indeed very close to the original vision of E. Calabi that every Kähler class
should have one canonical representative. E. Calabi’s vision has inspired generations of
Kähler geometers to work on this exciting problem and without it, this very paper will
never exist. To celebrate his vision, we propose to call such a manifold a Calabi dream
manifold.

Definition 1.6. A Kähler manifold is called Calabi dream manifold if every Kähler
class on it admits an extremal Kähler metric.

Clearly, all compact Riemann surfaces, complex projective spaces CPn and all compact
Calabi-Yau manifolds [64] are Calabi dream manifolds. Our discussion above asserts

Corollary 1.7. Any Kähler surface with C1 < 0 and no curve of negative self-intersection
is a Calabi dream surface.

It is fascinating to understand how large this family of Calabi dream surfaces is. We
will delay more discussions on Calabi dream manifolds to the end of Section 2.

As a corollary of Theorem 5.3 of [15], we prove

Theorem 1.6. The Calabi flow can be extended as long as the scalar curvature is uni-
formly bounded.

Remark 1.8. This is a surprising development. With completely different motivations
in geometry, the first named author has a similar conjecture on Ricci flow which states
that the only obstruction to the long time existence of Ricci flow is the L∞ bound of
scalar curvature. There has been significant progress in this problem, first by a series of
works of B. Wang (c.f. [61], [27]) and more recently by the interesting and important
work of Balmer-Zhang [1] and M. Simons [50] in dimension 4.

Theorem 1.6 is a direct consequence of Theorem 5.3 of [15] and Chen-He short time
existence theorem (c.f. Theorem 3.2 in [21]), where the authors proved the life span of
the short time solution depends only on C3,α norm of the initial Kähler potential and
lower bound of the initial metric. By assumption, we know that ∂tϕ remains uniformly
bounded, hence ϕ is bounded on every finite time interval. On the other hand, since
K-energy is decreasing along the flow, in particular K-energy is bounded from above
along the flow. Due to (1.2) and that ϕ is bounded, we see that the entropy is bounded
as well. Hence the flow remains in a precompact subset of C3,α(M) on every finite time
interval, hence can be extended.
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In light of Theorem 1.7 and a compactness theorem of Chen-Darvas-He [17], a natural
question is if one can extend the Calabi flow assuming only an upper bound on Ricci
curvature. A more difficult question is whether one-sided bound of the scalar curvature
is sufficient for the extension of Calabi flow. Ultimately, the remaining fundamental
question is

Conjecture 1.3. (Calabi, Chen) Initiating from any smooth Kähler potential, the Calabi
flow always exists globally.

Given the recent work by J. Street[56], Berman-Darvas-Lu[6], the weak Calabi flow
always exists globally. Perhaps one can prove this conjecture via improving regularity of
weak Calabi flow. On the other hand, one may hope to prove this conjecture on Kähler
classes which already admit constant scalar curvature Kähler metrics and prove the flow
will converges to such a metric as t→∞. An important and deep result in this direction
is Li-Wang-Zheng’s work [49].

Finally we explain the organization of the paper:
In section 2, we recall the necessary preliminaries needed for our proof, including the

continuity path we will use to solve the cscK equation and the theory of geodesic metric
spaces established by Darvas and others.

In section 3, we prove the equivalence between the existence of cscK metric and proper-
ness of K-energy, namely Theorem 1.3.

In section 4, we prove that a minimizer of K-energy over the space E1 is smooth. More
general twisted K-energy is also considered and we show its minimizer is smooth as long
as the twisting form is nonnegative, closed and smooth.

In section 5, we show that the existence of cscK metric is equivalent to geodesic sta-
bility, In particular, we verify the Donaldson’s conjecture, Theorem 1.1.

Acknowledgement. Both authors are grateful to the help from the first named author’s
colleague Professor Jason Starr in the discussions about Calabi dream manifolds.

2. preliminaries

In this section, we will review some basic concepts in Kähler geometry as well as
some fundamental results involving finite energy currents, which will be needed for our
proof of Theorem 1.1 and 1.3. In particular, it includes the characterization of the space
(E1, d1), a compactness result on bounded subsets of E1 with finite entropy. We also
include results on the convexity of K-energy along C1,1 geodesics as well as its extension
to the space E1. For more detailed account on these topics, we refer to a recent survey
paper by Demailly [35]. At the end of this section, we will discuss about Calabi dream
manifolds.

2.1. K-energy and twisted K-energy. Let (M,ω0) be a fixed Kähler class on M .
Then we can define the space H of Kähler metrics cohomologous to ω0 as:

(2.1) H = {ϕ ∈ C∞(M) : ωϕ := ω0 +
√
−1∂∂̄ϕ > 0}.

We can introduce the K-energy in terms of its derivative:

(2.2)
dK

dt
(ϕ) = −

∫
M

∂ϕ

∂t
(Rϕ −R)

ωnϕ
n!
, ϕ ∈ H.
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Here Rϕ is the scalar curvature of ωϕ, and

R =
[C1(M)] · [ω][n−1]

[ω][n]
=

∫
M Rϕω

n
ϕ∫

M ωn
.

Following [12], we can write down an explicit formula for K(ϕ):

(2.3) K(ϕ) =

∫
M

log

(
ωnϕ
ωn0

)
ωϕn

n!
+ J−Ric(ϕ),

where for a (1, 1) form χ, we define

Jχ(ϕ) =

∫ 1

0

∫
M
ϕ

(
χ ∧

ωn−1
λϕ

(n− 1)!
− χ

ωnλϕ
n!

)
dλ

=
1

n!

∫
M
ϕ
n−1∑
k=0

χ ∧ ωk0 ∧ ωn−1−k
ϕ − 1

(n+ 1)!

∫
M
χϕ

n∑
k=0

ωk0 ∧ ωn−kϕ .

(2.4)

Here

χ =

∫
M χ ∧ ωn−1

0
(n−1)!∫

M
ωn0
n!

.

Following formula (1.3), we have

dJχ
dt

=

∫
M
∂tϕ(trϕχ− χ)

ωnϕ
n!
.

It is well-known that K-energy is convex along smooth geodesics in the space of Kähler
potentials.

Let β ≥ 0 be a smooth closed (1, 1) form, we define a “twisted K-energy with respect
to β” by

(2.5) Kβ(ϕ) = K(ϕ) + Jβ(ϕ).

The critical points of Kβ(ϕ) satisfy the following equations:

(2.6) Rϕ −R = trϕβ − β, where β =

∫
M β ∧ ωn−1

0
(n−1)!∫

M
ωn0
n!

.

For later use, we also define the functionals I(ϕ), J(ϕ), given by

(2.7) I(ϕ) =
1

(n+ 1)!

∫
M
ϕ

n∑
k=0

ωk0 ∧ ωn−kϕ , J(ϕ) =

∫
M
ϕ(ωn0 − ωnϕ).

We also need to consider the more general twisted K-energy, which is defined to be

(2.8) Kχ,t = tK + (1− t)Jχ.

Following [12], we can write down Euler-Lagrange equation for twisted K-energy:

(2.9) t(Rϕ −R) = (1− t)(trϕχ− χ), t ∈ [0, 1].
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Following [14], for t > 0, we can rewrite this into two coupled equations:

det(gij̄ + ϕij̄) = eF det gij̄ ,(2.10)

∆ϕF = −(R− 1− t
t

χ) + trϕ(Ric− 1− t
t

χ).(2.11)

In the following, we will assume χ > 0, that is, χ is a Kähler form. The equation (2.9)
with t ∈ [0, 1] is the continuity path proposed in [14] to solve the cscK equation. More
generally, one can consider similar twisted paths in order to solve (2.6). Namely we
consider

(2.12) t(Rϕ −R) = t(trϕβ − β) + (1− t)(trϕχ− χ).

The solution to (2.12) is a critical point of tKβ + (1 − t)Jχ. We will see later that it is
actually a minimizer. For t > 0, this again can be equivalently put as

det(gij̄ + ϕij̄) = eF det gij̄ ,(2.13)

∆ϕF = −(R− β − 1− t
t

χ) + trϕ
(
Ric− β − 1− t

t
χ
)
.(2.14)

An important question is whether the set of t for which (2.12) can be solved is open.
The cited result is only for (2.9), but the same argument would work for (2.12).

Lemma 2.1. ([14], [63], [45]): Let β ≥ 0 be nonegative closed smooth (1, 1) form and χ be
a Kähler form. Suppose that for some 0 ≤ t0 < 1, (2.12) has a solution ϕ ∈ C4,α(M) with
t = t0, then for some δ > 0, (2.12) has a solution in C4,α for any t ∈ (t0−δ, t0+δ)

⋂
[0, 1).

We observe that we can always make sure (2.9) or (2.12) can be solved for t = 0 by
choosing χ = ω0 or any Kähler form in [ω0].

Remark 2.2. Clearly if χ is smooth, it is easy to see by bootstrap that a C4,α solution
to (2.9) is actually smooth.

Hence Lemma 2.1 shows the set of t for which (2.9) has a smooth solution is relatively
open in [0, 1).

From the Theorem 5.3 of [15], we can conclude that

Proposition 2.3. Let ϕ be a smooth solution to (2.9) or (2.12) with t > δ0 > 0,
normalized so that supM ϕ = 0. Then the higher derivatives of ϕ can be estimated in

terms of an upper bound of entropy, defined as
∫
M log(

ωnϕ
ωn0

)ωnϕ, as well as δ0.

