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Abstract. We study the deformed Hermitian-Yang-Mills (dHYM) equa-
tion, which is mirror to the special Lagrangian equation, from the vari-
ational point of view via an infinite dimensional GIT problem mirror
to Thomas’ GIT picture for special Lagrangians. This gives rise to
infinite dimensional manifold H mirror to Solomon’s space of positive
Lagrangians. In the hypercritical phase case we prove the existence of
smooth approximate geodesics, and weak geodesics with C1,α regularity.
This is accomplished by proving sharp with respect to scale estimates
for the Lagrangian phase operator on collapsing manifolds with bound-
ary. We apply these results to the infinite dimensional GIT problem
for deformed Hermitian-Yang-Mills. We associate algebraic invariants
to certain birational models of X×∆, where ∆ ⊂ C is a disk. Using the
existence of regular weak geodesics we prove that these invariants give
rise to obstructions to the existence of solutions to the dHYM equation.
Furthermore, we show that these invariants fit into a stability framework
closely related to Bridgeland stability. Finally, we use a Fourier-Mukai
transform on toric Kähler manifolds to describe degenerations of La-
grangian sections of SYZ torus fibrations of Landau-Ginzburg models
(Y,W ). We speculate on the resulting algebraic invariants, and dis-
cuss the implications for relating Bridgeland stability to the existence
of special Lagrangian sections of (Y,W ).

1. Introduction

Mirror symmetry predicts that Calabi-Yau manifolds come in pairs (X,Ω, ω),
(X̌, Ω̌, ω̌) with the property that symplectic geometry on X̌ is related to com-
plex geometry on X and vice versa. The physical mechanism underlying
mirror symmetry is a duality between type IIA string theory compactified
on X and type IIB string theory compactified on X̌. Within this duality
there is a correspondence between the D-branes in each theory; we refer
the reader to [5] for a nice discussion of D-branes on Calabi-Yau manifolds.
In both the type IIA and type IIB theory the physically realistic D-branes
are minimizers of some energy functional, and are referred to as BPS, or
supersymmetric D-branes.

On the A-model the D-branes, often referred to as A-branes, are known to
be Lagrangian submanifolds of (X̌, Ω̌, ω̌) equipped with flat unitary bundles
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(as well as certain extended versions of these). On the B-model, the com-
plex geometric side, D-branes, often called B-branes, can be thought of as
holomorphic vector bundles, possibly supported on analytic subsets V ⊂ X.
In this language Kontsevich’s homological mirror symmetry proposal [69]
predicts a correspondence between A-branes on X̌, and B-branes on X

DbFuk(X̌) ∼ DbCoh(X).

where the left hand side is the derived Fukaya category of X̌. Mirror sym-
metry furthermore predicts a duality between the supersymmetric branes
on each side of the correspondence. On the symplectic side, the supersym-
metric A-branes are known to be special Lagrangian (sLag) submanifolds
of X̌, together flat unitary bundles. On the B-model, however, the super-
symmetry constraint is more mysterious. Around 2000, three separate ap-
proaches to understanding supersymmetric B-branes were introduced. One
approach, by Mariño-Minasian-Moore-Strominger [76], used the Dirac-Born-
Infeld+Chern-Simons functional to compute the equations of motion in the
case of abelian gauge group. A second approach by Leung-Yau-Zaslow [73]
was to use the Strominger-Yau-Zaslow [95] proposal, and a Fourier-Mukai
transform, to compute the mirror object to a special Lagrangian in the set-
ting of semi-flat mirror symmetry [71]. Each of these found that the equa-
tions of motion corresponded to a holomorphic line bundle L → X with a
hermitian metric h solving the equation

(1.1)
Im(e−

√
−1θ̂(ω + F (h))n) = 0

Re(e−
√
−1θ̂(ω + F (h))n) > 0

where θ̂ is a constant. This equation became known as the deformed Hermitian-
Yang-Mills (dHYM) equation. A third approach, initiated by Douglas-Fiol-
Römelsberger [46] (see also [45]), was inspired by the Donaldson-Uhlenbeck-
Yau theorem [42, 101]. They bypassed the equations of motion for BPS B-
branes, and instead proposed an algebro-geometric notion called Π-stability.
Their proposal can then be summarized as “an object in DbCoh(X) is a su-
persymmetric B-brane if it is Π-stable”. This idea was taken up by Bridge-
land [16] who developed the notion of categorical stability conditions in
great generality. Since Bridgeland’s pioneering work the subject of stability
conditions on categories, and particularly DbCoh(X) and DbFuk(X̌), has
generated a tremendous amount of interest. However, despite a great deal
of progress (see, for example [3, 7, 8, 75] and the references therein), there
is no general construction of a Bridgeland stability condition on DbCoh(X)
for X Calabi-Yau of dimension larger than 2 [3].

The goal of this paper is to begin to unite these three approaches to su-
persymmetric B-branes. Indeed, the correspondence between the algebraic
notion of supersymmetric A/B- branes, and the geometric notion of super-
symmetric A/B-branes has played an important role in the development of
mirror symmetry. Even before the introduction of Π-stability, Thomas [97]
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and Thomas-Yau [98] proposed a notion of stability for Lagrangians and
predicted that the Lagrangian L could be deformed by Hamiltonian defor-
mations to a special Lagrangian if and only if L is stable. This proposal was
based in part on a moment map formalism for special Lagrangians discovered
by Thomas [97], and in part on the analogy with the Donaldson-Uhlenbeck-
Yau theorem, motivated by mirror symmetry. More recently Joyce [68] pro-
posed a very broad update to the Thomas-Yau conjecture in the framework
of Bridgeland stability and the mean curvature flow. Broadly, the folklore
conjecture is

Conjecture 1.1 (Folklore). There is a Bridgeland stability condition on
DbFuk(X̌) (resp. DbCoh(X)) so that the isomorphism class of a Lagrangian
L (resp. holomorphic vector bundle E) is stable if and only if it contains a
special Lagrangian (resp. E admits a metric solving the deformed Hermitian-
Yang-Mills equation).

This conjecture is really two conjectures, the first involving the existence
of a Bridgeland stability condition, and the second relating Bridgeland sta-
bility and the existence of a solution to a certain nonlinear PDE.

On either side of this conjecture there has been little progress. Haiden-
Katzarkov-Kontsevich-Pandit showed that gradient flows of metrics on semi-
stable quiver representations [59], and the Yang-Mills flow on a holomorphic
bundle over a Riemann surface [60], give rise to canonically defined filtra-
tions associated with Bridgeland stability conditions, giving evidence for
Conjecture 1.1. On the symplectic side Joyce [68] has outlined a program
for approaching to Conjecture 1.1, based on understanding the singularity
formation and surgery of the Lagrangian mean curvature flow (LMCF). We
remark that Neves [81] has shown that finite time singularities of the LMCF
are essentially unavoidable, and hence the problem of understanding the
long-time behavior of the LMCF is extremely difficult. At the same time,
Imagi-Joyce-Oliveira dos Santos [65] have shown how ideas from Floer the-
ory and the Fukaya category can be used to study the singularity formation
of the LMCF.

On the holomorphic side, the deformed Hermitian-Yang-Mills equation
has recently been studied by Jacob-Yau [67] and the authors and Jacob [29].
In [29] a necessary and sufficient analytic condition was given for the exis-
tence of solutions to dHYM in the critical phase case. It was observed that
these conditions gave rise to algebraic obstructions of “Bridgeland type”.
However, outside of this result, and for the case of higher rank vector bun-
dles, essentially nothing is known.

This paper takes up the above folklore conjecture, primarily on the B-
model. In particular, we develop the algebro-geometric obstruction theory
for the deformed Hermitian-Yang-Mills equation on a line bundle in the hy-
percritical phase case. We compare our results with the “expected” Bridge-
land stability condition, and use mirror symmetry to deduce similar results
for Landau-Ginzburg models mirror to toric Fano varieties.
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Our approach to this problem is to study the mirror of an infinite di-
mensional GIT framework for special Lagrangians due to Thomas [97], and
Solomon [93]. To put things in context, let us briefly recall the basic idea of
finite dimensional GIT; we refer the reader to [99, 79] for a thorough discus-
sion. Suppose (X,ω) is a projective Kähler manifold acted on by a group G,
which is the complexification of compact real Lie group K, acting on (X,ω)
by symplectomorphisms. By the Hilbert-Mumford criterion, a point p with
finite stabilizer is GIT stable if and only if the orbit of p is closed under all
1-parameter subgroups, which we think of as infinite geodesics in G. The
Kempf-Ness theorem makes the the connection with symplectic geometry
by associating to G, p a certain K-invariant function fp, called the Kempf-
Ness functional, constructed out of the moment map for the K-action. The
Kempf-Ness functional has the following two properties: (i) fp is convex
along all one-parameter subgroups of G/K, and (ii) p is stable if and only
if fp is proper on G/K. Since fp is convex, the properness can be checked
by evaluating the limit slope of fp along infinite geodesic rays in G/K, a
calculation which gives rise to algebraic invariants of the G-action whose
sign determine the stability of p. Furthermore, the construction of fp shows
that p is stable if and only if the K-orbit of p contains a zero of the moment
map, which is the usual statement of the Kempf-Ness theorem.

On the A-model, [93] Solomon introduces a Riemannian structure, and
geodesic equation on the infinite dimensional space of positive (or almost
calibrated) Lagrangians. These geodesics are the one parameter subgroups
in the complexified symplectomorphism group in Thomas’ infinite dimen-
sional GIT picture [97, 98]. Solomon also introduces two functionals C,J ,
the latter of which is the the Kempf-Ness functional of the GIT problem,
and is therefore convex along putative smooth geodesics.

The existence problem for geodesics in the space of positive Lagrangians
has recently generated a great deal of interest. Solomon-Yuval [94] demon-
strated the existence of smooth geodesics between positive Lagrangians in
Milnor fibers. Rubinstein-Solomon [87] studied the existence of geodesics
between graphical positive Lagrangians. They prove that if f0, f1 are two
functions defined on a smoothly bounded domain D ⊂ Rn so that

x 7−→ (x,∇fi(x)) i = 0, 1

define positive Lagrangians in R2n = Cn, then there exists a continuous func-
tion F (x, t) having F (x, 0) = f0, F (x, 1) = f1 and which solves Solomon’s
geodesic equation in the weak sense of Harvey-Lawson’s Dirichlet duality
theory. These weak geodesics were described in terms of envelopes in the hy-
percritical phase case by Darvas-Rubinstein [35]. The Rubinstein-Solomon
approach was extended to compact Riemannian manifolds by Dellatorre
[37], and to the deformed Hermitian-Yang-Mills setting, as developed here,
by Jacob [66].

In this paper we will develop the mirror of the Thomas-Solomon infinite
dimensional GIT picture for the deformed Hermitian-Yang-Mills equation.
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We describe a infinite dimensional symplectic manifold, admitting an action
by a group of symplectomorphisms, together with a space H ⊂ C∞(X,R)
and a Riemannian structure on H, which can be thought of as analogous to
G/K in the finite dimensional GIT. We compute the geodesic equation, and
introduce a notion of ε-geodesics, which solve an approximate version of the
geodesic equation. We also introduce the complexified Calabi-Yau functional
(see Definition 2.13), and extract from this functional analogues of the C,
and J functionals, as well as a C-valued functional Z. The J functional
is the Kempf-Ness functional for the GIT problem; it has critical points at
solutions of the dHYM equation, and is convex along smooth geodesics. A
fundamental issue in the analogy with finite dimensional GIT is that smooth
geodesics need not exist. Thus, our main analytic contribution is to prove,
in the hypercritical phase case, the existence of weak geodesics connecting
points in H, with C1,α regularity. With this much regularity, we can show
that the functionals J , C, Z are well-defined and we prove that they are
convex/concave along these generalized geodesics.

In order to study the existence of regular geodesics we study the manifolds

(Xε, ω̂) =
(
X × {t ∈ C : εe−1 < |t| < ε}, ω := π∗Xω +

√
−1dt ∧ dt̄

)
and solutions of the specified Lagrangian phase equation

(1.2) Θω̂(π
∗
Xα+

√
−1DDφ) :=

n∑
i=0

arctan(µi) = h

on Xε. Here µ0, . . . , µn are eigenvalues of π∗Xα+
√
−1DDφ with respect to

ω̂. We prove sharp (with respect to scale) estimates for this equation. As a
PDE question, this seems to be of independent interest. Namely, suppose we
have a domain of the form M × [−ε, ε] ⊂M ×R, where M is a Riemannian
manifold, possible with boundary. Suppose φ solves a fully non-linear elliptic
equation F (D2φ) = 0. By the mean-value theorem, the gradient of ∇φ
is of order 1

ε in the thin directions, and by the comparison principle we
expect D2φ ≈ ε−2 in directions parallel to the R-factor. The question
then is whether this lack of regularity in the “thin” directions propagates to
directions tangent to M . In the present setting we prove that the lack of
regularity does not propagate.

Theorem 1.2. Suppose φ(x, t) is a smooth S1 invariant function on (Xε, ω̂)
solving (1.2), with h : Xε → ((n−1)π2 , (n+1)π2 ), and with φ

∣∣
∂Xε

∈ H. Then
there is a constant C independent of ε so that following estimates hold

oscXεφ+ |∇Xφ|ω̂ + |∇X∇Xφ|ω̂ ⩽ C

|∇t̄∇Xφ|ω̂ + |∇tφ|ω̂ ⩽ C

ε

|∇t̄∇tφ|ω̂ ⩽ C

ε2
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The proof of these estimates depends on exploiting the geometry of (Xε, ω̂)
together with rather subtle concavity properties of the Lagrangian phase
operator. Altogether, these estimates imply the existence of smooth ε-
geodesics connecting any two potentials in H, and the existence of weak
geodesics in H with C1,α regularity for any α ∈ (0, 1). We show that these
weak geodesics have enough regularity to define the complexified Calabi-
Yau functional, and prove that C is affine, J is convex, and the real and
imaginary parts of Z are concave along these weak geodesics. Furthermore,
using the existence result for geodesics we show that H has a well-defined
metric structure.

With these results in hand, we are in the setting of an infinite dimensional
GIT problem with geodesics playing the role of one-parameter subgroups.
Using algebraic geometry we construct model infinite rays, analogous to
one-parameter subgroups in the space H, and evaluate the limit slope of
the Calabi-Yau functional along these model curves in terms of algebraic
data. Using the existence of regular geodesics these model curves give rise
to algebro-geometric obstructions to the existence of solutions to dHYM.
For example, we prove that in the hypercritical phase case (see Section 2)
we have

Theorem 1.3. Let J1 ⊂ J2 · · · ⊂ Jr−1 ⊂ Jr = OX be a sequence of ideal
sheaves, and define

I = J1 + t · J2 + · · · tr−1 · Jr−1 + (tr) ⊂ OX ⊗ C[t].
Let µ : X → X ×∆ be a log resolution of I, so that µ−1I = OX (−E) for an
s.n.c divisor E. If [α] admits a solution of the deformed Hermitian-Yang-
Mills equation then

E.Im

[(
µ∗[ω] +

√
−1 (µ∗[α]− δE)

)n
(ω +

√
−1α)n.[X]

]
⩾ 0

for all δ > 0 sufficiently small. Moreover, equality holds if and only of
I = (tℓ) for some 0 < ℓ ⩽ r.

These obstructions, fit into a framework which is closely related to Bridge-
land stability [16]. Namely, for a holomorphic line bundle we consider the
central charge

ZX(L) = −
∫
X
e−

√
−1ωch(L).

We show that if L has a solution of the deformed Hermitian-Yang-Mills
equation with hypercritical phase, then ZX(L) lies in the upper half-plane.
Furthermore, we show that for any V ⊂ X irreducible analytic subset we
have that

ZV (L) = −
∫
V
e−

√
−1ωch(L)

lies in the upper half-plane and ArgZV (L) > ArgZX(L). We furthermore
explain the role of Chern number inequalities and their the relation to the
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phase lifting problem and the notion of a slicing of DbCoh(X). By the
Hilbert-Mumford criterion, it is therefore natural to think of Bridgeland
stability for a holomorphic line bundle L as formally predicting the (infinite
dimensional) GIT stability of L.

Finally, we apply SYZ mirror symmetry, and the Fourier-Mukai transform
to study the existence of special Lagrangians on Landau-Ginzburg models
mirror to toric Kähler manifolds. We explain how our results imply similar
results for Lagrangians, including the existence geodesics in the space of pos-
itive Lagrangians, and the construction of certain algebraic degenerations.
We speculate on the relationship with Bridgeland stability conditions on the
derived Fukaya category.

As suggested by finite dimensional GIT, we expect this theory will have
applications in proving the existence of solutions to dHYM. In the case
of Kähler-Einstein metrics, Berman-Boucksom-Jonsson [10] recently gave a
variational proof of the Chen-Donaldson-Sun theorem [23, 24, 25] establish-
ing the existence of Kähler-Einstein metrics on K-stable Fano manifolds.
Some of the key ingredients in the approach of [10] are: (i) the existence
of C1,α geodesics in the space of Kähler metrics [21]. (ii) the relationship
between existence of Kähler-Einstein metrics and the properness of a certain
Kempf-Ness functional D (in an appropriate sense) [36], using the metric
structure on the space of Kähler metrics. (iii) the extension of D to a func-
tion on non-Archimedean metrics, which allows one to study the limit slopes
along infinite geodesic rays [10, 14, 15]. One could hope for a similar ap-
proach to proving the existence of solutions to dHYM, using the existence of
regular geodesics we establish, together with the convexity/concavity prop-
erties of the functionals J and Z. However, for the dHYM equation there are
significant new difficulties related to the phase lifting problem, and related
Chern number inequalities; see Section 8.

The layout of this paper is as follows. In Section 2 we explain the mirror of
Thomas’ moment map framework and the Thomas-Solomon GIT/variational
framework. We compute the geodesic equation, introduce ε-geodesics and
study the complexified Calabi-Yau functional. We also outline the approach
to existence of regular geodesic. In Section 3 we discuss the properties of
the Lagrangian phase operator, and construct barrier functions which play
an important role in later estimates. In Section 4 we prove a priori C1 es-
timates for solutions to (1.2). In Section 5 we prove interior C2 estimates
for solutions of (1.2). We also explain how our estimates can be applied to
give a streamlined proof of the existence of geodesics in the space of Kähler
metrics [21]. In Section 6 we prove boundary C2 estimates, and combine
our work to prove the existence of smooth ε-geodesics, C1,α weak geodesics,
and prove various convexity statements for relevant functionals along weak
geodesics. In Section 7 we construct model curves from algebraic geome-
try, and use weak geodesics to produce alebro-geometric obstructions to the
existence of solutions to dHYM. In Section 8 we explain how the results in
Section 7 can be put into a coherent framework closely related to Bridgeland



8 T. C. COLLINS AND S.-T YAU

stability, including the role of Chern number inequalities in the theory. We
also make some conjectures about relations between algebraic invariants,
the existence of solutions to dHYM, and the non-emptiness of H. Finally,
in Section 9 we use the SYZ proposal to translate our theorem from toric
Kähler manifolds to results about degenerations of Lagrangian sections in
Landau-Ginzburg models, and relations with stability conditions on the de-
rived Fukaya category.

Acknowledgements: T.C.C would like to thank A. Jacob, J. Ross, and
B. Berndtsson for many helpful conversations, as well as J. Solomon, A. Han-
lon, and P. Seidel for helpful conversations concerning special Lagrangians
and the Fukaya category. T.C.C is grateful to the European Research Coun-
cil, and the Knut and Alice Wallenberg Foundation who supported a visit-
ing semester at Chalmers University, where this work was initiated. T.C.C
would also like to thank Robert Berman, Daniel Persson, David Witt Nys-
tröm and the rest of the complex geometry group at Chalmers for providing
a stimulating research environment.

2. The Variational Framework, Geodesics, and Approximate
Geodesics

Let (X,ω) be a compact Kähler manifold, and fix a class [α] ∈ H1,1(X,R).
By the ∂∂-lemma, the (1, 1) forms α′ lying in the cohomology class [α]
are parametrized by functions α′ = α +

√
−1∂∂φ. Consider the integral∫

X(ω +
√
−1α)n ∈ C. We will always assume that this integral lies in C∗.

Then we define a unit complex number e
√
−1θ̂ depending only on [ω], [α] by∫

X
(ω +

√
−1α)n ∈ R>0e

√
−1θ̂.

Motivated by mirror symmetry we introduce the deformed Hermitian-Yang-
Mills (dHYM) equation, which seeks a function φ ∈ C∞(X,R) so that αφ :=

α+
√
−1∂∂φ satisfies

Im
(
e−

√
−1θ̂(ω +

√
−1αφ)

n
)
= 0.

We refer the reader to [32] for a brief introduction to the dHYM equa-
tion. Note that with our present convention, if α = c1(L), then we are
studying (1.1) on L−1. This convention plays no role, apart from avoiding
an abundance of minus signs, until Section 9. To write the dHYM equa-
tion more concretely, fix a point p ∈ X, and local holomorphic coordinates
(z1, . . . , zn) near p so that ω(p)j̄i = δj̄i, and (αφ)j̄i = λiδj̄i. Then λi are the
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eigenvalues of the Hermitian endomorphism ω−1αφ, and

(ω +
√
−1αφ)

n

ωn
=

n∏
i=1

(1 +
√
−1λi)

= r(αφ)e
√
−1Θω(αφ)

where

(2.1) r(αφ) =

√√√√( n∏
i=1

(1 + λ2i )

)
, Θω(αφ) =

n∑
i=1

arctan(λi).

The function r(αφ) is called the radius function, while Θω(αφ) is called the
Lagrangian phase. The deformed Hermitian-Yang-Mills equation seeks αφ
so that

n∑
i=1

arctan(λi) = θ̂ mod 2π.

Note that if there is a solution of the deformed Hermitian-Yang-Mills equa-
tion then there is a well-defined lift of θ̂ to R. Furthermore, with this
formulation it is clear that the dHYM equation is the complex analogue
of the special Lagrangian graph equation. The following lemma is due to
Jacob-Yau [67].

Lemma 2.1 (Jacob-Yau [67]). Solutions of the deformed Hermitian-Yang-
Mills equation minimize the functional

C∞(X,R)φ −→ V (φ) :=

∫
X
r(αφ)ω

n.

If φ is a solution of the deformed Hermitian-Yang-Mills equation then

0 < V (φ) =

∣∣∣∣ ∫
X
(ω +

√
−1α)n

∣∣∣∣.
We define the Lagrangian phase operator by

(2.2) Θω(αφ) =
n∑
i=1

arctan(λi).

In our previous work with Jacob [29] we gave necessary and sufficient an-
alytic conditions for the existence of solutions to the deformed Hermitian-
Yang-Mills equation. We proved

Theorem 2.2 (Collins-Jacob-Yau, [29]). For θ̂ > (n − 2)π2 , there exists a
function φ satisfying

Θω(αφ) = θ̂

if and only if there exists a function φ : X → R so that Θω(αφ) > (n− 2)π2 ,
and, for all 1 ⩽ j ⩽ n

(2.3)
∑
i ̸=j

arctan(λi) > θ̂ − π

2
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where λi are the eigenvalues of ω−1αφ.

A primary motivation of this paper is to understand the implications of
existence of solutions to the dHYM equation with the goal of replacing (2.3)
with an algebro-geometric condition. In the best case scenario this could
give a checkable criterion equivalent to the existence of solutions to dHYM.

Let us briefly discuss the moment map picture, though our primary in-
terest will be the variational framework of the associated GIT problem. Let
L → (X,ω) be a holomorphic line bundle, and fix a hermitian metric h on
L, which induces a unitary structure. We consider the affine space A1,1 of
h-unitary connections inducing integrable complex structures on L. Since
L is a line bundle, this is just the same as the set of unitary connections
∇ = d+A such that ∂A0,1 = 0. The group G of gauge transformations acts
on A1,1 by in the standard way. If g = eφ is a gauge transformation for
some φ : X → C, then

A0,1 7→ A0,1 + ∂φ A1,0 7→ A1,0 − ∂φ.

We can identify TAA1,1 = Ker{∂ :
∧0,1 →

∧0,2}, and hence define a hermit-
ian inner product by

TAA1,1 ∋ a, b 7−→ ⟨a, b⟩A := −
√
−1

∫
X
a ∧ b̄ ∧ Re

(
e−

√
−1θ̂(ω − F (A))n−1

)
.

In general, this inner product is degenerate, but one can check that it is non-
degenerate in an open neighbourhood of a solution to the dHYM equation.
The natural complex structure on TAA1,1 acts by a 7→

√
−1a, and we get a

symplectic form on A1,1 by taking

ΩA(a, b) := Im (⟨a, b⟩A) .

Let GU be the Lie group of unitary gauge transformations of (L, h), and iden-
tify Lie(GU ) = C∞(X,

√
−1R). Let

√
−1φ ∈ Lie(GU ). Identify Lie(GU )∗

with the space of imaginary 2n-forms on X by the non-degenerate pairing

(
√
−1φ,

√
−1β) 7−→

∫
X
φβ.

The function
√
−1φ generates the vector field

√
−1 ∂φ on A. For any b ∈

TAA1,1 we consider

⟨
√
−1 ∂φ, b⟩A =

∫
X
∂φ ∧ b̄ ∧ Re

(
e−

√
−1θ̂(ω − F (A))n−1

)
= −

∫
X
φ · ∂b ∧ Re

(
e−

√
−1θ̂(ω − F (A))n−1

)
and so

ΩA(
√
−1 ∂φ, b) =

√
−1

2

∫
X
φ · (∂b− ∂b) ∧ Re

(
e−

√
−1θ̂(ω − F (A))n−1

)
.
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Now, if we consider A0,1 7→ A0,1 + tb, then
d

dt

∣∣∣∣
t=0

F (A+ tb) = −(∂b− ∂b)

and this form is purely imaginary. Therefore
d

dt

∣∣∣∣
t=0

Im
(
e−

√
−1θ̂ (ω − F (A+ tb))n

)
= nIm

(
e−

√
−1θ̂ (ω − F (A))n−1 ∧ (∂b− ∂b)

)
= n(∂b− ∂b) ∧ Re

(
e−

√
−1θ̂ (ω − F (A))n−1

)
.

It follows immediately that the moment map for the GU action is

A 7→ −
√
−1

2n
Im
(
e−

√
−1θ̂(ω − F (A))n

)
,

and hence solutions of dHYM correspond exactly to zeroes of the moment
map. Despite the fact the the symplectic form is degenerate, we can still
hope to use ideas from GIT to study the existence of zeroes of the moment
map.

Infinite dimensional GIT frameworks have appeared in several contexts in
the study of nonlinear PDE on Kähler manifolds, including the study of the
Hermitian-Yang-Mills equation on a compact Kähler manifold [4], certain
nonlinear generalizations thereof [72], and the Kähler-Einstein and constant
scalar curvature equation [43, 44], among others [41]. More recently, the
study of the space of Kähler metrics has drawn a great deal of attention.
Since our setting is formally analogous to this latter topic, let us briefly
recall this framework. Following Donaldson [41], Mabuchi [74] and Semmes
[92], we fix a Kahler class [ω] on X, and consider

HPSH := {φ ∈ C∞(X,R) : ωφ := ω +
√
−1∂∂φ > 0}

The tangent space to HPSH at a function φ is C∞(X,R), and we can intro-
duce a Riemannian metric by

⟨ψ1, ψ2⟩φ =

∫
X
ψ1ψ2ω

n
φ.

This makes HPSH into an infinite dimensional Riemannian manifold. One
can then study the geodesic equation on this manifold, which is equivalent
to the Homogeneous complex Monge-Ampère equation [41, 74, 92]. For
any φ1, φ2 ∈ H one can find a curve φ(t) of potentials for which φ(0) =
φ0, φ(1) = φ1, φ(t) is C1,1 in space and time, satisfies ω +

√
−1∂∂φ(t) ⩾ 0,

and solves the geodesic equation in a weak sense [21] (see also [19, 56, 12,
27, 104] for related work). Furthermore, it is known that φ(t) cannot be
C2 in general [33, 34, 70]. Even without better regularity, the existence of
weak geodesics plays an important role in linking the existence of solutions
to certain nonlinear PDE, including the Kähler-Einstein equation on a Fano
manifold [11, 10], and Donaldson [40] and Chen’s J-equation [22].
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The variational framework studied here is mirror to a variational frame-
work for positive Lagrangians introduced by Solomon [93]. When L is an
ample line bundle, this variational structure can be regarded as interpolating
between the Riemannian structure for the Hermitian-Yang-Mills equation,
and the Donaldson-Mabuchi-Semmes [41, 74, 92] Riemannian structure on
the space of Kähler metrics, as will be discussed below.

