
Invent. math. (2020) 220:61–127
https://doi.org/10.1007/s00222-019-00924-y

When Kloosterman sums meet Hecke eigenvalues

Ping Xi1

Dedicated to Professor Étienne Fouvry on the occasion of his sixty-fifth
birthday

Received: 31 January 2018 / Accepted: 5 September 2019 /
Published online: 27 September 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract By elaborating a two-dimensional Selberg sieve with asymptotics
and equidistributions of Kloosterman sums from �-adic cohomology, as well
as a Bombieri–Vinogradov type mean value theorem for Kloosterman sums in
arithmetic progressions, it is proved that for any given primitive Hecke–Maass
cusp form of trivial nebentypus, the eigenvalue of the n-th Hecke operator does
not coincide with the Kloosterman sumKl(1, n) for infinitely many squarefree
n with at most 100 prime factors. This provides a partial negative answer to a
problem of Katz on modular structures of Kloosterman sums.

Mathematics Subject Classification 11L05 · 11F30 · 11N36 · 11T23

1 Introduction

We are concerned with the normalized Kloosterman sum

Kl(a, c) = 1√
c

∑∗

u (mod c)

e
(au + u

c

)

defined for all c ∈ Z+ and a ∈ Z. Denote by P the set of primes. For each
p ∈ P and a ∈ Z, the celebrated Weil’s bound asserts that |Kl(a, p)| � 2,
from which one finds there exists a certain θp(a) ∈ [0, π ] such that
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62 P. Xi

Kl(a, p) = 2 cos θp(a).

In his famous lecture notes, Katz [21, Chapter 1] proposed the following three
problems (with a �= 0 fixed):

(I) Does the density of {p ∈ P : Kl(a, p) > 0} in P exist? If yes, is it equal
to 1/2?

(II) Is there a measure on [0, π ] such that {θp(a) : p ∈ P} equidistributes?
(III) Consider the Euler product

La(s) :=
∏

p∈P,p�a

(
1 − Kl(a, p)

ps
+ 1

p2s

)−1

for �s > 1. Is it defined to be an L-function attached to some Maass
form of level q with q being a power of 2?

Problem I is also referred to the sign change problem of Kloosterman sums,
and the first serious progress was made by Fouvry and Michel [13,14], who
proved that there are at least� X/ log X squarefree numbers c ∈ [X, 2X ]with
ω(c) � 23 such that Kl(1, c) > 0 (resp. Kl(1, c) < 0), where ω(c) denotes
the number of distinct prime factors of c. The method of Fouvry and Michel
includes a pioneer combination of the Selberg sieve, spectral theory of auto-
morphic forms and �-adic cohomology. The constant 23 was later sharpened
by Sivak-Fischler [39], Matomäki [29] and the author [41], and the current
record 7 is due to the author [42]. Quite recently, Drappeau and Maynard [9]
reduced the constant further to 2 by assuming the existence of Landau–Siegel
zeros in a suitable way.

Problem II concerns the horizontal equidistribution of Kloosterman sums,
and it is expected the Sato–Tate measure dμST := 2

π
cos2 θdθ does this job. In

fact, Katz [21, Conjecture 1.2.5] formulated a precise conjecture that for each
fixed integer a �= 0, the set {θp(a) : p ∈ P, p � a} of Kloosterman sum angles
should equidistribute with respect to dμST. It then follows immediately from
this conjecture that the desired density in Problem I is 1/2; i.e.,

lim
x→+∞

|{p ∈ P ∩ [1, x] : Kl(a, p) > 0}|
|P ∩ [1, x]| = 1

2
.

The original Sato–Tate conjecture was first formulated independently by
Sato and Tate in the context of elliptic curves, and then reformulated and
extended to the framework of Hecke eigencuspforms for SL2(Z) by Serre
[36], predicting the similar equidistributions of Fourier coefficients of such
cusp forms. Very recently, the conjecture has been confirmed by Clozel et al.
[5] for non-CM elliptic curves overQ with non-integral j-invariants, and was
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When Kloosterman sums meet Hecke eigenvalues 63

later generalized by Barnet-Lamb, Geraghty, Harris and Taylor [1] for non-
CM, holomorphic elliptic modular newforms of weight k � 2, level N . Much
earlier before this resolution, the vertical analogue with p fixed and the form
varying was considered independently by Conrey, Duke and Farmer [6] and
Serre [37]. In parallel with the vertical Sato–Tate distribution for cusp forms,
Katz [22] proved for Kloosterman sums that the set {θp(a) : 1 � a < p}
becomes equidistributed with respect to dμST as long as p → +∞.

In view of the similarity between the distributions of Kloosterman sums and
Hecke eigenvalues of holomorphic cusp forms, it seems natural to expect that
±Kl(1, p) might coincide with the p-th Fourier coefficient of some holomor-
phic Hecke cusp form. In fact, thanks toDeligne [8],−Kl(1, p) and eigenvalue
λ f (p) of the p-th Hecke operator acting on a primitive holomorphic cusp form
f are both known to be Frobenius traces of an �-adic Galois representations
of rank 2 and weight 0. Unfortunately, it is easily known that they could not
coincide, since Kl(1, p) cannot lie in any fixed number field (see [3] for some
discussions). Problem III of Katz concerns the modular structure of Kloost-
erman sums, and predicts that the situation might be valid if one considers
Maass forms in place of holomorphic ones.