Proof. This follows directly from Theorem 5.3 of [15], by taking f = R − β − 1−t
t χ,

and η = Ric(ω0) − β − 1−t
t χ. Note that the assumption t being bounded below by δ0

guarantees f and η is bounded. �

2.2. The complete geodesic metric space (Ep, dp). In section 3.3 of [41] introduced
the following space for any p ≥ 1:

(2.15) Ep = {ϕ ∈ PSH(M,ω0) :

∫
M
ωnϕ =

∫
M
ωn0 ,

∫
M
|ϕ|pωnϕ <∞}.

In the above, ϕ ∈ PSH(M,ω0) means that ω0 +
√
−1∂∂̄ϕ ≥ 0 in the sense of currents.

A fundamental conjecture of V. Guedj [42] stated that the completion of the space H
of smooth potentials equipped with the L2 metric is precisely the space E2(M,ω0) of
potentials of finite energy. This has been shown by Darvas [31], [30], in which he has
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shown similar characterization holds for general Lp metric. Note that the extension to
the L1 metric is essential and fundamental to our work.

Following Mabuchi, T. Darvas [31] introduced the notion of d1 on H.

(2.16) ||ξ||ϕ =

∫
M
|ξ|
ωnϕ
n!
, ∀ ξ ∈ TϕH = C∞(M).

Using this, we can define the path-length distance d1 on the space H, i.e. d1(u0, u1)
equals the infimum of length of all smooth curves in H, with α(0) = u0, α(1) = u1.
Following Chen [11], T. Darvas proved ([31], Theorem 2) that (H, d1) is a metric space.

We have the following characterization for (E1, d1):

Theorem 2.1. ([31], Theorem 5.5)Define

I1(u, v) =

∫
M
|u− v|ω

n
u

n!
+

∫
M
|u− v|ω

n
v

n!
, u, v ∈ H.

Then there exists a constant C > 0 depending only on n, such that

(2.17)
1

C
I1(u, v) ≤ d1(u, v) ≤ CI1(u, v), for any u, v ∈ H.

For later use, here we describe how to obtain “finite energy geodesics” from the C1,1

geodesics between smooth potentials.

Theorem 2.2. ([31], Theorem 2) The metric completion of (H, d1) equals (E1, d1) where

d1(u0, u1) =: lim
k→∞

d1(uk0, u
k
1),

for any smooth decreasing sequence {uki }k≥1 ⊂ H converging pointwise to ui ∈ E1. More-
over, for each t ∈ (0, 1), define

ut := lim
k→∞

ukt , t ∈ (0, 1),

where ukt is the C1,1 geodesic connecting uk0 and uk1 (c.f. [11]). We have ut ∈ E1, the
curve [0, 1] 3 t 7→ ut is independent of the choice of approximating sequences and is a
d1-geodesic in the sense that for some c > 0, d1(ut, us) = c|t− s|, for any s, t ∈ [0, 1].

The above limit is pointwise decreasing limit. Since the sequence {uki }k≥1 is decreasing
sequence for i = 0, 1, we know {ukt }k≥1 is also decreasing for t ∈ (0, 1), by comparison
principle.

We say ut : [0, 1] 3 t→ E1 connecting u0, u1 is a finite energy geodesic if it is given by
the procedure described in Theorem 2.2. The following result shows the limit of finite
energy geodesics is again a finite energy geodesic.

Proposition 2.4. ([6] , Proposition 4.3) Suppose [0, 1] 3 t → uit ∈ E1 is a sequence of
finite energy geodesic segments such that d1(ui0, u0), d1(ui1, u1)→ 0. Then d1(uit, ut)→ 0,
for any t ∈ [0, 1], where [0, 1] 3 t 7→ ut ∈ E1 is the finite energy geodesic connecting u0,
u1.

Finally we record the following compactness result which will be useful later. This
result was first established in [4]. The following version is taken from [6], which is the
form most convenient to us.
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Lemma 2.5. ([4], Theorem 2.17, [6], Corollary 4.8) Let {ui}i ⊂ E1 be a sequence for
which the following condition holds:

sup
i
d1(0, ui) <∞, sup

i
K(ui) <∞.

Then {ui}i contains a d1-convergent subsequence.

2.3. Convexity of K-energy. In this subsection, we record some known results about
the convexity of K-energy and Jχ functional along C1,1 geodesics and also finite energy
geodesics. In [12], the first named author proved the following result about the convexity
of the functional Jχ.

Theorem 2.3. ([12], Proposition 2) Let χ ≥ 0 be a closed (1, 1) form. Let u0, u1 ∈ H.
Let {ut}t∈[0,1] be the C1,1 geodesic connecting u0, u1. Then [0, 1] 3 t 7→ Jχ(ut) is convex.

The convexity of K-energy along smooth geodesics was first observed by T. Mabuchi,
c.f. [52]. However, such convexity over non-smooth geodesics is more challenging, and is
conjectured by the first named author:

Conjecture 2.1. (Chen) Let u0, u1 ∈ H. Let {ut}t∈[0,1] be the C1,1 geodesic connecting
u0, u1. Then [0, 1] 3 t 7→ K(ut) is convex.

This conjecture was verified by the fundamental work of Berman and Berndtsson [2]
(c.f. Chen-Li-Paun [23] also).

Theorem 2.4. Conjecture 2.1 is true.

It turns out that the K-energy and also the fuctional Jχ can be extended to the space
(E1, d1) and is convex along finite energy geodesics. More precisely,

Theorem 2.5. ([6], Theorem 4.7) The K-energy defined in (2.3) can be extended to a
functional K : E1 → R∪{+∞}. Besides, the extended functional K|E1 is the greatest d1-
lower semi-continuous extension of K|H. Moreover, K|E1 is convex along finite energy
geodesics of E1.

Theorem 2.6. ([6], Proposition 4.4 and 4.5) The functional Jχ as defined by (2.4) can
be extended to be a d1-continuous functional on E1. Besides, Jχ is convex along finite
energy geodesics.

2.4. Calabi dream Manifolds. Every example of a Calabi dream surface M that we
discusse here is constructed from the “outside in”. We begin with an ambient manifold
that satisfies a weaker hypothesis making it easier to construct. Then we construct
M as an appropriate complete intersections of ample hypersurfaces inside the ambient
manifold and we encourage interested readers to Demailly-Peternell-Schneider[34] for
further readings on this topic.

For a smooth, projective surface M , the “ample cone” equals the “big cone” if and
only if the self-intersection of every irreducible curve is nonnegative. In analytic terms,
the “ample cone” equals the “big cone” if and only if every holomorphic line bundle
admitting a singular Hermitian metric of positive curvature current admits a regular
Hermitian metric of positive curvature.

(1) For every smooth, projective variety P of dimension n at least 3 such that the
ample cone equals the big cone, for every (n-2)-tuple of divisors D1, ..., Dn−2. If
the divisor classes of Di are each globally generated, and if the Di are “general”
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in their linear equivalence classes, then the surface M = D1∩ ...∩Dn−2 is smooth
and connected by Bertini’s theorems. If also every Di is ample, if KP + (D1 +
...+Dn−2) is globally generated, and if the divisors Di are “very general” in their
linear equivalence classes, then the surface M has ample cone equal to the big
cone, cf. the Noether-Lefschetz article of Ravindra and Srinivas. Finally, if also
the divisor class KP +(D1 + ...+Dn−2) is ample, then KM is ample. In that case,
the smooth, projective surface M has c1(TM) negative, and the self-intersection
of every irreducible curve is nonnegative, and thus are Calabi dream surfaes.

(2) If P and Q are projective manifolds whose ample cones equal the big cones, and
if there is no nonconstant morphism from the (pointed) Albanese variety of P to
the (pointed) Albanese variety of Q, then also the product P ×Q is a projective
manifold whose ample cone equals the big cone. In particular, if P and Q are
compact Riemann surfaces of (respective) genera at least 2, and if there is no
nonconstant morphism from the Jacobian of P to the Jacobian of Q, then the
product M = P ×Q is a Calabi dream manifold.

(3) There are many examples of smooth, projective varieties P as in item 1. When
the closure of the ample cone equals the semiample cone and is finitely generated,
then such a variety is precisely a “Mori dream space” that has only one Mori
chamber, yet there are examples arising from Abelian varieties where the cone
is not finitely generated. For instance, all projective varieties of Picard rank 1
trivially satisfy this property. The next simplest class consists of all varieties that
are homogeneous under the action of a complex Lie group. This class includes all
Abelian varieties. It also includes the “projective homogeneous varieties”, e.g.,
projective spaces, quadratic hypersurfaces in projective space, Grassmannians,
(classical) flag varieties,etc. This class is also stable for products and is Calabi
dream manifolds.

(4) The next simplest class consists of every projective manifold P of “cohomogeneity
one”, i.e., those projective manifolds that admit a holomorphic action of a com-
plex Lie group G whose orbit space is a holomorphic map from P to a compact
Riemann surface. These are also Calabi dream surfaces.

Here is an interesting question about Calabi dream manifolds: how “far” is the class of
Calabi dream surfaces from the class of all smooth minimal surfaces of general type?