Definition 2.3. Define the space

H := {φ ∈ C∞(X,R) : Re(e−
√
−1θ̂(ω +

√
−1αφ)

n) > 0}

A slightly more concrete definition of the space H in terms of the La-
grangian phase operator (2.2) is

Lemma 2.4. The space H can be defined as

H := {φ ∈ C∞(X,R) : Θω(αφ) ∈ (φ̂− π

2
, φ̂+

π

2
) mod 2π}.

Remark 2.5. It is clear that if one changes Kahler forms within the class
[ω], then the space H will change as well. Thus we should really be writing
Hω to indicate the dependence on ω, but we will refrain from doing so and
hope this causes no confusion.

Recall that the angle θ̂ is a priori only defined modulo 2π.

Lemma 2.6. Assume that H ̸= ∅. Then there exists a unique lift of θ̂ to R.

This lemma is an application of the maximum principle; we refer the
reader to [67, 32] for a proof.

It is a simple consequence of the Schur-Horn Theorem [64] and Lemma 3.1
(7) that the space H is convex when |θ̂| ⩾ (n− 1)π2 . However, in the lower
branches it is not even clear that H is connected. For our purposes this will
not be a significant issue, since H is embedded in the vector space C∞(X,R).

There is a natural Riemannian structure on H defined in the following
way. The tangent space at a point φ ∈ H is TφH = C∞(X,R) and we define
a non-trivial Riemannian structure by

⟨ψ1, ψ2⟩φ =

∫
X
ψ1ψ2Re

(
e−

√
−1θ̂(ω +

√
−1αφ)

n
)
.

The Riemannian metric gives rise to a notion of geodesics.

Proposition 2.7. A smooth curve φ(t) ∈ H with φ(0) = φ0, φ(1) = φ1 is
a geodesic if it solves the equation
(2.4)
φ̈Re

(
e−

√
−1θ̂(ω +

√
−1αφ)

n
)
+n

√
−1∂φ̇∧∂φ̇∧Im

(
e−

√
−1θ̂(ω +

√
−1αφ)

n−1
)
= 0

Proof. Let φ(t) be a curve in H with constant speed. Suppose that φ(t, s)
is surface in H such that φ(0, s) = φ0, φ(1, s) = φ1, and φ(t, 0) = φ(t).
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We may write φ(t, s) = φ(t) + sψ(t, s) with ψ(0, s) = ψ(1, s) = 0. We will
compute the variation of arc-length around φ(t). The length is

L(s, t) =

∫ 1

0
dt

√∫
X
(φ̇)2Re

(
e−

√
−1θ̂(ω +

√
−1αφ)n

)
Taking a derivative gives
d

ds

∣∣∣∣
s=0

L =

∫ 1

0
dt

1

∥φ̇∥

∫
X
ψ̇φ̇Re

(
e−

√
−1θ̂(ω +

√
−1αφ)

n
)

+

∫ 1

0

1

2∥φ̇∥

∫
X
(φ̇)2Re

(
n
√
−1e−

√
−1θ̂(ω +

√
−1αφ)

n−1 ∧
√
−1∂∂ψ

)
Integration by parts on the second term yields
(2.5)
d

ds

∣∣∣∣
s=0

L =

∫ 1

0
dt

1

∥φ̇∥

∫
X
ψ̇φ̇Re

(
e−

√
−1θ̂(ω +

√
−1αφ)

n
)

−
∫ 1

0
dt

n

∥φ̇∥

∫
X
ψ
√
−1∂φ̇ ∧ ∂φ̇ ∧ Im

(
e−

√
−1θ̂(ω +

√
−1αφ)

n−1
)

−
∫ 1

0
dt

n

∥φ̇∥

∫
X
ψφ̇Im

(
e−

√
−1θ̂(ω +

√
−1αφ)

n−1 ∧
√
−1∂∂φ̇

)
where we also used that

√
−1∂∂ is a real operator, and Re(

√
−1z) = −Im(z).

We now integrate by parts in time on the first term.
(2.6)∫ 1

0
dt

1

∥φ̇∥

∫
X
ψ̇φ̇Re

(
e−

√
−1θ̂(ω +

√
−1αφ)

n
)

=

∫ 1

0
dt
d

dt

(
1

∥φ̇∥

∫
X
ψφ̇Re

(
e−

√
−1θ̂(ω +

√
−1αφ)

n
))

−
∫ 1

0
dt

1

∥φ̇∥

∫
X
ψφ̈Re

(
e−

√
−1θ̂(ω +

√
−1αφ)

n
)

−
∫ 1

0
dt

1

∥φ̇∥

∫
X
ψφ̇Re

(
n
√
−1e−

√
−1θ̂(ω +

√
−1αφ)

n−1 ∧
√
−1∂∂φ̇

)
The last term from (2.6) cancels the last term from (2.5). Furthermore,
since ψ(0, s) = ψ(1, s) = 0 the first integral vanishes. Thus
d

ds

∣∣∣∣
s=0

L = −
∫ 1

0
dt

1

∥φ̇∥

∫
X
ψφ̈Re

(
e−

√
−1θ̂(ω +

√
−1αφ)

n
)

−
∫ 1

0
dt

n

∥φ̇∥

∫
X
ψ
√
−1∂φ̇ ∧ ∂φ̇ ∧ Im

(
e−

√
−1θ̂(ω +

√
−1αφ)

n−1
)

which is what we wanted to prove. □

As in the case of geodesics in the space of Kähler metrics, we can re-
formulate this equation as a degenerate elliptic equation over the product
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manifold
X := X ×A = X × {e−1 < |t| < 1}

where now t is a coordinate on C. We denote the projections for X to X,A
by πX , πA respectively, and let

√
−1DD denote the ∂∂ operator on the n+1

dimensional manifold X , and
√
−1∂∂ denote the ∂∂ operator on X.

Lemma 2.8. Suppose φ0, φ1 ∈ H. A solution φ̂(x, s) ∈ H of the geodesic
equation with φ(x, 0) = φ0, φ(x, 1) = φ1 is equivalent to a function φ : X →
R which is S1 invariant (ie. φ(x, t) = φ(x, |t|)) and solving

(2.7) Im
[
e−

√
−1θ̂

(
π∗Xω +

√
−1
(
π∗Xα+

√
−1DDφ

))n+1
]
= 0

Re
[
e−

√
−1θ̂

(
ω +

√
−1
(
α+

√
−1∂∂φ

))n]
> 0

and with φ(x, 1) = φ0(x), φ(x, e
−1) = φ1.

Proof. Let s = − log |t|, and set φ(x, t) = φ̂(x,− log |t|), and let π = πX for
simplicity. The second line just expresses that φ(x, t) = φ̂(x, s) ∈ H, so it
suffices to check (2.7) is equivalent to (2.4). For simplicity denote ˙̂φ = ∂sφ̂,
and similarly for higher derivatives. Then

∂tφ = −1

t
˙̂φ, ∂t̄φ = −1

t̄
˙̂φ, ∂t∂t̄φ =

1

|t|2
¨̂φ

Now it is a matter of linear algebra. We expand(
π∗ω +

√
−1
(
π∗α+

√
−1DDφ

))n+1

=
√
−1(n+ 1)

(
π∗ω +

√
−1(π∗(αφ̂)

)n ∧√
−1∂t∂tφ

− n(n+ 1)

2
(π∗ω +

√
−1π∗(αφ̂))

n−1 ∧ (∂t∂t̄φ+ ∂X∂t̄φ+ ∂t∂Xφ)
2

The third line becomes
− n(n+ 1)∂X∂t̄φ ∧ ∂t∂Xφ ∧ (π∗ω +

√
−1π∗(αφ̂))

n−1

= n(n+ 1)∂t̄∂Xφ ∧ ∂t∂Xφ ∧ (π∗ω +
√
−1π∗(αφ̂))

n−1

After some straightforward algebra we get
(n+ 1)

√
−1dt ∧ dt̄

|t|2
∧
(
¨̂φ
√
−1π∗(ω +

√
−1αφ̂)

n + n
√
−1∂ ˙̂φ ∧ ∂ ˙̂φ ∧ (π∗(ω +

√
−1αφ̂))

n−1
)

Multiplying by e−
√
−1θ̂ and taking the imaginary part yields equivalence

between the geodesic equation and (2.7). □
Equation (2.7) is a degenerate equation, and hence the existence and reg-

ularity of solutions is not guaranteed. In fact, following work of Rubinstein-
Solomon [87], Jacob [66] showed that (2.7) is a degenerate elliptic equation
which fits the Dirichlet duality theory of Harvey-Lawson [62]. Let us briefly
recall how this is done. On X define metrics
(2.8) ω̂ε := π∗Xω + ε2

√
−1dt ∧ dt̄.

Then,
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Definition 2.9. The (space-time lifted) degenerate Lagrangian phase oper-
ator is defined by

Θ̃ω(π
∗
Xα+

√
−1DDφ) = lim

ε→0
Θω̂ε(π

∗
Xα+

√
−1DDφ).

As shown in [87], the operator Θ̃ω(·) defines a degenerate elliptic operator,
and the geodesic equation can be rewritten as

(2.9) Θ̃ω(αφ) = θ̂

When |θ̂| > (n − 1)π2 , Jacob [66] proves existence of continuous geodesics
building on work of Rubinstein-Solomon [87]. In this context, a continuous
geodesic is a viscosity solution of (2.9), in the sense of Harvey-Lawson [62].

Our approach here is different, necessitated by the need for geodesics
with with better regularity for geometric applications. We will therefore
obtain the existence of regular geodesics as limits of smooth solutions to a
regularized version of (2.7) which is elliptic.

Definition 2.10. Suppose φ0, φ1 ∈ H. An S1 invariant function φ : X → R
is said to be an ε-regularized geodesic in the space H joining φ0 and φ1 if φ
solves
(2.10)

Im
[
e−

√
−1θ̂

(
π∗ω + ε2

√
−1dt ∧ dt̄+

√
−1
(
π∗α+

√
−1DDφ

))n+1
]
= 0

Re
[
e−

√
−1θ̂

(
ω +

√
−1
(
α+

√
−1∂∂φ

))n]
> 0

and with φ(x, 1) = φ0(x), φ(x, e
−1) = φ1. Here, as before,

√
−1DD denotes

the
√
−1∂∂-operator on the n + 1 dimensional manifold X , while

√
−1∂∂

denotes the operator on X

Remark 2.11. To streamline some statements, we will view geodesics as ε-
regularized geodesics with ε = 0. We will also refer to ε-regularized geodesics
as ε-geodesics.

Note that (2.10) is just the deformed Hermitian-Yang-Mills equation on
the manifold with boundary, defined with respect to the degenerating metric
ω̂ε.

Lemma 2.12. If φ(x, t) is an S1 invariant solution of the deformed Hermitian-
Yang-Mills equation on (X , ω̂ε) with θ̂ > (n − 1)π2 , then φ(x, t) is an ε-
geodesic.

Proof. This is almost a tautology, except to show that φ(x, t) ∈ H for all
t ∈ A. That is, we need to show that

n
π

2
> Θω(α+

√
−1∂∂φ(x, t)) > θ̂ − π

2

for all t. The upper bound is trivial while the lower bound follows from the
Schur-Horn Theorem [64] together with Lemma 3.1 (7). □
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For our purposes, the most important point of this Riemannian structure
is that there exist real valued functions on X which are convex/concave/linear
along geodesics, and which can be used to study the existence problem for
the dHYM equation on X.

Definition 2.13. The complexified Calabi-Yau functional is defined by its
differential on H as follows. Suppose φ ∈ H, and ψ ∈ TφH, then

dCYC(φ)(ψ) =

∫
X
ψ(ω +

√
−1αφ)

n.

Recall that on the space of Kahler metrics in the class [ω] the Calabi-Yau
functional is defined by its differential at a Kähler potential φ by

dCY (φ)(ψ) =

∫
X
ψωnφ.

Hence we can view the functional CYC as the extension of the Calabi-Yau
functional to complexified Kähler forms in H1,1(X,C). The next proposition
shows that CYC integrates to a well-defined function.

Proposition 2.14. The complexified Calabi-Yau functional integrates to a
well-defined functional CYC : H → C. If 0 ∈ H, the we can CYC explicitly
as

1

n+ 1

n∑
j=0

∫
X
φ(ω +

√
−1αφ)

j ∧ (ω +
√
−1α)n−j .

Proof. Since the space H may not be connected, we will instead show that
CYC integrates to a well-defined functional on C∞(X,R), which we then
restrict to H. Fix a base point in H, which, by changing the background
form α we may always take to be 0 ∈ H. Let φ1 ∈ C∞(X,R) be another
potential, and suppose that φ(t), φ̂(t) are two paths in C∞(X,R) such that
φ(0) = φ̂(0) = 0 and φ(1) = φ̂(1) = φ1. Let ψ(t) = φ̂(t)−φ(t), and consider
φ(t) + sψ(t) for s ∈ [0, 1]. We compute
(2.11)
d

ds

∫ 1

0
dt

∫
X
(φ̇+ sψ̇)Im

(
e−

√
−1θ̂(ω +

√
−1αφ+sψ)

n
)

=

∫ 1

0
dt

∫
X
ψ̇Im

(
e−

√
−1θ̂(ω +

√
−1αφ+sψ)

n
)

+

∫ 1

0
dt

∫
X
(φ̇+ sψ̇)Im

(
n
√
−1e−

√
−1θ̂(ω +

√
−1αφ+sψ)

n−1 ∧
√
−1∂∂ψ

)
Since ψ(0) = ψ(1) = 0, we can integrate by parts in t in the first term on
the right hand side of (2.11).∫ 1

0
dt

∫
X
ψ̇Im

(
e−

√
−1θ̂(ω +

√
−1αφ+sψ)

n
)

= −
∫ 1

0
dt

∫
X
ψIm

(
n
√
−1e−

√
−1θ̂(ω +

√
−1αφ+sψ)

n−1 ∧
√
−1∂∂(φ̇+ sψ̇)

)
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Finally, since
√
−1∂∂ is a real operator, integration by parts cancels the

second term on the right in (2.11). To obtain the closed form take φ ∈ H,
and consider the path tφ. Then we have

CYC(φ)(ψ) =

∫ 1

0
dt

∫
X
φ(ω +

√
−1αtφ)

n

Writing ω +
√
−1αtφ = t(ω +

√
−1αφ) + (1− t)(ω +

√
−1α) we get

CYC(φ)(ψ) =

n∑
j=0

∫ 1

0

(
n

j

)
tj(1−t)n−jdt

∫
X
φ(ω+

√
−1αφ)

j∧(ω+
√
−1α)n−j

and the t integral is easily evaluated by induction to be 1
n+1 independent of

j. □
Remark 2.15. The above proof shows that CYC integrates to a well defined
functional on C∞(X,R), which we can then restrict to H. This avoids obvi-
ous technical difficulties in case H has more than one connected component.

Following Solomon [93] we can extract two particularly useful real valued
functions from CYC. Define

J (φ) := −Im
(
e−

√
−1θ̂CYC

)
C(φ) := Re

(
e−

√
−1θ̂CYC

)
.

Clearly the J functional is precisely the Kempf-Ness functional for our in-
finite dimensional GIT problem. We have the following Corollary of Propo-
sition 2.14.

Corollary 2.16. Fix a base point φ0 ∈ H and let φ(t) be a path in C∞(X,R)
connecting φ0 to φ1 ∈ H. Then

J (φ1) := −
∫ 1

0
dt

∫
X
φ̇Im

(
e−

√
−1θ̂(ω +

√
−1αφ(t))

n
)

C(φ1) :=

∫ 1

0
dt

∫
X
φ̇Re

(
e−

√
−1θ̂(ω +

√
−1αφ(t))

n
)

In particular dJ (φ) = 0 at a point φ ∈ H if and only if φ solves the deformed
Hermitian-Yang-Mills equation.

The next proposition makes the connection with infinite dimensional GIT.

Proposition 2.17. Let φ(x, s) be a curve in H, viewed as an S1 invariant
function on X by s = − log(|t|). Then we have the following formula for the
second derivatives of J and C;
(2.12)√
−1∂t∂t̄J (φ(t)) = (πA)∗Re

[
e−

√
−1θ̂

(
π∗Xω +

√
−1
(
π∗Xα+

√
−1DDφ

))n+1
]
.

(2.13)√
−1∂t∂t̄C(φ(t)) = (πA)∗Im

[
e−

√
−1θ̂

(
π∗Xω +

√
−1
(
π∗Xα+

√
−1DDφ

))n+1
]
.
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Furthermore, the functional J is strictly convex along non-trivial, smooth
ε-geodesics for all ε ⩾ 0, and C is affine along ε-geodesics for all ε ⩾ 0.

Proof. Suppose that φ(s) is a smooth ε-regularized geodesic in H. We com-
pute
d2

ds2
CYC(φ(s)) =

∫
X

(
d2

ds2
φ

)(
ω +

√
−1αφ(s)

)n
+

∫
X

(
d

ds
φ

)
n

(
(ω +

√
−1αφ(s))

n−1 ∧
√
−1 ·

√
−1∂∂

(
d

ds
φ

))
=

∫
X

(
d2

ds2
φ

)(
ω +

√
−1αφ(s)

)n
−
√
−1

∫
X
n
√
−1∂

(
d

ds
φ

)
∧ ∂

(
d

ds
φ

)
∧ (ω +

√
−1αφ(s))

n−1

From this expression one can easily check directly using local coordinates
that J is convex along geodesics, and C is affine. However, it is useful to
rewrite this expression on X . Let πX : X → X be the projection to X,
and πA be the projection to annulus. Recall that s = − log(|t|) where t is a
coordinate on C. We can rewrite the above expression using the computation
in Lemma 2.8 as
(2.14)

√
−1∂t∂t̄CYC = −

√
−1(πA)∗

(
π∗Xω +

√
−1
(
π∗Xα+

√
−1DDφ

))n+1

where (πA)∗ denotes the push forward along the fibration X → A (ie. inte-
gration along fibers). Taking the real and imaginary parts of this expression
proves (2.12) and (2.13). In order to establish the convexity of J along
ε-regularized geodesics we need to evaluate the sign of

Re
[
e−

√
−1θ̂

(
π∗Xω

√
−1
(
π∗Xα+

√
−1DDφ

))n+1
]

= Re
[
e−

√
−1θ̂

(
π∗Xω + ε2

√
−1dt ∧ dt̄+

√
−1
(
π∗Xα+

√
−1DDφ

))n+1
]

− (n+ 1)ε2
√
−1dt ∧ dt̄ ∧ π∗XRe

[
e−

√
−1θ̂

(
ω +

√
−1
(
α+

√
−1∂∂φ

))n]
.

In particular, it suffices to show that the fibre integral of the right hand side
is positive. By (2.1) we have

Re
[
e−

√
−1θ̂

(
π∗Xω + ε2

√
−1dt ∧ dt̄+

√
−1
(
π∗Xα+

√
−1DDφ

))n+1
]

= (n+ 1)R(αφ)ε
2
√
−1dt ∧ dt̄ ∧ ωn

where we used that Θω̂ε(αφ) = θ̂ since φ is an ε-geodesic. Here R(αφ)
denotes the radius function computed on (X , ω̂ε). On the other hand, we
have
Re
[
e−

√
−1θ̂

(
ω +

√
−1
(
α+

√
−1∂∂φ

))n]
= r(φ) cos

(
θω(αφ|X)− θ̂

)
ωn

where (αφ)|X denotes the restriction of αφ to TX ⊂ TX , and r(φ) is the
radius function computed on (X,ω). Fix a point (p0, t0) ∈ X , and choose
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holomorphic normal coordinates (w1, . . . , wn) for (X,ω) near p0 so that at
(p0, t0) we have ωj̄i = δj̄i, and (α +

√
−1∂∂φ) = λiδj̄i. Complete this to a

set of coordinates on X by setting w0 = t− t0. We can then write

α+
√
−1DDφ =


a00 a⃗0

†

λ1 · · · 0

a⃗0
... . . . ...
0 · · · λn

 , ĝ−1
ε =

(
1
ε2

0
0 1n

)

where 1n is the n× n identity matrix. By definition r(φ)2 =
∏n
i=1(1 + λ2i ),

while

1 + ĝ−1
ε αφĝ

−1
ε αφ =

(
1 + 1

ε4
a200 +

1
ε2
|⃗a0|2 a00

ε4
a⃗0

† + 1
ε2
a⃗0

†D
a00
ε2
a⃗0 +Da⃗0 1n +

1
ε2
a⃗0a⃗0

† +D2

)
The function R(φ)2 is the determinant of this matrix. Expanding the de-
terminant along the top row we have

R(φ)2 = 1 · det
(
1n +

1

ε
a⃗0a⃗0

† +D2

)
+ det

(
1n + ĝ−1

ε αφĝ
−1
ε αφ

)
where, in the second expression have abusively written

1n =

(
0 0
0 1n

)
.

Clearly 1n + ĝ−1
ε αφĝ

−1
ε αφ is a non-negative definite matrix, and

1n +
1

ε
a⃗0a⃗0

† +D2 ⩾ 1n +D2.

So R(φ) ⩾
√
det(1n +D2) = r(φ) ⩾ r(φ) cos

(
Θω(αφ|X)− θ̂

)
. It follows

that
(πA)∗Re

[
e−

√
−1θ̂

(
π∗Xω +

√
−1
(
π∗Xα+

√
−1DDφ

))n+1
]
⩾ 0

in the sense of currents, and so J is convex along ε-geodesics. Furthermore,
if we have equality in the above computation at some point (p0, t0) then it
is easy to see that we must have a00 = 0 = a⃗0, and θω(αφ|X) − θ̂ = 0. It
follows that if ε > 0, and J is not strictly convex along an ε-geodesics, then
αφ(x, t) = αφ(x, 0) is the constant ε-geodesic emanating from a solution
of dHYM. Finally, when ε = 0 one can either compute directly, or take a
limit as ε → 0 in the above argument (though this does not give the strict
convexity statement).

Next we show that C is affine along ε-geodesics. We need to show that

0 = (πA)∗Im
[
e−

√
−1θ̂

(
π∗Xω +

√
−1
(
π∗Xα+

√
−1DDφ

))n+1
]

= (πA)∗Im
[
e−

√
−1θ̂

(
π∗Xω + ε2

√
−1dt ∧ dt̄+

√
−1
(
π∗Xα+

√
−1DDφ

))n+1
]

− (n+ 1)ε2
√
−1dt ∧ dt̄

∫
X
Im
[
e−

√
−1θ̂

(
ω +

√
−1
(
α+

√
−1∂∂φ

))n]



20 T. C. COLLINS AND S.-T YAU

By the definition of an ε-geodesic the term on the second line is zero, and
the term on the third line vanishes by the definition of θ̂. □

As a consequence of Proposition 2.17 we get a whole S1 worth of inter-
esting functionals on the space H; namely e

√
−1ξCYC. These functionals are

either convex or concave along ε-geodesics depending on the choice of ξ. We
point out one further functional which will be useful later on.

Definition 2.18. Suppose that θ̂ ∈ ((n − 1)π2 , n
π
2 ). We define the Z-

functional for [α], [ω] by

(2.15) Z(φ) = e−
√
−1nπ

2CYC

The variation of Z at φ ∈ H is given by

δZ(φ) =

∫
X
(δφ)Re

(
e−

√
−1nπ

2 (ω +
√
−1αφ)

n
)

+
√
−1

∫
X
(δφ)Im

(
e−

√
−1nπ

2 (ω +
√
−1αφ)

n
)
.

If φ ∈ H then

(2.16) Im
(
e−

√
−1nπ

2 (ω +
√
−1αφ)

n
)
= r(φ) sin

(
θω(αφ)−

nπ

2

)
ωn

is a negative measure. Furthermore, if φ is a solution of the deformed
Hermitian-Yang-Mills equation, then

Re
(
e−

√
−1nπ

2 (ω +
√
−1αφ)

n
)

is a positive measure. Writing Z in terms of C,J and applying Proposi-
tion 2.17 gives

Corollary 2.19. The functionals Re(Z), Im(Z) are concave along smooth
ε-geodesics.

From now on we will restrict to the “hypercritical phase” case,

θ̂ ∈ ((n− 1)
π

2
, n
π

2
).

This is used crucially in the analysis in Sections 3-7. In Section 8 we will
comment briefly on the new difficulties and phenomena in the case of lower
phase. We remark that all our results work just as well under the assumption
that θ̂ ∈ (−nπ2 ,−(n− 1)π2 ).

As in classical GIT, the way to link existence of solutions of the dHYM
equation with algebraic geometry is via the function J , which can be re-
garded as a Kempf-Ness type functional. If there is a solution φ0 of the
deformed Hermitian-Yang-Mills equation in H, then for every infinite length
(smooth) (ε)-geodesic φ(s) emanating from φ0 we must have

0 < lim
s→∞

d

ds
J (φ(s)).
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In special cases we can evaluate the right hand side as an algebraic invariant,
and this gives rise to algebraic obstructions for the existence of solutions to
dHYM. The two main difficulties in executing this approach are the lack of
smooth geodesics, and the evaluation of the limit slope in terms of algebraic
data. In this paper we will essentially completely resolve the first issue when
θ̂ ∈ ((n−1)π2 , n

π
2 ), and we will evaluate the slope of the functional at infinity

in a rather general setting. Furthermore, we will explain how the resulting
invariants can be interpreted as Bridgeland stability type obstructions. In
dimension 3 this will give a relatively complete picture relating the existence
of solutions to dHYM and Bridgeland type stability conditions.

Before explaining the plan of attack, let us make a few formal remarks
about the Riemannian structure and functionals considered here. Suppose
that [α] is a Kähler class, and rescale ω 7→ tω for t > 0. Then we get a family
of infinite dimensional Riemannian manifolds (Ht, gt), and functionals Jt, Ct.
It is not hard to show that, as t → 0, we have θ̂(t) → nπ2 , and so in the
“small radius limit” we have

⟨ψ1, ψ2⟩t ≈
∫
X
ψ1ψ2α

n
φ +O(t)

which is precisely the Donaldson-Mabuchi-Semmes Riemmanian structure
on the space of Kähler metrics in the class [α]. Similarly we have

d(CYC(t))(φ) = (
√
−1)n

∫
X
(δφ)αnφ + t(

√
−1)n−1

∫
X
(δφ)nαn−1

φ ∧ ω +O(t2)

and so Ct approaches the classical Calabi-Yau functional, while Jt approaches
the J functional of Donaldson [40] and Chen [22].

On the other hand, in the “large radius limit”, as t → +∞ we have that
θ̂ → 0, and so

1

tn
⟨ψ1, ψ2⟩t ≈

∫
X
ψ1ψ2ω

n +O(
1

t
)

and so the Riemannian structure converges to the flat metric, while
1

tn
d(CYC(t))(φ) =

∫
X
(δφ)αnφ +

1

t

√
−1

∫
X
(δφ)nωn−1 ∧ αφ +O(

1

t2
).

If [α] = c1(L), the large radius limit yields the Riemannian metric on the
space of hermitian metrics on L, and Jt converges to the Donaldson func-
tional, which is the Kempf-Ness functional for the infinite dimensional GIT
framework related to the Hermitian-Yang-Mills equation (albeit on a line
bundle).

The next four sections of this paper will be devoted to proving the ex-
istence of smooth ε-geodesics, and C1,α geodesic segments in the space H.
Our plan of attack is the following; rescale C by t 7→ εt. The ε-geodesic
equation becomes

(2.17) Im
[
e−

√
−1θ̂

(
π∗Xω +

√
−1dt ∧ dt̄+

√
−1
(
α+

√
−1DDφ

))n]
= 0
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on Xε = X ×Aε := X × {εe−1 ⩽ |t| ⩽ ε}(2.18)

with φ0 = φ

∣∣∣∣
|t|=ε

, φ1 = φ

∣∣∣∣
|t|=e−1ε

(2.19)

where φ0, φ1 ∈ H. In particular, rather than work on a fixed manifold with a
degenerating metric, we choose to work with a non-degenerate metric at the
expense of working on a very “thin” manifold. In order solve the geodesic
equation we need to pass to the limit as ε → 0. This will be possible if we
can prove that the solution of (2.17) satisfies estimates of the form

|∇Xφ|ω̂ ⩽ C, |∇tφ|ω̂ ⩽ C

ε

|∇X∇Xφ|ω̂ ⩽ C, |∇t∇Xφ|ω̂ ⩽ C

ε
, |∇t∇t̄φ| ⩽

C

ε2

where ∇X ,∇X denote the covariant derivative along the fibers of Xε → Aε,
and C is a uniform constant independent of ε. If this is possible, then the
rescaled solutions φ̃ = φ(x, εt) will solve the ε-geodesic equation on (X , ω̂ε)
and be uniformly bounded with respect to the non-degenerate metric (X , ω̂).
We can then pass to the limit to obtain weak solutions of the geodesic
equation with C1,α regularity.