In what follows, we take f to be a primitive Hecke–Maass cusp form of
level q, trivial nebentypus and eigenvalue λ = 1/4 + t2, so that it is a joint
eigenfunction of the Laplacian and Hecke operators. Suppose f admits the
following Fourier expansion

f (z) = √
y
∑

n �=0

λ f (n)Kit (2π |n|y)e(nx),

where λ f (1) = 1 and Kν is the K -Bessel function of order ν. The trivial
nebentypus enables λ f ’s to be real numbers. As eigenvalues of Hecke opera-
tors, λ f ’s are expected to satisfy the inequality

|λ f (n)| � nϑτ(n) (1.1)

for some ϑ < 1/2. The Ramanujan–Petersson conjecture asserts that ϑ = 0 is
admissible, and the current record, due to Kim–Sarnak [24], takes ϑ = 7/64.
Although it is already known that most Hecke–Maass cusp forms f satisfiy
(1.1) with ϑ = 0 (see Sarnak [34]), the distribution of λ f (n) is still mys-
terious in many aspects. Problem III is thus two-fold: λ f (n) is suggested to
be controlled by virtue of Kloosterman sums; and conversely, spectral theory
of Maass forms might be helpful to understand non-trivial analytic informa-
tion about the Euler product La(s), which would yield non-trivial progresses
towards Problems I and II. Unfortunately, Problem III seems too optimistic
to be true, but there seems no satisfactory approach that has been found to
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attack it; and to my best knowledge, the only known result regarding this
problem was obtained by Booker [3] based on numerical computations: if
Kl(1, p) = ±λ f (p) for some primitive Hecke–Maass cusp form f of level
q = 2ν and eigenvalue λ, then q · (λ + 3) > 18.3 × 106.

In this paper, we present an analytic-number-theoretic approach to Problem
III, which enables us to provide a partial negative answer with almost primes
in place of primes.

Theorem 1.1 Let f be a primitive Hecke–Maass cusp form f with trivial
nebentypus. Then there exist infinitely many squarefree number n with at most
100 prime factors, such that

λ f (n) �= ±Kl(1, n).

Quantitatively, for η ∈ {−1, 1}, there exists certain constant c = c( f ) > 0,
such that

|{n ∈ [X, 2X ] : λ f (n) > η · Kl(1, n), ω(n) � 100, μ2(n) = 1}| � cX

log X

and

|{n ∈ [X, 2X ] : λ f (n) < η · Kl(1, n), ω(n) � 100, μ2(n) = 1}| � cX

log X

hold for all X > 1/c.

In fact, we can prove the following general theorem.

Theorem 1.2 For any η ∈ R and each primitive Hecke–Maass cusp form f of
trivial nebentypus, there exist two constants c = c( f, η) > 0 and r = r(η) <
+∞, such that

|{n ∈ [X, 2X ] : λ f (n) > η · Kl(1, n), ω(n) � r, μ2(n) = 1}| � cX

log X

and

|{n ∈ [X, 2X ] : λ f (n) < η · Kl(1, n), ω(n) � r, μ2(n) = 1}| � cX

log X

hold for all X>1/c. In particular, one may take r(± 1
2018) = 25, r(± 2018)

= 41.

Theorems 1.1 and 1.2 are new, at least to the author, even if there is no
restriction on the size of ω(n). The merit of Theorem 1.2 is revealed by the
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When Kloosterman sums meet Hecke eigenvalues 65

flexibility of η. Although we cannot provide a complete negative answer to
Problem III, it seems that there is little hope to find a suitable Hecke–Maass
cusp form to capture modular structures of Kloosterman sums following the
line in Problem III. However, the function field analogue was confirmed by
Chai and Li [4] that the relevant Kloosterman sums (defined over the residue
field of completion of the function field at place v) and Hecke eigenvalues of
a certain GL2 automorphic form can coincide up to a negative sign.

In a private communication, Katz proposed a problem to consider an ana-
logue of Problem III with the cubic exponential sum

B(a, c) := 1√
c

∑

x (mod c)

e
( x3 + ax

c

)

in place of Kl(1, p). The vertical Sato–Tate distribution of B(a, p), as a runs
over (Z/pZ)× for sufficiently large prime p, was already proved by Katz
[23, Sect. 7.11], and it is also expected that the horizontal equidistribution of
B(a, p) should be true. However, to prove analogues of Theorems 1.1 and 1.2
seems beyond our current approach.

In fact, the proofs of Theorems 1.1 and 1.2 rely on a kind of Bombieri–
Vinogradov type equidistribution for Kloosterman sums Kl(1, c) (see Lem-
ma 9.1 below), and this was proved by Fouvry and Michel [14] by appealing
to the spectral theory of automorphic forms. It is thus natural to expect such a
theorem should also exist for B(1, c).Wewould like tomention a similar result
due to Louvel [27] that such Bombieri–Vinogradov type equidistribution holds
for cubic exponential sumsmodulo Eisenstein integers, for which he employed
the spectral theory of cubic metaplectic forms, and cubic residue symbols can
be well-introduced. However, as Louvel has pointed out, it is not yet known
how to move from the cubic exponential sums modulo Eisenstein integers to
those modulo rational integers in the horizontal aspect.

Theorems 1.1 and 1.2 will be proved by appealing to a weighted Selberg
sieve and the arguments will be outlined in the next section.