3. K-energy proper implies existence of cscK

Let the functional I be as given by (2.7), we define

H0 = {ϕ ∈ H : I(ϕ) = 0}.
Following [60] [33], we introduce the following notion of properness:

Definition 3.1. We say the K-energy is proper with respect to L1 geodesic distance if
for any sequence {ϕi}i≥1 ⊂ H0, limi→∞ d1(0, ϕi) =∞ implies limi→∞K(ϕi) =∞.

The goal of this section is to prove the following existence result of cscK metrics.

Theorem 3.1. Let β ≥ 0 be a smooth closed (1, 1) form. Let Kβ be defined as in (2.5).
Suppose Kβ is proper with respect to geodesic distance d1, then there exists a twisted
cscK metric with respect to β(i.e, solves (2.6)).

For the converse direction, we have



14 XIUXIONG CHEN, JINGRUI CHENG

Theorem 3.2. (main theorem of [5] and Theorem 4.13 of [6]) Let β be as in the previous
theorem. Suppose that either

(1) β > 0;
or

(2) β = 0 and Aut0(M,J) = 0.
Suppose there exists a twisted cscK metric with respect to β(i.e solves (2.6)), then
the functional Kβ is proper with respect to geodesic distance d1.

In this theorem, the case β = 0 and Aut0(M,J) = 0 is the main result of [5], and the
case with β > 0 follows from the uniqueness of minimizers of twisted K-energy when the
twisting form is Kähler (c.f. [6], Theorem 4.13). For completeness, we will reproduce
the proof in this paper.

First we prove Theorem 3.1. For this we will use the continuous path (2.12) to solve
(2.6). Put χ = ω0 in (2.12), define

(3.1) S = {t0 ∈ [0, 1] : (2.12) has a smooth solution for any t ∈ [0, t0].}.

Remark 3.2. One may also consider the set S′, consisting of t0 ∈ [0, 1] for which (2.12)
has a solution with t = t0. In general, t0 ∈ S′ does not imply [0, t0] ⊂ S′. For instance,
in [24], it is shown that if a cscK metric exists (i.e, (2.12) can be solved at t = 1.), then
we can solve this equation for all t sufficiently close to 1, for any β > 0. However, we
can always find a χ > 0 such that (2.12) has no solution with t = 0. .

By Lemma 2.1, we know the set S is relatively open in [0, 1]. Also when t = 0, (2.12)
has a trivial solution, namely ϕ = 0. In particular S 6= ∅. The only remaining issue for
the continuity method is the closedness of S. Due to Proposition 2.3, we can conclude
the following criterion for closedness:

Lemma 3.3. Suppose ti ∈ S, ti ↗ t∗ > 0, and let ϕi be a solution to (2.12) with t = ti.

Denote Fi = log
ωnϕi
ωn0

. Suppose that supi
∫
M eFiFidvolg <∞, then t∗ ∈ S.

Proof. We just need to show (2.12), or equivalently the coupled equations (2.13), (2.14)
has a smooth solution with t = t∗. The assumption implies that we can assume ti ≥
δ0 > 0 for some δ0 > 0. Moreover, we can normalize the solution ϕi to (2.12) so that
supM ϕi = 0 and the assumption implies that we have a uniform upper bound of entropy.
Then Proposition 2.3 implies that we have a uniform bound for all higher derivative
bounds of ϕi. Hence we may take a subsequence of ϕi which converges smoothly. Say
ϕi → ϕ∗. Then we know that ϕ∗ solves (2.12) with t = t∗. �

To connect this criterion with properness, we need some estimates connecting the L1

geodesic distance d1 and the I , Jχ functional defined in (2.7), (2.4).

Lemma 3.4. There exists a constant C > 0, depending only on n and the background
metric ω0, such that for any ϕ ∈ H0, we have

| sup
M

ϕ| ≤ C(d1(0, ϕ) + 1), |Jχ(ϕ)| ≤ C max
M
|χ|ω0d1(0, ϕ).(3.2)

Proof. This is well known in the literature and we give a proof for completeness here.
We now prove the first estimate. Let G(x, y) be the Green’s function defined by the
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metric ω0, then we can write:

(3.3) ϕ(x) =
1

vol(M,ω0)

∫
M
ϕ(y)

ωn0
n!

(y) +
1

vol(M,ω0)

∫
M
G(x, y)∆ω0ϕ(y)

ωn0
n!

(y).

We know that supM×M G(x, y) ≤ C15, hence∫
M
G(x, y)∆ω0ϕ(y)

ωn0
n!

(y) =

∫
M

(G(x, y)− C15)(∆ω0ϕ(y) + n)
ωn0
n!

−
∫
M
nG(x, y)

ωn0
n!

+ C15n

∫
M

ωn0
n!
≤ −n inf

x∈M

∫
M
G(x, y)

ωn0
n!

+ C15n

∫
M

ωn0
n!

:= C16vol(M,ω0).

(3.4)

Take sup in (3.3),

(3.5) sup
M

ϕ ≤ 1

vol(M,ω0)

∫
M
ϕ
ωn0
n!

+ C16 ≤ Cd1(0, ϕ) + C16.

On the other hand, since I(ϕ) = 0, it follows from (2.7) that supM ϕ ≥ 0, so the first
estimate follows. For the second estimate, first we can calculate∫

M
ϕ
n−1∑
k=0

χ ∧ ωk0 ∧ ωn−1−k
ϕ − n

∫
M
ϕχ ∧ ωn−1

0

=

∫
M
ϕ

n−2∑
k=0

χ ∧ ωk0 ∧ (ωn−1−k
ϕ − ωn−1−k

0 )

=

∫
M
−
√
−1∂ϕ ∧ ∂̄ϕ ∧

n−2∑
l=0

(n− 1− l)χ ∧ ωn−2−l
0 ∧ ωlϕ

(3.6)

Thus,

|
∫
M
ϕ
n−1∑
k=0

χ ∧ ωk0 ∧ ωn−1−k
ϕ −

∫
M
nϕχ ∧ ωn−1

0 |

≤ nmax
M
|χ|ω0

∫
M

√
−1∂ϕ ∧ ∂̄ϕ ∧

n−1∑
l=0

ωn−1−l
0 ∧ ωlϕ

= nmax
M
|χ|ω0

∫
M
ϕ(ωnϕ − ωn0 ).

Using Theorem 2.1, we conclude

|
∫
M
ϕ
n−1∑
k=0

χ ∧ ωk0 ∧ ωn−1−k
ϕ −

∫
M
nϕχ ∧ ωn−1

0 | ≤ Cn max
M
|χ|ω0d1(0, ϕ).

Similar calculation shows

|
∫
M
χϕ

n∑
k=0

ωk0 ∧ ωn−kϕ − (n+ 1)

∫
M
χϕωn0 | ≤ Cn max

M
|χ|ω0d1(0, ϕ).

On the other hand, the quantities
∫
M nϕχ∧ωn−1

0 and
∫
M χϕωn0 can be bounded in terms

of maxM |χ|ω0d1(0, ϕ), again due to Theorem 2.1. Now the claimed estimate follows from
(2.4). �
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From Theorem 2.2, any two elements in E1 can be connected by a “locally finite energy
geodesic” segment. On the other hand, from Theorem 4.7 in [6], we know Kβ is convex
along locally finite energy geodesic segment. This implies tKβ + (1 − t)Jω0 is convex
along locally finite energy geodesics. In view of this, we can observe:

Corollary 3.5. Let ϕ be a smooth solution to (2.12) for some t ∈ [0, 1], then ϕ minimizes
the functional tKβ + (1− t)Jω0 over E1.

Proof. Observe that it is sufficient to show that ϕ minimizes tKβ + (1 − t)Jω0 over H,
in view of the fact that an element in E1 can be approximated(under distance d1) using
smooth potentials with convergent entropy, as proved in Theorem 3.2, [6], while the Jχ
functional is continuous under d1, as shown by Proposition 4.1 and Proposition 4.4 in
[6].

Next we can write tKβ + (1− t)Jω0 = tK + Jtβ+(1−t)ω0
. Take ψ ∈ H. Let {us}s∈[0,1]

be the C1,1 geodesic connection ϕ and ψ, with u0 = ϕ, u1 = ψ. From Lemma 3.5 of [2]
and the convexity of K-energy along C1,1 geodesics, we conclude:

(3.7) K(ψ)−K(ϕ) ≥ lim
s→0+

K(us)−K(u0)

s
≥
∫
M

(R−Rϕ)
dus
ds
|s=0

ωnϕ
n!
.

The first inequality used the convexity of K-energy along C1,1 geodesics, proved by
Berman-Berndtsson, [2], and the second inequality is Lemma 3.5 of [2].

On the other hand, let {ϕs}s∈[0,1] be any smooth curve in H with ϕ0 = ϕ, ϕ1 = ψ,
and let χ ≥ 0, we know from the calculation in [12], Proposition 2 that

Jχ(ψ)− Jχ(ϕ) =

∫
M

(trϕχ− χ)
dϕs
ds
|s=0

ωnϕ
n!

+

∫ 1

0
(1− s) d

2

ds2
Jχ(ϕs)ds

=

∫
M

(trϕχ− χ)
dϕs
ds
|s=0

ωnϕ
n!