Before beginning the proof we need a few easy lemmas regarding the
geometry of the manifolds (Xε, ω̂). Throughout the paper we will use the
following terminology.

Definition 2.20. A set of space-time adapted coordinates for (Xε, ω̂), αφ
centered at (p0, t0) is the following.

• A set of holomorphic normal coordinates (w1, . . . , wn) for (X,ω)
centered at p0 making ωj̄i = δj̄i, and (αφ)j̄i = λiδj̄j.

• The coordinate w0 = t− t0

Note that space-time adapted coordinates are, in particular, holomorphic
normal coordinates for (Xε, ω̂).

Lemma 2.21. The manifold (Xε, ω̂) satisfies the following properties
(1) The Riemann curvature tensor satisfies R(∂t, ·, ·, ·) = 0. In particu-

lar, in space-time adapted coordinates we have

Rj̄ik̄p = 0

whenever one of i, j, k, p = 0.
(2) The vector fields ∂t, ∂t̄ are parallel.

Proof. The proof is trivial. Pick (p0, t0) and choose space-time adapted
coordinates (w0, . . . , wn) on an open ball B. Both statements follow from
the fact that g0̄0 ≡ 1 on B, g0̄j ≡ 0 if j ̸= 0. □
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3. Analytic Preliminaries

Following the discussion in the previous section, the construction of geo-
desic segments in the space H will rely on solving the deformed Hermitian-
Yang-Mills equation on thin manifolds with boundary. Let M be a (n+1)×
(n + 1) Hermitian matrix. In order to simplify the notation, and to avoid
confusion with the Lagrangian phase operator on X, we will denote

F (M) =

n∑
i=0

arctan(µi)

where µi are the eigenvalues of M . On Xε we will write αφ = α+
√
−1DDφ.

Over the next four sections we will prove a priori estimates for functions
φ : Xε → R such that

(3.1)
F
(
(ω̂)−1(αφ)

)
= h(x, |t|)

with φ0 = φ

∣∣∣∣
|t|=ε

, φ1 = φ

∣∣∣∣
|t|=e−1ε

where h(x, |t|) : Xε → R is some given S1 invariant function, and φ0, φ1 ∈ H.
We remark that, since the boundary data is clearly S1 invariant it follows
from the maximum principle that the solution to (3.1) is S1 invariant as
well. We will impose three extra mild structural conditions that the data
must satisfy:

(C1) There is a constant η1 > 0 such that

(3.2) (n− 1)
π

2
+ η1 ⩽ Θω(αφi) < n

π

2
, i = 0, 1.

(C2) There is a constant η2 > 0 such that

h : Xε → [(n− 1)
π

2
+ η1, (n+ 1)

π

2
− η2]

where h is an S1 invariant function satisfying

(3.3) Θω((αφi)) ⩾ h(x, |t|)− π

2
+ η1

for i = 0, 1.
Condition (C1) is automatic, since the boundar data φi ∈ H. Condition

(C2) is also automatically satisfied when h = θ̂, but in order to use the
method of continuity we need to consider the Lagrangian phase equation
with non-constant right hand side. The estimates will exploit several prop-
erties of F , the most basic of which are its first and second derivatives. It is
straightforward to compute that, at a diagonal matrix M , the linearization
DF , and the Hessian D2F are given by

DF (M)(A) =
∑
i

1

1 + µ2i
Aīi, D2F (M)(A,A) =

n∑
i,j=0

µi + µi
(1 + µ2i )(1 + µ2j )

|Aj̄i|2.
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where A is a Hermitian matrix. The next lemma summarizes the properties
of F we will need.

Lemma 3.1. Suppose µ0 ⩾ µ1 ⩾ · · · ⩾ µn are such that
∑n

i=0 arctan(µi) ⩾
(n− 1)π2 + η1 for some η1 > 0. The following properties hold,

(1) µ0 ⩾ µ1 ⩾ · · · ⩾ µn−1 > 0 and |µn| ⩽ µn−1.
(2) µn ⩽ 0, then µn + µn−1 ⩾ tan(η), and if µn ⩾ 0, then µn−1 ⩾

tan(η12 ).
(3)

∑n
i=0 µi > 0.

(4) µn ⩾ −C(η1).
(5) If

∑n+1
i=0 arctan(µi) ⩽ (n+ 1)π2 − η2 then µn ⩽ C(η2).

(6) If µn < 0, then
∑n

i=0
1
µi
< − tan(η).

(7) For any σ ∈ [(n− 1)π2 , (n+ 1)π2 ), the set
Γσ := {M ∈ Herm(n+ 1) : F (M) ⩾ σ}

is convex with boundary a smooth, convex hypersurface.
(8) There exists a constant A depending on η1 such that the function

µ 7−→ −e−A
∑

i arctan(µi)

is concave on the set Γσ+η1.

Proof. We refer the reader to [105, 102] for properties (1), (3), (4), (6), (7),
while property (8) was observed by the first author with Picard and Wu in
[30]. Property (2) is implicit in [105]. First note that

(n− 1)
π

2
+ arctan(µn−1) + arctan(µn) ⩾

n∑
i=0

arctan(µi) ⩾ (n− 1)
π

2
+ η1

and hence arctan(µn−1) + arctan(µn) ⩾ η1. Now if µn < 0, the sum on the
left hand side of the inequality lies in [η1,

π
2 ), and so by the arctan addition

formula we get

arctan

(
µn−1 + µn
1− µn−1µn

)
⩾ η1

Now 1−µn−1µn > 1, so we obtain µn−1+µn ⩾ tan(η1). On the other hand,
if µn ⩾ 0, then we have 2 arctan(µn−1) ⩾ η1, which is the desired estimate.
Property (5) is trivial. □

Fix the following notation. Let Γn+1 = Rn+1
>0 be the positive orthant, and

let Γ ⊂ Rn+1 be the cone over the set {µ ∈ Rn+1 : F (µ) ⩾ (n − 1)π2 } and
through the origin. By Lemma 3.1 (3) and (6), Γ is an open convex cone
contained in

{µ ∈ Rn+1 :

n∑
i=0

µi > 0}

The following definition is due to Székelyhidi [96], building on work of Guan
[57].
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Definition 3.2. A smooth function φ : Xε → R is a C-subsolution of (3.1)
if, at each point p the following holds: Define E ij = (ω̂)ik̄(αφ)k̄j. Then the
set {

µ′ ∈ Γ :

n∑
i=0

arctan(µi) = h(p), and µ′ − µ(E(p)) ∈ Γn+1

}
is bounded. Here µ(E(p)) denotes the eigenvalues of E(p).

The following lemma from [29] gives a simple criterion for a function φ
to be a C-subsolution.

Lemma 3.3. A function φ is a C-subsolution of the equation (3.1) if the
following holds; at each point p ∈ Xε, if µ0, . . . , µn denote the eigenvalues of
ω̂−1αφ, then, for any j = 0, . . . , n we have∑

ℓ̸=j

arctan(µℓ) > h(p)− π

2
.

Remark 3.4. Trivially, if φ is a subsolution satisfying F ((ω̂)−1αφ) ⩾ h(x),
then φ is a C-subsolution.

The main property of C-subsolutions that we will need is the following

Lemma 3.5 (Székelyhidi [96], Proposition 6). Let [a, b] ⊂ ((n − 1)π2 , (n +
1)π2 ), and δ,R > 0. There exists a constant κ0 > 0, depending only on
a, b, R, δ with the following property. Suppose that σ ∈ [a, b] and A is a
Hermitian matrix such that

(µ(A)− 2δI + Γn+1) ∩ ∂Γσ ⊂ BR(0).

Then for any Hermitian matrix M with µ(M) ∈ ∂Γσ, and |µ(M)| > R we
either have ∑

p,q

F pq̄(M) (Aq̄p −Mq̄p) > κ0
∑
p

F pp̄(M)

or F īi(M) > κ0
∑

p F
pp̄(M) for all 0 ⩽ i ⩽ n. Here F pq̄ are the coefficients

of the linearized operator of F .

Note that if φ is a given subsolution, then it is a C-subsolution, and for
each point p ∈ Xε we can choose δ = δ(p) > 0, and R = R(p) > 0 depending
only on |

√
−1DDφ(p)|ω̂, a, b so that we have[

µ((ω̂)−1αφ)− 2δI + Γn+1

]
∩ ∂Γσ ⊂ BR(0)

for all σ ∈ [a, b]. In particular, the constants κ0 = κ0(p), R(p) depend only
on |

√
−1DDφ(p)|ω̂, a, b.

In order to solve (3.1) on manifolds with boundary, it is essential to con-
struct a subsolution of the equation with given boundary data. In the case
of domains in Cn this was explained by the first author, Picard and Wu [30],
building on work of Guan [58]. We prove the following
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Lemma 3.6. Fix two functions φ0, φ1 ∈ H, and a function h : Xε → R.
Suppose that this data satisfies structural conditions (C1) and (C2) (see (3.2)
and (3.3)). Then there exists a smooth, S1-invariant function φ such that
α := π∗Xα+

√
−1∂∂φ satisfies

(i) F (α) ⩾ h(p) + η1
2 for all p ∈ Xε.

(ii) φ|{|t|=ε} = φ0

(iii) φ|{|t|=e−1ε} = φ1

(iv) On ∂Xε we have∣∣∣∣ ∂∂|t|φ
∣∣∣∣ ⩽ C

ε
,

∣∣∣∣ ∂∂|t|φ
∣∣∣∣ ⩽ C

ε2

for a constant C depending only on η1 and ∥φ0 − φ1∥L∞(X).

Before proving the lemma, we prove a fairly general result which we hope
will be of use elsewhere. Let us first recall Demailly’s regularized maximum
construction [38]. Fix θ : R → R a smooth, even, positive function with
support in [−1, 1] and such that∫

[−1,1]
θ(x)dx = 1.

For δ > 0, and (t0, t1) ∈ R2 define

Mδ(t0, t1) =

∫
R2

max{t0 + h0, t1 + h1}
1

δ
θ

(
h0
δ

)
1

δ
θ

(
h1
δ

)
dh0dh1.

The function Mδ has the following properties [38]
• Mδ is non-decreasing in ti for i = 0, 1, smooth and convex.
• max{t0, t1} ⩽Mδ(t0, t1) ⩽ max{t0 + δ, t1 + δ}
• if t1 + δ ⩽ t0 − δ then Mδ(t0, t1) = t0, and vice versa.
• Mδ(t0 + a, t1 + a) =Mδ(t0, t1) + a. In particular

∇(1,1)Mδ =
∂Mδ

∂t0
+
∂Mδ

∂t1
= 1.

Let ψ0, ψ1 be two C2 functions. We are going to compute two derivatives
of M(ψ0, ψ1). We compute

∂Mδ(ψ0, ψ1) =
∂Mδ

∂t0
(ψ0, ψ1)∂ψ0 +

∂Mδ

∂t1
(ψ0, ψ1)∂ψ1

and so
(3.4)
∂∂Mδ(ψ0, ψ1) =

∂Mδ

∂t0
∂∂ψ0 +

∂Mδ

∂t1
∂∂ψ1 + (∂ψ0, ∂ψ1)D

2M(∂ψ0, ∂ψ1)
†.

We now make two observations. First, by the convexity of M , the second
term on the right hand side is non-negative. Secondly, by combining the
first and last properties of Mδ the first term on the right hand of (3.4) is
a convex combination of ∂∂ψ0, and ∂∂ψ1. We conclude the following very
general lemma.
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Lemma 3.7. Suppose F : Herm(n) → R is an elliptic operator such that
{F ⩾ 0} is convex. Suppose ψ0, ψ1 are two functions satisfying F (∂∂ψi) ⩾ 0
for i = 0, 1. Then

F
(
∂∂Mδ(ψ0, ψ1)

)
⩾ 0

Proof. By the above computation, using the ellipticity of F we have
F
(
∂∂Mδ(ψ0, ψ1)

)
⩾ F (t∂∂ψ0 + (1− t)∂∂ψ1)

for some 0 ⩽ t ⩽ 1. Now F (∂∂ψi) ⩾ 0 and {F ⩾ 0} convex implies the
result. □

Remark 3.8. The result also holds fo real functions, with ∂∂ψi replaced
by D2ψi, provided F is elliptic on the symmetric matrices and {F ⩾ 0} is
convex.

We can now give the proof of Lemma 3.6.

Proof of Lemma 3.6. Consider the function

ψ0(x, t) = φ0(x) +A0(|t|2 − ε2) + C0 log

(
|t|2

ε2

)
Observe that ψ0(x, t) = φ0(x) whenever |t| = ε. Furthermore we have

√
−1DDψ0 =

√
−1∂∂φ0 +A0

√
−1dt ∧ dt̄

and so
F (αψ0) = Θω(αφ0) + arctan(A0)

and so if we choose A0 sufficiently large so that arctan(A0) >
π
2 − η1

2 , then

F (αψ0) ⩾ h(x, |t|)− π

2
+ η1 +

π

2
− η1

2
= h(x, |t|) + η1

2
.

Similarly define

ψ1(x, t) = φ1(x) +A1(|t|2 − e−2ε2)− C1 log

(
e2|t|2

ε2

)
.

Note that ψ1(x, t) = φ1(x) whenever |t| = e−1ε. A similar computation
shows that we can choose A1 large depending only on η1 so that F (αψ1) ⩾
h(x, |t|) + η1

2 . Now we have

ψ0(x, t)|{|t|=e−1ε} = φ0(x)−A0ε
2(1− e−2)− 2C0

Choose C0 ⩾ ∥φ0 − φ1∥L∞(X) + 1, so that
ψ0(x, t)|{|t|=e−1ε} ⩽ φ1(x)− 1 = ψ1(x)|{|t|=e−1ε} − 1.

Similarly
ψ1(x, t)|{|t|=ε} = φ1(x) +A1ε

2(1− e−2)− 2C1

Choosing C1 large depending on ∥φ0−φ1∥L∞(X), and A1 we can ensure that
ψ1(x, t)|{|t|=ε} ⩽ φ0 − 1 = ψ0(x)|{|t|=ε} − 1
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Now set φ =Mδ(ψ0, ψ1) for 0 < δ ≪ 1. Since the sublevel sets of the angle
operator Γσ are convex when σ ⩾ (n − 1)π2 , we can apply the above con-
struction using Demailly’s regularized maximum to conclude that φ satisfies
(i). Furthermore, φ satisfies properties (ii), (iii) and the first part of (iv) of
the lemma by construction. It remains only to prove the estimates in (iv).
For this, note that for δ ≪ 1, we have that

φ = ψ0 in an open neighbourhood of |t| = ε

φ = ψ1 in an open neighbourhood of |t| = e−1ε

and so we only need to check the claimed estimates for φ0, φ1. The estimates
are automatic from the formulas for ψi, and the choice of the constants Ai, Ci
above. □
Remark 3.9. A word of caution is in order here. By (3.4) and the construc-
tion of φ it is easy to see that

√
−1DDφ is not bounded above independent

of ε on the whole of Xε.
Because of this remark it is often more convenient to work with the func-

tions ψ0, ψ1 constructed above. In particular, we note the following corol-
lary.
Corollary 3.10. Fix functions φ0, φ1 ∈ H, and a function h : Xε → R.
Suppose that this data satisfies structural conditions (C1) and (C2) (see (3.2)
and (3.3)). Then there exist smooth, S1-invariant functions φ̂i for i = 0, 1
such that φ̂i, and α̂i := π∗Xα+

√
−1DDφ̂i have the following properties;

(0) ∥φ̂i∥L∞(Xε) is bounded by a constant depending only on η1, φ0, φ1.
(i) φ̂0 = φ0 on the set |t| = ε, and φ̂0 < φ1 on |t| = e−1ε.
(ii) φ̂1 = φ1 on the set |t| = e−1ε, and φ̂1 < φ0 on |t| = ε.
(iii) F (α̂i) ⩾ h(x, t) + η1

2 for i = 0, 1
(iv) For each i = 0, 1, ∇tα̂i = ∇t̄α̂i = 0, and |∇α̂i|ω̂ ⩽ C for a constant

C depending only on ∥φi∥C3(X,ω).
(v) For each i = 0, 1, |

√
−1DDφ̂i|ω̂ is controlled uniformly in terms of

η1, |
√
−1∂∂φi|L∞(X,ω)

(vi) For each i = 0, 1, supXε
|∇X φ̂i|ĝ = supX |∇Xφi|g

(vii) (α̂i)t̄X = (α̂i)X̄t = 0.
(viii) Near ∂Xε we have∣∣∣∣ ∂∂|t|φ

∣∣∣∣ ⩽ C

ε
,

∣∣∣∣ ∂∂|t|φ
∣∣∣∣ ⩽ C

ε2

for a constant C depending only on η1 and ∥φ0 − φ1∥L∞(X).

Proof. Take φ̂i = ψi in proof of Lemma 3.6. Then (0), (i), (ii), (iii), (v), (vi), (viii)
hold automatically, and we have

α̂ = α+
√
−1∂∂φ0 +A0

√
−1dt ∧ dt̄

which implies propert (vii). Property (iv) follows from the fact that (Xε, ω̂)
is the product of (X,ω) with a flat factor. □
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Remark 3.11. The advantage of the subsolutions φ̂i is that the constants
R, κ0 appearing in Lemma 3.5 can be chosen depending only on the data η1,
and the C2 norm of the boundary data.

We finish with the following simple estimate.

Proposition 3.12. Suppose φ : Xε → R solves (3.1), and suppose φ is a
subsolution of (3.1). Then we have

φ ⩽ φ ⩽ max{∥φ0∥L∞(X), ∥φ1∥L∞(X)}+ Cε2

for a constant C depending only on ω, α.

Proof. The bound φ ⩾ φ follows from the comparison principle. On the
other hand, by Lemma 3.1 (3), we have

∆ω̂φ ⩾ −Trωα ⩾ −C.
It follows that the function φ+C|t|2 is subharmonic and hence achieves its
maximum on the boundary. The estimate follows. □

In order to prove the desired estimates, we need to proceed with extreme
care, ensuring at every step that constants appearing in the estimate are
independent of ε. To ease the presentation we introduce the following ter-
minology.

Definition 3.13. A constant C is uniform if it is independent of ε, and is
invariant after rescaling t 7→ ε−1t.

For example, constants depending only on the boundary data φi, (X,ω),
the constants η1, η2 in (3.2) (3.3), and the norms of spatial derivatives
|(∇X)k(∇X)rh|ω̂ are uniform. On the other hand, constants depending on
|∇X∇t̄h|ω̂, and |∇t∇t̄h|ω̂ are not uniform, since the norms (measured with
respect to ω̂) rescale (unless h is a constant).

4. The C1 estimates

The goal of this section is to prove an a priori gradient estimate for solu-
tions of (3.1). We begin with a uniform spatial gradient estimate. In fact,
this estimate can be deduced from the interior spatial C2 estimate proved
in Section 5. However, we include it since it may be independent interest,
and we expect it to be applicable to the study of geodesic rays in H.

Proposition 4.1. Suppose φ solves (3.1) for boundary data φi ∈ H for
i = 0, 1, and with φ0, φ1, h satisfying (3.2), (3.3). Then there exists a
uniform constant C so that

|∇Xφ|ĝ ⩽ C

Proof. In order to estimate the spatial gradient we adapt ideas of Błocki
[12, 13] and Phong-Sturm [83, 84] used to obtain gradient estimates for
solutions of the complex Monge-Ampère equation. Before beginning the
proof, we choose an appropriate background form α on Xε. For this section
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we choose as our background reference form α = π∗Xα+
√
−1∂∂φ̂i for i = 0 or

1, where φ̂i is one of the subsolutions constructed in Corollary 3.10. To ease
notation, we will drop the subscript i in the notation. If we write the solution
to (3.1) as π∗Xα+

√
−1DDφ, then π∗α+

√
−1DDφ = α+

√
−1DD(φ− φ̂).

Our goal is to prove
|∇X(φ− φ̂)|ĝ ⩽ C

for a uniform constant C. This implies that |∇Xφ|ĝ ⩽ C ′ with C ′ depending
in addition on the spatial C1 norm of φ̂, which by Corollary 3.10 is uniformly
controlled in terms of the boundary data.

With this understood, in order to lighten notation we still write the so-
lution to the equation as α +

√
−1DDφ, and estimate |∇Xφ|ĝ. Following

[83, 84, 12, 13] (see also [82]), we apply the maximum principle to the quan-
tity

Q := log
(
|∇Xφ|2

)
+ γ(φ)

where γ : R → R is a function to be determined. Fix a point (p0, t0) ∈ Xε,
and a space-time adapted coordinate system (w0, . . . , wn) centered a (p0, t0).
We compute

∇j̄ |∇Xφ|2 =
∑

1⩽k,ℓ⩽n
ĝkℓ̄
(
∇j̄∇kφ∇ℓ̄φ+∇kφ∇j̄∇ℓ̄φ

)
∇i∇j̄ |∇Xφ|2 =

∑
1⩽k,ℓ⩽n

ĝkℓ̄
(
∇i∇j̄∇kφ∇ℓ̄φ+∇j̄∇kφ∇i∇ℓ̄φ

)
∑

1⩽k,ℓ⩽n
ĝkℓ̄
(
∇i∇kφ∇j̄∇ℓ̄φ+∇kφ∇i∇j̄∇ℓ̄φ

)
To deal with the first and last terms, we differentiate the equation to get

F ij̄∇k∇i∇j̄φ = ∇kh−∇kαj̄i

F ij̄∇ℓ̄∇i∇j̄φ = ∇ℓ̄h−∇ℓ̄αj̄i.

Commuting derivatives gives
∇k∇i∇j̄φ = ∇i∇k∇j̄φ = ∇i∇j̄∇kφ

∇ℓ̄∇i∇j̄φ = −Rℓ̄ij̄ p̄∇p̄φ+∇i∇j̄∇ℓ̄φ

Combining these formulae we get

F ij̄∇i∇j̄ |∇Xφ|2 =
∑

1⩽k,ℓ⩽n
F ij̄

(
ĝkℓ̄∇j̄∇kφ∇i∇ℓ̄φ+∇i∇kφ∇j̄∇ℓ̄φ

)

+ 2Re

 ∑
1⩽k,ℓ⩽n

ĝkℓ̄(∇kh− F ij̄∇kαj̄i)∇ℓ̄φ


+ F ij̄

∑
1⩽k,ℓ⩽n
0⩽p⩽n

ĝkℓ̄Rℓ̄ij̄
p̄∇p̄φ∇kφ
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By Lemma 2.21 we have that Rℓ̄ij̄ p̄ = 0 if any of i, j, ℓ, or p are 0, so we can
choose a constant C1, depending only on (X,ω) such that

F ij̄
∑

1⩽k,ℓ,p⩽n
ĝkℓ̄Rℓ̄ij̄

p̄∇p̄φ∇kφ ⩾ −C1|∇Xφ|2ĝ,

where we also used that F ij̄ ⩽ ĝij̄ . Similarly, by Corollary 3.10 we can
choose a constant C2 depending only on the boundary data, and the spatial
derivative of h, so that

2Re

 ∑
1⩽k,ℓ⩽n

ĝkℓ̄(∇kh− F ij̄∇kαj̄i)∇ℓ̄φ

 ⩾ −C2|∇Xφ|ĝ.

Summarizing we have

F ij̄∇i∇j̄ log
(
|∇Xφ|2ĝ

)
⩾ 1

|∇Xφ|2
∑

1⩽k,ℓ⩽n
F ij̄ ĝkℓ̄

(
∇j̄∇kφ∇i∇ℓ̄φ+∇i∇kφ∇j̄∇ℓ̄φ

)
− 1

(|∇Xφ|2ĝ)2
F ij̄∇i|∇Xφ|2ĝ∇j̄ |∇Xφ|2ĝ − C1 −

C2

|∇Xφ|ĝ
for uniform constants C1, C2. Abusing notation, define a norm on 1-forms
by ⟨σ, σ′⟩F = F ij̄σiσ′j , and write∑
1⩽k,ℓ⩽n

F ij̄ ĝkℓ̄
(
∇j̄∇kφ∇i∇ℓ̄φ+∇i∇kφ∇j̄∇ℓ̄φ

)
= |∇∇Xφ|2F⊗ĝ+|∇∇Xφ|2F⊗ĝ.

Define 1-forms
Si := ⟨∇i∇Xφ,∇Xφ⟩ĝ, Tj := ⟨∇Xφ,∇j̄∇Xφ⟩ĝ

so that ∇|∇Xφ|2ĝ = S + T . By the Cauchy-Schwarz inequality we have

|S|2F + |T |2F ⩽ |∇Xφ|2ĝ
(
|∇∇Xφ|2F⊗ĝ + |∇∇Xφ|2F⊗ĝ

)
.

It follows that

|∇|∇Xφ|2ĝ|2F−2Re
(⟨

∇|∇Xφ|2ĝ, T
⟩
F

)
⩽ |∇Xφ|2ĝ

(
|∇∇Xφ|2F⊗ĝ + |∇∇Xφ|2F⊗ĝ

)
.

Plugging this into the estimate yields

F ij̄∇i∇j̄ log
(
|∇Xφ|2ĝ

)
⩾ −2Re

(⟨
∇|∇Xφ|2ĝ
|∇Xφ|2ĝ

,
T

|∇Xφ|2ĝ

⟩
F

)
− C1 −

C2

|∇Xφ|ĝ
.

Let us examine the term T . In our coordinate system we have

Tj =
∑

1⩽k,ℓ⩽n
∇kφĝ

kℓ̄
(
(αφ)ℓ̄j − αℓ̄j

)
.

If we let E , E0 denote that endomorphisms ĝkℓ̄(αφ)ℓ̄j , and ĝkℓ̄αℓ̄j respectively,
then we can write T invariantly as

T = (E − E0)∇Xφ.
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Suppose Q achieves an interior maximum at the point (p0, t0). At this point
we have ∇Q = 0, and F ij̄∇i∇j̄Q ⩽ 0. Writing out the first of these gives

∇|∇Xφ|2ĝ
|∇Xφ|2ĝ

= γ′(φ)∇φ

and so at (p0, t0) we get

Re

(⟨
∇|∇Xφ|2ĝ
|∇Xφ|2ĝ

,
T

|∇Xφ|2ĝ

⟩
F

)
=

γ′(φ)

|∇Xφ|2ĝ
Re
(
⟨∇φ, (E − E0)∇Xφ⟩F

)
For one moment, let us choose another system of holomorphic normal coor-
dinates for ĝ, (z0, . . . , zn) centered at (p0, t0) so that ĝ is the identity, and
E is diagonal, with eigenvalues µ0, . . . , µn. Write ∇Xφ = bi∂zi for some
complex numbers bi. Then∣∣∣∣⟨∇φ, E∇Xφ⟩F

∣∣∣∣ = ∣∣∣∣∑
i

µiφibi
(1 + µ2i )

∣∣∣∣ ⩽
(∑

i

µ2i |bi|2

1 + µ2i

)1/2
∑

j

|φj |2

1 + µ2j

1/2

⩽ |∇Xφ|ĝ|∇φ|F

Similarly, if we write E0∇Xφ = ci∂zi , then we have∣∣∣∣⟨∇φ, E0∇Xφ⟩F
∣∣∣∣ = ∣∣∣∣∑

i

φici
1 + µ2i

∣∣∣∣ ⩽
(∑

i

|ci|2

1 + µ2i

)1/2
∑

j

|φj |2

1 + µ2j

1/2

⩽ |E0∇Xφ|ĝ|∇φ|F

By Corollary 3.10 we have E0TX ⊂ TX. Since ∇Xφ ∈ TX ⊂ TXε we get

|E0∇Xφ|ĝ ⩽ C3|∇Xφ|ĝ
for a uniform constant C3 depending on the boundary data. Putting every-
thing together gives

(4.1) 0 ⩾ −C1 −
C2

|∇Xφ|ĝ
− C3γ

′(φ)
|∇φ|F
|∇Xφ|ĝ

− γ′(φ)F ij̄φj̄i − γ′′(φ)|∇φ|2F

Following Phong-Sturm [83, 84, 82] we choose

γ(φ) = Bφ− 1

φ+ C4

where C4 = − infXε φ+1, andB is a large positive constant to be determined.
Note that

Bφ− 1 ⩽ γ(φ) ⩽ Bφ, B ⩽ γ′(φ) ⩽ B + 1, γ′′(φ) = −2
1

(φ+ C4)3
< 0.