Notation

As usual, e(z) = e2π i z and μ, ϕ, τ denote the Möbius, Euler and divisor
functions, respectively. We use ω(n) to count the number of distinct prime
factors of n. The superscript ∗ in summation indicates primitive elements.
Given X � 2, we setL = log X and the notation n ∼ N means N < n � 2N .
For a sequence of coefficients α = (αm), denote by ‖·‖1 and ‖·‖ the �1- and
�2-norms, respectively, i.e., ‖α‖1 = ∑

m |αm |, ‖α‖ = (
∑

m |αm |2)1/2.
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2 Setting-up: outline of the proof

2.1 A weighted Selberg sieve

Suppose (an)n�x is a sequence of non-negative numbers. The sieve method
was originally designed to capture how often these numbers are supported
on primes, although current status only allows us to detect almost primes in
most cases. A convenient approach was invented by Selberg [35] in 1950’s in
connection with the twin prime conjecture. Precisely, he suggests to consider
the weighted average

∑

n�x

anwn{ρ − τ(n)},

where wn is a non-negative function, and ρ is to be chosen appropriately such
that the total average is positive for all sufficiently large x , from which one
obtains the existence of n such that ω(n) � log ρ/ log 2. The ingenuity then
lies in the choice of wn , which should attenuate the contributions from those
n’s that have many prime factors. A typical choice for wn , due to Selberg
himself, is the square of the Möbius transform of a certain smooth truncation
of the Möbius function; see [17, Chapters 4–7, 10] and [15, Chapter 7] for
detailed discussions.

Focusing onProblem I ofKatz in the first section on sign changes ofKlooter-
man sums, the author [41,42] introduced the above weighted Selberg sieve to
the context of Kloosterman sums, in which situation τ(n) is replaced by a
certain truncated divisor function that suits well for the application of Sato–
Tate distribution of Kloosterman sums in the vertical aspect. Such experiences
motivate us to consider Problem III of Katz in a similar manner.

We need to make some preparations.

• Let n be a positive integer. For α, β > 0 and Δ > 1, define a truncated
divisor function

τΔ(n;α, β) =
∑

d|n
d�n

1
1+Δ

αω(d)βω(n/d). (2.1)

• Let X be a large number and define ϑ ∈ ]0, 14 ] by
√

D = Xϑ exp(−√L).
We choose (�d) such that

�d =

⎧
⎪⎨

⎪⎩
μ(d)

( log(
√

D/d)

log
√

D

)2
, d �

√
D,

0, d >
√

D.

(2.2)
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When Kloosterman sums meet Hecke eigenvalues 67

• Let Ψ be a fixed non-negative smooth function supported in [1, 2] with the
normalization

∫

R
Ψ (x)dx = 1. (2.3)

The Mellin transform of Ψ is defined as

Ψ̃ (s) =
∫

R
Ψ (x)xs−1dx .

Hence Ψ̃ (1) = 1. Integrating by parts, we have

Ψ̃ (s) 
 (|s| + 1)−A

for any A � 0 with an implied constant depending only on A and Ψ .
• For any fixed η ∈ R, put

ψ(n) = ψ f,η(n) := λ f (n) − η · Kl(1, n). (2.4)

• For all z � 2, define

P(z) =
∏

p<z,p∈P
p.

We will specialize z later as a small power of X such that z12 � X .

Our theorems will be concluded by effective evaluations of the following
weighted average

H±(X) =
∑

n�1
μ2(n)=1

Ψ
( n

X

)
× {|ψ(n)| ± ψ(n)}

× {ρ − τΔ(n;α, β)}
( ∑

d|(n,P(z))
�d

)2
, (2.5)

where ρ, ϑ, α, β, z,Δ are some parameters to be chosen later. Clearly, we have

H±(X) � ρ · H1(X) − 2H2(X) ± ρ · H3(X) (2.6)

with

H1(X) =
∑

n�1

Ψ
( n

X

)
μ2(n)|ψ(n)|

( ∑

d|(n,P(z))
�d

)2
,

H2(X) =
∑

n�1

Ψ
( n

X

)
μ2(n)|ψ(n)|τΔ(n;α, β)

( ∑

d|(n,P(z))
�d

)2
,
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68 P. Xi

H3(X) =
∑

n�1

Ψ
( n

X

)
μ2(n)ψ(n)

( ∑

d|(n,P(z))
�d

)2
.

Note that η is contained implicitly in all above and subsequent formulations;
we will keep it fixed and not display this until necessary. The task reduces to
find a positive lower bound for H1(X) and an upper bound for H2(X), which
should be of the same order of magnitude, and also a reasonable estimate for
H3(X). In fact, we may prove the following three propositions.

Proposition 2.1 For large X, we have

H1(X) � (1 + o(1))
∑

2�i�7

Ii ·
√

l3i /ui · X

log X
,

where Ii , li , ui are given as in Proposition 5.1.

Proposition 2.2 Let α = 3π
8 and β = 1

2 . For large X, we have

H2(X) � (1 + o(1))(1 + |η|/2)S
(
ϑ,

2ϑ log X

log z

) X

log X
,

where S(·, ·) is defined by (B.5).

Proposition 2.3 For large X, we have

H3(X) 
 (1 + |η|)X (log X)−A

for any A > 0, provided that ϑ � 1
4 , where the implied constant depends on

A, f and Ψ .

Upon suitable choices of ρ, ϑ and z, the positivity of H±(X) would imply,
for X large enough, that there exists n ∈ [X, 2X ] with

τΔ(n;α, β) < ρ

for which λ f (n)− η ·Kl(1, n) > 0 (or< 0). In Sect. 10, we will do necessary
numerical computations that lead to Theorems 1.1 and 1.2.

2.2 Ingredients of the proof

The proofs of Propositions 2.1–2.3 form the heart of this paper. The proof of
Proposition 2.3 is not new and was stated as [14, Proposition 2.1] in a slightly
different setting. For the proof of Proposition 2.1, we will be restricted to some
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When Kloosterman sums meet Hecke eigenvalues 69

specialized integers having fixed number of prime factors, for which we may
explore the vertical Sato–Tate distribution for Kloosterman sums andmoments
of Hecke eigenvalues to produce a positive lower bound for H1(X).