+

∫ 1

0
(1− s)ds

∫
M

(
∂2ϕ

∂s2
− |∇ϕs

∂ϕs
∂s
|2ϕs

)
trϕsχ

ωnϕs
n!

+

∫ 1

0
(1− s)ds

∫
M
gij̄ϕsg

kl̄
ϕsχil̄

(∂ϕ
∂s

)
,k

(∂ϕ
∂s

)
,j̄

ωnϕs
n!

.

(3.8)

Now we choose ϕs = uεs, namely the ε-geodesic(which is smooth by [11]), which means(
∂2ϕs
∂s2

− |∇ϕs
∂ϕs
∂s
|2ϕs

)
det gϕs = εdet g0 ≥ 0.

Hence we obtain from (3.8) that

(3.9) Jχ(ψ)− Jχ(ϕ) ≥
∫
M

(trϕχ− χ)
duεs
ds
|s=0

ωnϕ
n!
.

Also we know that uεs → us weakly in W 2,p for any p < ∞ as ε → 0. This implies
duεs
ds |s=0, as a function on M , is uniformly bounded with its first derivatives. Hence we

may conclude duεs
ds |s=0 → dus

ds |s=0 uniformly. This convergence is sufficient to imply∫
M

(trϕχ− χ)
duεs
ds
|s=0

ωnϕ
n!
→
∫
M

(trϕχ− χ)
dus
ds
|s=0

ωnϕ
n!
, as ε→ 0.

Therefore,

(3.10) Jχ(ψ)− Jχ(ϕ) ≥
∫
M

(trϕχ− χ)
dus
ds
|s=0

ωnϕ
n!
.



ON THE CONSTANT SCALAR CURVATURE KÄHLER METRICS (II) —EXISTENCE RESULTS 17

Take χ = tβ + (1− t)ω0 in (3.10). Then multiply (3.7) by t, add to (3.10), we conclude(
tKβ + (1− t)Jω0

)
(ψ)−

(
tKβ + (1− t)Jω0

)
(ϕ)

≥
∫
M

(
t(R−Rϕ) + (trϕχ− χ)

)
dus
ds
|s=0

ωnϕ
n!

= 0.
(3.11)

The last equality used that ϕ solves (2.13), (2.14). �

Using this fact, we can obtain the following improvement of Lemma 3.3, which asserts
that having control over the geodesic distance d1 along the path of continuity ensures
we can pass to limit.

Lemma 3.6. Suppose ti ∈ S, ti ↗ t∗ > 0, and let ϕi be the solution to (2.12) with
t = ti, normalized so that I(ϕi) = 0. Suppose supi d1(0, ϕi) <∞, then t∗ ∈ S.

Proof. As before, we assume ti ≥ δ > 0. First observe that supi(tiKβ+(1−ti)Jω0)(ϕi) <
∞. Indeed, we know from Corollary 3.5 that ϕi are minimizers of tiKβ + (1 − ti)Jω0 ,
hence

tiKβ(ϕi) + (1− ti)Jω0(ϕi) ≤ Kχ,ti(0) = tiKβ(0) + (1− ti)Jω0(0)

≤ max(Kβ(0), Jω0(0)).
(3.12)

On the other hand, we know

(3.13) tiKβ(ϕi) + (1− ti)Jω0(ϕi) = ti

∫
M
eFiFidvolg + tiJ−Ric+β(ϕi) + (1− ti)Jω0(ϕi).

Since we assumed supi d1(0, ϕi) <∞, Lemma 3.4 then implies that supi |J−Ric+β(ϕi)|+
|Jω0(ϕi)| <∞. Consequently, supi

∫
M eFiFidvolg <∞ since ti ≥ δ > 0. The result then

follows from Lemma 3.3. �

Now we are ready to prove Theorem 3.1.

Proof. (of Theorem 3.1) Let S be defined as in (3.1), we just need to prove S = [0, 1].
First we know from Lemma 2.1 that t∗ > 0. We want to show that t∗ = 1 and 1 ∈ S.
Indeed, if t∗ < 1, then we can take a sequence ti ∈ S, such that ti ↗ t∗. Let ϕi be the
solution to (2.9) so that I(ϕi) = 0.

As observed in (3.12) above, supi
(
tiKβ + (1 − ti)Jω0

)
(ϕi) < ∞. On the other hand,

since 0 ∈ H is a critical point of Jω0 , we know from Corollary 3.5 that Jω0(ϕi) ≥
Jω0(0). Therefore we know supiKβ(ϕi) < ∞. By properness, we can then conclude
supi d1(0, ϕi) < ∞. From Lemma 3.6 we see t∗ ∈ S. But then from Lemma 2.1 and
Remark 2.2 we know t∗ + δ′ ∈ S for some δ′ > 0 small. This contradicts t∗ = supS.
Hence we must have t∗ = 1. Repeat the argument in this paragraph, we can finally
conclude 1 ∈ S. �

For completeness, we also include here the proof of Theorem 3.2, following [5], [6].

Proof. (of Theorem 3.2) First we assume that β = 0 and Aut0(M,J) = 0. Let ϕ0 ∈ H0

be such that ωϕ0 := ω0 +
√
−1∂∂̄ϕ0 is cscK. We will show that for some ε > 0, and for

any ψ ∈ H0, d1(ϕ0, ψ) ≥ 1, we have K(ψ) ≥ εd1(ψ,ϕ0) +K(ϕ0).
Indeed, if this were false, we will have a sequence of ψi ∈ H0, such that d1(ϕ0, ψi) ≥ 1,

but εi := K(ψi)−K(ϕ0)
d1(ψi,ϕ0) → 0. Let ci : t ∈ [0, d1(ϕ0, ψi)] → E1 be the unit speed C1,1
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geodesic segment connecting ϕ0 and ψi [11]. Let φi = ci(1), then d1(φi, ϕ0) = 1. On the
other hand, from the convexity of K-energy, we have

(3.14) K(φi) ≤
(
1− 1

d1(ψi, ϕ0)

)
K(ϕ0) +

1

d1(ψi, ϕ0)
K(ψi) = K(ϕ0) + εi.

By the compactness result Lemma 2.5, there exists a subsequence of {φi}i≥1 ⊂ E1,

denoted by φij , such that φij
d1→ φ∞. Hence d1(ϕ0, φ∞) = 1. From the lower semi-

continuity of K-energy(Theorem 4.7 of [6]), we obtain:

(3.15) K(φ∞) ≤ lim
j→∞

inf K(φij ) ≤ K(ϕ0).

But since ϕ0 is a minimizer of K-energy over E1, it follows that φ∞ is also a minimizer.
From Theorem 1.4 of [5], we know φ∞ is also a smooth solution to cscK equation, and
there exists g ∈ Aut0(M,J), such that g∗ωφ∞ = ωϕ0 . But we assumed Aut0(M,J) = 0,
hence ωφ∞ = ωϕ0 . Therefore φ∞ − ϕ0 is constant. But from the normalization I(φ∞) =
I(ϕ0) = 0, we know ϕ0 − φ∞ = 0, this contradicts d1(ϕ0, φ∞) = 1.

Next we assume β > 0. Let ϕβ solves (2.12), normalized so that I(ϕβ) = 0. We
show that for some ε > 0, one has Kβ(ψ) ≥ εd1(ϕβ, ψ) + Kβ(ϕβ) for any ψ ∈ H0 with

d1(ϕβ, ψ) ≥ 1.
Indeed, if this were false, then there exists a sequence of ψi ∈ H0, such that d1(ϕβ, ψi) ≥

1, but ε′i :=
Kβ(ψi)−Kβ(ϕβ)

d1(ψi,ϕβ)
→ 0. Note that K-energy is lower semi-continuous with re-

spect to d1 convergence and Jβ is continuous([6], Proposition 4.4). Hence Kβ is lower
semicontinuous as well. So the same argument as last paragraph applies and we get
a minimizer of Kβ, denoted as ψ∞ ∈ H0, such that d1(ψ∞, ϕ

β) = 1. But by [6],

Theorem 4.13, we know ψ∞ and ϕβ should differ by a constant. Because of the nor-
malization I(ψ∞) = I(ϕβ) = 0, we know that actually ψ∞ = ϕβ. This contradicts
d1(ψ∞, ϕ

β) = 1. �

As a corollary to this theorem, we show that the supremem of t for which (2.9) can
be solved depends only on cohomology class of χ. More precisely,

Corollary 3.7. Let χ1, χ2 be two Kähler forms in the same cohomology class. We define

Si = {t0 ∈ [0, 1] : (2.9) with χ = χi has a smooth solution for any t ∈ [0, t0].}
Then S1 = S2. In particular, if we define R([ω0], χi) = supSi, then R([ω0], χ1) =
R([ω0], χ2).

Proof. First we know from [29], Proposition 21 and Proposition 22 that existence of
smooth solutions to trϕχi = χ

i
, i = 1, 2 are equivalent. So we may assume both

equations are solvable. Then it follows from Lemma 2.1 that R([ω0], χi) > 0. In virtue
of Theorem 3.1 and Theorem 3.2, we just need to show for any 0 < t0 ≤ 1:

(3.16) Kχ1,t0 is proper ⇔ Kχ2,t0 is proper.