We may assume that |∇Xφ|ĝ > 1 at the maximum point of Q, for otherwise
we’re done. We need to consider several cases.
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First, suppose that

(4.2) ε20|∇Xφ|2 ⩾ |∇φ|2F
for some 0 < ε0 < 1 to be determined. Let R, κ0 be the constants appearing
in Lemma 3.5 for the subsolution φ̂ and recall that they are uniformly con-
trolled (see Remark 3.11). If every eigenvalue of E is smaller than R, then
we have

|∇φ|2F ⩾ 1

1 +R2
|∇φ|2ĝ ⩾

1

1 +R2
|∇Xφ|2ĝ.

If we take ε0 small so that 100ε20 ⩽ 1
1+R2 , then under the assumption (4.2)

some eigenvalue of E at (p0, t0) must be larger than R. In particular, by
Lemma 3.5 we get

F ij̄φj̄i = F ij̄(αφ)j̄i − αj̄i ⩽ −κ0
n∑
p=0

1

1 + µ2p
< −κ0

1

1 + C(η)2

where C(η) := C(η1, η2) is the bound for |µn| in Lemma 3.1. Thus, assum-
ing (4.2) implies

0 ⩾ −C1 − C2 − C3(B + 1)ε0 +Bκ0
1

1 + C(η)2
+

2

φ+ C4
|∇φ|2F

We now choose B large depending only on C1, C2, C3 so that

Bκ0
1

1 + C(η)2
⩾ C1 + C2 + C3 + 1

and choose ε0 small depending on B so that ε0(B + 1) ⩽ 1. Clearly ε0, B
can be chosen to be uniform constants. With these choices we conclude that
Q cannot attain an interior maximum at which (4.2) holds.

We may therefore assume that if Q achieves an interior maximum at
(p0, t0) then

(4.3) ε20|∇Xφ|2 ⩽ |∇φ|2F
at (p0, t0). We may also assume that |∇φ|F ⩾ 1 at (p0, t0), for otherwise
|∇Xφ|2 ⩽ ε−2

0 and we are done. Rearranging (4.1) we get

2

(1 + oscXεφ)
3
|∇φ|2F ⩽ C1 + C2 + (B + 1)(C3

|∇φ|F
|∇Xφ|ĝ

+ C5)

where we used that
F ij̄φj̄i =

∑
i

µi − αīi
1 + µ2i

⩽ C5

for a uniform constant C5 by Corollary 3.10. Let us simplify the notation
by writing

δ̃ =
2

(1 + oscXεφ)
3
, B̃ = (B + 1)C3, Ã = C1 + C2 + (B + 1)C5.
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so that Ã, B̃, δ̃ are uniform constants and

(4.4) δ̃|∇φ|2F ⩽ Ã+ B̃
|∇φ|F
|∇Xφ|ĝ

.

There are now two cases. First, observe that if δ̃ ⩽ 2B̃
|∇Xφ|ĝ then we are done.

So we may assume that δ̃ > 2B̃
|∇Xφ|ĝ . Upon rearranging (4.4) we obtain

Ã ⩾
(
δ̃|∇φ|F − B̃

|∇Xφ|ĝ

)
|∇φ|F ⩾ δ̃

2
|∇φ|F

where we used our assumption that |∇φ|F ⩾ 1. We now use (4.3) to obtain

|∇Xφ|ĝ ⩽ ε−1
0 |∇φ|F ⩽ 2Ã

ε0δ̃
,

which is the desired estimate. Since the constants ε0, δ̃, Ã, B̃ are uniform, we
have shown that, if Q attains an interior maximum it is bounded uniformly.
Since φ is bounded uniformly it follows that |∇Xφ|2ĝ is uniformly bounded.
Thus we are finished unless Q attains its maximum on the boundary. But
on the boundary Q is clearly bounded from above by a constant depending
only on the boundary data. □

It only remains to estimate the temporal derivative |∇tφ|ĝ. The first
step is to reduce the estimate for |∇tφ|ĝ to a boundary estimate. Write the
solution to (3.1) as π∗α+

√
−1DDφ, write t = u+

√
−1v and compute

F ij̄∇i∇j̄∇uφ = F ij̄∇u∇i∇j̄φ ⩾ −Ĉ

where Ĉ = − supXε
|∇th|ĝ. A similar estimate holds for v. In this compu-

tation we’ve used that the curvature vanishes along any ∂t direction, and
that ∇tπ

∗
Xα = 0 by Lemma 2.21. Note that Ĉ is not a uniform constant.

Consider the quantity

Q = ∂uφ+A|t|2 −B(φ− φ̂),

where φ̂ is either one of the subsolutions constructed in Corollary 3.10.
Suppose Q has an interior maximum at (p0, t0). Then

0 ⩾ −Ĉ +AF t̄t +BF ij̄((αφ̂)j̄j − (αφ)j̄i)

Suppose that |µ| > R at the point (p0, t0). Then by Lemma 3.5 we have

0 ⩾ −Ĉ +Bκ0
1

1 + C(η)2
> 0

where C(η) = C(η1, η2) is the bound for |µn| (see Lemma 3.1), and we have
chosen B = B′Ĉ for B′ large depending only on κ0, η1, η2. If |µ| < R at the
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point (p0, t0) then F tt̄ ⩾ 1
1+R2 , and so

0 ⩾ −Ĉ +A
1

1 +R2
+B

∑
i

(αφ̂)̄ii − µi

1 + µ2i

⩾ −Ĉ +A
1

1 +R2
−B|αφ̂|ĝ −B(n+ 1) > 0

provided we choose A = A′Ĉ for A′ large depending only on R,n,B′ and αφ̂.
In particular, by Corollary 3.10 the constant A′ can be chosen uniformly.
Similar arguments using −∂uφ,±∂vφ prove

Lemma 4.2. There exists a uniform constant C so that
|∇tφ|ĝ ⩽ C(1 + sup

Xε

|∇th|ĝ) + sup
∂Xε

|∇tφ|ĝ

It remains only to estimate |∇tφ| on the boundary. Since φ is S1 invariant,
it suffices to consider the boundary derivative with respect to the coordinate
r = |t|. Consider the boundary |t| = ε. Then φ ⩾ φ̂0 in Xε, and φ = φ̂0 on
∂Xε we have

∂

∂r

∣∣∣∣
r=ε

φ ⩽ ∂

∂r

∣∣∣∣
r=ε

φ̂0 ⩽
C

ε

by Corollary 3.10. Similarly,
∂

∂r

∣∣∣∣
r=e−1ε

φ ⩾ ∂

∂r

∣∣∣∣
r=e−1ε

φ̂1 ⩾ −C
ε
.

For the remaining estimates we construct barriers from above. To estimate
near {r = ε} consider

ψ0 = φ0 −A0(|t|2 − ε2)− C0 log

(
|t|2

ε2

)
.

Clearly ψ0 = φ0 = φ on {r = ε}. Furthermore we have
∆ω̂ψ0 = ∆ωφ0 −A0

and so we can choose A0 large depending only on ∥φ0∥C2(X,ω) so that
∆ω̂ψ0 ⩽ 0. We next choose C0 large depending only on A0, ∥φ0 −φ1∥L∞(X)

so that on {r = e−1ε} we have

ψ0

∣∣∣∣
|t|=e−1ε

= φ0 +A0(1− e−2)ε2 + 2C0 ⩾ φ1.

By Lemma 3.1 we have
∆ω̂ψ0 ⩽ 0 < ∆ω̂φ

and ψ0 ⩾ φ on the boundary, with equality when |t| = ε. By the maximum
principle we obtain

∂

∂r

∣∣∣∣
r=ε

φ ⩾ ∂

∂r

∣∣∣∣
r=ε

ψ0 ⩾ −C
ε
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for a uniform constant C. Similar estimates work near {r = e−1ε} to prove
estimates near {r = e−1ε}. We have therefore proved

Theorem 4.3. Suppose φ solves (3.1) for boundary data φi ∈ H for i =
0, 1, and with φ0, φ1, h satisfying (3.2), (3.3). Then there exists a uniform
constant C so that

|∇Xφ|ĝ ⩽ C, |∇tφ|ĝ ⩽ C

(
1 + sup

Xε

|∇th|ĝ) +
1

ε

)

5. Interior C2 estimates

This section comprises the heart of the analysis towards proving the exis-
tence of geodesics in the space H. The goal is to prove the following theorem

Theorem 5.1. Suppose φ solves (3.1) for boundary data φi ∈ H for i =
0, 1, and with φ0, φ1, h satisfying (3.2), (3.3). Then there exists a uniform
constant C so that

(5.1) |∇X∇Xφ|ω̂ ⩽ C

(5.2) |∇X∇t̄φ| ⩽ C

(
1 + ∥ht̄t∥L∞(Xε) + ∥ht∥2L∞(Xε)

+ sup
∂Xε

|φt̄t|ĝ
) 1

2

(5.3) |∇t∇t̄φ|ĝ ⩽ C

(
1 + ∥ht̄t∥L∞(Xε) + ∥ht∥2L∞(Xε)

+ sup
∂Xε

|φt̄t|ĝ
)

The uniform estimate for the spatial C2 norm, (5.1), is the most difficult
of the three estimates. Let us briefly recall what is known in this direction.
In joint work with Jacob [29] the authors proved a C2 estimate for solutions
of F = h, when h : X → ((n− 1)π2 , (n+1)π2 ) on compact manifolds without
boundary, provided a subsolution exists. In the current setting the same
estimate works to prove an interior C2 estimate of the form

|∇∇φ|ĝ ⩽ C(1 + sup
Xε

|∇φ|2ĝ) + sup
∂Xε

|∇∇̄φ|ĝ

Ignoring the troublesome boundary term, Theorem 4.3 gives the bound
|∇φ|2ĝ ⩽ 1

ε2
, and this bound is saturated if φ0 ̸= φ1. Nevertheless, the

above estimate would be good enough to prove the existence of solutions
to (3.1) on Xε, but not good enough to deduce regularity of the rescaled
solutions as ε→ 0.

In order to prove a uniform estimate for the spatial C2 norm, we will apply
the maximum principle to a quantity involving the largest spatial eigenvalue.
That is, for each point (p, t) ∈ Xε define λ1(p, t) to be the largest eigenvalue
of (α +

√
−1DDφ)|X with respect to ω. We will bound this quantity from

above. As a first step, we need to compute two derivatives of λ1.
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Proposition 5.2. Suppose E is a smooth section of End(TXε) which is
hermitian with respect to ĝ. Define χ = E|TX = πEπ, where π is the
orthogonal projection to TX ⊂ TXε defined by ĝ. Suppose λ1 > λ2 >
· · · > λn are the eigenvalues of χ at (p, t) ∈ Xε, and let e1, . . . , en be the
corresponding unit length, orthonormal eigenvectors. Let (zi) be holomorphic
coordinates on Xε centered at (p0, t0). Then at (p0, t0) we have

∇iλα = ⟨(∇iE)eα, eα⟩, ∇īλα⟨(∇īE)eα, eα⟩
and,
∇i∇j̄λα = ⟨(∇i∇j̄E)eα, eα⟩

+
∑
β ̸=α

⟨(∇iE)eα, eβ⟩⟨(∇jE)eα, eβ⟩
λα − λβ

+
⟨(∇j̄E)eα, eβ⟩⟨(∇īE)eα, eβ⟩

λα − λβ

where we view eα as vectors in TXε by the inclusion TX ↪→ TXε.

Proof. First note that, by assumption the eigenvalues λα are smooth func-
tions near (p0, t0), and we can find smooth spatial vector fields denoted eα
which are sections of TX ⊂ TXε, so that

χeα(p, t) = λα(p, t)eα, ∥eα(p, t)∥ĝ = 1

and clearly we have eα(p0, t0) = eα. Now, since eα = πeα, we can write
(5.4) Eeα = χeα + (1− π)Eeα
and so λα = ⟨Eeα, eα⟩. We now differentiate this equation to get

∇iλα = ⟨(∇iE)eα, eα⟩+ ⟨E(∇ieα), eα⟩+ ⟨Eeα,∇īeα⟩
= ⟨(∇iE)eα, eα⟩+ ⟨(∇ieα), Eeα⟩+ λα⟨eα,∇īeα⟩
= ⟨(∇iE)eα, eα⟩+ 2λα⟨(∇ieα), eα⟩
= ⟨(∇iE)eα, eα⟩

where we used that E is hermitian, and ∥eα∥ = 1, so that ⟨∇ieα, eα⟩ = 0.
Similarly we have

∇īλα = ⟨(∇īE)eα, eα⟩.
Before proceeding, let us remark that since E is hermitian, for any vectors
V,W ∈ TXε there holds
(5.5) ⟨(∇iE)V,W ⟩ = ⟨V, (∇īE)W ⟩
and similarly for barred indices. Next we compute
(5.6) ∇i∇j̄λα = ⟨(∇i∇j̄E)eα, eα⟩+ ⟨(∇j̄E)(∇ieα), eα⟩+ ⟨(∇j̄E)eα,∇īeα⟩.
At the point (p0, t0) we claim that

∇ieα =
∑
β ̸=α

aαiβeβ, ∇īeα =
∑
β ̸=α

aαīβeβ.

Let us explain how to see this for the first expression, with the second expres-
sion being treated in the same way. Let ∂t denote the vector field generated
by the time direction. Since e1, . . . , en span the orthogonal complement of
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span{∂t} ⊂ TXε, it suffices to show that ⟨∇ieα, ∂t⟩ = 0. To do this we
differentiate the equation ⟨eα, ∂t⟩ = 0 to get

0 = ⟨∇ieα, ∂t⟩+ ⟨eα,∇ī∂t⟩
and use that by Lemma 2.21, ∂t is parallel. In fact, in this case one can use
that ∂t is a holomorphic vector field, but this does not work to prove the
analogous claim for ∇īeα. A similar computation shows that ⟨∇īeα, ∂t⟩ = 0.
Finally, the fact that ei does not appear in the sum follows from ∥ei∥ = 1.
Now we can solve for the aαiβ. We differentiate (5.4) to get

(∇iE)eα + E(∇ieα) = ∇iλαeα + λα∇ieα +∇i((1− π)Eeα).
Taking the inner product with eβ for β ̸= α, and using that E is hermitian
gives

⟨(∇iE)eα, eβ⟩+ λβa
α
iβ = λα⟨∇ieα, eβ⟩+ ⟨∇i((1− π)Eeα), eβ⟩

= λαa
α
iβ + ⟨((1− π)Eeα),∇īeβ⟩

= λαa
α
iβ

where in the last two lines we used that eβ,∇īeβ are orthogonal to span{∂t} ∋
(1− π)Eeα. So

(λα − λβ)a
α
iβ = ⟨(∇iE)eα, eβ⟩.

Similarly, we have
(λα − λβ)a

α
īβ = ⟨(∇īE)eα, eβ⟩.

Plugging this into (5.6), using (5.5) and doing some algebra we obtain
∇i∇j̄λα = ⟨(∇i∇j̄E)eα, eα⟩

+
∑
β ̸=α

⟨(∇iE)eα, eβ⟩⟨(∇jE)eα, eβ⟩
λα − λβ

+
⟨(∇j̄E)eα, eβ⟩⟨(∇īE)eα, eβ⟩

λα − λβ

By noting that λ1 is a smooth function provided λ1 > λ2 we have

∇i∇īλ1 = ⟨(∇i∇īE)e1, e1⟩+
∑
β ̸=1

|⟨(∇iE)e1, eβ⟩|2 + |⟨(∇īE)e1, eβ⟩|2

λ1 − λβ
.

□
Next we compute the linearized operator applied to the largest spatial

eigenvalue λ1 of E := ω̂−1(π∗α+
√
−1DDφ). First, we have to perturb this

endomorphism to ensure that the largest spatial eigenvalue is smooth. Fix a
point (p0, t0) ∈ Xε, and choose holomorphic normal coordinates (z0, . . . , zn)
for ω̂ centered at (p0, t0) so that E(p0, t0) is diagonal with eigenvalues µ0 ⩾
µ1 ⩾ · · · ⩾ µn, and we may assume that µ0 > µn. Consider a matrix B =
(Bi

j) = Biiδ
i
j defined near (p0, t0) with the property that B00 = 0 = Bnn <

Bn−1n−1 < · · · < B11. Let eβ be an ω̂ orthonormal frame of eigenvectors for
E|TX at (p0, t0), with corresponding eigenvalues λ1 ⩾ λ2 ⩾ · · · ⩾ λn, and
assume that λ1 ≫ λn. As usual, we regard the ei as vectors in (TXε)p0,t0 .
Furthermore, we make the following stipulation; if λ1 = µ0, then e1 is in the
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span of the vectors with eigenvalue µ0. After possibly rotating our original
coordinate system, we choose e1 = ∂z0 . We choose the Bii in the following
way. We require that

Be1 = 0.

If e1 = ∂z0 this is redundant, otherwise we have gained a single linear equa-
tion, and hence we can choose B ∈ Rn+1

⩾0 in the complement of at most 3
hyperplanes. On the orthogonal complement of span{∂z0 , ∂zn , e1} we clearly
have that B is positive definite. Extending B to be constant in our local
coordinate patch, we can view it as a local holomorphic section of End(TXε).
Consider the endomorphism Ẽ := E − B. Clearly the eigenvalues of Ẽ are
less or equal the eigenvalues of E . Let µ̃0 ⩾ µ̃1 ⩾ · · · ⩾ µ̃n denote the
eigenvalues of Ẽ at (p0, t0), and λ̃1 ⩾ λ̃2 ⩾ · · · ⩾ λ̃n denote the eigenvalues
of Ẽ |TX . Then we have

µ̃n = µn, µ̃0 = µ0, λ̃1 = λ1 at (p0, t0).

Furthermore, we have β̃α < λβ for all β ̸= 1, n. Since λn ≪ λ1, by assump-
tion, this implies that λ̃1 > λ̃2 ⩾ · · · ⩾ λ̃n. Thus λ̃2 < λ̃1 ⩽ λ1 near (p0, t0),
with λ̃1 = λ1 at (p0, t0). This is the desired perturbation. We now compute
(5.7)

F ij̄∇i∇j̄ λ̃1 =

n∑
i=0

1

1 + µ2i
∇i∇īλ̃1

=
∑
i

1

1 + µ2i
⟨(∇i∇īẼ)e1, e1⟩+

n∑
i=0

∑
β ̸=1

|⟨(∇iẼ)e1, eβ⟩|2 + |⟨(∇īẼ)e1, eβ⟩|2

(λ̃1 − λ̃β)(1 + µ2i )
.

Now at (p0, t0)

∇iẼkp = ∇i(αφ)k̄p,

∇i∇j̄ Ẽkp = ∇i∇j̄

(
(ĝ)kℓ̄(αφ)ℓ̄p −Bk

p

)
= (ĝ)kℓ̄∇i∇j̄(αφ)ℓ̄p,

since B is a local holomorphic section. At (p0, t0) write eβ = V j
β ∂zj , for

complex numbers V j
β , and 1 ⩽ β ⩽ n. For simplicity we denote

Vβ = V j
β ∂zj

regarded as vector fields defined in an open neighbourhood of (p0, t0). Then
at (p0, t0) we have

(5.8)
∑
i

1

1 + µ2i
⟨(∇i∇īẼ)e1, e1⟩ = V p

1 V
k
1

∑
i

1

1 + µ2i
∇i∇ī(αφ)k̄p.
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Using that V1 has constant coefficients, and αφ is closed we compute

(5.9)

∇V̄1∇V1(αφ)j̄i = V k
1 V

p
1 ∇k̄∇p(αφ)j̄i

= V k
1 V

p
1 ∇k̄∇i(αφ)j̄p

= V k
1 V

p
1

(
∇i∇k̄(αφ)j̄p +Rk̄i

s
p(αφ)j̄s −Rk̄ij̄

s̄(αφ)s̄p
)

= V k
1 V

p
1

(
∇i∇j̄(αφ)k̄p +Rk̄i

s
p(αφ)j̄s −Rk̄ij̄

s̄(αφ)s̄p
)

=

n∑
k,p=0

V k
1 V

p
1

(
∇i∇j̄(αφ)k̄p +Rk̄i

j
pµj −Rk̄ij̄

p̄µp
)
.

We combine equations (5.8) (5.9) to obtain at (p0, t0)
(5.10)∑

i

1

1 + µ2i
⟨(∇i∇īẼ)e1, e1⟩ =

n∑
i=0

1

1 + µ2i
∇V̄1∇V1(αφ)̄ii

−
n∑

i,k,p=0

1

1 + µ2i
Rk̄i

i
pµiV

pV k +
∑
i,k,p

1

1 + µ2i
Rk̄īi

pµpV
pV k.

Differentiate the equation F (E) = h in the V1 direction to get

∇V1h = F ij̄∇V1(αφ)j̄i =

n∑
i=0

1

1 + µ2i
∇V1(αφ)̄ii,

(5.11)
∇V̄1∇V1h = F ij̄∇V̄1∇V1(αφ)j̄i + F ij̄,mℓ̄∇V1(αφ)j̄i∇V̄1(αφ)ℓ̄m

=

n∑
i=0

1

1 + µ2i
∇V̄1∇V1(αφ)̄ii −

n∑
i,j=0

µi + µj
(1 + µ2i )(1 + µ2j )

|∇V1(αφ)j̄i|2.

Before substituting (5.10) into (5.11), we note the following easy, but useful
lemma.

Lemma 5.3. In the above notation, at (p0, t0) we have

λ1 =
n∑
i=0

|V i
1 |2µi,

n∑
i=0

|V i
1 |2 = 1

In particular, λ1 is a convex combination of the µi, λ1 ⩽ µ0, with equality
if and only if V1 is in the span of the eigenvectors with eigenvalue µ0.

Proof. The proof is just a consequence of writing the equations λ1 = ⟨Ee1, e1⟩,
and ∥e1∥2 = 1 in our local coordinate system, and using the definition of
V1. □

We note the following simple corollary

Corollary 5.4. For all j ̸= n we have
|V j

1 |
2µj ⩽ λ1 +max{0,−µn} ⩽ λ1 + C(η1)
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Proof. Just observe that, by Lemma 3.1 the i = n term is the only term is
the only possible negative contribution to the sum

λ1 =

n∑
i=0

|V i
1 |2µi.

Since
∑n

i=0 |V i
1 |2 = 1 we can rearrange, and apply Lemma 3.1 to conclude.

□

Let C1 > 0 be a two-sided bound for the sectional curvature of ω̂, which by
Lemma 2.21 depends only on a bound for the sectional curvature of (X,ω),
and is therefore a uniform constant. Then we have
(5.12)∑
k,p

Rk̄īi
pµpV

pV k ⩾ −C1

n∑
p=0

|µp||V p|2 = −C1

n∑
p=0

µp|V p
1 |

2 − C1(|µn| − µn)|V n
1 |2

= −C1λ1 − C2

where we used Lemma 5.3 and that µn > −C(η1) by Lemma 3.1. For the
remaining curvature term we use that | µi

1+µ2i
| ⩽ 1 together with

∑
i |V i

1 |2 = 1

to get

(5.13)
n∑

i,k,p=0

1

1 + µ2i
Rk̄i

i
pµiV

pV k ⩽ C1(n+ 1).

Returning to equation (5.10), substituting the bounds (5.12),(5.13), and
equation (5.11) we obtain∑
i

1

1 + µ2i
⟨(∇i∇īẼ)e1, e1⟩ ⩾

n∑
i,j=0

µi + µj
(1 + µ2i )(1 + µ2j )

|∇V1(αφ)j̄i|2 − Cλ1 − C

for a constant C depending only on n, η, and bound for ∇V̄1∇V1h and (X,ω).
Note that, since V1 is spatial, the constant C is uniform. Finally, by noting
that λ1 = λ̃1 > λ̃β for β ̸= 1 we arrive at

Proposition 5.5. In the above notation, at the point (p0, t0) we have

(5.14)

F ij̄∇i∇j̄ log(λ̃1) ⩾
1

λ1

n∑
i,j=0

µi + µj
(1 + µ2i )(1 + µ2j )

|∇V1(αφ)j̄i|2

− 1

λ21

n∑
i=0

1

1 + µ2i
|∇i(αφ)V̄1V1 |

2 − C

for a uniform constant C.

In order to apply the maximum principle, we need a lower bound for the
quantity appearing on the right hand side of (5.14). Note that ∇i(αφ)V1V̄1 =
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∇V1(αφ)V̄1i since αφ is closed and V1 has constant coefficients. Thus, all the
negative terms appearing in

(5.15)
n∑
i=0

1

1 + µ2i
|∇iαV̄1V1 |

2

have partners appearing in the sum

(5.16) 1

λ1

n∑
i,j=0

µi + µj
(1 + µ2i )(1 + µ2j )

|∇V1(αφ)j̄i|2.

There are three significant difficulties in attaining the estimate we want.
The first is that the i = j = n term appear in (5.16) will be non-positive
when µn ⩽ 0, and even when µn > 0, the contribution can be arbitrarily
small. Of course, by Lemma 3.1, we know that −e−AF is concave. However,
this only implies that the bad term i = j = n term appearing in (5.16)
can be controlled at the expense of all the terms with i = j ̸= n appearing
in (5.16). Unfortunately, terms like |∇V1αīi|2 evidently appear in |∇iαV1V̄1 |

2.
Thus, invoking concavity of −e−AF leaves us with no way to control (5.15).
This is in stark contrast to the case of concave elliptic operators [96, 57],
where the terms in (5.16) for i ̸= j are not used.

The second significant difficulty occurs when trying to invoke that the
gradient vanishes at the maximum point. More precisely, a natural approach
to controlling (5.15), is to apply the fact that the gradient of our test function
vanishes at the maximum. Our test function will be of the form

Q̃ := log(λ̃1) +H(φ)

for a specially chosen function H. Thus, at a maximum we will have
∇i(αφ)V̄1V1

λ1
= −H ′(φ)∇iφ.

Such an argument is essentially doomed, since we do not control |∇iφ|2ĝ
uniformly. In particular, the vector ∂zi could have a component pointing
in the time direction, and by Theorem 4.3, such a component would con-
tribute a term of order ε−2 to the estimate. Again, this is in contrast to the
case of concave elliptic operators on compact manifolds [96, 57], where this
argument is used repeatedly to obtain a C2 estimate [96, 57].

To see the final significant problem, note that (5.15) contains a term like
1

(1+µ20)λ
2
1
|∇V1α0̄0|2, and the corresponding term in (5.16) is 2µ0

(1+µ20)
2λ1

|∇V1α0̄0|2.
Since λ1 is the largest spatial eigenvalue, it can (and indeed must) happen
that µ0 ≫ λ1, so that

2µ0
(1 + µ20)

2λ1
≪ 1

(1 + µ20)λ
2
1

.

Again, when studying concave elliptic operators on compact manifolds [96,
57] we have the µ0 = λ1, and the two terms above are easily comparable.
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There are two key points in the arguments that follow. The first is to split
the eigenvalues µi according to whether they are large, or small, compared
to λ1. Roughly speaking, if µi is small relative to λ1 we expect that ∂zi can
contain at most a very small component pointing in the temporal direction.
On the other hand, if µi is very large relative to λ1 the we must make efficient
use of the coefficients V i

1 that appear in (5.15), together with the following
trivial observation from Lemma 5.3: if µi ≫ λ1, then |V i

1 |2 ≪ 1.
Before beginning the estimate, let us fix a suitable background form,

and some notation. Let φ̂ be one of the subsolutions constructed in Corol-
lary 3.10, and write

α̂ = π∗Xα+
√
−1DDφ̂

Then we can write αφ = α̂+
√
−1DD(φ− φ̂). To simplify the notation, let

us denote α = αφ.
As a first step, we are going to address the first issue outlined above

by estimating the term ∇V1αn̄n, assuming µn < 0. We first observe that
αn̄n = µn at (p0, t0), and so by differentiating the equation we have

1

1 + µ2n
∇V1αn̄n = ∇V1h−

∑
k<n

1

1 + µ2k
∇V1αk̄k.