There is another new ingredient in this paper that the lower bound for H1(X)
relies on the economic control of the correlation

∑

n∈S
λ f (n)Kl(1, n),

where S is a suitable set of the products of a fixed number of distinct primes.
It is expected that λ f (n) does not correlate with Kl(1, n) as n runs over S, and
an upper bound which beats the trivial estimate O(|S|) is highly desirable.
Unfortunately, we do not know how to capture such cancellations, even if n is
relaxed to run over consecutive integers. Alternatively, it could be a courageous
choice to ignore the sign changes of summands, and a suitable upper bound for

∑

n∈S
|λ f (n)Kl(1, n)|

with a small scalar might also suffice. In fact, for n being a product of dis-
tinct primes, say n = qr with q, r ∈ P , we may decompose the summand as
|λ f (q)λ f (r)Kl(r2, q)Kl(q2; r)|. Our observation lies in the fact that |λ f (p)|
and |Kl(p2, q)| are both smaller than 1, say δ, on average while p runs over
a suitable set of primes; see Lemmas 3.1 and 3.3 for details. The factor δ j for
some large j will then appear if n hasmore prime factors, and δ j can be consid-
erably small if j is taken to be reasonably large. This, while n is restricted to be
products of a large number of distinct primes, will lead to quite a small scalar in
the upper bound for the above average with absolute values, although we can-
not save anything in the order of magnitude. Typically, we require n to have 7
distinct prime factors, but thiswould arise a combinatorial disasterwhile evalu-
ating�d in the sieveweight to concludeProposition 2.1. Thus, the restrictionn |
P(z) in (2.5) is introduced to overcome such difficulty in computations. More
precisely, we may restrict n to be the product of certain primes of prescribed
sizes larger than z, then only d = 1 survives in the convolution

∑
d|(n,P(z)) �d .

The upper bound for H2(X) also relies on the vertical Sato–Tate distribution
for Kloosterman sums, and by appealing to an idea in our previous work [42],
wemay reduce the dimension of the sifting problemby introducing τΔ(n;α, β)
with appropriate choices for α and β, so that the upper bound for H2(X) can
be controlled more effectively. Due to the appearance of n | P(z), one has to
evaluate the k-dimensional sifting average

∑

n

μ2(n)bn

( ∑

d|(n,P(z))
�d

)2
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with {bn} being a non-negative multiplicative function mimicking kω(n) on
average. In particular, we may develop an asymptotic evaluation in the case
k = 2 upon the choice (2.2), which we call a two-dimensional Selberg sieve
with asymptotics. A complete and precise statement will be included as the
appendix.

2.3 Correlations of Kloosterman sums and Hecke eigenvalues

Before closing this section, we would like to formulate two conjectures which
illustrate the correlations between Kloosterman sums and Hecke eigenvalues.

Conjecture 2.1 Let f be a fixed primitive cusp form (holomorphic for Maass).
For all large X, we have

∑

p�X

λ f (p)Kl(1, p) = o(XL−1).

If Conjecture 2.1 could be proved affirmatively, it would follow that there exist
100% primes p such that λ f (p) �= Kl(1, p) for each primitive cusp form f ,
which provides a negative answer to Problem III of Katz.

In order to consider the correlations along prime variables, it should be natu-
ral at first to study the average over consecutive integers as we havementioned.
To this end, we may formulate the following correlation with a precise saving.

Conjecture 2.2 Let f be a fixed primitive cusp form (holomorphic for Maass).
For all large X, we have

∑

n�X

λ f (n)Kl(1, n) = O(XL−2018).

It seems that the above two conjectures are both beyond the current
approach, and the resolutions should require new creations both from auto-
morphic forms and algebraic geometry.

3 Maass forms and Kloosterman sums

3.1 Maass forms

We will not need too much information on Maass forms. The following
moments of Fourier coefficients at prime arguments would be most of what is
required.
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When Kloosterman sums meet Hecke eigenvalues 71

Let f be a primitiveHecke–Maass cusp form f of level q, trivial nebentypus
and eigenvalue λ as an eigenfunction of the Laplacian operator. For each κ � 0
and X > 1, define

πκ(X) =
∑

p�X

|λ f (p)|κ .

Lemma 3.1 For all large X, we have

πκ(X) = cκ(1 + o(1))XL−1

for κ = 0, 2, 4, 6 with c0 = c2 = 1, c4 = 2, c6 = 5, and

πκ(X) � cκ(1 + o(1))XL−1

for κ = 1, 3 with c1 = 11
12 , c3 = √

5.

Proof We only consider the cases κ � 1. Following the approach of
Hadamard–de la Vallée-Poussin to the classical prime number theorem, it suf-
fices to consider the non-vanishing and holomorphy of the symmetric power
L-functions L(symκ f, s) at�s = 1with κ = 2, 4, 6.These are already known
due to a series of celebrated works [16,25,26,38]. In fact, [0, π ] is identified
with the set of conjugacy classes of the compact group SU2(C) via the map
g ∈ SU2(C) �→ tr(g) = 2 cos θ; the image of the probability Haar measure
of SU2(C) is just the Sato–Tate measure μST. For κ = 2 j ( j = 1, 2, 3), we
have

cκ =
∫
(2 cos θ)2 jdμST = 1

j + 1

(
2 j

j

)
.

In particular, c2 = 1, c4 = 2 and c6 = 5.
The value of c1 follows from the asymptotics for πκ(X) with κ = 0, 2, 4, 6

and the inequality

|y| � 1

36
(13 + 29y2 − 7y4 + y6)

upon the choice by Holowinsky [18], which is valid for all y ∈ R. The value
of c3 follows from Cauchy’s inequality and the asymptotics for π6(X). ��

3.2 Kloosterman sums

Following Deligne [8] and Katz [22], it is known that

a �→ −Kl(a, p) = − 2 cos θp(a), a ∈ F×
p
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72 P. Xi

is the trace function of an �-adic sheaf Kl on Gm(Fp) = F×
p , which is of rank

2 and pure of weight 0. Alternatively, we may write

2 cos θp(a) = tr(Froba,Kl), a ∈ F×
p .