Here Kχi,t0 is defined as in (2.8).
Indeed, suppose t0 ∈ S1 and t0 < 1, then for any 0 < t ≤ t0, (2.9) with χ = χ1 has a

solution. From Theorem 3.2 applied to β = 1−t
t χ1, we know this implies Kχ1,t is proper,

for any 0 < t ≤ t0. If (3.16) were true, then Kχ2,t is proper for any 0 < t ≤ t0. Use
Theorem 3.1 again, we know (2.9) with χ = χ2 is solvable for any t ∈ [0, t0]. This means
t0 ∈ S2.
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If t0 ∈ S1 and t0 = 1, then it means K-energy is bounded from below, hence Kχ2,t

will be proper for 0 ≤ t < 1([29], Proposition 21). Then Theorem 3.1 implies (2.9) will
be solvable for χ = χ2 and any 0 ≤ t < 1. While for t = 1, the solvability follows from
the assumption that t0 = 1, since the equation (2.9) for t = 1 does not involve χ1 or χ2.
Therefore 1 ∈ S2.

Now we turn to the proof of (3.16), which is an elementary calculation (c.f. [57]).
Since χ1 and χ2 are in the same Kähler class, we can write

χ1 − χ2 =
√
−1∂∂̄ν, for some smooth function ν.

From (2.4), we can compute for ϕ ∈ H0:

Jχ1(ϕ)− Jχ2(ϕ) =
1

n!

n−1∑
p=0

∫
M

(−ϕ)
√
−1∂∂̄ν ∧ ωn−p−1

0 ∧ ωpϕ

=
1

n!

n−1∑
p=0

∫
M
−ν
√
−1∂∂̄ϕ ∧ ωn−p−1

0 ∧ ωpϕ

=
−1

n!

∫
M
νωnϕ +

∫
M

1

n!
νωn0 .

(3.17)

From this it is clear that

(3.18) |Jχ1(ϕ)− Jχ2(ϕ)| ≤ cn sup
M
|ν|.

On the other hand,

(3.19) |Kχ1,t0(ϕ)−Kχ2,t0(ϕ)| ≤ (1− t0)|Jχ1(ϕ)− Jχ2(ϕ)| ≤ cn sup
M
|ν|.

From this (3.16) immediately follows. �

4. regularity of weak minimizers of K-energy

Our main goal in this section is to show the minimizers of K-energy over E1 are
always smooth. The main ingredients are the continuity path as well as apriori estimates
obtained in section 3. The strategy of the proof is somewhat different from the usual
variational problem. Indeed, the usual strategy for variational problem will be first to
take some smooth variation of the minimizer, and derive an Euler-Lagrange equation
for the minimizer(in weak form). Then one works with the Euler-Lagrange equation to
obtain regularity(or partial regularity).

However, the same strategy runs into difficulty here. Indeed, an Euler-Lagrange equa-
tion for minimizer is not apriori available, since an arbitrary smooth variation of ϕ∗ does
not necessarily preserve the condition that ωϕ ≥ 0.

To get around this difficulty, we will still use the continuity path and our argument
is partly inspired from [5]. The difference here is that the properness theorem (The-
orem 3.1) plays a central role. Here we sketch the argument. Take ϕj to be smooth
approximations of ϕ∗ (in the space E1), and we solve continuity path from ϕj . That
K-energy is bounded from below ensures the continuity path is solvable for t < 1. We
will show the existence of a minimizer ensures that for each fixed j, L1 geodesic distance
remains bounded as t→ 1. Hence we can take limit as t→ 1 and obtain a cscK potential
uj . Besides, such a sequence of uj will also be uniformly bounded under L1 geodesic
distance, which follows from the uniform boundedness of ϕj under L1 geodesic distance.
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Our apriori estimates allow us to take smooth limit of uj and conclude that uj → ψ
smoothly and ψ is a smooth cscK potential. The proof is then finished once we can show
ψ and ϕ∗ only differ by an additive constant.

First we show that the existence of minimizers implies existence of smooth cscK metric.

Lemma 4.1. Suppose that for some ϕ∗ ∈ E1, we have K(ϕ∗) = infϕ∈E1 K(ϕ), then there
exists a smooth cscK in the class [ω0].

Proof. We consider the continuity path (2.9) with χ = ω0. By assumption, K-energy
over E1 is bounded from below. Therefore the twisted K-energy Kω0,t, defined by (2.8)
is proper for any 0 ≤ t < 1. Hence we may invoke Theorem 3.1 with β = 1−t

t ω0 to
conclude that there exists a solution to (2.9) for any 0 < t < 1. The only remaining issue
is to see what happens in (2.9) as t→ 1.

Choose ti < 1 and ti → 1, and let ϕ̃i be solutions to (2.9) with t = ti, normalized up
to an additive constant so that I(ϕ̃i) = 0. Corollary 3.5 implies that ϕ̃i is the minimizer
to Kω0,ti . Therefore we have

(4.1) tiK(ϕ∗) + (1− ti)Jω0(ϕ̃i) ≤ tiK(ϕ̃i) + (1− ti)Jω0(ϕ̃i) ≤ tiK(ϕ∗) + (1− ti)Jω0(ϕ∗).

Hence (4.1) implies that
Jω0(ϕ̃i) ≤ Jω0(ϕ∗).

On the other hand, we know Jω0 is proper, in the sense that Jω0(ϕ) ≥ δd1(0, ϕ)−C, for
ϕ ∈ H0 (c.f. [29], Proposition 22). This implies that

sup
i
d1(0, ϕ̃i) ≤

1

δ

(
C + Jω0(ϕ∗)

)
<∞.

Now from Lemma 4.6 we conclude that (2.9) can be solved up to t = 1, and we obtain
the existence of a cscK potential. �

The main result of [5] showed the following weak-strong uniqueness property: as long
as a smooth cscK exists in the Kähler class [ω0], then all the minimizers of K-energy
over E1 are smooth cscK. Therefore, we can already conclude the following result:

Theorem 4.1. Let ϕ∗ ∈ E1 be such that K(ϕ∗) = infE1 K(ϕ). Then ϕ∗ is smooth, and
ωϕ∗ is a cscK metric.

Next we will prove a more general version of Theorem 4.1. More precisely, we will
prove:

Theorem 4.2. Let χ ≥ 0 be a closed smooth (1, 1) form. Define Kχ(ϕ) = K(ϕ)+Jχ(ϕ),
where Jχ(ϕ) is defined by (2.4). Let ϕ∗ ∈ E1 be such that Kχ(ϕ∗) = infE1 Kχ(ϕ). Then
ϕ∗ is smooth and solves the equation Rϕ −R = trϕχ− χ.

Note that one can run the same argument as in Lemma 4.1 to show once there exists
a minimizer to Kχ, then there exists a smooth solution to

(4.2) Rϕ −R = trϕχ− χ.
However, it is not clear to us whether the argument in [5] can be adapted to this case
to show a weak-strong uniqueness result. Namely if there exists a smooth solution to
Rϕ − R = trϕχ − χ, can one conclude all minimizers of Kχ are smooth? Therefore, in
the following, we will use a direct argument. This argument is motivated from [5], but
now is more straightforward because of the use of properness theorem.
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Let ϕ∗ be a minimizer of Kχ. Then by [6], Lemma 1.3, we may take a sequence of
ϕj ∈ H, such that d1(ϕj , ϕ∗) → 0, and Kχ(ϕj) → Kχ(ϕ∗). Indeed, that lemma asserts
the convergence of the entropy part, but the J−Ric and Jχ are continuous under d1

convergence, by [6], Proposition 4.4.
Since there exists a minimizer to Kχ, the functional Kχ is bounded from below. On

the other hand, for each fixed j, by [29], Proposition 22, we know that Jωϕj is proper.

Therefore, for 0 ≤ t < 1, the twisted Kχ-energy Kχ,ωϕj ,t
:= tKχ + (1− t)Jωϕj is proper.

Hence we may invoke Theorem 3.1 to conclude there exists a smooth solution to the
equation

(4.3) t(Rϕ −R) = (1− t)(trϕωϕj − n) + t(trϕχ− χ), for any 0 ≤ t < 1.

Denote the solution to be ϕtj , normalized up to an additive constant so that ϕtj ∈ H0,

namely I(ϕtj) = 0.

Since χ ≥ 0 and closed, we know that Jχ is convex along C1,1 geodesic(though not
necessarily strictly convex). Hence the functional Kχ is convex along C1,1 geodesic. This
again implies the convexity of tKχ + (1− t)Jωϕj along C1,1 geodesic. In particular, ϕtj is

a global minimizer of tKχ + (1− t)Jωϕj by Corollary 4.5.

Hence we know that

(4.4) tKχ(ϕtj)+(1−t)Jωϕj (ϕj) ≤ tKχ(ϕtj)+(1−t)Jωϕj (ϕ
t
j) ≤ tKχ(ϕj)+(1−t)Jωϕj (ϕj).

The first inequality above uses that ϕj minimizes Jωϕj . Hence

(4.5) sup
0<t<1, j

Kχ(ϕtj) ≤ sup
j
Kχ(ϕj).

Next we will show that the family of solution ϕtj are uniformly bounded in d1. First we
have

(4.6) tKχ(ϕtj)+(1−t)Jωϕj (ϕ
t
j) ≤ tKχ(ϕ∗)+(1−t)Jωϕj (ϕ∗) ≤ tKχ(ϕtj)+(1−t)Jωϕj (ϕ∗).