By Cauchy-Schwarz we have

(5.17) |∇V1αn̄n|2

(1 + µ2n)
2
⩽ (1 + δ−1

1 )|∇V1h|2 + (1 + δ1)

∣∣∣∣∑
k<n

1

1 + µ2k
∇V1αk̄k

∣∣∣∣2
for a constant δ1 to be determined. Fix a constant 1

2 > δ0 > 0. This
constants will be determined in the course of the proof. We say that µβ is
big if µβ ⩾ δ0λ1, and small if µβ < δ0λ1. Define

B = {k ∈ {0, 1, . . . , n} : µk ⩾ δ0λ1}, S = {k ∈ {0, 1, . . . , n} : µk < δ0λ1}.

Clearly µn ∈ S if µn < 0 and also if λ1 is sufficiently large, depending on δ0.
We write∣∣∣∣∑

k<n

1

1 + µ2k
∇V1αk̄k

∣∣∣∣2 = ∣∣∣∣∑
k∈B

∇V1αk̄k
(1 + µ2k)

∣∣∣∣2 + ∣∣∣∣ ∑
k∈S, k<n

∇V1αk̄k
(1 + µ2k)

∣∣∣∣2

+ 2Re

 ∑
k∈B, ℓ∈S, ℓ<n

∇V1αk̄k∇V1αℓ̄ℓ
(1 + µ2k)(1 + µ2ℓ )

 .

Each sum needs to be estimated differently. Starting with the last sum over
S, using Cauchy-Schwarz we estimate∣∣∣∣ ∑

k∈S, k<n

∇V1αk̄k
(1 + µ2k)

∣∣∣∣2 ⩽
 ∑
k∈S,k<n

µk|∇V1αk̄k|2

(1 + µ2k)
2

 ·

 ∑
j∈S,j<n

1

µj
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where we used that µj > 0 for j ̸= n by Lemma 3.1. Since
∑n

i=0 arctan(µi) >
(n− 1)π2 + η1, and µn < 0 we have

(5.18)
∑

j∈S,j<n

1

µj
+

1

µn
< − tan(η1)

by Lemma 3.1, together with µℓ > 0 if ℓ ∈ B. This estimate is clearly not
accurate if |µn| is small. In that case we instead have the estimate

(5.19)
∑

j∈S,j<n

1

µj
+

1

µn
<

n+ 1

tan(η1)
+

1

µn

where we used that µi > tan(η1) for all i < n by Lemma 3.1. Estimate (5.19)
is more precise when |µn| < tan(η1)

(n+1)+(tan(η1))2
, and less precise otherwise. By

considering each case separately it follows that

µn

 ∑
j∈S,j<n

1

µj

 ⩾ − (n+ 1)

(n+ 1) + (tan(η1))2
.

The final estimate we obtain is
(5.20)

µn

∣∣∣∣ ∑
k∈S, k<n

∇V1αk̄k
(1 + µ2k)

∣∣∣∣2 ⩾ (− (n+ 1)

(n+ 1) + (tan(η1))2

)
·

 ∑
k∈S, k<n

µk|∇V1αk̄k|2

(1 + µ2k)
2

 .

Next we estimate the cross terms.

∣∣∣∣Re
 ∑
k∈B, ℓ∈S, ℓ<n

∇V1αk̄k∇V1αℓ̄ℓ
(1 + µ2k)(1 + µ2ℓ )

∣∣∣∣ ⩽ ∑
k∈B, ℓ∈S, ℓ<n

|∇V1αk̄k||∇V1αℓ̄ℓ|
(1 + µ2k)(1 + µ2ℓ )

⩽
∑

k∈B, ℓ∈S, ℓ<n

(n+ 1)|∇V1αk̄k|2

ε1µℓ(1 + µ2k)
2

+
∑

k∈B, ℓ∈S, ℓ<n

ε1µℓ|∇V1αℓ̄ℓ|2

(n+ 1)(1 + µ2ℓ )
2

⩽ (n+ 1)2

ε1 tan(η1)

∑
k∈B

|∇V1αk̄k|2

(1 + µ2k)
2
+ ε1

∑
ℓ∈S,ℓ<n

µℓ|∇V1αℓ̄ℓ|2

(1 + µ2ℓ )
2
,

where ε1 > 0 is a constant to be determined, and we have again used the
lower bound µℓ > tan(η1) > 0 for ℓ < n. Finally, we estimate the big terms
using the Cauchy-Schwarz inequality∣∣∣∣∑

k∈B

∇V1αk̄k
(1 + µ2k)

∣∣∣∣2 ⩽ (n+ 1)
∑
k∈B

|∇V1αk̄k|2

(1 + µ2k)
2
.
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We now combine these estimates to estimate (5.16) from below when µn < 0.
We have
n∑

i,j=0

µi + µj
(1 + µ2i )(1 + µ2j )

|∇V1αj̄i|2 ⩾
n−1∑

i,j=0,i ̸=j

µi + µj
(1 + µ2i )(1 + µ2j )

|∇V1αj̄i|2

+

(
1 + (1 + δ1)

(
−(n+ 1)

(n+ 1) + (tan(η1))2
+ 2µnε1

)) ∑
ℓ∈S,ℓ<n

2µℓ
(1 + µ2ℓ )

2
|∇V1αℓ̄ℓ|2

+
∑
k∈B

2|∇V1αk̄k|2

(1 + µ2k)
2

(
µk + (1 + δ1)µn

(
2(n+ 1)2

ε1 tan(η1)
+ (n+ 1)

))
+ 2(1 + δ−1

1 )µn|∇V1h|2

For ease of notation set

κ1 =
(tan(η1))

2

2[(n+ 1) + (tan(η1))2]
.

Examining the coefficient in front of the small terms yields

1+(1+δ1)

(
−(n+ 1)

(n+ 1) + (tan(η1))2
+ 2µnε1

)
= 2κ1−δ1(1−2κ1)+2(1+δ1)µnε1.

Take δ1 = κ1, then

1 + (1 + δ1)

(
−(n+ 1)

(n+ 1) + (tan(η1))2
+ 2µnε1

)
= κ1 + 2κ21 + 2(1 + κ1)µnε1

⩾ κ1

provided we take ε1 = κ21
(1+κ1)C(η1)

, where µn > −C(η1) is a lower bound for
µn. Since κ1, δ1, ε1 are universal we have

µk + (1 + δ1)µn

(
2(n+ 1)2

ε1 tan(η1)
+ (n+ 1)

)
⩾ µk − 2C1,

2(1 + δ−1
1 )µn|∇V1h|2 ⩾ −C2

for universal constants C1, C2. We have proved

Proposition 5.6. We have the following lower bound for (5.16).
n∑

i,j=0

µi + µj
(1 + µ2i )(1 + µ2j )

|∇V1αj̄i|2 ⩾ −C2 +
∑

0⩽i,j⩽n
i ̸=j

µi + µj
(1 + µ2i )(1 + µ2j )

|∇V1αj̄i|2

+ κ1
∑

ℓ∈S,ℓ<n

2µℓ
(1 + µ2ℓ )

2
|∇V1αℓ̄ℓ|2

+
∑
k∈B

(2µk − C1) |∇V1αk̄k|2

(1 + µ2k)
2
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where C1 = C2 = 0 and κ1 = 1 if µn ⩾ 0, and if µn < 0, then

κ1 =
(tan(η1))

2

2[(n+ 1) + (tan(η1))2]

and C1, C2 ⩾ 0 are uniform constants.

We now turn our focus to estimating the gradient term (5.15). Fix 0 ⩽
i ⩽ n and write

|∇iαV̄1V1 |
2 =

∣∣∣∣ n∑
j=0

V j
1 ∇V1αj̄i

∣∣∣∣2
⩽
∑
j,ℓ∈B

|V j
1 ||V

ℓ
1 ||∇V1αj̄i||∇V1αℓ̄i|

+ 2
∑

j∈B,ℓ∈S
|V j

1 ||V
ℓ
1 ||∇V1αj̄i||∇V1αℓ̄i|

+
∑
j,ℓ∈S

|V j
1 ||V

ℓ
1 ||∇V1αj̄i||∇V1αℓ̄i|

For the big terms, we use Cauchy-Schwarz in the following way
(5.21)∑
j,ℓ∈B

|V j
1 ||V

ℓ
1 ||∇V1αj̄i||∇V1αℓ̄i| ⩽

∑
j,ℓ∈B

|V ℓ
1 |2

µℓ
µj

|∇V1αj̄i|2
1/2∑

j,ℓ∈B
|V j

1 |
2µj
µℓ

|∇V1αℓ̄i|2
1/2

=
∑
j,ℓ∈B

|V ℓ
1 |2

µℓ
µj

|∇V1αj̄i|2

=

(
λ1 −

∑
ℓ∈S

|V ℓ
1 |2µℓ

)∑
j∈B

1

µj
|∇V1αj̄i|2

where in the last line we used Lemma 5.3. For the small terms we apply
Cauchy-Schwarz to get
(5.22)∑
j,ℓ∈S

|V j
1 ||V

ℓ
1 ||∇V1αj̄i||∇V1αℓ̄i| ⩽

∑
j,ℓ∈S

|V ℓ
1 |2|∇V1αj̄i|2

1/2∑
j,ℓ∈S

|V j
1 |

2|∇V1αℓ̄i|2
1/2

=
∑
j,ℓ∈S

|V ℓ
1 |2|∇V1αj̄i|2 ⩽

∑
j∈S

|∇V1αj̄i|2
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where in the last line we used Lemma 5.3 again. Finally we estimate the
cross terms.
(5.23)
2
∑

j∈B,ℓ∈S
|V j

1 ||V
ℓ
1 ||∇V1αj̄i||∇V1αℓ̄i| ⩽ ε0

∑
j∈B,ℓ∈S

|V j
1 |

2|V ℓ
1 |2|∇V1αj̄i|2 +

1

ε0

∑
j∈B,ℓ∈S

|∇V1αℓ̄i|2

⩽ ε0
∑
j∈B

|V j
1 |

2|∇V1αj̄i|2 +
n+ 1

ε0

∑
ℓ∈S

|∇V1αℓ̄i|2

⩽ ε0

(
λ1 −

∑
ℓ∈S

|V ℓ
1 |2µℓ

)∑
j∈B

1

µj
|∇V1αj̄i|2

+
n+ 1

ε0

∑
ℓ∈S

|∇V1αℓ̄i|2

for a constant ε0 > 0 to be determined. In the final inequality we used the
following estimate. If j ∈ B, we have µj > 0, so Lemma 5.3 shows

|V j
1 |

2µj ⩽
∑
k∈B

|V k
1 |2µk = λ1 −

∑
ℓ∈S

|V ℓ
1 |2µℓ.

Combining estimates (5.21) (5.22) and (5.23) we arrive at

|∇iαV̄1V1 |
2 ⩽ (1 + ε0)

(
λ1 −

∑
ℓ∈S

|V ℓ
1 |2µℓ

)∑
j∈B

1

µj
|∇V1αj̄i|2

+ (1 +
n+ 1

ε0
)
∑
j∈S

|∇V1αj̄i|2.

Every term appearing on the right hand side of this estimate has a partner
appearing on the right hand side of the estimate in Proposition 5.6 except the
term i = j = n. For this term we return to (5.17) and apply Cauchy-Schwarz
to get

|∇V1αn̄n|2 ⩽ 2|∇V1h|2 + 2n
∑
ℓ<n

|∇V1αℓ̄ℓ|2

(1 + µ2ℓ )
2
.

Summarizing we have proved

Proposition 5.7. For any constant ε0 ∈ (0, 1) we have the following esti-
mates.

(1) For 0 ⩽ i < n

|∇iαV̄1V1 |
2 ⩽ (1 + ε0)

(
λ1 −

∑
ℓ∈S

|V ℓ
1 |2µℓ

)∑
j∈B

1

µj
|∇V1αj̄i|2

+ (1 +
n+ 1

ε0
)
∑
j∈S

|∇V1αj̄i|2.
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(2) For i = n we have

|∇nαV̄1V1 |
2 ⩽ (1 + ε0)

(
λ1 −

∑
ℓ∈S

|V ℓ
1 |2µℓ

)∑
j∈B

1

µj
|∇V1αj̄n|2

+ (1 +
n+ 1

ε0
)
∑

j∈S,j<n
|∇V1αj̄n|2

+ 2(1 +
n+ 1

ε0
)C3 + 2n(1 +

n+ 1

ε1
)
∑
ℓ<n

|∇V1αℓ̄ℓ|2

(1 + µ2ℓ )
2
.

for a uniform constant C3.

We are now ready to combine Propositions 5.6 and 5.7 to obtain the key
estimate towards the interior C2 estimate. Recall that we need to estimate
the following quantity from below;

(5.24) 1

λ1

n∑
i,j=0

µi + µj
(1 + µ2i )(1 + µ2j )

|∇V1αj̄i|2 −
1

λ21

n∑
i=0

1

1 + µ2i
|∇iαV̄1V1 |

2.

In order to do this, we will estimate a related quantity. Let us defined

Γ :=
∑
ℓ∈S

|V ℓ
1 |2µℓ

and note that, by definition of S we have Γ ⩽ δ0λ1 ⩽ 1
2λ1. Consider

Υ :=
(1− c0λ

−1
1 )

λ1(λ1 − Γ)(1 + ε0)

n∑
i=0

1

1 + µ2i
|∇iαV̄1V1 |

2

Where c0 is a positive constant to be determined, and we assume that

(5.25) λ1 > c0.

From now on, in order to ensure that our constants can be chosen consis-
tently, we will note each constraint as a separate equation. By Proposi-
tion 5.7 we have

Υ ⩽ (1− c0λ
−1
1 )

λ1

∑
0⩽i⩽n
j∈B

|∇V1αj̄i|2

µj(1 + µ2i )

+
2(n+ 1)(1− c0λ

−1
1 )

λ1(λ1 − Γ)(1 + ε0)ε0

∑
0⩽i⩽n, j∈S
(i,j) ̸=(n,n)

|∇V1αj̄i|2

1 + µ2i

+
4n(n+ 1)(1− c0λ

−1
1 )

λ1(1 + µ2n)(λ1 − Γ)(1 + ε0)ε0

∑
ℓ<n

|∇V1αℓ̄ℓ|2

(1 + µ2ℓ )
2

+
4(n+ 1)(1− c0λ

−1
1 )

λ1(1 + µ2n)(λ1 − Γ)(1 + ε0)ε0
C3
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We are going to estimate

1

λ1

n∑
i,j=0

µi + µj
(1 + µ2i )(1 + µ2j )

|∇V1αj̄i|2 −Υ

from below, by making use of Proposition 5.6, and comparing the coefficients
of |∇V1αj̄i|2 term by term. There are four cases depending on (i, j).

Case 1: 0 ⩽ i ⩽ n, j ∈ B, and i ̸= j.
Case 2: i = j ∈ B.
Case 3: 0 ⩽ i ⩽ n, j ∈ S and i ̸= j.
Case 4: 0 ⩽ i < n, and i = j ∈ S.

Case 1. We we have to compare µi+µj
λ1(1+µ2i )(1+µ

2
j )

and (1−c0λ−1
1 )

λ1(1+µ2i )µj
. Ignoring the

common factors it suffices to estimate

µi + µj
(1 + µ2j )

− (1− c0λ
−1
1 )

µj
=
c0λ

−1
1 µ2j + µiµj + c0λ

−1
1 − 1

µj(1 + µ2j )
.

We now use that j ∈ B, so µjλ−1
1 > δ0. Since µi ⩾ µn ⩾ −C(η1) we get the

estimate
c0λ

−1
1 µ2j + µiµj + c0λ

−1
1 − 1

µj(1 + µ2j )
⩾ (c0δ0 − C(η1))µj − 1

µj(1 + µ2j )
> 0

as long as we have

(5.26) c0 > δ−1
0 (C(η1) + 1), and λ1 > δ−1

0

where the latter condition guarantees µj > 1 since j ∈ B.

Case 2 In this case we need to estimate

(5.27) (2µj − C1)

1 + µ2j
− (1− c0λ

−1
1 )

µj
− 4n(n+ 1)(1− c0λ

−1
1 )

(1 + µ2n)(1 + µ2j )(λ1 − Γ)(1 + ε0)ε0

Observe that, from the definition of Γ we have

λ1 − Γ = λ1 −
∑
ℓ∈S

|V ℓ
1 |2µℓ ⩾ (1− δ0)λ1 ⩾

1

2
λ1

Therefore we can estimate (5.27) from below by

1

µj(1 + µ2j )

(
µ2j − C1µj − 1− 8n(n+ 1)

µj
λ1ε0

)
> 0

provided µj > C1 + 1 + 8n(n+1)
λ1ε0

. Since j ∈ B this is guaranteed as soon as

(5.28) λ1 ⩾ δ−1
0

(
C1 + 1 +

8n(n+ 1)

λ1ε0

)
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Case 3 We have to estimate
µi + µj
(1 + µ2j )

− 2(n+ 1)(1− c0λ
−1
1 )

(λ1 − Γ)(1 + ε0)ε0
⩾ µi + µj

(1 + µ2j )
− 4(n+ 1)

λ1ε0

We now consider three subcases separately, according to whether µj is rel-
atively large or relatively small compared to µn, or j = n.

Case 3a First suppose j < n, and that µi + µj ⩾ 3
4µj (which is always

the case if µn ⩾ 0). Then we have

µi + µj −
4(n+ 1)(1 + µ2j )

λ1ε0
⩾ 3µj

4
− 4(n+ 1)

ε0

(1 + µ2j )

λ1

⩾ 3µj
4

− 4(n+ 1)

ε0λ1
− 4(n+ 1)δ0µj

ε1

where we used that 1+µ2j
λ1

< 1
λ1

+ δ0µj by the definition of S. Using that
j ̸= n, if we choose

(5.29) δ0 <
ε0

16(n+ 1)

we get

µi + µj −
4(n+ 1)(1 + µ2j )

λ1ε1
⩾ 1

2
µj −

4(n+ 1)

ε0λ1

⩾ tan(η1)

4
− 4(n+ 1)

ε0λ1
> 0

provided

(5.30) λ1 >
16(n+ 1)

ε0 tan(η1)
.

Case 3b In this case we still assume j < n, but that µi + µj ⩽ 3
4µj .

Then necessarily i = n, µn < 0, and we get that µj ⩽ 4C(η1) for a constant
depending only on η1. Since µj + µn > tan(η1) by Lemma 3.1 we conclude

(5.31) µi + µj
(1 + µ2j )

− 4(n+ 1)

λ1ε0
⩾ tan(η1)

1 + 16C(η1)2
− 4(n+ 1)

λ1ε0
> 0

provided

(5.32) λ1 >
4(n+ 1)(1 + 16C(η1)

2)

ε0 tan(η1)

Case 3c If j = n, and 0 ⩽ i < n, then (5.31) also holds, and the same
estimate works.
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Case 4 Finally, we consider the fourth case. We need to estimate from
below the quantity

κ1
2µj

(1 + µ2j )
− 4(n+ 1)(1− c0λ

−1
1 )

λ1(1 + ε0)ε0
− 8n(n+ 1)(1− c0λ

−1
1 )

(1 + µ2n)λ1(1 + ε0)(1 + µ2j )ε0

⩾ κ1
2µj

(1 + µ2j )
− c1
λ1ε0

− c1
λ1(1 + µ2j )ε0

where c1 > 0 depends only on n, η1, η2, and where κ1 is the constant ap-
pearing in Proposition 5.6. We therefore need to determine the sign of

2κ1ε0λ1µj − c1(1 + µ2j )− c1 = µj(2κ1ε0λ1 − c1µj)− 2c1.

Since j ∈ S we have µj ⩽ δ0λ1 and so
µj(2κ1ε0λ1 − c1µj)− 2c1 ⩾ µjλ1(2κ1ε0 − c1δ0)− 2c1 > 0

provided

(5.33) δ0 <
κ1ε0
c1

λ1 >
4c1

tan(η1)κ1ε0

We can now choose the constants δ0, ε0, c0 consistently. From (5.29)
and (5.33) we see that it suffices to choose δ0 < max{cκ1ε0, 12} for 0 < c < 1
a positive, uniform constant depending only on n, η1, η2. Recall that κ1 is
the uniform constant appearing in Proposition 5.6. From (5.26) we choose
c0 = K0ε

−1
0 for a positive uniform constant K0 depending only on n, η1.

Finally, from (5.28) we conclude
Proposition 5.8. For every constant ε0 > 0, there exists a uniform constant
C4 depending only on n, η1, η2 so that if λ1 ⩾ C4ε

−2
0 we have

1

λ1

n∑
i,j=0

µi + µj
(1 + µ2i )(1 + µ2j )

|∇V1αj̄i|2 −
1

λ21

n∑
i=0

1

1 + µ2i
|∇iαV̄1V1 |

2

⩾ −2ε0
λ21

n∑
i=0

1

1 + µ2i
|∇iαV̄1V1 |

2 − C2

λ1
− C5

ε0λ21

For uniform constants C2, C5.
Proof. By combining Propositions 5.6 and 5.7 we have show that
1

λ1

n∑
i,j=0

µi + µj
(1 + µ2i )(1 + µ2j )

|∇V1αj̄i|2 −Υ ⩾ −C2

λ1
−C(n, η1, η2)

(1− c0λ
−1
1 )

ε1λ21
C3.

We only need to compare Υ with the negative term containing |∇iαV̄1V1 |
2.

Choose C4 = 100K0, where K0 is the constant defining c0 above. If λ1 >
C4ε

−2
0 , then c0λ

−1
1 < ε0 and we have

(1− c0λ
−1
1 )

(λ1 − Γ)(1 + ε0)
− 1

λ1
⩾ 1− ε0
λ1(1 + ε0)

− 1

λ1

⩾ −2ε0
λ1

.
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The result follows. □

We can now prove the interior, spatial C2 estimate. Recall that we have
written α = αφ = α̂ +

√
−1DDφ. Normalize φ so that infXε φ = 0. Define

H : [0, supXε
φ] by

H(t) = −2At+
Aτ

2
t2

for constants A ≫ 0, τ > 0 to be determined. By Proposition 3.12, and
Corollary 3.10 we have a uniform bound for ∥φ∥L∞ , and so we can choose
τ < min{ 1

2∥φ∥L∞ , 1} so that

−2A ⩽ H ′ ⩽ −A H ′′ = Aτ > 0.

We apply the maximum principle to the test function

Q := log(λ1) +H(φ).

If this quantity achieves its maximum on ∂Xε, then it is uniformly bounded
in terms of the boundary data, and we obtain

λ1 ⩽ Ce−AoscXεφ,

which is the desired estimate. Otherwise, suppose Q attains an interior
maximum at (p0, t0). Fix holomorphic normal coordinates (z0, . . . , zn) for
ω̂ in a neighborhood of (p0, t0) so that α is diagonal at (p0, t0) with eigen-
values µ0 ⩾ µ1 ⩾ · · · ⩾ µn. We perform the perturbation described at the
beginning of the section, and consider the quantity

Q̃ = log(λ̃1) +H(φ).

By construction we have Q̃ ⩽ Q near (p0, t0), and Q̃(p0, t0) = Q(p0, t0).
Thus Q̃ achieves an interior maximum at (p0, t0). Applying the linearized
operator at (p0, t0) we have

0 ⩾ F ij̄∇i∇j̄Q̃.

The linearized operator applied to the H(φ) term gives

F ij̄∇i∇j̄H(φ) = H ′(φ)
∑
i

1

1 + µ2i
∇i∇īφ+H ′′(φ)

∑
i

1

1 + µ2i
|∇iφ|2

= −H ′(φ)
∑
i

α̂īi − µi
1 + µ2i

+Aτ
∑
i

1

1 + µ2i
|∇iφ|2
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Thus, at (p0, t0) we have

0 ⩾ F ij̄∇i∇j̄Q̃ ⩾ 1

λ1

n∑
i,j=0

µi + µj
(1 + µ2i )(1 + µ2j )

|∇V1αj̄i|2

− 1

λ21

n∑
i=0

1

1 + µ2i
|∇iαV̄1V1 |

2 − C

−H ′(φ)
∑
i

α̂īi − µi
1 + µ2i

+Aτ
∑
i

1

1 + µ2i
|∇iφ|2

Combining Proposition 5.5 and Proposition 5.8 there is a uniform constant
C4 so that if λ1 ⩾ C4ε

−2
0 , then we have

0 ⩾ −2ε0
λ21

n∑
i=0

1

1 + µ2i
|∇iαV̄1V1 |

2 − C − C2

λ1
− C5

ε0λ21

−H ′(φ)
∑
i

α̂īi − µi
1 + µ2i

+Aτ
∑
i

1

1 + µ2i
|∇iφ|2

for uniform constants C,C2, C5. At the maximum of Q̃ we have ∇iQ̃ = 0,
which gives

∇iαV̄1V1
λ1

= −H ′∇iφ

So
1

λ21

n∑
i=0

1

1 + µ2i
|∇iαV̄1V1 |

2 = (H ′)2
∑
i

1

1 + µ2i
|∇iφ|2

Choose ε0 = max{ τ
10A , 1}, then 2ε0(H

′)2 ⩽ 8ε0A
2 < τA and so we get

0 ⩾ −C − C2

λ1
− 10AC5

τλ21

+A
∑
i

α̂īi − µi
1 + µ2i

We may assume that λ1 > R, where R is the uniform constant appearing
in Lemma 3.5 for the subsolution α̂ (see Remark 3.11). Since µ0 ⩾ λ1 we
can apply Lemma 3.5. Since |µn| is bounded by Lemma 3.1 we can always
assume we are in the first case of Lemma 3.5 and so we get∑

i

α̂īi − µi
1 + µ2i

> κ0

n∑
i=1

1

1 + µ2i
> κ̃0

for κ̃0 a uniform constant. Finally, choose A so that Aκ̃0 = C + C2 + 1,
which is a uniform constant. Then we obtain

0 ⩾ 1− 10(C + C2 + 1)

τ κ̃0λ21
.
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In particular, λ1 < C6 for a uniform constant C6. This implies

λ1 ⩽ C6e
A(φ−infXε φ)

finishing the proof of (5.1).
We next move on to estimating the size of αt̄t. This is easily done by

the maximum principle. Recall that by Lemma 3.1 there is a constant A
depending only on η1 so that G = −e−AF is concave. Consider the quantity

Q = αt̄t − Cφ,

and recall that α = α̂+
√
−1DDφ. Differentiating the equation G = −e−Ah

twice, using that G is concave, α is closed, and the curvature vanishes in
any temporal direction yields

Gij̄∇i∇j̄(αφ)t̄t ⩾ A(∇t∇t̄h+A|∇th|2)e−Ah

Choose C =
A∥ht̄t∥L∞(Xε)+A

2∥ht∥2L∞(Xε)
+1

κ̃0
where κ̃0 = κ0

1+C(η)2
, and κ0 is the

uniform constant appearing in Lemma 3.5 for α̂, while C(η) is a bound for
|µn| (see Lemma 3.1). Suppose that Q achieves an interior maximum on Xε
at the point (p0, t0). Choose holomorphic normal coordinates near (p0, t0)
such that α is diagonal with eigenvalues µ0, . . . , µn. We get

0 ⩾ A(∇t∇t̄h+A|∇th|2)e−Ah + C
∑
i

α̂īi − µi
1 + µ2i

.

If αt̄t > R, then by Lemma 3.5 and our choice of C we obtain

0 ⩾ A(∇t∇t̄h+A|∇th|2)e−Ah +A(∥ht̄t∥L∞(Xε) +A∥ht∥2L∞(Xε)
+ 1)

a contradiction. Thus, (αφ)t̄t ⩽ R, and so

Q ⩽ Q(p0, t0) ⩽ R+
A∥ht̄t∥L∞(Xε) +A∥ht∥2L∞(Xε)

+ 1

κ̃0
∥φ∥L∞(Xε)

unless Q attains its maximum on the boundary. Summarizing we have

Proposition 5.9. There is a uniform constant C so that

|(αφ)t̄t|ĝ ⩽ C
(
1 + ∥ht̄t∥L∞(Xε) + ∥ht∥2L∞(Xε)

)
+ sup

∂Xε

|(αφ)t̄t|ĝ

To estimate the off diagonal terms we use that αφ ⩾ −C(η1)ω̂. Pick
any point (p0, t0) ∈ Xε, and choose space-time adapted coordinates so that
(αφ)|TX is diagonal with entries λ1, . . . , λn. At p0 we have

αφ+(C(η1)+1)ω̂ =


(αφ)t̄t + C(η1) + 1 (αφ)1̄t · · · (αφ)n̄t

(αφ)t̄1 λ1 + C(η1) + 1 · · · 0
...