By Weyl’s criterion and the Peter–Weyl theorem, Katz’s vertical equidistri-
bution, as mentioned in the first section, reduces to control the cancellations
within the averages

∑

a∈F×
p

symk(θp(a)) =
∑

a∈F×
p

tr(Froba, sym
kKl),

where symkKl is the k-th symmetric power of the Kloosterman sheafKl (i.e.,
the composition of the sheafKl with the k-th symmetric power representation
of SL2) and

symk(θ) = sin(k + 1)θ

sin θ
.

In fact, Katz [22, Example 13.6] proved that
∣∣∣∣∣∣∣

∑

a∈F×
p

symk(θp(a))

∣∣∣∣∣∣∣
� 1

2
(k + 1)

√
p. (3.1)

It is natural to expect that the square-root cancellation also holds if replacing
θp(a) by θp(�(a)) for any non-constant rational function � of fixed degree
over F×

p . In general, we have the following estimate.

Lemma 3.2 Let ψ and χ be additive and multiplicative characters (not nec-
essarily non-trivial) modulo p and � a fixed non-constant rational function
modulo p. For each fixed positive integer k, there exists some constant B
depending only on deg(�), such that

∑∗

a (mod p)

ψ(a)symk(θp(�(a))) 
 k B√
p (3.2)

∑∗

a (mod p)

χ(a)symk(θp(�(a))) 
 k B√
p (3.3)

hold with implied constants depending at most on B. In particular, one can
take B = 1 if �(a) = 1/a2.
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The case�(a) = 1/a2 in (3.2) was contained inMichel [32, Corollarie 2.9]
and there is no essential difference when extending to general �. The bound
in Lemma 3.2 lies in the fact that the underlying sheaf symk([�∗Kl]) is of
rank k + 1, while the Artin–Scherier sheaf Lψ is of rank 1 if ψ is non-trivial.
These two geometrically irreducible sheaves are not geometrically isomorphic,
and the square-root cancellation then follows from the Riemann Hypothesis
of Deligne [8] (see also [12, Theorem 4.1], for instance, for practical use in
analytic number theory). The bound (3.3) follows by noting that the Kummer
sheaf Lχ is geometrically irreducible and of rank 1 if χ is non-trivial.

For (a, c) = 1, define

Ω(a, c) := Kl(a2, c). (3.4)

It follows from the Chinese remainder theorem that the twistedmultiplicativity
Ω(a, rs) = Ω(ar, s)Ω(as, r) holds for all a, r, s with (r, s) = (a, rs) = 1.
For each Dirichlet character χ (mod c), define

Ω̃(χ, c) := 1√
c

∑∗

r (mod c)

χ(r)|Ω(r, c)|.

For χ1 (mod c1) and χ2 (mod c2) with (c1, c2) = 1, the Chinese remainder
theorem yields

Ω̃(χ1χ2, c1c2) = χ1(c2)χ2(c1)Ω̃(χ1, c1)Ω̃(χ2, c2). (3.5)

For prime moduli, we have the following asymptotic characterizations.

Lemma 3.3 Let p be a large prime. Then

Ω̃(χ, p) = δχ
√

p + O(log p),

where δχ vanishes unless χ is the trivial character mod p, in which case it is
equal to 8

3π , and the implied constant is absolute.

Proof In view of Lemma 3.2, we may apply Lemma C.3 with

J = ϕ(p), B = 1, U = c
√

p,

{y j }1� j�J = {χ(r) : 1 � r � p − 1},
{θ j }1� j�J = {θp(r

2) : 1 � r � p − 1},
where c is a large suitable constant, so that

√
pΩ̃(χ, p) − 8

3π

∑∗

r (mod p)

χ(r) 
 √
p log K + p3/2

K
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for any K > 1. The proof is completed by taking K = p. ��
Lemma 3.4 Let q � 2 be a squarefree number and χ a primitive character
mod q. Then we have

|Ω̃(χ, q)| � cω(q) log q

for some absolute constant c > 0.

Proof In view of (3.5), we have

|Ω̃(χ, q)| =
∏

p|q
|Ω̃(χp, p)|,

where χp is a non-trivial character mod p. By Lemma 3.3, there exists some
absolute constant c0 > 0, such that

|Ω̃(χ, q)| �
∏

p|q
c0 log p = cω(q)0

∏

p|q
log p

� cω(q)0

∑

d|q
μ2(d) log d � (2c0)

ω(q) log q.

This completes the proof of the lemma by taking c = 2c0. ��
The following bilinear form estimation can be found in [30, Corollaire 2.11]

and a more general statement has been proved in [11, Theorem 1.17].

Lemma 3.5 Let p be a large prime and (a, p) = 1. For each k � 1 and any
coefficients α = (αm),β = (βn), we have

∑

m∼M

∑

n∼N
(mn,p)=1

αmβnsymk(θp((amn)2))


 ‖α‖‖β‖(M N )
1
2 (p− 1

4 + N− 1
2 + M− 1

2 p
1
4 (log p)

1
2 ),

where the implied constant depends polynomially on k.

Remark 1 Lemma 3.5 is non-trivial as long as N > log p, M > p
1
2 (log p)2

and p > log(M N ).