The first inequality follows from that ϕtj minimizes tKχ + (1 − t)Jωϕj and the second

inequality follows since ϕ∗ minimizes Kχ. Therefore,

(4.7) Jωϕj (ϕj) ≤ Jωϕj (ϕ
t
j) ≤ Jωϕj (ϕ∗).

The first inequality follows from that ϕj is a minimizer of Jωϕj . The second inequality

follows from (4.6). As a first observation, we have

Lemma 4.2. As j →∞,

Jωϕj (ϕ∗)− Jωϕj (ϕj)→ 0.
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Proof. We can compute

Jωϕj (ϕ∗)− Jωϕj (ϕj) =

∫ 1

0

d

dλ

(
Jωϕj (λϕ∗ + (1− λ)ϕj)

)
dλ

=

∫ 1

0
dλ

∫
M

(ϕ∗ − ϕj)
ωn−1
λϕ∗+(1−λ)ϕj

∧ ωϕj − ωnλϕ∗+(1−λ)ϕj

(n− 1)!

=

∫ 1

0
dλ

∫
M
λ(ϕ∗ − ϕj) ∧

√
−1∂∂̄(ϕj − ϕ∗) ∧

ωn−1
λϕ∗+(1−λ)ϕj

(n− 1)!

=

∫ 1

0
dλ

∫
M
λ
√
−1∂(ϕ∗ − ϕj) ∧ ∂̄(ϕ∗ − ϕj) ∧

(λωϕ∗ + (1− λ)ωϕj )
n−1

(n− 1)!
.

(4.8)

Define

I(ϕj ,ϕ∗) =

∫
M

√
−1∂(ϕj − ϕ∗) ∧ ∂̄(ϕj − ϕ∗) ∧

n−1∑
k=0

ωkϕj ∧ ω
n−1−k
ϕ∗

=

∫
M

(ϕj − ϕ∗)(ωnϕ∗ − ω
n
ϕj ).

(4.9)

Since we know d1(ϕj , ϕ∗) ≥ 1
C

∫
M |ϕj −ϕ∗|(ω

n
ϕj +ωnϕ∗) for some dimensional constant C,

by [31], Theorem 5.5, we have I(ϕj , ϕ∗) ≤ Cd1(ϕj , ϕ∗)→ 0. On the other hand, we have
Jωϕj (ϕ∗) − Jωϕj (ϕj) ≤ C ′I(ϕj , ϕ∗) from (4.8) and (4.9). Hence Jωϕj (ϕ∗) − Jωϕj (ϕj) ≤
C ′Cd1(ϕj , ϕ∗)→ 0. �

Corollary 4.3. Let I(ϕj , ϕ
t
j) be defined similar to (4.9), then we have sup0<t<1 I(ϕj , ϕ

t
j)→

0 as j →∞.

Proof. From previous lemma and (4.7), we know that as j →∞,

sup
0<t<1

Jωϕj (ϕ
t
j)− Jωϕj (ϕj) ≤ Jωϕj (ϕ∗)− Jωϕj (ϕj)→ 0.

On the other hand, we know from (4.8), (4.9) with ϕ∗ replaced by ϕtj , th following
estimate holds:

1

Cn
(Jωϕj (ϕ

t
j)− Jωϕj (ϕj)) ≤ I(ϕtj , ϕj) ≤ Cn(Jωϕj (ϕ

t
j)− Jωϕj (ϕj)).

�

Next we would like to show the d1 distance of ϕtj remains uniformly bounded. For
this we will need the following key lemma:

Lemma 4.4. ([4], Theorem 1.8 and Lemma 1.9) There exists a dimensional constant
Cn, such that for any u, v, w ∈ E1, we have

I(u,w) ≤ Cn(I(u, v) + I(v, w)).

Besides, we have∫
M

√
−1∂(u− w) ∧ ∂̄(u− w) ∧ ωn−1

v ≤ CnI(u,w)
1

2n−1
(
I(u, v)1− 1

2n−1 + I(w, v)1− 1
2n−1

)
.

As an immediate consequence of this lemma and Corollary 4.3, we see that:

Corollary 4.5. sup0<t<1 I(ϕtj , ϕ∗)→ 0 as j →∞.
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Proof. Indeed,

I(ϕtj , ϕ∗) ≤ Cn(I(ϕtj , ϕj) + I(ϕj , ϕ∗)) ≤ Cn
(
I(ϕtj , ϕj) + Cd1(ϕj , ϕ∗)

)
.

In the second inequality above, we again used Theorem 5.5 of [31]. �

Using Lemma 4.4, we can show the following:

Lemma 4.6. There exists a constant C, depending only on supj d1(0, ϕj), n, such that

sup
j,0<t<1

d1(0, ϕtj) ≤ C.

Proof. Denote dc =
√
−1
2 (∂ − ∂̄), and let ε > 0, we may calculate

Jω0(ϕtj)− Jωϕj (ϕ
t
j)

=

∫ 1

0

d

dλ

(
Jω0(λϕtj)− Jωϕj (λϕ

t
j)
)
dλ

=

∫ 1

0

∫
M
ϕtj

(ω0 ∧ ωn−1
λϕtj

(n− 1)!
−
ωϕj ∧ ωn−1

λϕtj

(n− 1)!

)
dλ =

∫ 1

0

∫
M
dcϕtj ∧ dϕj ∧

ωn−1
λϕtj

(n− 1)!
dλ

≤ ε
∫ 1

0

∫
M
dcϕtj ∧ dϕtj ∧

ωn−1
λϕtj

(n− 1)!
dλ+

1

ε

∫ 1

0

∫
M
dcϕj ∧ dϕj ∧

ωn−1
λϕtj

(n− 1)!
dλ

≤ εCn
∫
M
dcϕtj ∧ dϕtj ∧

n−1∑
k=0

ωk0 ∧ ωn−1−k
ϕtj

+
Cn
ε

∫
M
dcϕj ∧ dϕj ∧

ωn−1
1
2
ϕtj

(n− 1)!

≤ εC̃nd1(0, ϕtj) +
C̃n
ε
I(ϕj , 0)

1
2n−1

(
I(0,

1

2
ϕtj)

1− 1
2n−1 + I(ϕj ,

1

2
ϕtj)

1− 1
2n−1

)
≤ εC̃nd1(0, ϕtj) +

C̃n
ε
I(0, ϕj)

1
2n−1

(
I(0,

1

2
ϕtj)

1− 1
2n−1

+DnI(0, ϕj)
1− 1

2n−1 +DnI(0,
1

2
ϕtj)

1− 1
2n−1

)
≤ εC̃nd1(0, ϕtj) + εI(0,

1

2
ϕtj) + ε−2n+1

(
C̃n(1 +Dn)

)2n−1

I(0, ϕj).

(4.10)

In the first line above, we used that Jω0(0) = Jωϕj (0) = 0, which follows from (2.4). We

used the second inequality of Lemma 4.4 in the passage from the 5th line to 6th line,
and the first inequality in the passage from 6th line to 7th line. In the passage from 7th
line to the last line, we used Young’s inequality. Next observe that

I(0,
1

2
ϕtj) =

∫
M

√
−1∂

(1

2
ϕtj
)
∧ ∂̄
(1

2
ϕtj
)
∧
n−1∑
k=0

ωk1
2
ϕtj
∧ ωn−1−k

0

=

∫
M

√
−1∂

(1

2
ϕtj
)
∧ ∂̄
(1

2
ϕtj
)
∧
n−1∑
k=0

1

2k
(ω0 + ωϕtj )

k ∧ ωn−1−k
0

≤ Cn
∫
M

√
−1∂ϕtj ∧ ∂̄ϕtj ∧

n−1∑
k=0

ωk0 ∧ ωn−1−k
ϕtj

= Cn

∫
M
ϕtj(ω

n
0 − ωnϕtj )

≤ C̃nd1(0, ϕtj).

(4.11)
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Hence we obtain

Jω0(ϕtj) ≤ Jωϕj (ϕ
t
j) + εC̃nd1(0, ϕtj) + 2ε−2n+1

(
C̃n(1 +Dn)

)2n−1

I(0, ϕj).(4.12)

On the other hand, since we know Jω0 is proper in the following sense:

Jω0(ϕ) ≥ δd1(0, ϕ)− C, ϕ ∈ H0.

Choose ε small enough so that

2εC̃n ≤
δ

2
.

Hence we obtain from (4.12) that

(4.13) d1(0, ϕtj) ≤
2

δ

(
Jωϕj (ϕ

t
j) + ε−2n+1

(
C̃n(1 +Dn)

)2n−1

I(0, ϕj) + C
)
.

Since we know that I(0, ϕj) ≤ Cd1(0, ϕj), and d1(0, ϕj) is uniformly bounded, it only
remains to find an upper bound for Jωϕj (ϕ

t
j). In order to bound Jωϕj (ϕ

t
j) from above,

we just need to find an upper bound for Jωϕj (ϕ∗) thanks to (4.7). For this we can write:

Jωϕj (ϕ∗) =

∫ 1

0
dλ

∫
M
ϕ∗

(
ωn−1
λϕ∗
∧ ωϕj

(n− 1)!
−

ωnλϕ∗
(n− 1)!

)
≤
∫ 1

0
dλ

∫
M
ϕ∗
√
−1∂∂̄(ϕj − λϕ∗) ∧

ωn−1
λϕ∗

(n− 1)!