... . . . ...
(αφ)n̄t 0 · · · λn + C(η1) + 1
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LetD be the n×nmatrix withDj̄i = (λ1+C(η)+1)δj̄i. Since λi+C(η1)+1 >
1 for all i we can compute the determinant as

0 ⩽ det(αφ+(C(η1)+1)ω̂) = det(D)

(
(αφ)t̄t + C(η1) + 1−

∑
i

|(αφ)t̄i|2

λi + C(η1) + 1

)
.

Now since 1 ⩽ λi + C(η1) + 1 ⩽ C for a uniform constant C by the spatial
C2 estimate we obtain

|(αφ)t̄i| ⩽ C (|(αφ)t̄t|+ C(η1) + 1)1/2

which finishes the proof of Theorem 5.1.

Remark 5.10. Note that the spatial C2 estimate is independent of the
estimate for the spatial gradient. In particular, Proposition 4.1 can be ob-
tained directly from the C2 estimate by applying the elliptic theory along
the fibers of Xε → Aε. Nevertheless, we have decided to include the estimate
as it may have applications to the existence of geodesic rays in H; see for
example [82, 83, 84].

6. Boundary C2 estimates and existence of solutions to the
degenerate Lagrangian phase equation

It remains only to prove the boundary estimates. The boundary esti-
mates are based on estimates of Guan [57, 58] which are in turn inspired by
estimates of Trudinger [100]. Similar ideas were used by the first author,
Picard and Wu to solve the Dirichlet problem for the Lagrangian phase
operator [30]. In fact, the proof here is much simpler than the boundary
estimates for the Lagrangian phase operator established in [30] due to the
special structure of the boundary.

Without loss of generality, we work near {|t| = ε}. Consider the function

v = (φ− φ̂0) + c0(ε− |t|)−N(ε− |t|)2

for constants N, c0 > 0 to be determined. For simplicity, let us write φ̂0 = φ̂.
Our goal is to choose uniform constants c0, N so that F ij̄∇i∇j̄ < −ε0 near
|t| = ε for a uniform constant ε0, and so that v > 0 on a neighboourhood
of {r = ε}. We compute at a point (p0, t0) in coordinates where ω̂ is the
identity and αφ is diagonal.

F ij̄∇i∇j̄v =
∑
i

µi − α̂īi
1 + µ2i

− c0F
tt̄ 1

4|t|
− N

2
F tt̄ +N

(ε− |t|)
2|t|

F tt̄.

Suppose |µ| ⩽ R, where R is the constant in Lemma 3.5 for φ̂0. Then we
have 1 ⩾ F tt̄ > (1+R2)−1. Also, α̂īi > −C(η1). Combining these estimates
gives

(6.1) F ij̄∇i∇j̄v ⩽ (n+ 1) + C(η1)− c0
F tt̄

4|t|
− N

2(1 +R2)
+N

(ε− |t|)
2|t|

.
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If instead |µ| > R the we apply Lemma 3.5 and conclude

(6.2) F ij̄∇i∇j̄v < −κ0 − c0
F tt̄

4|t|
− N

2
F tt̄ +N

(ε− |t|)
2|t|

,

for a uniform constant κ0. We consider v on the domain
Ωδ := X × {(1− δ)ε ⩽ |t| ⩽ ε}

where 0 < δ < 1− e−1 is to be determined. On Ωδ we have

0 ⩽ (ε− |t|)
|t|

⩽ δ

1− δ
< 1.

Choose N so that
N

2(1 +R2)
= n+ 2 + C(η1),

and note that N is uniform. Then when |µ| < R we have

F ij̄∇i∇j̄v ⩽ −1 +N
δ

(1− δ)
< −1

2

provided δ < 1
2N+1 . When |µ| > R we have

F ij̄∇i∇j̄v ⩽ −κ0 +N
δ

(1− δ)
< −κ0

2

provided δ < κ0
2N+κ0

. We choose δ = min{ 1
2N+1 ,

κ0
2N+κ0

}, which is a uniform
constant. It remains only to determine c0. On the |t| = ε component of ∂Ωδ
we have v = 0, while on the |t| = (1− δ)ε component we have

v ⩾ δε−N(δε)2 ⩾ δε

(
c0 −

1

2
ε

)
> 0

provided we take c0 = 1. Summarizing we have

Lemma 6.1. There exist uniform constants δ,N so that the function
v := (φ− φ̂0) + (ε− |t|)−N(ε− |t|)2

satisfies
F ij̄∇i∇j̄v ⩽ −κ0

2
, v ⩾ 0

on Ωδ := X × {(1− δ)ε ⩽ |t| ⩽ ε}.

We are going to estimate the tangent-normal derivatives of φ near the
boundary {|t| = ε}. Fix a point (p0, t0) ∈ ∂Xε, and space-time adapted
coordinates (w0, . . . , wn) = (w0, w

′). For 1 ⩽ ℓ ⩽ n we compute

F ij̄∇i∇j̄∇ℓ(φ− φ̂) = ∇ℓh−
∑

1⩽i,j⩽n
F ij̄∇ℓφ̂

where in the last line we used that ∇t∇ℓφ̂ = ∇t̄∇ℓφ̂ = 0 (see Corollary 3.10).
Next we compute
F ij̄∇i∇j̄∇ℓ̄(φ− φ̂) = ∇ℓ̄h− F ij̄

∑
1⩽k⩽n

Rℓ̄ij̄
k̄∇k̄φ−

∑
1⩽i,j⩽n

F ij̄∇i∇j̄∇ℓ̄φ̂
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where we used that Rℓ̄ij̄k = 0 if k = 0. Write wℓ = xℓ +
√
−1yℓ. Then

combining the spatial gradient bound from Theorem 4.3 with Corollary 3.10
we have

−C ⩽ F ij̄∇i∇j̄∇∂xℓ
(φ− φ̂) ⩽ C

for a uniform constant C. Clearly the same estimate holds for ∂yℓ . We now
consider the quantity

Q± := Av ± ∂xℓ(φ− φ̂) +B

n∑
i=i

|wi|2 −
D

2
log

(
|t|2

ε2

)
for positive constants A,B,D to be determined, which is defined on the set

Ω̂δ :=

{
n∑
i=1

|wi|2 < (δ′)2

}
× {(1− δ)ε ⩽ |t| ⩽ ε}

where δ′ is a constant depending only on (X,ω) (namely, the size of the
coordinate chart on which holomorphic normal coordinates are defined).
On |t| = ε we have Q± ⩾ 0 with equality at w′ = 0. On w′ = δ′ we have

Q± ⩾ − sup
Xε

|∇Xφ|ĝ +B(δ′)2.

By Proposition 4.1 we can therefore choose a uniform constant B large
enough so that Q± ⩾ 0 on |w′| = δ′. Finally, when |t| = (1− δ)ε we have

Q± ⩾ − sup
Xε

|∇Xφ|ĝ +
D

2
log

(
1

(1− δ)2

)
Since δ > 0 is uniform, by Proposition 4.1 we can choose D large and uniform
so that Q± ⩾ 0 on |t| = (1− δ)ε. Finally, we compute

F īj ⩽ −Aκ0
2

+ sup
Xε

|∇Xφ|ĝ +B
∑

1⩽i⩽n
F īi ⩽ −Aκ0

2
+ sup

Xε

|∇Xφ|ĝ +Bn

Therefore, another application of Proposition 4.1 shows that we can choose
A uniform, sufficiently large so that F ij̄Q± ⩽ 0. Since Q± ⩾ 0 on ∂Ω̂δ we
have Q± ⩾ 0 = Q±(p0, t0). We conclude that ∂rQ± ⩽ 0. Now at (p0, t0) we
have ∂r∂xℓφ̂ = 0 and ∂rv = ∂rφ− ∂rφ̂− 1. Thus by Theorem 4.3 we obtain

|∂r∂xℓφ| ⩽
C

ε

Repeating the argument with yℓ yields

Proposition 6.2. There is a uniform constant C so that

sup
∂Xε

(
|∇t∇Xφ|ĝ + |∇t̄∇Xφ|ĝ

)
⩽ C

ε

Finally, we estimate ∇t∇t̄φ on the boundary. In fact the estimate we
need follows from a lemma of Caffarelli-Nirenberg-Spruck [18], which we
now recall
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Lemma 6.3. Consider the n× n hermitian matrix

M :=


a b1 b2 · · · bn
b1 d1 0 · · · 0

b2 0 d2 · · · 0
...

... · · · . . . ...
bn 0 0 · · · dn


where we assume a ⩾ 1. Let µ0, µ1, . . . , µn be the eigenvalues of M . For all
0 < ε0 ≪ 1, there exists δ(ε0) > 0 depending only on d1, . . . , dn, ε such that,
if
∑n

i=1
|bi|2
a < δ(ε0) then

|µi − di| < ε0.

for i = 1, . . . , n. Furthermore, we have

µ0 = a

(
1 +O

(
n∑
i=1

|bi|2

a

))

with implied constants depending only on d1, . . . , dn.

Proof. We give the proof, since the statement in [18] is not exactly what we
need. Just as in [18], the eigenvalues are given by the zeroes of

det


1− µ

a
b1
a

b2
a · · · bn

a
b1 d1 − µ 0 · · · 0

b2 0 d2 − µ · · · 0
...

... · · · . . . ...
bn 0 0 · · · dn − µ

 = 0.

Expanding the determinant gives

0 = (1− µ

a
)

(
n∏
i=1

(di − µ)

)
+

n∑
j=1

(−1)j
|bj |2

a

∏
i ̸=j

(di − µ).

Introduce parameters t0 = 1
a and ti =

|bi|2
a , and write this equation as

P (t0, t1 . . . , tn, λ) = 0

for a polynomial P . When (t1, . . . , tn) = 0 we have that µ = di is a zero.
Since the roots of P (t0, . . . , tn) depend continuously on the coefficients we
get that, for all ε0 > 0, there exists δ > 0 depending only on d1, . . . , dn, ε0
such that if |t| < δ, then

|µi − di| < ε0.
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For the last eigenvalue we set µ = aγ and consider

det


1− γ b1

a
b2
a · · · bn

a
b1
a

d1
a − γ 0 · · · 0

b2
a 0 d2

a − γ · · · 0
...

... · · · . . . ...
bn
a 0 0 · · · dn

a − γ

 = 0

which we write as

0 = (1− γ)

(
n∏
i=1

(t0d1 − γ)

)
+

n∑
j=1

(−1)jt0tj
∏
i ̸=j

(t0di − γ).

When t = 0, γ = 1 is a simple zero, and hence the implicit function theorem
gives that for |t| < δ, there is a constant C depending on d1, . . . , dn such
that

|1− γ(t)| ⩽ C|t|
whence

µ0(t) = a(1 +O(|t|))
with constants depending only on d1, . . . , dn. □

This lemma, together with the boundary tangent-normal estimates in
Proposition 6.2 immediately implies the normal-normal estimate. Suppose
there is a point (p0, t0) ∈ ∂Xε where (αφ)t̄t ⩾ K

ε2
for some constant K to

be determined (note that the lower bound is automatic from Lemma 3.1).
Fix space-time adapted coordinates at (p0, t0), and let µi 0 ⩽ i ⩽ n be the
eigenvalues of αφ. By the tangent-normal estimates we have∑

i

|(αφ)t̄i|2

(αφ)t̄t
⩽ C

K

where C is a uniform constant. Fixing ε0 > 0, if C/K is sufficiently small
depending only on the bound for the spatial C2 norm and ε0, then we have

|µ0 − αt̄t| < ε0, |αīi − µi| ⩽ ε0.

It follows that∣∣∣∣ n∑
i=0

arctan(µi)−

(
n∑
i=1

arctan((αφ)̄ii) + arctan((αφ)t̄t)

)∣∣∣∣ ⩽ (n+ 1)ε0,

since the derivative of arctan is bounded by 1. On the boundary we have
φ = φ and φ is a subsolution, satisfying

n∑
i=0

arctan(µ
i
) ⩾ h+

η1
2
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where µ
i

are the eigenvalues of α := π∗Xα +
√
−1DDφ. By the Schur-

Horn theorem [64] and the convexity of the super-level sets {F ⩾ σ} for
σ ⩾ (n− 1)π2 we have

n∑
i=1

arctan(αīi) ⩾
n∑
i=0

arctan(µ
i
)− arctan(αt̄t).

So, we have

h(x) +
η1
2

⩽
n∑
i=0

arctan(µ
i
) ⩽

n∑
i=1

arctan(αīi) + arctan(αt̄t)

⩽ (n+ 1)ε0 +

n∑
i=0

arctan(µi)− arctan((αφ)t̄t) + arctan(αt̄t)

= (n+ 1)ε0 + h(x)− arctan((αφ)t̄t) + arctan(αt̄t).

This implies
η1
2

+ arctan((αφ)t̄t) ⩽ (n+ 1)ε0 + arctan(αt̄t).

By Lemma 3.6 we have
αt̄t ⩽

C1

ε2

for a uniform constant C1. Choose ε0 sufficiently small so that (n+1)ε0 ⩽ η1
2 ,

we conclude that K ⩽ C1. Thus we conclude

Proposition 6.4. There exists a uniform constant C so that

sup
∂Xε

|∇t∇t̄φ| ⩽
C

ε2

Combining this with Theorem 5.1, and Theorem 4.3 we conclude

Theorem 6.5. Suppose φ(x, t) is a smooth S1 invariant function on (Xε, ω̂)
with αφ := α+

√
−1DDφ(x, t) solving the Lagrangian phase equation

F (ω̂−1αφ) = h(x, |t|).
with φ(x, ε) = φ0 and φ(x, εe−1) = φ1, and φi ∈ H. Suppose in addition that
φ0, φ1, h satisfy the structural conditions (C1), (C2) with constants η1, η2.
The following estimates hold

oscXεφ+ |∇Xφ|ω̂ + |∇X∇Xφ| ⩽ C

|∇tφ|ω̂ ⩽ C

(
1 + sup

Xε

|∇th|ω̂ +
1

ε

)
|∇t̄∇Xφ| ⩽ C

(
1 +

1

ε
+
√
sup
Xε

|∇t∇t̄h|ĝ +
√

sup
Xε

|∇th|2ĝ

)

|∇t∇t̄φ| ⩽ C

(
1 +

1

ε2
+ sup

Xε

|∇t∇t̄h|ĝ + sup
Xε

|∇th|2ĝ
)
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where C is a uniform constant depending only on φ0, φ1,∇X∇Xh, (X,ω)
and the structural constants η1, η2.

First we apply these estimates to solve the Dirichlet problem for the
Lagrangian phase operator on Xε.

Theorem 6.6. Suppose φ0, φ1 ∈ H, and h(x, |t|) : Xε → R is a smooth
function satisfying structural constraints (C1), (C2). Then, on Xε, there
exists a smooth, S1 invariant solution of the equation

F (ω̂−1αφ) = h(x, |t|).
with boundary values φ0, φ1. In particular, for any φ0, φ1 ∈ H there is a
unique, smooth ε geodesic joining φ0, φ1.

Proof. The corollary follows easily from Theorem 6.5. Let h(x) = F (αφ)

where φ is the function constructed in Lemma 3.6 and consider the equation

F (ω̂−1αφu) = (1− u)h+ uh

where u ∈ [0, 1], and φu has boundary values φ0, φ1. Note that structural
constraints (C1), (C2) hold uniform for the functions (1 − u)h + uh. Let I
be the set of u ∈ [0, 1] for which this equation admits a solution. By the
implicit function theorem I is open. Suppose I ∋ ui → u∗ Combining the
estimates in Theorem 6.5 with the Evans-Krylov theorem, and arguing as
in [30] we conclude that I is closed. □

Since we have obtained estimates that scale appropriately we can pass to
the limit as ε→ 0 to get weak solutions to the space-time lifted degenerate
Lagrangian phase equation, see Definition 2.9. Before explaining how this
is done, let us explain how to make sense of the limiting equation weakly.
First note that if φ : X → R is bounded and satisfies

√
−1DDφ ⩾ −Cω̂,

then we can define
(π∗Xα+

√
−1DDφ)k

as a (k, k) current for all k using the Bedford-Taylor theory [9]. In particular,
for such functions φ

(π∗Xω +
√
−1(π∗Xα+

√
−1DDφ))n+1

defines a complex measure on X and hence the equation

(6.3) Im
(
e−

√
−1h(x,|t|)(π∗Xω +

√
−1(π∗Xα+

√
−1DDφ))n+1

)
= 0

can be interpreted as an equality of measures. With this in mind we have

Theorem 6.7. Suppose φ0, φ1 ∈ H, and h(x, |t|) : X → R is a smooth
function satisfying structural constraints (C1), (C2). Then there exists an
S1 invariant function φ so that φ ∈ C1,α, for all α ∈ (0, 1),

√
−1DDφ ∈

L∞(Xε, ω̂), and φ solves

(6.4) Im
(
e−

√
−1h(x,|t|)(ω +

√
−1(α+

√
−1DDφ))n+1

)
= 0.
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pointwise a.e., and in the sense of pluripotential theory, with boundary values
φ0, φ1. Equivalently, φ solves

Θ̃ω(ω̂
−1αφ) = h(x, |t|)

in the sense of Harvey-Lawson’s Dirichlet Duality. In particular, for any
φ0, φ1 ∈ H there is a unique weak geodesic joining φ0, φ1.

Proof. Given h(x, |t|) : X → R, we consider

hε(x, t) = h

(
x,
t

ε

)
: Xε → R.

Clearly we have

∇X∇t̄hε =
1

ε
∇X∇t̄h ∇t∇t̄hε =

1

ε2
∇t∇t̄h.

By Theorem 6.6 we have functions ψε : Xε → R solving
F (ω̂−1αψε) = hε.

Let φε = ψε(x, εt) : X → R. Then φε solve the Lagrangian phase equation
F ((ω̂ε)

−1αφε) = h, or equivalently

Im
(
e−

√
−1h

(
π∗Xω + ε1

√
−1dt ∧ dt̄+

√
−1
(
π∗Xα+

√
−1DDφ

))n+1
)
= 0

on X . By Theorem 6.5, φε satisfies
∥φε∥L∞ + sup

X
|∇φε|ω̂ + ∥

√
−1DDφε∥L∞(X ,ω̂) ⩽ C

for a uniform constant C independent of ε. We can therefore take a limit as
ε→ 0 and get φε → φ where the convergence is uniform in C1,α. Clearly

Cω̂ ⩾ π∗Xα+
√
−1DDφ ⩾ −Cω̂

and so by the continuity of the Monge-Ampère operator along uniformly
convergent sequences [9] we conclude that φ is a weak solution of (6.4).
Next we argue that φ is also a solution of the space-time lifted degenerate
Lagrangian phase equation in the sense of Harvey-Lawson. We refer the
reader to the work of Rubinstein-Solomon [87] for the construction of the
degenerate Lagrangian phase operator. The two key properties we need are

F ((ω̂ε)
−1αψ) → Θ̃(αψ) as ε→ 0

by [87, Theorem A.3], and that Θ̃(·) is upper-semi continuous on the space
of hermitian matrices [87]. By the Harvey-Lawson theory, and [87, Theorem
5.1] we need to show that if u is a C2 function defined on a ball B ⊂ X ,
with u ⩾ φ, and u(p) = φ(p), then

(6.5) Θ̃(α+
√
−1DDu)(p) ⩾ h(p)

and similarly, that if u touches φ from below, then

(6.6) Θ̃
(
−
(
α+

√
−1DDu

))
(p) ⩾ −h(p)
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Our proof of this is based an elementary result on the viscosity theory [17,
Proposition 2.9], with the added complication that the background metric
used to construct the elliptic operator is not constant.

Everything is local, so we may assume that we’re working in B1 ⊂ Cn,
and that p = 0. Let Br denote a ball of radius r centered at 0. Suppose
u ⩾ φ on B1. Fix δ > 0. Since φε → φ uniformly on B1, for any η > 0 we
can choose ε < ε0(η, δ) sufficiently small so that

uη := u+ η|z|2 ⩾ φε on ∂Bδ.

Since u(p) = φ(p), it follows that for ε sufficiently small depending on η, δ,
uη − φε has an interior minimum at some point p(ε,η) ∈ Bδ(p). For now, let
us suppress the dependence on η, and write p(ε,η) = pε. At this point we
have

(6.7) αu(pε) + η

n∑
i=0

√
−1dzi ∧ dz̄i ⩾ αφε(pε)

Up to taking a subsequence we can assume that pε → p∗ ∈ Bδ(p) ⊂ B2δ(p)
as ε→ 0. For ε sufficiently small we have

αu(p∗) + 2η
n∑
i=0

√
−1dzi ∧ dz̄i ⩾ αu(pε) + η

n∑
i=0

√
−1dzi ∧ dz̄i

as (1, 1) forms on Cn. Now, since ω̂ε = π∗Xω + ε2
√
−1dt ∧ dt̄ is a product,

there is a constant C independent of ε so that

−C|x−y| ⩽ ω̂ε(x)
−1−ω̂ε(y)−1 ⩽ C|x−y|, ω̂−1

ε (x) > C−1
n∑
i=0

√
−1dzi∧dz̄i

for any points x, y ∈ B1 ⊂ Cn+1, where ω̂ε is regarded as a Kähler metric
on Cn+1. Thus, for ε≪ η sufficiently small we have

ω̂ε(p∗)
−1

(
αu(p∗) +

(
4η

n∑
i=0

√
−1dzi ∧ dz̄i

))

⩾ ω̂ε(pε)
−1

(
αu(p∗) + 2η

n∑
i=0

√
−1dzi ∧ dz̄i

)

⩾ ω̂ε(pε)
−1

(
αu(pε) + η

n∑
i=0

√
−1dzi ∧ dz̄i

)
Combining this inequality with (6.7) and applying the elliptic operator F
gives

F

(
(ω̂ε)

−1

(
αu(p∗) + 4η

n∑
i=0

√
−1dzi ∧ dz̄i

))
⩾ F (ω̂−1

ε αφε)(pε) = h(pε),
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for all ε sufficiently small. We now take a limit as ε→ 0 to get

(6.8) Θ̃

((
αu(p∗) + 4η

n∑
i=0

√
−1dzi ∧ dz̄i

))
⩾ h(p∗)

We now reinstate the dependence on η, and write p∗ = pη. Since (6.8) holds
for all η > 0, we can take a limit as η → 0. Up to taking a subsequence we
can assume pη → p∞ ∈ Bδ(p). By the upper-semi continuity of Θ̃ we get

Θ̃ (αu(p∞)) ⩾ h(p∞).

This holds for all δ > 0, and so we may finally take a limit as δ → 0, applying
the upper semi-continuity again to conclude

Θ̃ (αu(p)) ⩾ h(p).

The same argument works to prove (6.6). □
The next corollary is essential for infinite dimensional GIT.

Corollary 6.8. Let φ0, φ1 ∈ H, and let φ(x, s) be a weak geodesic with
φ(x, 0) = φ0, φ(x, 1) = φ1. Then the functional CYC is well-defined along
the curve φ(x, s). Furthermore C is affine, J is convex, and Re(Z), Im(Z)
are concave.

Proof. That CYC is well defined follows from the Bedford-Taylor theory
[9], together with the bounds ∥φ(x, s)∥L∞(X) ⩽ C, and −Cω ⩽

√
−1∂∂φ,

as discussed above. Next, let φε(x, s) be ε-geodesics joining φ0, φ1. Since
φε → φ the Bedford-Taylor theory [9] implies that

CYC(φε) → CYC(φ)

as ε → 0. The properties of C,J ,Re(Z), Im(Z) along φ(x, s) follow from
the corresponding properties along φε(x, s); see Proposition 2.17, and Corol-
lary 2.19 □
6.1. Applications to Homogeneous Monge-Ampère. Our techniques
can be used to give a simplified proof of the existence of geodesics in the
space of Kähler metrics [21], in particular avoiding Błocki’s gradient estimate
[12, 13]. We briefly describe how this is done.

Let (X,ω) be a Kähler manifold, and
H = {φ ∈ C∞(X,R) : ωφ = ω +

√
−1∂∂φ > 0}

be the space of Kähler metrics. A geodesic in this space with respect to
the Donaldson-Mabuchi-Semmes metric is equivalent to a solution of the
homogeneous complex Monge-Ampère equation on X = X ×A. That is, a
solution of

(π∗Xω +
√
−1DDφ)n+1 = 0 on X

with boundary values φ0, φ1 ∈ H. As above, we approximate this equation
by the degenerating Monge-Ampère equations
(π∗Xω + ε2

√
−1dt ∧ dt̄+

√
−1DDφ)n+1 = (n+ 1)ε2

√
−1dt ∧ dt̄ ∧ π∗Xωn.
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Rescaling t 7→ εt, we can view this as the non-degenerate Monge-Ampère
equation

(ω̂ +
√
−1DDφ)n+1 = ω̂n+1

on Xε with boundary values φ0, φ1 ∈ H. Here, as before

ω̂ = π∗Xω +
√
−1dt ∧ dt̄

is a product metric on Xε. The C0 estimate follows from the maximum prin-
ciple, comparing with sub and supersolutions as in Section 3. For the spatial
C2 estimate, we argue as in Section 5, applying the maximum principle to
λ1, the largest eigenvalue of(

ω̂ +
√
−1DDφ

) ∣∣
TX

measured with respect to ω̂. Let F (M) = log(det(M)). Fix a point (p0, t0)
and local holomorphic normal coordinates (z0, . . . , zn) so that ω̂j̄i = δj̄i
and ωφ := (ω̂ +

√
−1DDφ) is diagonal with entries µ0 ⩽ · · · ⩽ µn. Let

V1 ∈ Tp0X be the unit spatial eigenvector achieving λ1 Let F ij̄ be the
linearized operator of F . Then following the computation in Section 5 we
compute

F ij̄∇i∇j̄ log(λ1) ⩾ −C+
1

λ1

n∑
i,j=0

1

µiµj
|∇V1(ωφ)j̄i|2−

1

λ21

n∑
i=0

1

µi
|∇i(ωφ)V̄1V1 |

2.

for a uniform constant C. Using Cauchy-Schwarz we now estimate

1

µi
|∇i(ωφ)V̄1V1 |

2 =

∣∣∣∣∑
j

V j
1 ∇V1(ωφ)j̄i

∣∣∣∣2
=

∑
0⩽j,ℓ⩽n

V ℓ
1 V

j
1 ∇V1(ωφ)j̄i∇V1(ωφ)ℓ̄i

⩽

 ∑
0⩽j,ℓ⩽n

|V ℓ
1 |2

µℓ
µj

|∇V1(ωφ)j̄i|2


= λ1
∑

0⩽j⩽n

1

µj
|∇V1(ωφ)j̄i|2.

Thus we have that F ij̄∇i∇j̄ log(λ1) ⩾ −C, and arguing as in the second
author’s proof of the Calabi conjecture [104] we get

Trω̂
(
ω̂ +

√
−1DDφ

) ∣∣
TX

⩽ Ce−C(φ−infX φ).

In other words, for every t ∈ A we have an L∞ bound for Trω̂
√
−1∂∂φ(t)

on X. By the elliptic theory applied on (X,ω) we conclude that |∇Xφ(t)|ω
is uniformly bounded. The estimate for ∇tφ is easily obtained from the
maximum principle, as in Section 4. The remainder of the argument is the
same, applying the boundary estimates for complex Monge-Ampère [21, 56].
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7. Applications to algebraic obstructions

The goal of this section is to use the existence of sufficiently regular geo-
desic segments to find algebraic obstructions to the existence of solutions to
dHYM. Let ∆ = {|t| < 1} be the annulus, X = X×∆, and π∆ be the projec-
tion to the disk. Inspired by Mumford [78], and Ross-Thomas [86], we recall
the notion of a flag ideal I ⊂ X⊗C[t]. Fix ideals J0 ⊂ J1 ⊂ · · · ⊂ Jr−1 ⊂ OX .
The we define a flag ideal I by

I = J0 + tJ1 + · · ·+ tr−1Jr−1 + (tr) ⊂ OX .

The ideal I defines a subscheme of X×∆ which is supported in π−1
∆ (0). We

are going to use this data to define an infinite ray φ(s) ∈ H for s ∈ [0,+∞).
We need the following lemma

Lemma 7.1 (Demailly-Paun, [39]). There is an S1 invariant function ψ :
X ×∆ → R satisfying the following properties

•
√
−1DDψ ⩾ −Aω̂ for some A > 0.

• ψ is smooth on X\supp(I), and
• Near Supp(I) we have

ψ =
1

2π
log

(
r∑
ℓ=0

|t|2ℓ
Nℓ∑
k=1

|fℓ,k|2
)

+ C∞

where, for each k, (fℓ,k)Nℓ
k=1 are local generators for Jℓ.

Since the statement we need is not exactly in Demailly-Paun, we quickly
sketch the necessary ingredients.