The following lemma is originally proved by Fouvry andMichel [14, Propo-
sition 7.2] using �-adic cohomology.
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Lemma 3.6 Suppose q = q1q2 . . . qs with q1, q2, . . . , qs being distinct
primes. For each s-tuple of positive integers k = (k1, k2, . . . , ks), and any
coefficients α = (αm),β = (βn), γ = (γm,n) with m ≡ m′ (mod n) ⇒
γm,n = γm′,n, we have

∑

m∼M

∑

n∼N
(mn,q)=1

αmβnγm,n

∏

1� j�s

symk j
(θq j ((mnq/q j )2))


 c(s; k)‖α‖‖β‖‖γ ‖∞(M N )
1
2 (q− 1

8 + N− 1
4 q

1
8 + M− 1

2 N
1
2 ),

where c(s; k) = 3s ∏s
j=1(k j + 1) and the implied constant is absolute.

Remark 2 Lemma 3.6 is non-trivial as long as M > N log q > q
1
2 (log q)2

and q > log(M N ).

Lemma 3.7 Let P, M � 3. Suppose γ = (γp) is a complex coefficient sup-
ported on primes in ]P, 2P] and � is a fixed non-constant rational function
with integral coefficients in numerators and denominators. Then there exists
some constant B = B(deg(�)) > 0, such that for each k � 1 and arbitrary
coefficient α = (αm) supported in ]M, 2M],

∑

p∼P

γp

∑

m∼M

αmsymk(cos θp(�(m))) 
 k B(M
1
2 + P log P)‖α‖‖γ ‖

holds with some implied constant depending at most on B.

Remark 3 A typical situation is γp ≡ 1, in which case Lemma 3.7 becomes
non-trivial as long as P, M/(P log2 P) → +∞. It is an important and chal-
lenging problem to beat the barrier M = P for a general coefficient α = (αm).
We would like to mention a deep result of Michel [31], who considered the
special case k = 1, γ ≡ 1, �(m) = m, and he was able to work non-trivially
even when M is quite close to

√
P.

Proof Write K (m, p) = symk(cos θp(�(m))) and denote by S the average in
question. First, by Cauchy’s inequality, we have

|S|2 � ‖α‖2Σ, (3.6)

where

Σ =
∑

m∼M

∣∣∣∣∣∣

∑

p∼P

γp K (m, p)

∣∣∣∣∣∣

2

.
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Squaring out and switching summations, we find

Σ =
∑ ∑

p1,p2∼P

γp1γ p2

∑

m∼M

K (m, p1)K (m, p2) = Σ= + Σ �=,

where we split the double sum over p1, p2 according to p1 = p2 or p1 �= p2.
Trivially, we have

Σ= =
∑

p∼P

|γp|2
∑

m∼M

|K (m, p)|2 � (k + 1)2M‖γ ‖2. (3.7)

By completion method, we may derive, for p1 �= p2, that

∑

m∼M

K (m, p1)K (m, p2)

=
∑

r (mod p1 p2)

K (r, p1)K (r, p2)
∑

m∼M
m≡r (mod p1 p2)

1

= 1√
p1 p2

∑

|h|� 1
2 p1 p2

∑

m∼M

e
( hm

p1 p2

)
K̂ (h p2, p1)K̂ (− h p1, p2),

where

K̂ (y, p) = 1√
p

∑∗

x (mod p)

K (x, p)e
(−xy

p

)
.

From Lemma 3.2 it follows that

Σ �= � k B
∑ ∑

p1 �=p2∼P

|γp1γp2 |√
p1 p2

∑

|h|� 1
2 p1 p2

min
{

M,
p1 p2

h

}


 k B(M + P2 log P)‖γ ‖2.
Combining this with (3.7), we find

Σ 
 k B(M + P2 log P)‖γ ‖2,
from which and (3.6), the lemma follows immediately. ��
Lemma 3.8 Let P, X � 3. Suppose γ = (γp) is a complex coefficient sup-
ported on primes in ]P, 2P] and ν is a multiplicative function such that

∑

n�N

τ(n)|ν(n)|2 
 N (log N )κ
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for some constant κ � 1. Then we have

∑

p∼P

γp

∑

n∼X
(n,p)=1

μ2(n)ν(n)�(n)|Ω(n, p)|

= 8

3π

∑

p∼P

γp

∑

n∼X
(n,p)=1

μ2(n)ν(n)�(n)

+ O
(
LA{P X

1
2 + P

1
4 X + P

1
2 XL−2A + (P X)

3
4 }‖γ ‖

)

for any A > κ + 2, where the implied constant depends only on A and κ .

Remark 4 Lemma 3.8 is non-trivial as long as L 
 P 
 XL−3A.

Proof In view of the Chebyshev approximation for | cos | (see Lemma C.3), it
suffices to consider

∑

p∼P

γp

∑

n∼X
(n,p)=1

μ2(n)ν(n)�(n)symk(cos θp(n2)).

By virtue of Vaughan’s identity (see [20, Proposition 13.4] for instance), we
may decompose the sum over n to bilinear forms and consider

T (α,β, γ ) =
∑

p∼P

γp

∑ ∑

m∼M,n∼N
(mn,p)=1

αmβnμ
2(mn)ν(mn)symk(cos θp((mn)2)),

where α = (αm),β = (βn) are some coefficients supported in ]M, 2M] and
]N , 2N ], respectively, such that |αmβn| � 10 + logm log n. Here M, N are
chosen subject to

XL−C < M N � X, M � N , (3.8)

where C is some large constant. We would like to prove that

T (α,β, γ ) 
 k ALA−2{P X
1
2 + P

1
4 X + P

1
2 XL−2A + (P X)

3
4 }‖γ ‖, (3.9)

subject to the restrictions in (3.8), for any A > κ + 2 and some C > 0. The
lemma then follows from (3.9) immediately.