=

∫ 1

0
dλ

∫
M
λdcϕ∗ ∧ dϕ∗ ∧

ωn−1
λϕ∗

(n− 1)!
−
∫ 1

0
dλ

∫
M
dcϕ∗ ∧ dϕj ∧

ωn−1
λϕ∗

(n− 1)!
.

(4.14)

In the above, dc =
√
−1
2 (∂ − ∂̄), hence dcd =

√
−1∂∂̄. For the first term above, it can be

bounded in the following way:

(4.15)

∫ 1

0
dλ

∫
M
λdcϕ∗∧dϕ∗∧

ωn−1
λϕ∗

(n− 1)!
≤
∫
M
dcϕ∗∧dϕ∗∧

n−1∑
k=0

ωk0∧ωn−1−k
ϕ∗ ≤ Cd1(0, ϕ∗).

For the second term on the right hand side of (4.14),

−
∫ 1

0
dλ

∫
M
dcϕ∗ ∧ dϕj ∧

ωn−1
λϕ∗

(n− 1)!
≤ 1

2

∫ 1

0
dλ

∫
M
dcϕ∗ ∧ dϕ∗ ∧

ωn−1
λϕ∗

(n− 1)!

+
1

2

∫ 1

0
dλ

∫
M
dcϕj ∧ dϕj ∧

ωn−1
λϕ∗

(n− 1)!
.

(4.16)
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The first term above can be estimated in the same way as in (4.15). For the second term
above, we have ∫ 1

0
dλ

∫
M

√
−1∂ϕj ∧ ∂̄ϕj ∧

ωn−1
λϕ∗

(n− 1)!

≤ Cn
∫
M

√
−1∂ϕj ∧ ∂̄ϕj ∧

ωn−1
1
2
ϕ∗

(n− 1)!

≤ CnI(0, ϕj)
1

2n−1

(
I(0,

1

2
ϕ∗)

1− 1
2n−1 + I(ϕj ,

1

2
ϕ∗)

1− 1
2n−1

)
≤ CnI(0, ϕj)

1
2n−1

(
I(0,

1

2
ϕ∗)

1− 1
2n−1 +DnI(0, ϕj)

1− 1
2n−1

+DnI(0,
1

2
ϕ∗)

1− 1
2n−1

)
.

(4.17)

By [31], Theorem 5.5, I(0, ϕj) is controlled by d1(0, ϕj) and the calculation in (4.11)
shows that that I(0, 1

2ϕ∗) can be controlled in terms of d1(0, ϕ∗) respectively. �

Next we are ready to pass to limit. From sup0<t<1 d1(0, ϕtj) < ∞, we may conclude

that supj, 0<t<1 |J−Ric(ϕtj)| < ∞ and supj,0<t<1 |Jχ(ϕtj)| < ∞ by Lemma 4.4. By (4.5)

and our definition of Kχ, we know that supj,t
∫
M log

(ωnϕt
j

ωn0

)
ωn
ϕtj
<∞. Hence we may use

Lemma 3.3 (the same argument works for Kχ) to conclude that up to a subsequence of
t, ϕtj → uj as t → 1 and uj solves (4.2) for each j with I(uj) = 0. This convergence is
smooth convergence due to our previous estimates. Again due to to the last lemma, we
have supj d1(0, uj) ≤ supj,t d1(0, ϕtj) ≤ C for some fixed constant C depending only on n

and supj d1(0, ϕj). Hence we may again assume that up to a subsequence of j, uj → ψ
smoothly as j → ∞ and ψ is a smooth solution to (4.3). To finish the proof that ϕ∗ is
smooth, we just need the following lemma:

Lemma 4.7. ϕ∗ and ψ differ by an additive constant.

Proof. By taking limit as t→ 1, we can conclude from Corollary 4.5 that I(uj , ϕ∗)→ 0
as j →∞. On the other hand, since uj → ψ smoothly, we have I(uj , ψ)→ 0 as j →∞.
Hence

I(ϕ∗, ψ) ≤ Cn(I(uj , ϕ∗) + I(uj , ψ))→ 0, as j →∞.

That is, I(ϕ∗, ψ) = 0. On the other hand, from Lemma 4.8, we know ϕ∗ ∈ H1(M) and

I(ϕ∗, ψ) ≥
∫
M
|∇ψ(ϕ∗ − ψ)|2ψωnψ.

Therefore ψ and ϕ∗ differ only up to a constant. �

In the above lemma, we used the following fact.

Lemma 4.8. Let ϕ ∈ E1, then ϕ ∈ H1(M,ωn0 ). Moreover, for any ψ ∈ H, we have

(4.18) I(ϕ,ψ) ≥
∫
M
|∇ψ(ϕ− ψ)|2ψωnψ.

In the above, |∇ψ(ϕ− ψ)|2ψ = gij̄ψ (ϕ− ψ)i(ϕ− ψ)j̄.
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Proof. First we assume that both ϕ, ψ ∈ H. Then we know that

I(ϕ,ψ) =

∫
M

(ϕ− ψ)(ωnψ − ωnϕ)

=

∫
M
dc(ϕ− ψ) ∧ d(ϕ− ψ) ∧

n−1∑
k=0

ωkϕ ∧ ωn−1−k
ψ

≥
∫
M
dc(ϕ− ψ) ∧ d(ϕ− ψ) ∧ ωn−1

ψ =

∫
M
|∇ψ(ϕ− ψ)|2ψωnψ.

So (4.18) holds as long as ϕ ∈ H. If ϕ ∈ E1, then we can find a sequence φj ∈ H,
such that φj decreases pointwisely to ϕ. Such approximation is possible due to the main
result of [7]. Also due to Lemma 4.3 of [31], we know that d1(φj , ϕ) → 0. This implies
that I(φj , ψ)→ I(φ, ψ).

Since (4.18) holds with ϕ replaced by ϕj , we see that

(4.19)

∫
M
|∇ψ(φj − ψ)|2ψωnψ ≤ I(φj , ψ)→ I(ϕ,ψ).

From supj d1(0, φj) < ∞, we know that supj
∫
M |φj |dvolg < ∞. Now (4.19) shows φj

is uniformly bounded in H1(M,ωnψ). Hence we can find a subsequence of φj which

converges weakly in H1(M,ωnψ), strongly in L2(M,ωnψ). Clearly this limit must be ϕ.

This shows ϕ ∈ H1(M,ωnψ), hence also in H1(M,ωn0 ). Also we can conclude from (4.19)
that∫

M
|∇ψ(ϕ− ψ)|2ψωnψ ≤ lim inf

j→∞

∫
M
|∇ψ(φj − ψ)|2ωnψ ≤ lim inf

j
I(φj , ψ) = I(ϕ,ψ).

�

5. Existence of cscK and geodesic stability

In this section, we prove Theorem 1.1. Similar to the definition of H0, we define

E1
0 = E1 ∩ {u : I(u) = 0}.

Here I(u) for u ∈ E1 is understood as the continuous extension of the functional I from
H to E1. This is possible because of Proposition 4.1 in [6]. Also we notice that for any
u0, u1 ∈ E1

0 , the finite energy geodesic segment (defined by Theorem 2.2) [0, 1] 3 t→ E1

will actually lie in E1
0 . This follows from the fact that the I functional is affine on C1,1

geodesics and I can be continuously extended to the space E1. As before, β ≥ 0 is a
smooth closed (1, 1) form. We will first prove the following result in this section, which
covers Theorem 1.1.

Theorem 5.1. Suppose that either

(1) β > 0 everywhere;
or

(2) β = 0 everywhere and Aut0(M,J) = 0.

Then the following statements are equivalent:

(1) There exists no twisted cscK metric with respect to β in H0.
(2) There is an infinite geodesic ray ρt with locally finite energy, t ∈ [0,∞) in E1

0 ,
such that the functional Kβ is non-increasing along the ray.
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(3) For any φ ∈ E1
0 with K(φ) < ∞, there is a locally finite energy geodesic ray

starting at φ, such that the functional Kβ is non-increasing along the ray.

In the case β > 0, then from (1) one can additionally conclude Kβ is strictly decreasing
in (2) and (3) above.

Definition 5.1. Let [0,∞) 3 t→ ut ∈ E1 be a continuous curve. Then we say ut is an
infinite geodesic ray with locally finite energy, if the following hold:

(1) d1(ut, us) = c|t− s| for some constant c > 0 and any s, t ∈ [0,∞).
(2) For any K > 0, [0,K] 3 t → ut is a finite energy geodesic segment in the sense

defined by Theorem 2.2.

Remark 5.2. Observe that the implication (3) ⇒ (2) is trivial. (2) ⇒ (1) follows from
Theorem 3.2, which is already proved in [5], [6]. We will use our apriori estimates and
the continuity path (2.9) to resolve the implication (1) ⇒ (3). We are partly motivated
from arguments in the proof of Theorem 6.5 of [6].

Next we observe the following lemma:

Lemma 5.3. Consider the continuity path (2.12). Suppose there is no twisted cscK
metric with respect to β in Kähler class [ω0]. Denote t∗ = supS, where the set S is
defined in (3.1). Let S 3 ti ↗ t∗. Denote ϕi to be the solution to (2.9) with t = ti,
normalized so that I(ϕi) = 0. Then we have supi d1(0, ϕi) =∞.