Proof. Fix a cover of X by open balls Bi so that on each Bi the ideal sheaves
Jℓ have local generators (fℓ,k)Nℓ

k=1. Choose a partition of unity θj subordinate
to Bj , and let θ(x) be a smooth function positive, non-increasing function
on R with θ(x) = 1 for x ∈ [−1/2, 1/2] and θ(x) = 0 for |x| > 3

4 . Now
consider

ψ =
1

2π
log

θ(|t|2) ·∑
j

θj

r−1∑
ℓ=0

|t|2ℓ
Nℓ∑
k=1

|fℓ,k|2 + |t|2r
 .

Then ψ is clearly S1 invariant, and by the calculations in [39] the first two
conditions are satisfied also. □

Note that from the construction we have

C log(ε) ⩽ ψ

∣∣∣∣
{|t|=ε}

⩽ C

for some constant C independent of ε.
To construct an infinite ray in H we choose a function φ0 ∈ H, and

consider
(7.1) Φ(t) = φ0 + δψ(t).
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We choose δ > 0 sufficiently small as follows. If ω−1αφ0 has eigenvalues
λ1, . . . , λn satisfying

n∑
i=1

arctan(λi) > θ̂ − π

2
+ η1

then choose δ small so that

n
π

2
> Θω(αφ(t)) ⩾

n∑
i=1

arctan(λi − δA) > θ̂ − π

2
.

Then for all t the function φ0 + δψ(t) ∈ H. Setting s = − log |t| gives an
infinite ray Φ(s) ∈ H.

Definition 7.2. The curve Φ(s) constructed above will be called a model
curve for the ideal I emanating from φ0.

Remark 7.3. We have constructed the model curve Φ by hand, and hence
the number δ > 0 depends on analytic data. However, we expect that there
is an algebraic characterization of δ analogous to the Seshadri constant for
an ample line bundle. This will be discussed in Section 8.

The next proposition shows that the limit slope of complexified Calabi-
Yau functional along the curve φ(s) exists.

Proposition 7.4. Consider the curve Φ(s) constructed above. Let µ : X̃ →
X be a log-resolution of singularities of the ideal sheaf I, so that µ−1I =
OX̃ (−E) for a simple normal crossings divisor E. Then we have

(7.2) lim
s→∞

d

ds
CYC(Φ(s)) = − δ

π
E.
[(
µ∗[ω] +

√
−1 (µ∗[α]− δE)

)n]
.

In particular, the limit exists, and the quantity on the right hand side is
independent of the choice of log-resolution.

Proof. In order to avoid carrying around extra minus signs, we will evaluate

− lim
s→∞

∫
X

∂Φ

∂s
(ω +

√
−1αΦ)

n.

where s = − log |t|, and Φ is the curve (7.1). To do this we change variables,
using t in place of s. We note that if we write t = reiθ, then

∂Φ

∂s

∣∣∣∣
s=− log ε

= −r∂Φ
∂r

|r=ε = −ε∂Φ
∂r

|r=ε

At the same time, since Φ is S1 invariant we have ∂t̄Φ = 1
2e
iθ ∂Φ
∂r , and so

∂t̄Φdt̄ =
1

2

∂Φ

∂r
(dr −

√
−1rdθ)

and so
− ∂

∂s
Φ

∣∣∣∣
s=− log ε

dθ = 2
√
−1∂t̄Φdt̄

∣∣∣∣
r=ε

.
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Let Yε = X × {|t| = ε} ∼= X × S1, and let ι : Yε → X be the inclusion, and
πX : Yε → X be the projection. Let (x1, . . . , xn) be coordinates on X. Then
for any complex (1, 1) form β on X we can write

β = βX̄X + βX̄t + βt̄X + βt̄t

where

βX̄X =
∑

1⩽i,j⩽n
βj̄idxi ∧ dx̄j βt̄t = βt̄tdt ∧ dt̄

βX̄t =
∑

1⩽j⩽n
βj̄tdt ∧ dx̄j βt̄X =

∑
1⩽j⩽n

βt̄jdxj ∧ dt̄.

In this notation we have

ι∗β = βX̄X +
∑

1⩽j⩽n
βj̄t

√
−1εe

√
−1θdθ ∧ dx̄j −

∑
1⩽j⩽n

βt̄j
√
−1εe−

√
−1θdxj ∧ dθ

where we view βX̄X as a form on Yε in the obvious way using πX . Further-
more, note that ∂X makes sense as an operator on forms on Yε; indeed, this
is just the ∂ operator of the natural CR structure on Yε. However, even if
βX̄X is closed on the fibers of X → ∆, and β is closed on X , it need not
be the case that ∂Xι∗β = 0 on Yε due to contributions from the βX̄,t, βt̄X
components. In any event, we have

−
∫
X

∂Φ

∂s

(
ω +

√
−1αΦ)

n
) ∣∣∣∣
s=− log ε

=

√
−1

π

∫
Yε

ι∗(∂t̄Φdt̄) ∧ π∗X(ω +
√
−1αΦ)

n

=

√
−1

π

∫
Yε

ι∗
[
∂t̄Φdt̄ ∧

(
π∗Xω +

√
−1(π∗Xα+

√
−1DDΦ)n

)]
Let µ : X̃ → X be a log resolution of the ideal I with the property that µ is
an isomorphism away from t = 0. Then

µ−1I = OX̃ (−E)

for a simple normal crossings divisor E on X̃ supported over t = 0. By the
Poincaré-Lelong formula [38] we have

µ∗
(
π∗Xω +

√
−1
(
π∗Xα+

√
−1DDΦ

))
=
(
µ∗π∗Xω +

√
−1 (µ∗π∗Xα+ δ[E]− δγE)

)
where [E] denotes the current of integration over E, and γE ∈ c1(E) is an
S1-invariant smooth (1, 1) form on X̃ . Let Ỹε = µ−1(Yε) which is a smooth
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submanifold of X̃ , and µ : Ỹ → Y is an isomorphism. Let ι̃ : Ỹ → X̃ .

−
∫
X

∂Φ

∂s
(ω +

√
−1αΦ)

n

∣∣∣∣
s=− log ε

=

√
−1

π

∫
Ỹε

µ∗ι∗
(
∂t̄Φdt̄ ∧

(
π∗Xω +

√
−1(π∗Xα+

√
−1DDΦ)

)n)
=

√
−1

π

∫
Ỹε

ι̃∗
(
µ∗(∂t̄Φdt̄) ∧

(
µ∗π∗Xω +

√
−1(µ∗π∗Xα+ δ[E]− δγE)

)n)
=

√
−1

π

∫
Ỹε

ι̃∗
(
µ∗(∂t̄Φdt̄) ∧

(
µ∗π∗Xω +

√
−1(µ∗π∗Xα− δγE)

)n)
,

where in the last line we used that the support of [E] is over 0, and hence
disjoint from Ỹε.

Let us digress briefly to consider the following integral
√
−1

π

∫
Ỹε

ι̃∗µ∗D(Φ) ∧
(
µ∗π∗Xω +

√
−1(µ∗π∗Xα− δγE)

)n
.

In order to lighten notation, we will suppress the pull-backs, and take them
as understood. Fix a Kähler metric on X̃ , which we can take to be of the
form ω̃ = µ∗(ω +

√
−1dt ∧ dt̄)− δ̂βE for βE some smooth representative of

c1(E), and δ̂ > 0 sufficiently small [39]. Since γE is a smooth form on X̃ we
can fix a constant C0 so that

(7.3) sup
X̃

|∇̄γE |ω̃ < C0.

By construction it is clear that X̃ admits a fibration over ∆ with fibers
X̃t = X for t ̸= 0. As above, we fix coordinates (x1, . . . , xn) on X, and t on
∆. Since µ is an isomorphism away from t = 0, pulling back by µ allows
us to view (x1, . . . , xn) and t is a local holomorphic coordinate system in a
neighbourhood of (any point) of Ỹε. In these coordinates we write

D(Φ) = ∂t̄Φdt̄+ ∂XΦ

Since Ỹε = X × S1 is a product, we can integrate by parts over X to get
√
−1

π

∫
Ỹε

∂XΦ ∧ (ω +
√
−1(α− δγE))

n

= −
√
−1

π

∫
Ỹε

Φ ∧ ∂X(ω +
√
−1(α− δγE))

n.

Since α, ω are pulled back from X, and closed along the fibers we have

∂Xω = 0 = ∂Xα.

However, ∂XγE ̸= 0 in general. Instead, we use the estimate (7.3) to bound

|∂X
(
ω +

√
−1(α− δγE)

)n | ⩽ CdVol(Ỹε,ω̃)
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for a constant C independent of ε. Here dVol(Ỹε,ω̃) denotes the volume form
on Ỹε induced by the Kähler metric ω̃. By construction we have that

C ′ log(ε) ⩽ Φ

∣∣∣∣
Yε

⩽ C ′

for a uniform constant C ′. Combining these estimates gives
√
−1

π

∫
Ỹε

D(Φ) ∧
(
ω +

√
−1(α− δγE)

)n
=

√
−1

π

∫
Ỹε

(∂t̄Φdt̄ ∧
(
ω +

√
−1(α− δγE)

)n
+O(ε log(ε)).

In particular, we have that

− lim
ε→0

∫
X

∂Φ

∂s
(ω +

√
−1αΦ)

n

∣∣∣∣
s=− log ε

= lim
ε→0

√
−1

π

∫
Ỹε

D(Φ) ∧
(
ω +

√
−1(α− δγE)

)n
The latter integral can be evaluated using integration by parts and the
Poincaré-Lelong formula. Integration by parts gives

1

π

∫
µ−1(X×{|t|⩽ε})

√
−1DDΦ ∧

(
ω +

√
−1(α− δγE)

)n
=

√
−1

π

∫
Ỹε

D(Φ) ∧
(
ω +

√
−1(α− δγE)

)n
since

(
ω +

√
−1(α− δγE)

)n is closed on X̃ . By the Poincaré-Lelong formula
(recall that Φ is pulled back to X̃ ) we also have

1

π

∫
µ−1(X×{|t|⩽ε})

√
−1DDΦ ∧

(
ω +

√
−1(α− δγE)

)n
=

1

π

∫
µ−1(X×{|t|⩽ε})

(δ[E]− δγE) ∧
(
ω +

√
−1(α− δγE)

)n
=
δ

π

∫
E

(
ω +

√
−1(α− δγE)

)n
+O(ε)

where in the last line we used that α, ω, γE are smooth on X̃ . Taking the
limit as ε → 0 we obtain that the limit slope of CYC along the curve (7.1)
is computed in terms of intersection numbers as

lim
ε→0

∫
X

∂Φ

∂s

(
(ω +

√
−1αΦ)

n
) ∣∣∣∣
s=− log ε

= − 1

π
δE.

(
[ω] +

√
−1([α]− δE)

)n
.

To see that this intersection number is independent of the choice of log
resolution, one only needs to observe that it is equal to the limit slope of
CYC along the curve (7.1). □

In certain cases we can simplify the leading term (in δ) of the expression.
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Lemma 7.5. Suppose V ⊂ X is an irreducible analytic subvariety of pure
dimension 0 < p < n. Consider the model curve associated to I = JV + (t),
where JV is the ideal sheaf of V . As above, let µ be a log resolution of I.
Then we have

δ

π
E.
(
µ∗[ω] +

√
−1 (µ∗[α]− δE)

)n
= δn−p

(
n

n− p

)
e
√
−1(n−p)π

2

∫
V
(ω +

√
−1α)p +O(δn−p+1)

Proof. We only need to compute the leading order term of the left hand
side. Expanding we have

E.
(
µ∗[ω] +

√
−1 (µ∗[α]− δE)

)n
= E.

n∑
j=0

(
√
−1)j

(
n

j

)
δj(µ∗ω +

√
−1µ∗α)n−j .(−E)j

If k < codimX×∆(V × {0}) = n + 1 − p then we have Ek = 0, and so the
leading order term is the j = n− p term in the above sum. We get

δn−p
(

n

n− p

)
(
√
−1)n−pE.(−E)n−p.(µ∗ω +

√
−1µ∗α)p +O(δn−p+1).

Now a standard computation in intersection theory [52] shows that

E.(−E)n−p.(µ∗ω +
√
−1µ∗α)p =

∫
V
(ω +

√
−1α)p.

□

In order to produce obstructions from this data we need to use the ex-
istence of sufficiently regular geodesics (or smooth ε-regularized geodesics).
Suppose that φ0 is a solution of the dHYM equation, and let Φ(s) ∈ H
be a model curve as constructed above (7.1) emanating from φ0. For each
s ∈ (0,∞) we let φs(t) be a ε-geodesic in H with the property that

φs(0) = φ0 φs(s) = Φ(s).

By Proposition 2.17, J (φs(t)) is strictly convex and has d
dt |t=0J (φs(t)) = 0.

Therefore
d

dt
J (φs(t)) > 0 for all t ∈ (0, s),

and we conclude that
J (Φ(s))− J (φ0)

s
> 0.

Note that J (Φ(s)) can only be bounded when the limit slope
δ

π
E.Im

(
e−

√
−1θ̂

[(
µ∗[ω] +

√
−1 (µ∗[α]− δE)

)n])
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as computed in Proposition 7.4 is zero. Otherwise by L’Hôpital’s rule we
have

0 ⩽ lim
s→∞

J (Φ(s))− J (Φ0)

s
= lim

s→∞

d

ds
J (Φ(s))

and this limit is computed by Proposition 7.4. Summarizing we have proved;

Proposition 7.6. Suppose [α] admits a solution of the deformed Hermitian-
Yang-Mills equation. Let I be a flag ideal over X×∆ and µ a log-resolution
I, as above. Then we have

δ

π
E.Im

[
e−

√
−1θ̂

(
µ∗[ω] +

√
−1 (µ∗[α]− δE)

)n] ⩾ 0

for all δ sufficiently small.

Evidently, this produces obstructions to the existence of solutions to the
deformed Hermitian-Yang-Mills equation. We can also evaluate the limit of
the C and Z functionals.

Proposition 7.7. Suppose H is not empty. Then for every flag ideal over
X ×∆ and µ a log-resolution I as above, we have

−E.Re
(
e−

√
−1θ̂

(
µ∗[ω] +

√
−1 (µ∗[α]− δE)

)n) ⩽ 0

and
−E.Im

(
e−

√
−1nπ

2
(
µ∗[ω] +

√
−1 (µ∗[α]− δE)

)n) ⩾ 0

for all δ > 0 sufficiently small.

Proof. Fix φ0 ∈ H, and let Φ(s) be the model curve associated to the flag
ideal I. Explicitly,

φ(s) = φ0 +
δ

2π
log

θ(e−2s) ·
∑
j

θj

r−1∑
ℓ=0

e−2ℓs
Nℓ∑
k=1

|fℓ,k|2 + e−2rs

 .

We compute

d

ds
e

2π
δ
φ(s) = −2e−2sθ′(e−2s) ·

∑
j

θj

r−1∑
ℓ=0

e−2ℓs
Nℓ∑
k=1

|fℓ,k|2

+ θ(e−2s) ·
∑
j

θj

r−1∑
ℓ=0

(−2ℓ)e−2ℓs
Nℓ∑
k=1

|fℓ,k|2 − 2re−2rs

The first line is non-negative, while the second line is strictly negative. For
s > s∗ = 1

2 log(2), we have θ′(e−2s) = 0, and so d
dsφ(s) < 0. From the

definition of C we get
d

ds
C(φ(s)) < 0 for all s > 1

2
log(2).
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In particular C(φ(s)) < C(φ(s∗)). Let φs(t) be an ε-geodesic joining φ(s∗)
to φ(s). Since C is affine along ε-geodesics we have

d

ds
C(φ(s)) = C(φ(s))− C(φ(s∗))

s− s∗
< 0.

Therefore
lim
s→∞

d

ds
C(φ(s)) ⩽ 0.

Substituting the expression for the limit slope of CYC gives the result. A
similar analysis applies to the functional Z of Definition 2.18. For s > s∗
we have

d

ds
ImZ(φ(s)) > 0

since the variation of Im(Z) is defined by integration against a negative
measure. Thus ImZ(φ(s))− ImZ(φ(s∗)) > 0 and so

lim
s→∞

Im(Z(φ(s)))

s
⩾ 0.

Plugging in the formula for the limit slope of CYC finishes the proof. □

Remark 7.8. Proposition 7.7 does not give particularly interesting obstruc-
tions to the existence of solutions of dHYM. However, it does give interesting
algebraic obstructions to the existence of functions in H. This result will
play a role in our discussion of stability conditions in Section 8.

We can improve the inequalities in Propositions 7.6 and 7.7 to strict
inequalities using a perturbation argument. Suppose for the sake of contra-
diction that [α] admits a solution of deformed Hermitian-Yang-Mills, but

E.Im
[
e−

√
−1θ̂

(
µ∗[ω] +

√
−1 (µ∗[α]− E)

)n]
= 0,

or that H is not empty, but

E.Re
[
e−

√
−1θ̂

(
µ∗[ω] +

√
−1 (µ∗[α]− E)

)n]
= 0

or
E.Im

[
e−

√
−1nπ

2
(
µ∗[ω] +

√
−1 (µ∗[α]− E)

)n]
= 0.

Here we have suppressed the dependence on δ, and consider E as a R-divisor.
For z ∈ C close to 0, consider the rational function

p(z)

q(z)
=
E.
(
µ∗ω +

√
−1(µ∗α− E) + zµ∗ω

)
(ω +

√
−1α+ zω)n.[X]

Note that for |z| sufficiently small we have that (1+Re(z))ω is Kähler. If [α]
admits a solution of dHYM with θ̂ > (n− 1)π2 , then so does [α] + Im(z)[ω]
for |z| sufficiently small. If H(0) = H(α, ω) is non-empty, then this is also
true of H(z) = H(α + Im(z)ω, (1 + Re(z))ω). Furthermore, p(z)/q(z) is
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holomorphic for |z| sufficiently small. Thus, by Proposition 7.6, and/or
Proposition 7.7 we must have

Im

(
p(z)

q(z)

)
⩾ 0 for |z| sufficiently close to 0 ∈ C

if [α] admits a solution of dHYM, and if H ̸= ∅ then

Re

(
p(z)

q(z)

)
⩾ 0 for |z| sufficiently close to 0 ∈ C

Im
(
e−

√
−1nπ

2 p(z)
)
⩽ 0 for |z| sufficiently close to 0 ∈ C.

If any of these three functions vanishes when z = 0 then we get a contra-
diction to the maximum principle unless p(z) ≡ 0. It suffices to prove that
this is not the case unless I = (tr) for some r. Assume that E ̸= 0. Writing
out the numerator (suppressing µ∗) we get

(7.4) p(z) =

n∑
j=0

(
n

j

)
zjE.(ω +

√
−1(α− E))n−j .ωj

It suffices to prove that the coefficient zj is not zero for one j. For 0 < β ≪ 1,
the class [µ∗ω̂ − βE] is Kähler on X̃ (see e.g. [39]), and hence [µ∗ω − βE]

is positive on the fibers of X̃/∆. Since E is an effective divisor in a fiber of
X̃ → ∆

(Aµ∗ω − βE)n.E > 0 for all A ⩾ 1.

If (µ∗ω)n.E > 0, then there is an irreducible component E∗ of E so that
µ : E∗ → µ(E∗) ⊂ X × {0} is an isomorphism at the generic point of E∗.
Since X is connected this implies µ(E∗) = X × {0}, and so I is supported
on X × {0}. Since I is a flag ideal, this implies

I = (tr)

for some r, and hence the model curve Φ(t) is trivial, in the sense the
α+

√
−1∂∂φ(t) = α+

√
−1∂∂φ(0) as (1, 1) forms on X.

If instead (µ∗ω)n.E = 0, then we can choose 0 ⩽ k < n to be the largest
number so that (µ∗ω)k.En−k ̸= 0. We must have

E.(µ∗ω)k.(−E)n−k > 0.

For all C > 0 sufficiently large we have 2Cω > Cω + α > ω. It follows that
2CAµ∗ω − βE > A(Cµ∗ω + µ∗α)− βE > Aµ∗ω − βE. Since E is effective
we get

(2CAµ∗ω − βE)n .E >
(
A(Cµ∗ω + µ∗α)− βE

)n
.E > (Aµ∗ω − βE)n .E.

By assumption the terms on the left and right grow like Ak for A≫ 1, and
C ≫ 1. By comparing terms we get

(µ∗ω)ℓ.(µ∗α)j .En+1−(ℓ+j) = 0 whenever n ⩾ ℓ+ j > k.
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We now expand the coefficient of zk in (7.4) to get
n−k∑
m=0

(
n− k

m

)
(
√
−1)n−k−mE.(µ∗ω)m+k(µ∗α− E)n−k−m

Note that for m > 0, the intersection product contains (µ∗ω)m+k.(µ∗α)j for
j ⩾ 0 and hence vanishes. The only non-zero term in the sum is therefore the
m = 0 term. Expanding this term and using that (µ∗ω)k.(µ∗α)j .En+1−(k+j)

vanishes whenever j > 0, we get that the only non-zero term is ωk.E.(−E)n−k ̸=
0. Thus p(z) is not identically zero.

Theorem 7.9. Let I be a flag ideal as above, and µ : X̃ → X × ∆ a
log-resolution of singularities so that µ−1I = OX̃ (E). If the space H is
non-empty, then

−E.Re
[
e−

√
−1θ̂

(
µ∗[ω] +

√
−1 (µ∗[α]− δE)

)n] ⩽ 0

−E.Im
[
e−

√
−1nπ

2
(
µ∗[ω] +

√
−1 (µ∗[α]− δE)

)n] ⩾ 0

with equality if and only if X̃ ∼= X×∆. Furthermore, if [α] admits a solution
of the dHYM equation we must have

E.Im
[
e−

√
−1θ̂

(
µ∗[ω] +

√
−1 (µ∗[α]− δE)

)n] ⩾ 0

with equality if and only if I = (tr) for some r > 0.

Combining this theorem with Lemma 7.5 we have

Corollary 7.10. Let V be an irreducible analytic subset V ⊂ X with
dimV = p < n. If the class [α] has H ̸= ∅, then

Re

[
e−

√
−1(θ̂−(n−p)π

2
)

∫
V
(ω +

√
−1α)p

]
> 0

Im

[
e−

√
−1 pπ

2

∫
V
(ω +

√
−1α)p

]
< 0.

Furthermore, if [α] admits a solution of the deformed Hermitian-Yang-Mills
equation, then

Im

[
e−

√
−1(θ̂−(n−p)π

2
)

∫
V
(ω +

√
−1α)p

]
> 0.

8. Stability conditions

In this section we will attempt to synthesize the obstructions from the
previous section into a coherent algebraic framework. This will inevitably
lead us to discuss the relationship with categorical stability conditions [16].
In order to simplify the discussion we will focus primarily on interpreting the
rather simple set of obstructions obtained in Corollary 7.10, and comment
on the more general situation of flag ideals toward the end of the section.
Furthermore, in order to facilitate our discussion of Bridgeland stability we
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will now restrict to the case when [α] = c1(L), but we caution the reader that
this is purely aesthetic and everything can be carried over to general classes
in H1,1(X,R). This more general theory should be thought of as analogous
to Bridgeland stability with non-zero B-field, which we will comment on
at the end of the section. Introduce the following notation; for an analytic
subset V ⊂ X define

ZV (L) = −
∫
V
e−

√
−1ωch(L)

and note that if the dimension of V is p then

(8.1)
∫
V
(ω +

√
−1c1(L))

p =
√
−1

p
∫
V
e−

√
−1ωch(L) = e

√
−1(p−2)π

2ZV (L).

As a first step we need to discuss the problem of determining the lifted angle
algebraically. Recall that the angle on X is defined by∫

X
(ω +

√
−1α)n ∈ R>0e

√
−1θ̂

and we noted that if H ̸= ∅, then θ̂ could be uniquely lifted to a R-valued
angle (see Lemma 2.6). We now give a (conjectural) algebraic construction
for determining the lifted angle of any irreducible analytic subvariety. Fix
such a V of dimension p and consider the path

ZV (t) = −
∫
V
e−

√
−1tωch(L), t ∈ [1,∞],

which interpolates with the large radius limit (see [7] for related ideas on
the algebraic side).

Definition 8.1. We define the algebraic lifted angle θ̂V (α) to be the winding
angle of the path ZV (t) as t runs from +∞ to 1, provided ZV (t) does not
pass through the origin. We define the slicing angle φV (L) by

φV (L) = θ̂V (L)−
π

2
(dimV − 2) .

The use of the factor (dimV − 2)π2 appearing on the right hand side is
motivated by (8.1).

If dimV = 1 it is trivial that the lifted angle is always well-defined. If
dimV = 2, the lifted angle is always well-defined by the Hodge Index The-
orem. As soon as we reach dimension 3, however, it is easy to construct
examples of classes c1(L) and Kähler manifolds (X,ω) for which the lifted
angle is not defined. Examples of this phenomenon occur already on BlpP3;
see Example 8.8 below. However, if we assume that L admits a solution of
dHYM with phase θ̂ ∈ (π2 ,

3π
2 ), then the lifted angle is well-defined as follows

from the Chern number inequality of the authors and Xie.

Proposition 8.2 (Collins-Xie-Yau, [32]). Suppose (X,ω) is a Kähler 3-
fold, and L admits a metric h solving the deformed Hermitian-Yang-Mills



77

equation with θ̂ ∈ (π2 ,
3π
2 ). Then we have

(8.2)
(∫

X
ω3

)(∫
X

c1(L)
3

6

)
< 3

(∫
X

c1(L)
2 ∧ ω
2

)(∫
X
c1(L) ∧ ω2

)
.

Furthermore, the algebraic lifted angle equals the lifted angle.

Chern number inequalities of this type, involving the higher Chern classes
ch3 have played an important role in the study of Bridgeland stability con-
ditions [8].

Returning to our discussion, and taking V = X gives

ZX(L) = −e−
√
−1nπ

2 e
√
−1θ̂RX

where 0 < RX = |
∫
X(ω +

√
−1c1(L))

n|. Since θ̂ ∈ ((n − 1)π2 , n
π
2 ) we have

that
Re(ZX(L)) < 0, ZX(L) ∈ H = {z ∈ C : Im(z) > 0}

and hence ZX(L) lies in the upper half-plane, with negative real component.
With this observation it is not difficult (though it does get slightly un-

wieldy) to write down the expected Chern number inequalities in any di-
mension. Unfortunately, the techniques used to prove Proposition 8.2 do not
easily carry over to the higher dimensional case. For example, in dimension
4 suppose that L has θ̂ ∈ (3π2 , 2π). The path ZX(t) is given by

−
(
t4ω4 − 6t2ω2.c1(L)

2 + c1(L)
4
)
− 4t

√
−1
(
t2c1(L).ω

3 − c1(L)
3.ω
)

where we have written a.b =
∫
X a ∧ b. For t ≈ +∞, ZX(t) lies near the

negative real axis. Since ZX(1) ∈ H, we must have Im(ZX(T∗)) = 0 for
some T∗ ∈ (1,∞), so

c1(L)
3.ω

c1(L).ω3
> 1.

Furthermore, at T∗ we must have that Re(ZX(T∗)) > 0. Solving for T∗ and
plugging in yields

Conjecture 8.3. Suppose L admits a solution of dHYM on the Kähler
4-fold (X,ω), with angle θ̂ ∈ (3π2 , 2π). Then the following Chern number
inequalities hold

c1(L)
3.ω

c1(L).ω3
> 1.

and (
c1(L)

3.ω
) (
ω4
)

c1(L).ω3
− 6

(
c1(L)

2.ω2
)
+

(
c1(L).ω

3
) (
c1(L)

4
)

c1(L)3.ω
< 0

If L has H ̸= ∅, and θ̂ ∈ ((n − 1)π2 , n
π
2 ), Corollary 7.10 implies that

ZV (L) ∈ H for every irreducible analytic subset V ⊂ X. If, in addition, L
admits a hermitian metric solving the dHYM equation, then we write

ZV (L)

ZX(L)
=

1

RX
e−

√
−1(θ̂−(n−p)π

2
)

∫
V
(ω +

√
−1c1(L))

p,



78 T. C. COLLINS AND S.-T YAU

b

ZX(L)

ZX(t)

Figure 1. The path ZX(t), and its endpoint ZX(L). If L
is stable, then ZV (L) must lie in the gray region for every
irreducible analytic set V ⊂ X.

and so by Corollary 7.10 we must have

0 < Im

(
ZV (L)

ZX(L)

)
=
RV
RX

sin (Arg(ZV (L))−Arg(ZX(L))) .