The restriction M N > XL−C is reasonable, since the contributions from
those M N � XL−C contribute at most O(‖γ ‖X (PLκ−C )

1
2 ). The restriction

M � N is input due to the symmetric roles between α and β. There is an
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implicit restriction that (m, n) = 1 in the inner sums due to the appearance
μ2(mn), in which case we have ν(mn) = ν(m)ν(n). In this way, wemaywrite

T (α,β, γ ) =
∑

p∼P

γp

∑ ∑

m∼M,n∼N
(mn,p)=(m,n)=1

α∗(m)β∗(n)symk(cos θp((mn)2)),

with α∗(m) = μ2(m)αmν(m) and β∗(n) = μ2(n)βnν(n). Furthermore, the
Möbius formula gives

T (α,β, γ ) =
∑

d

μ(d)
∑

p∼P
p�d

γp

∑ ∑

m∼M/d,n∼N/d
(mn,p)=1

α∗(md)β∗(nd)

× symk(cos θp(d4(mn)2)). (3.10)

For each fixed d, we have two alternative ways to estimate the trilinear forms
in (3.10) by appealing to Lemmas 3.5 and 3.7.

If N � LC , we then have M > XL−2C by (3.8), and Lemma 3.7 we may
derive that

T (α,β, γ ) 
 k B‖γ ‖
∑

d

((M/d)
1
2 + P)

( ∑

m∼M/d

|α∗(md)|2
) 1

2

×
( ∑

n∼N/d

|β∗(nd)|
)


 k B(M
1
2 + P)M

1
2 NL1+κ‖γ ‖


 k B(X + P X
1
2LC)L1+κ‖γ ‖. (3.11)

We now consider the case N > LC . By (3.8), we have M > X
1
2L− C

2 . From
Lemma 3.5 it follows that

T (α,β, γ ) 
 k B(M N )
1
2
∑

d

1

d

∑

p∼P

|γp|
( ∑

m∼M/d

|α∗(md)|2
) 1

2

×
( ∑

n∼N/d

|β∗(nd)|2
) 1

2

×(p− 1
4 + (d/N )

1
2 + (d/M)

1
2 p

1
4 (log p)

1
2 )


 k B P
1
2 XLκ+3(P− 1

4 + N− 1
2 + M− 1

2 P
1
4 )‖γ ‖


 k B P
1
2 XLκ+3(P− 1

4 + L− B
2 + (X−1PLC )

1
4 )‖γ ‖. (3.12)
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Combining (3.11) and (3.12), we conclude that

T (α,β, γ ) 
 k BLκ+3{P X
1
2LC+1 + P

1
4 X + P

1
2 XL− C

2 + (P X)
3
4LC

4 }‖γ ‖
holds uniformly in all tuples (M, N ) subject to the restrictions in (3.8). This
completes the proof of (3.9), and thus that of the lemma, by supplying the

initial error O(‖γ ‖X (PLκ−C )
1
2 ) and choosing A = (C + κ + 3)/10. ��

4 A generalization of the Barban–Davenport–Halberstam theorem

Regarding the equidistributions of primes in arithmetic progressions, the clas-
sical Barban–Davenport–Halberstam theorem (see e.g., [20, Theorem 17.2])
asserts that

∑

q�Q

∑∗

a (mod q)

∣∣∣
∑

n�X
n≡a (mod q)

�(n) − 1

ϕ(q)

∑

n�X
(n,q)=1

�(n)
∣∣∣
2 
 XL−A

for any A > 0, as long as Q � XL−B with some B = B(A) > 0, where the
implied constant depends only on A. As shown by Bombieri, Friedlander and
Iwaniec [2, Theorem 0], the above estimate also holds if � is replaced by an
arbitrary function ϑn satisfying the following “Siegel–Walfisz” condition.

Definition 4.1 An arithmetic functionϑ is said to satisfy the “Siegel–Walfisz”
condition, if for any w � 1, d � 1, (w, a) = 1, a �= 0,

∑

n�X
n≡a (modw)
(n,d)=1

ϑn − 1

ϕ(w)

∑

n�X
(n,dw)=1

ϑn 
 ‖ϑ‖X
1
2 τ(d)BL−A (4.1)

holds for some constant B > 0 and any A > 0 with an implied constant in 

depending only on A.

In the following treatment to H2(X), we would require a further generaliza-
tion, which involves the equidistributions of the convolution of two arbitrary
arithmetic functions, and one of them satisfies the “Siegel–Walfisz” condition.
Moreover, we also require the following definition of admissibility, which
concerns with the q-analogue of the Mellin transform of Wq : Z/qZ → C,
defined by

W̃q(χ) = 1√
q

∑∗

r (mod q)

χ(r)Wq(r).

Here χ is a Dirichlet character mod q.
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Definition 4.2 Let q � 1 a squarefree number, k ∈ Z and C > 0 a constant.
An arithmetic function Ξq : Z/qZ → C is said to be (k,C)-admissible, if

• Ξq1q2(·) = Ξq1(q
k
2 ·)Ξq2(q

k
1 ·) for all q1, q2 � 1 with μ2(q1q2) = 1;

• for each primitive character χ (mod q), one has ‖Ξq‖∞ + |Ξ̃q(χ)| �
(τ (q) log 2q)C .

Remark 5 By Lemma 3.4, one may see Ξq is (1, B)-admissible for some
B > 0 if taking

Ξq(a) =
{

|Ω(a, q)|, (a, q) = 1,

0, (a, q) > 1.

For a (k,C)-admissible arithmetic function Ξq as above, the Chinese
remainder theorem yields

Ξ̃q(χ) = χ1(q2)
kχ2(q1)

kΞ̃q1(χ1)Ξ̃q2(χ2) (4.2)

for all q1q2 = q, χ1χ2 = χ with χ (mod q1) and χ2 (mod q2).
We are now ready to state our generalization of the Barban–Davenport–

Halberstam theorem.