Proof. Suppose otherwise, then supi d1(0, ϕi) <∞. We can apply Lemma 3.6 to conclude
t∗ ∈ S. If t∗ < 1, then we conclude from Lemma 2.1 that t∗ + δ′ ∈ S for some δ′ > 0
sufficiently small. This contradicts t∗ = supS. If t∗ = 1, then 1 ∈ S. But this will
contradict our assumption that there is no cscK metric in [ω0]. In either case, the
contradiction shows one cannot have supi d1(0, ϕi) <∞. �

With the help of above lemma, we are ready to prove (1)⇒ (3) in Theorem 5.1.

Proof. Consider the continuity path (2.12) as in Lemma 6.3, we know that
supi d1(0, ϕi) = ∞. Hence we may take a subsequence ϕij , such that d1(0, ϕij ) ↗ ∞.
We will construct a geodesic ray as described in Theorem 5.1, point (2) out of this
subsequence ϕij . For simplicity, we will still denote this subsequence by ϕi.

By Theorem 2.2, there exists a unit speed finite energy d1-geodesic segment connec-
tiong φ and ϕi, such that the functional I is affine on the segment. Indeed, one can check
I is affine on C1,1 geodesic and the extension to d1-geodesic follows from continuity of
the functional I(c.f [6], Proposition 4.1).

Denote this geodesic by ci : [0, d1(φ, ϕi)] → E1. Since I(φ) = I(ϕi) = 0, we know
I = 0 on ci. In other words, ci : [0, d1(φ, ϕi)]→ E1

0 . As noted in (3.12), we have

sup
i

(
tiKβ + (1− ti)Jω0

)
(ϕi) ≤ max(Kβ(0), Jω0(0)).

On the other hand, since the functional Jω0 is convex along C1,1 geodesic, and we know
0 is a critical point of Jω0 , we see that

(5.1) Jω0(ϕi) ≥ Jω0(0).

Therefore

(5.2) Kβ(ϕi) ≤
max(Kβ(0), Jω0(0))− (1− ti)Jω0(0)

ti
≤ C.
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Hence from the convexity of Kβ-energy as remarked before, we obtain for any l ∈
[0, d1(φ, ϕi)],

(5.3) Kβ(ci(l)) ≤ (1− l

d1(φ, ϕi)
)Kβ(φ) +

l

d1(φ, ϕi)
Kβ(ϕi) ≤ max(Kβ(φ), C).

Therefore, for each fixed l. if we consider the sequence {ci(l)}d1(φ,ϕi)≥l ⊂ E1, it satisfies

the assumption in Lemma 2.5. Indeed, d1(φ, ci(l)) = l, ∀i, which implies supi |Jβ(ci(l))|
uniformly bounded for fixed l(by Lemma 3.4). Therefore, we have K-energy is uniformly
bounded and we may apply Lemma 2.5.

Hence we may take a subsequence cij (l), such that cij (l) → c∞(l) for some element
c∞(l) ∈ E1 as j → ∞. Since the functional I is continuous under d1 convergence, we
obtain c∞(l) ∈ E1

0 as well. Clearly we may apply this argument to each l ∈ Q, then by
Cantor’s diagnal sequence argument, we can take a subsequence of ϕi, denoted by ϕij ,
such that

(5.4) cij (l)→ c∞(l) in d1, as j →∞, for any l ∈ Q.

Since cij are unit speed geodesic segment, we see that for any r, s ∈ Q, with 0 ≤ r, s ≤
d1(φ, ϕij ), we have d1(cij (r), cij (s)) = |r − s|. Sending j →∞ gives

(5.5) d1(c∞(r), c∞(s)) = |r − s|, for any 0 ≤ r, s ∈ Q.

We can then define c∞(r) for all r ∈ R by requiring c∞(r) = d1 − limrk∈Q,rk→r c
∞(rk).

From property (5.5) it is easy to see this is well defined, i.e, the said limit exists and
does not depend on our choice of sequence rk. Hence [0,∞) 3 r → c∞(r) is a unit
speed geodesic ray in E1

0 . Besides, if we apply Proposition 2.4 to [0, rk] for any rk > 0,
rk ∈ Q, we know cij (r)→ uk(r) for any r ∈ [0, rk]. Here [0, rk] 3 r → uk(r) is the finite
energy geodesic segment connecting φ and c∞(rk). Hence we know c∞(r) = uk(r) for any
r ∈ [0, rk]∩Q, by (5.4). Therefore c∞(r) = uk(r) for any r ∈ [0, rk] by density. Therefore,
we have shown c∞|[0,d1(φ,c∞(r))] is the finite energy geodesic segment connecting φ and
c∞(r) for r ∈ Q. It is easy to extend this to all r ∈ R+ by rescaling in time and apply
Proposition 2.4 again.

We can now invoke Theorem 4.7, Proposition 4.5 of [6] to conclude r 7−→ K(c∞(r)),
r 7−→ Jβ(c∞(r)) is convex. Hence r 7−→ Kβ(c∞(r)) is convex as well.

Now from the lower semi-continuity of Kβ-energy under d1-convergence, we obtain
from (5.3) that

(5.6) Kβ(c∞(r)) ≤ lim inf
j→∞

Kβ(cij (r)) ≤ max(Kβ(φ), C), for all r ∈ Q.

Use the lower semi-continuity again, we deduce

(5.7) Kβ(c∞(r)) ≤ lim inf
k→∞

Kβ(c∞(rk)) ≤ max(Kβ(φ), C).

Therefore, (0,∞) 3 r 7−→ Kβ(c∞(r)) is both convex and bounded, this forces Kβ-energy
must be decreasing along c∞.

To see the “in addition” part, if Kβ is not strictly decreasing, them from the convexity
of r 7−→ Kβ(c∞(r)), we can conclude that for some r0 > 0, Kβ(c∞(r)) remains a constant
for r ≥ r0. Since both K and Jβ are convex, we know Jβ remains linear for r ≥ r0. Now
[6], Theorem 4.12 shows c∞(r1) = c∞(rr) + const for any r1, r2 ≥ r0. Because of the
normalization I(c∞(r)) = 0, we know c∞(r1) = c∞(r2) for any r1, r2 ≥ r0. But this
contradicts d1(c∞(r1), c∞(r2)) = |r1 − r2| for any r1, r2 ≥ 0. �
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Finally, the implication (2)⇒ (1) follows immediately from Theorem 3.2.

Proof. Suppose otherwise, namely there exists a twisted cscK metric with respect to β in
H0, denoted by ϕβ. Then we can conclude from Theorem 3.2 that the twisted K-energy
Kβ is proper. In particular, Kβ → +∞ along any locally finite energy geodesic ray. This
contradicts the assumption in (2). �

We can deduce the following immediate consequence of Theorem 5.1.

Corollary 5.4. Let 0 < t0 < 1, and let χ be a Kähler form. Then the following
statements are equivalent:

(1) There is no twisted cscK metric with t = t0 in H0(i.e solves (2.9) with t = t0).
(2) There is an infinite geodesic ray ρt of locally finite energy, t ∈ [0,∞) in E1

0 , such
that the twisted K-energy Kχ,t0(defined by (2.8)) is strictly decreasing along the
ray.

(3) For any φ ∈ E1
0 with K(φ) < ∞, there is a locally finite energy geodesic ray

starting at φ, such that the twisted K-energy Kχ,t0(defined by (2.8)) is strictly
decreasing along the ray.

Also we can show Theorem 1.2 as a consequence.

Proof. (of Theorem 1.2) First we prove the necessary part. Assume (M, [ω0]) admits a
cscK metric. Denote ϕ0 be the corresponding cscK potential. Recall we have shown in the
proof of Theorem 3.2(the direction existence implies properness) that for all ψ ∈ E1

0 , with
d1(ψ,ϕ0) ≥ 1, one has K(ψ) ≥ εd1(ψ,ϕ0) +K(ϕ0). Let φ ∈ E1

0 and ρ : [0,∞) 3 t 7→ E1
0

be a locally finite energy geodesic ray initiating from φ. We can assume ρ(t) has unit
speed. Then as long as d1(ρ(t), ϕ0) ≥ 1, one has

K(ρ(t))−K(φ)

t
≥ εd1(ρ(t), ϕ0) +K(ϕ0)−K(φ)

t

≥ εd1(ρ(t), φ)− εd1(φ, ϕ0) +K(ϕ0)−K(φ)

t

= ε− εd1(φ, ϕ0)−K(ϕ0) +K(φ)

t
.

(5.8)

This implies

lim
t→∞

inf
K(ρ(t))−K(φ)

t
≥ ε.

In particular this means U([ρ]) ≥ ε. Thus, (M, [ω0]) is geodesic stable.

Now we want to show the converse. We assume (M, [ω0]) is geodesic stable and we
want to prove that there is a cscK metric in the Kähler class. Suppose otherwise, then
according to Theorem 5.1 with β = 0, point (3), we know that there exists a locally
finite energy geodesic ray ρ : [0,∞) 3 t 7→ E1

0 , initiating from φ ∈ E1
0 with K(φ) < ∞,

such that the K-energy is non-increasing. It is clear that for this geodesic ray, one has
U([ρ]) ≤ 0. This contradicts the assumption of geodesic stability at ϕ. This finishes the
proof. �
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