We illustrate this situation in Figure 1.
Assume now that we are in dimension 3. By assumption, we have θ̂X(L) ∈

(π, 3π2 ), and so φX(L) ∈ (π2 , π). If V has dimension 1, then

ZV (t) = −
∫
V
c1(L) +

√
−1t

∫
V
ω.

Since ZV (1) must lie in the shaded region in Figure 1, we see that the lifted
angle θ̂V (L) ∈ (φV (L)− π

2 ,
π
2 ), and so
φV (L) ∈ (φX(L), π).

If V has dimension 2 then we have

2ZV (t) =

∫
V
t2ω2 − c1(L)

2 +
√
−12t

∫
V
c1(L) ∧ ω

In this case Im(ZV (1)) > 0, and so ZV (t) must lie in H for all t ∈ [1,+∞).
It follows that the lifted angle must satisfy θ̂V (L) ∈ (φX(L), π). Since
dimV = 2 we get

φV (L) ∈ (φX(L), π).

We summarize this in the following proposition,

Proposition 8.4. Suppose that (X,ω) is a Kähler 3-fold and L → X is a
holomorphic line bundle. If L admits a solution of dHYM with lifted angle
θ̂ ∈ (π, 3π2 ). Then

(i) The Chern number inequality (8.2) holds, and so the lifted angle is
well-defined.
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(ii) ZX(L) ∈ H, and the slicing angle φX(L) ∈ (π2 , π).
(iii) For every irreducible analytic subset V ⊂ X, ZV (L) ∈ H.
(iv) The slicing angle φV (L) satisfies

(8.3) φV (L) > φX(L).

The following conjecture updates a conjecture from [29].

Conjecture 8.5. The converse of Proposition 8.4 holds.

Note that the “small radius limit” of this conjecture for ample line bundles
was proven by the first author and Székelyhidi [31]; see [32] for a discussion.
One can formulate analogous conjectures in higher dimensions. However,
we expect that in dimension 4, for example, one also needs to impose Chern
number inequalities on 3 dimensional subvarieties V ensuring that the phase
φV (L) is well-defined. We also note

Corollary 8.6. Suppose L is a holomorphic line bundle over (X,ω) with
ZX(L) ∈ H. If there exists an irreducible analytic subvariety V ⊂ X with
ZV (L) /∈ H, then H = ∅.

This corollary should be compared with the Nakai-Moishezon criterion of
ampleness, and Demailly-Păun’s [39] numerical criterion for the existence of
Kähler metrics in the class [α]. We conjecture a converse to Corollary 8.6

Conjecture 8.7. A line bundle L (or more generally a real (1, 1) class [α])
with ZX(L) ∈ H has H ̸= ∅ if and only if ZV (L) ∈ H for all V ⊂ X.

In dimensions greater than 3 it seems possible that imposing some further
Chern number inequalities may also be necessary. These extra conditions
should be thought of as analogous to the conditions appearing in [39, The-
orem 4.3]. A solution to this conjecture, or more generally an algebraic
characterization of the non-emptiness of H, would also give an algebraic
characterization of parameter δ appearing in the construction of the model
curves in Section 7 as a non-linear Seshadri constant.

It is instructive to consider a simple example.

Example 8.8. Consider X = BlpP3. Let H be the pull-back of hyperplane,
and E be the exceptional divisor of the blow-up, and note that H3 = E3 = 1
and E.H2 = H.E2 = 0. We take ω = 2H−E, and consider La,b = aH−bE.
Consider the paths

ZX(t) = (b3 + 12at3 − 3bt2 − a3) +
√
−1(6at2 − 7t3 − 3bt2)

ZE(t) = (t2 − b2) +
√
−1(2bt)

We are interested in studying when L admits a solution of dHYM with phase
θ̂ ∈ (π, 3π2 ). In this family, four different phenomena occur

• When a = 5, b = 3, then ZX(L5,3), ZE(L5,3) ∈ H, the lifted angles
are well-defined, and φX(L) < φX(E).
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• When a = 5, b = −2 the lifted angles are well-defined, ZX(L5,−2) ∈
H, but ZE(L5,−2) /∈ H, and so by Corollary 7.10 the space H(L5,−2)
is empty.

• When a = 5, b = 1 ZX(L5,1), ZE(L5,1) ∈ H, the lifted angles are
well-defined, but φE(L5,1) < φX(L5,1) and so by Proposition 8.4 no
solution of dHYM exists.

• When b = −3, then there exists a ∈ (0.3, 0.6) so that the path ZX(t)
passes through the origin. The lifted angled is not defined and by
Proposition 8.2 no solution of dHYM exists.

We now recall the definition of a Bridgeland stability condition, focusing
specifically on the case of interest to the B-model of mirror symmetry, so
that the triangulated category is DbCoh(X).

Definition 8.9. A slicing P of DbCoh(X) is a collection of subcategories
P(φ) ⊂ DbCoh(X) for all φ ∈ R such that

(1) P(φ)[1] = P(φ+ 1) where [1] denotes the “shift” functor,
(2) if φ1 > φ2 and A ∈ P(φ1), B ∈ P(φ2), then Hom(A,B) = 0,
(3) every E ∈ DbCoh(X) admits a Harder-Narasimhan filtration by

objects in P(φi) for some 1 ⩽ i ⩽ m.

We refer to [16] for a precise definition of the Harder-Narasimhan prop-
erty. A Bridgeland stability condition on DbCoh(X) consists of a slicing
together with a central charge (see below). For BPS D-branes in the B-
model, the relevant central charge was first proposed by Douglas (see, for
example, [45, 46, 8, 3]). We take

DbCoh(X) ∋ E 7−→ ZD(E) := −
∫
X
e−

√
−1ωch(E).

Definition 8.10. A Bridgeland stability condition on DbCoh(X) with cen-
tral charge ZD is a slicing P satisfying the following properties

(1) For any non-zero E ∈ P(φ) we have

ZD(E) ∈ R>0e
√
−1φ,

(2)

C := inf

{
|ZD(E)|
∥ch(E)∥

: 0 ̸= E ∈ P(φ), φ ∈ R
}
> 0

where ∥ · ∥ is any norm on the finite dimensional vector space
Heven(X,R).

Given a Bridgeland stability condition we define the heart to be A :=
P((0, π]). An object A ∈ A is semistable (resp. stable) if, for every surjection
A↠ B, B ∈ A we have

φ(A) ⩽ ( resp. <) φ(B).

It seems readily apparent that the algebraic structures which predict
the existence or non-existence of solutions to dHYM are closely related to
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Bridgeland stability. For example, in dimension 3, if V is an irreducible
analytic subvariety and OV is the skyscraper sheaf supported on V , then
the ideal dictionary would be

Proposition 8.4 (i)-(iii) ⇐⇒ L,L⊗OV ∈ A
Proposition 8.4 (iv) ⇐⇒ L is not destabilized by L↠ L⊗OV

Note that ZV (L) ̸= ZD(L⊗OV ) in general. Nevertheless, solutions of dHYM
share two further important properties with Bridgeland stable objects. First,
recall that by the result of Jacob-Yau [67] (see Lemma 2.1), line bundles
admitting solutions of dHYM have property (2) of Definition 8.10. Secondly,
we note the following lemma, which should be compared with Definition 8.9,
(2).

Lemma 8.11. Suppose L,M are two line bundles on (X,ω) admitting so-
lutions of the deformed Hermitian-Yang-Mills equation with

0 < φX(M) < φX(L) < π.

Then Hom(L,M) = 0.

Proof. Let αL ∈ c1(L), αM ∈ c1(M) be the solutions of the deformed
Hermitian-Yang-Mills equation. Suppose for the sake of contradiction that
there exists a non-zero section σ ∈ H0(X,M ⊗ L∨). We fix a Hermitian
metric h on M ⊗ L∨ with

−
√
−1∂∂ log h = αM − αL.

The (1, 1) current T := αM+
√
−1∂∂ log |σ|2h satisfies T = αL on X\{σ = 0}.

The function log |σ|2h achieves its maximum at some point x∗ ∈ X\{σ = 0},
and at x∗ we have

αL(x
∗) = T (x∗) ⩽ αM (x∗)

which implies that
θ̂(L) = Θω(αL(x

∗)) ⩽ Θω(αM (x∗)) = θ̂(M).

Since θ̂(L) = φX(L)− (n− 2)π2 , and similarly for φX(M), this is a contra-
diction. □

For a general flag ideal we can write the obstructions in Theorem 7.9 in
terms of the numbers

ZE(L) :=

∫
E
e−

√
−1µ∗ωch(µ∗L− δE).

These invariants are more difficult to interpret in terms of Bridgeland sta-
bility in that they are computed on a birational model of X × ∆. For
example, it’s unclear how one show interpret the flag ideal I ⊂ OX × C[t]
as an object in DbCoh(X). It would be particularly enlightening to express
ZE(L) in terms of data on X, for example the Chern class of the ideals Jk.
This seems difficult however, as the Grothendieck-Riemann-Roch Theorem
includes the Todd class of the relative tangent bundle of the log-resolution
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µ. For example, for applications to Bridgeland stability we would hope for
a positive answer to the following question
Question 8.12. Does the quantity appearing on the right hand side of (7.2)
depend only on the quasi-isomorphism class of

J0 ↪→ J1 ↪→ · · · ↪→ Jr−1 ↪→ OX

in DbCoh(X)?
Finally, note that our results here apply to any (1, 1) class [α] ∈ H1,1(X,R).

The relation with Bridgeland stability is via the B-field. In mirror sym-
metry it is natural to consider not just Kähler forms, but complex forms
ω +

√
−1β, where β ∈ H1,1(X,R). In fact, it is usually assumed that

β ∈ H1,1(X,R)/H1,1(X,Z). If [α] ∈ H1,1(X,R), then we write it as [α] =
[L] + [β], where [L] ∈ H1,1(X,Z), and [β] ∈ H1,1(X,R)/H1,1(X,Z). Then
the stability of [α] in the sense discussed above is equivalent to the stability
of [L] with respect to the complexified Kähler form ω +

√
−1β. In each

equation in this section one just replaces ω 7→ ω+
√
−1β. When [L] = 0, we

are asking that the structure sheaf OX be stable with respect to the com-
plexified form ω+

√
−1β. Under mirror symmetry this is related to the fact

that the zero section of the SYZ fibration should be a special Lagrangian;
see [71, 54] and the references therein for a discussion.

Note that in restricting our attention to line bundles, and more generally
classes [α] ∈ H1,1(X,R), we do need to understand the existence of a sta-
bility condition on all of DbCoh(X). In particular, this allows us to avoid
addressing the stability of higher rank bundles, and the existence of Harder-
Narasimhan filtrations, two issues which are at the heart of constructing
Bridgeland stability conditions. It would be interesting to understand, even
in examples, whether Harder-Narasimhan filtrations for unstable line bun-
dles appear analytically. For example, one could study singular solutions
of the dHYM equation, limits of the flow proposed by Jacob-Yau [67], or
the gradient flow of the J functional with respect to the Riemannian struc-
ture on H, in analogy with the work of the first author with Hisamoto and
Takahashi in the setting of Kähler-Einstein metrics [28].

8.1. Higher Rank, Lower Phase. We conclude this section with some
remarks about what one might expect in the case of line bundles with lower
phase, and general vector bundles. In the case of line bundles with lower
phase, the foremost analytic difficulty is to prove the existence of regular
geodesics, or even ε-regularized geodesics, when the phase |θ̂| ⩽ (n − 1)π2 .
In this lower phase range, the Lagrangian phase operator on the product
manifold Xε fails to be concave, or even have concave level sets. Even in
the local case in Rn there are examples of viscosity solutions to the constant
Lagrangian phase equation which fail to have even C1,1 regularity [80, 103].

One could nevertheless optimistically assume sufficiently regular ε-geodesics
exist and proceed to study the algebro-geometric consequences as in Sec-
tion 7. However, even here new phenomena appear. Recall that the space
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H is defined to be the space of smooth potentials φ so that

|Θω(αφ)− θ̂| < π

2
.

When θ̂ > (n − 1)π2 this reduces to the one-sided bound θ̂ − π
2 < Θω(αφ).

This fact was used crucially in the construction of the model curve (7.1).
On the other hand, when θ̂ < (n − 1)π2 , the construction of a model curve
becomes more subtle. For example, when |θ̂| < (n − 1)π2 there is no model
curve in H for the ideal I = Jp + (t), where Jp is the ideal sheaf of a point.
In particular, any attempt to understand the obstructions to existence of
solutions to dHYM in lower phase must come to terms with understanding
the model curves in H.

In higher rank one can construct a similar theory, but with formida-
ble new difficulties. The first caveat is that, for holomorphic bundles with
non-abelian gauge group the analogue of the deformed Hermitian-Yang-Mills
equation is not known. Mathematically, the dHYM equation for vector bun-
dles should arise from the Fourier-Mukai transform of a special Lagrangian
multi-section [73]. However, new difficulties arise due to the presence of
holomorphic disks. On the physics side, the dHYM equations have not been
derived as the correct formulation of the non-abelian Dirac-Born-Infeld the-
ory is not completely solved [76]. Nevertheless, there is a natural guess
[76, 53, 77] for the higher rank dHYM equation. Fix a holomorphic bundle
E → (X,ω). We say that a hermitian metric H on E solves the deformed
Hermitian-Yang-Mills equation if the associated Chern connection of H sat-
isfies

Im
(
e−

√
−1θ̂(ω ⊗ IE − F )n

)
= 0

where ∫
X
Tr(ω ⊗ IE − F )n ∈ R>0e

√
−1θ̂

and the imaginary part is defined using the metric H.
Then we can consider

H := {H : Re (Tr ((ω ⊗ IE − F (H))n)) > 0}
The tangent space to H at a point H is just the space of smooth H-hermitian
bilinear forms on E. Given two sections ψ1, ψ2 we have a natural L2 inner-
product

⟨⟨ψ1, ψ2⟩⟩H =

∫
X
⟨ψ1, ψ2⟩HRe (Tr ((ω ⊗ IE − F (H))n)) .

One can then proceed as before, computing the geodesic equation, introduc-
ing the analogue of the CYC functional and so on. The resulting equations
are fully nonlinear systems, and the analytic difficulties in addressing them
are formidable, to say the least. Nevertheless, one can study the conse-
quences of existence, including higher rank versions of the Chern number
inequality (8.2); see for example [85] where a vector bundle version of the
Monge-Ampère equation is studied.
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9. The A-model

Let us discuss the mirror picture to our results. We are going to focus
on the setting in which the B-model is a toric Kähler manifold. Mirror
symmetry in this setting has been extensively studied; see for example [55,
91, 6, 1, 2, 47, 48, 49, 50, 20, 26, 63] and the references there in. In the toric
setting we can apply the semi-flat SYZ proposal and the real Fourier-Mukai
transform [73] to transform results about dHYM into results about special
Lagrangians in the A-model.

Suppose (X,ω) is toric, ω is an (S1)n-invariant symplectic form. Then X
contains a dense open orbit of (C∗)n, and X\(C∗)n = D =

∪
iDi is a simple

normal crossings divisor with D ∈ −KX . Each Di is itself a toric manifold
of dimension n − 1. Fix coordinates (z1, . . . , zn) on (C∗)n. Since D is an
anticanonical divisor X0 = X\D is Calabi-Yau with holomorphic volume
form

Ω =
dz1
z1

∧ . . . ∧ dzn
zn

.

We are therefore in a position to discuss mirror symmetry. The Kähler form
ω|X0 =

√
−1∂∂φ for a function φ, and since ω is (S1)n-invariant we have

φ = φ(|z1|, . . . , |zn|).

Let (x1, . . . , xn) be coordinates on Rn and let (θ1, . . . , θn) be coordinates
on (S1)n, and define wi = xi +

√
−1θi to be holomorphic coordinates on

Rn × (S1)n, which we identify with (C∗)n by the map wi 7→ ewi = zi. In
particular, we can view X\D = (C∗)n as a Lagrangian torus fibration over
Rn. Writing the Kähler metric out in these coordinates gives

g =
∑
i,j

φij(dx
i ⊗ dxj + dθi ⊗ dθj)

where φij := ∂2φ
∂xi∂xj

. In particular, the metric induced on Rn is the hessian
metric of the convex function φ.

To construct the mirror manifold, we use the moment map µ : X → ∆,
where ∆ is a convex polyhedron, which we view as a subset of Rn. The
divisor D is mapped to the boundary of ∆, and the lower dimensional toric
varieties are mapped to the faces of ∆. Restricting to the interior ∆o the
moment map gives a smooth Lagrangian torus fibration

µ : X\D → ∆0.

It is a standard fact that ∇φ : Rn → ∆o is a diffeomorphism. Namely, we
let

yi =
∂φ

∂xi

and these define coordinates on ∆. Using (∇φ)−1 we can view the moment
map as inducing an (S1)n-fibration over Rn, which comes naturally equipped
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with a symplectic form, and Riemannian metric given by
g̃ =

∑
i,j

φijdx
i ⊗ dxj + φijdθ̃i ⊗ dθ̃j , ω̃ =

∑
ij

φijdxi ∧ dθ̃j

where φij is the inverse of the metric φij , and θ̃i are coordinates in the (S1)n

fibers of µ. This induces a complex structure J̃ by defining the coordinates
w̃i = yi +

√
−1θ̃i

to be holomorphic, and the resulting triple defines a Kähler structure which
is precisely the underlying manifold of the mirror of X. This can all be
written succinctly on ∆o as follows. Let u = φ∗ be the Legendre transform of
φ, and let yi be the coordinates on ∆o induced by ∇φ. Then w̃i = yi+

√
−1θ̃i

are holomorphic coordinates on Y := (S1)n × ∆o, which is equipped with
the Kähler metric

g̃ = uij(dy
i ⊗ dyj + dθ̃i ⊗ dθ̃j)

where uij = ∂2u
∂yi∂yj

= φij(x(y)). There is a holomorphic volume form on Y

given by Ω̌ = dw̃1 ∧ . . . ∧ dw̃n. We view Y as a bounded domain inside of
(C∗)n by defining z̃i = ew̃i , in which case the holomorphic volume form is

Ω̌ =
dz̃1
z̃1

∧ . . . ∧ dz̃n
z̃n

.

The mirror to X is then the Landau-Ginzburg model (Y,W ), where W is
the super-potential. At least when X is toric Fano, the superpotential W
can be computed directly from the polytope [26, 20].

In this setting, Leung-Yau-Zaslow use the real Fourier-Mukai transform
to prove
Theorem 9.1 (Leung-Yau-Zaslow [73]). Let L→ (X,ω) be a torus invariant
line bundle, equipped with a torus invariant hermitian metric h. The metric
h induces a function f = log(h) : ∆0 → R whose graph y 7→ (y, θ̃(y)) defined
by

θ̃i(y) = uij
∂f

∂yj

is a Lagrangian submanifold L̃. Furthermore, L̃ is special Lagrangian if and
only if h solves the deformed Hermitian-Yang-Mills equation (1.1)

In the statement of this theorem we are abusively viewing θ̃i as coordinates
on the universal cover of (S1)n. Under this correspondence, changes in the
metric h 7→ he−f correspond to Hamiltonian deformations of L̃ (coupled
with a flat U(1) bundle).

Our goal is to describe, in rather general terms, how our results com-
bined with the above mirror construction, imply results about the existence
of special Lagrangians. Naturally, much of what follows is somewhat spec-
ulative, owing to the complicated nature of the derived Fukaya-Seidel cate-
gory DF(Y,W ) of the Landau-Ginzburg model. The precise details of the
correspondence will be addressed in future work.
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The first ingredient of the correspondence is an equivalence between torus
invariant line bundles L → X and admissible Lagrangians L̃ in (Y,W ),
defining objects [L̃] in DF(Y,W ); more precisely, a correspondence between
smooth, torus invariant metrics h on L and Lagrangians in (Y,W ) repre-
senting [L̃]. This correspondence is based on a notion of admissibility for
Lagrangians in (Y,W ), about which much has been written; see for instance
[1, 2, 88, 89]. For our purposes the notion of monomial admissibility recently
introduced by Hanlon [61] seems to capture the necessary structure.

Fix a torus invariant line bundle L → X, and toric metrics h1, h2 on L
which define points in H. Suppose that θ̂(L) = θ̂ > (n − 1)π2 . Then the
mirror Lagrangians L1, L2 are almost calibrated in the sense of [97], or pos-
itive in the sense of [93], with lifted angle θ̃ = −θ̂ (since our convention
introduces an extra minus sign under the mirror map). Furthermore, the
geodesic connecting h1, h2 in H produced by Theorem 6.7 corresponds ex-
actly to a geodesic, in the sense of Solomon [93], connecting the Lagrangians
L̃1, L̃2 in the class [L̃]. Suppose that

(9.1) J0 ⊂ J1 · · · ⊂ Jr = OX

are torus invariant ideal sheaves on X, and let hδ(s) be the associated model
curve (for δ > 0 sufficiently small) (see Section 7). The Fourier-Mukai
transform associates to hδ(s) a family of positive (or almost calibrated)
Lagrangians L̃δ(s). Suppose that

∆ = {y ∈ Rn :
M∩
i=1

ℓi(y) ⩾ 0}

where ℓi, 1 ⩽ ℓ ⩽M are linear functions with ℓi = 0 defining the faces of ∆.
Model curves correspond under the Fourier-Mukai transform to potentials
of the form

fδ(s) = − δ

2π
log

(
r∑
ℓ=0

e−2sℓ
r−1∑
k=0

Pk(ℓ1, . . . , ℓM ) + e−2sr

)
where Pk are polynomials having Pk(ℓ1, . . . , ℓM ) > 0 on ∆o, and satisfying
certain nesting conditions for their zero sets, corresponding to (9.1). The
fδ(s) give rise to the positive Lagrangians L̃δ(s) by Hamiltonian deformation
from some initial positive Lagrangian L̃0. As s→ ∞, the Lagrangians L̃δ(s)
degenerate to a limit

lim
s→∞

Lδ(s) = L̃δ(∞).

In general, L̃δ(∞) will not define an element of DF(Y,W ). However, for
rational choices of δ, we can scale the Lagrangian, and the symplectic form
by a sufficiently large, and divisible integer to get a well-defined element
of DF(Y,W ). This is akin (and indeed mirror) to the fact that Q-divisors
define elements of DbCoh(X) only after clearing denominators. For now let
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us ignore this technical issue, with the understanding that one needs to scale
appropriately to make the following discussion meaningful.

Since L̃δ(∞) is obtained by a family of Hamiltonian deformations from L̃0,
it should come equipped with a map L̃δ(∞) → L̃0. Let C = Cone(L̃δ(∞) →
L̃0) be the cone in DF(Y,W ). Geometrically, [51, 90] one can think of C
as the Lagrangian connect sum L̃0#L̃δ(∞), although this is not rigorous in
general and it is unclear whether C is a “geometric” object of DF(Y,W ). At
a purely formal level, it is natural to expect that the limit of the symplectic
Kempf-Ness functional along the family L̃δ(s) is

(9.2) lim
s→∞

−
∫
L̃s

∂fδ
∂s

Im
(
e−

√
−1θ̃Ω

)
= −

∫
L̃δ(∞)

Im
(
e−

√
−1θ̃Ω

)
.

The limit on the left-hand side is of course calculated on the B-model X
by the results in Section 7. However, evaluating the limit in terms of data
on the A-model (Y,W ) appears slightly complicated. Note that, by direct
computation, one can show that for all x ∈ ∆o we have

−∂fδ(s)
∂s

(x) → 0,

and so the integral in (9.2) should localize to an integral near the boundary
of ∆, where −∂fδ(s)

∂s (x) should converge to a piecewise constant function
on each face of ∂∆. This observation already seems to suggest that (9.2)
is incorrect. However, the cone C can thought of loosely as representing
certain torus fibers over the boundary (see Figure 3). These boundary torus
fibers are not objects in Y , since Y does not include ∂∆. Nevertheless we
have [C] = [L̃0] − [L̃δ(∞)] in the Grothendieck group of DF(Y,W ). Since
[Im(e−

√
−1θ̃Ω)].[L̃0] = 0 by definition of θ̃, the boundary integral over the

torus fibers formally represented by C is equal to the integral on the right
hand side of (9.2).

To illustrate this, let us consider the simple example of (P1, ωFS). As
usual let [Z1 : Z2] be homogeneous coordinates on P1 and let C∗ act by
λ · [Z1 : Z2] = [λ · Z1 : Z2]. We can identify Z1Z2 ̸= 0 with C∗ equipped
with the coordinate z = Z1/Z2. Write z = ex+

√
−1θ. The potential of the

Fubini-Study metric is
φ = log(1 + e2x),

which is a convex function on R. Consider the line bundle OP1(k) equipped
with the model curve of metrics

hk,δ(s) :=
h⊗kFS(

|Z2
1Z2|2h⊗3

FS

+ e−2s

)δ
which corresponds to the toric flag ideal I = (Z2

1Z2) + (t) ⊂ OP1 ⊗ C[t].
Recall that, by our convention, these metrics induce Lagrangians mirror
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b
p

4

2

L̃∞

L̃0

Figure 2. The family of degenerating Lagrangians in
T ∗(0, 2) induced by the metrics h−1

k,1(s) on OP1(−k) for
k ≫ 1. The marked point p corresponds to an element of
Hom(L̃∞, L̃0) in DF(Y,W ).

to OP1(−k) (see the beginning of Section 2). Since ∇φ : R → [0, 2], the
resulting section of T ∗(0, 2) under the Fourier-Mukai transform is

(0, 2) ∋ y 7−→ −ky − δ
y2(2− y)(4− 3y)

y2(2− y) + 8e−2s
.

The Lagrangian section of the mirror is obtained by passing to the quotient
T ∗(0, 2)/Λ for a lattice Λ. For simplicity, we take this lattice to be Z. We
plot the resulting Lagrangians for a few values of s as s→ ∞ in Figure 2

Recall that in this case we can think of the degeneration as corresponding
to the exact sequence

0 → OP1(−3)
·Z2

1Z2−−−−→ OP1 → OP1/(Z2
1Z2) → 0

Recalling our convention, we tensor with OP1(−k) to get

(9.3) 0 → OP1(−(k + 3))
·Z2

1Z2−−−−→ OP1(−k) → OP1(−k)/(Z2
1Z2) → 0.

We think of L̃∞ → L̃0 as mirror to the first map in (9.3), and Cone(L̃∞ →
L̃0) as mirror to the cone over this map, which is quasi-isomorphic to
OP1(−k)/(Z2

1Z2). Geometrically, taking the Lagrangian connect sum can
be visualized as depicted in Figure 3

Of course the example of P1 is not particularly interesting geometrically,
since, for example, all line bundles are stable. Perhaps the first interesting
case would be the case of BlpP2, for which unstable bundles exist. These
unstable bundles are mirror to unstable classes in DF(Y,W ). Furthermore,
in dimension 2, the authors and Jacob showed that the conditions in Corol-
lary 7.10 are both necessary and sufficient for the existence of solutions
to dHYM [29]. This gives necessary and sufficient algebraic conditions for
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b

4

2

L̃∞

L̃0

Cone(L̃∞ → L̃0)

Figure 3. A geometric representation of Cone(L̃∞ → L̃0)

the existence of special Lagrangian sections in two dimensional Landau-
Ginzburg models. It would be enlightening to understand this correspon-
dence in more detail.

Let us briefly explain how this fits with the Thomas-Yau [98] proposal.
Recall that in DF(Y,W ) we have a distinguished triangle

L̃∞ → L̃0 → C → L̃∞[1].

This gives rise to a distinguished triangle

C[−1] → L̃∞ → L̃0 → C

showing that L̃0 = Cone(C[−1] → L̃∞). In particular, viewing the mapping
cone formally as Lagrangian connect sum leads to

L̃0 = L̃∞#C[−1],

and so L̃∞ can be viewed as a “sub-object” of L0 in the language of Thomas-
Yau [98]. If the class of L̃0 in DF(Y,W ) contains a special Lagrangian, then,
assuming the conjectural limit (9.2), using the existence of geodesics in the
space of positive Lagrangians and arguing as in Section 7 we obtain

Im

(∫
L̃∞

Ω∫
L̃0

Ω

)
< 0.

If we write ∫
L̃∞

Ω ∈ R>0e
√
−1φ(L̃∞),

∫
L̃0

Ω ∈ R>0e
√
−1φ(L̃0)

this is equivalent to sin(φ(L̃∞) − φ(L̃0)) < 0, which, modulo lifting the
phases to R, is precisely the expected Bridgeland stability condition.
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