Lemma 4.1 Let M, N ,C > 0 and q � 1 squarefree. Let α = (αm) be
a complex coefficient with support in [M, 2M] and also satisfy the above
“Siegel–Walfisz” condition, and β = (βn), γ q = (γn,q) complex coefficients
with supports in [N , 2N ] with ‖γ q‖∞ � (τ (q) log 2q)C . For a (k,C)-
admissible arithmetic function Ξq with some k ∈ Z, put

E(α,β, γ q; q, Ξq)

=
∑ ∑

(mn,q)=1

αmβnγn,qΞq(mn) − 1

ϕ(q)

∑∗

r (mod q)

Ξq(r)
∑ ∑

(mn,q)=1

αmβnγn,q

=
∑∗

r (mod q)

Ξq(r)
( ∑ ∑

mn≡r (mod q)

αmβnγn,q − 1

ϕ(q)

∑ ∑

(mn,q)=1

αmβnγn,q

)
.

Let r � 1 and M � N. For any A > 0, there exists some constant B =
B(A,C) > 0, such that

∑

q�Q

μ2(q)τ (q)r |E(α,β, γ q; q, Ξq)| 
 ‖α‖‖β‖Q(M N )
1
2 (log M N )−A

for Q � M N (log M N )−B, where the implied constant depends only on A,C
and r.
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Proof In what follows, we assume B0, B1, B2, . . . , B11 are some positive con-
stants that we will not specialize their values. Moreover, we always keep q to
be squarefree.

By virtue of orthogonality of multiplicative characters, we may write

E(α,β, γ q; q, Ξq) =
√

q

ϕ(q)

∑

χ (mod q)
χ �=χ0

Ξ̃q(χ)(
∑

m

αmχ(m))(
∑

n

βnγn,qχ(n)).

Each non-trivial character χ (mod q) is induced by some primitive character
χ∗ (mod q∗) with q∗ | q. Since q is squarefree, we then have (q∗, q/q∗) = 1
automatically. Therefore, by (4.2), we obtain

E(α,β, γ q; q, Ξq) =
√

q

ϕ(q)

∑

q∗q0=q

∑∗

χ (mod q∗)
χ0(q

∗)kχ∗(q0)kΞ̃q∗(χ)Ξ̃q0(χ0)

×
( ∑

(m,q0)=1

αmχ(m)
)( ∑

(n,q0)=1

βnγn,qχ(n)
)
,

where χ0 denotes the trivial character mod q0. By Definition 4.2, we have
Ξ̃q∗(χ) � (τ (q∗) log 2q∗)B0 and |Ξ̃q0(χ0)| � √

q0(τ (q0) log 2q0)B0 . It then
follows that

∑

q�Q

μ2(q)τ (q)r |E(α,β, γ q; q, Ξq)|


 Q
1
2 (log Q)B1

∑

q0�Q

√
q0

ϕ(q0)

∑

q�Q/q0

τ(qq0)B1

ϕ(q)

×
∑∗

χ (mod q)

∣∣∣
∑

(m,q0)=1

αmχ(m)

∣∣∣
∣∣∣

∑

(n,q0)=1

βnγn,qq0χ(n)
∣∣∣

= Q
1
2 (log Q)B1 · (S1 + S2), (4.3)

where S1 and S2 denote the corresponding contributions from q0 � Q1 and
Q1 < q0 � Q, respectively.
By Cauchy’s inequality, we find

S2
1 � S11S12

with

S11 =
∑

q0�Q1

1

ϕ(q0)

∑

q�Q/q0

1

ϕ(q)

∑∗

χ (mod q)

∣∣∣
∑

(m,q0)=1

αmχ(m)

∣∣∣
2
,

S12 =
∑

q0�Q1

q0
ϕ(q0)

∑

q�Q/q0

τ(qq0)2B1

ϕ(q)

∑∗

χ (mod q)

∣∣∣
∑

(n,q0)=1

βnγn,qq0χ(n)
∣∣∣
2
.
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We first consider S11.We further split S11 according to q � Q2 and q > Q2,
and the corresponding contributions are denoted by S′

11 and S′′
11, respectively.

Regarding S′
11, the Siegel–Walfisz condition for α gives

S′
11 


∑

q0�Q1

τ(q0)B

ϕ(q0)

∑

q�Q2

ϕ(q)2‖α‖2M(log M)−A


 ‖α‖2Q3
2M(log M)−A(log Q)B2 .

For S′′
11, the dyadic device yields

S′′
11 
 log Q

∑

q0�Q1

1

ϕ(q0)
sup

Q2<Q3�Q/q0

1

Q3

×
∑

q∼Q3

q

ϕ(q)

∑∗

χ (mod q)

∣∣∣
∑

(m,q0)=1

αmχ(m)

∣∣∣
2
.

From the classicalmultiplicative large sieve inequality (see [20, Theorem7.13]
for instance), it follows that

S′′
11 
 ‖α‖2 log Q

∑

q0�Q1

1

ϕ(q0)
sup

Q2<Q3�Q/q0

1

Q3
(Q2

3 + M)


 ‖α‖2(Q + M/Q2)(log Q)2.

Collecting the above estimates for S′
11 and S′′

11, we find

S11 
 ‖α‖2{Q3
2M(log M)−A(log Q)B2 + (Q + M/Q2)(log Q)2}.

Taking Q2 = (log M)A/6, we then obtain

S11 
 ‖α‖2{M(log M)−A + Q(log Q)2}
by re-defining A.

On the other hand,

S12 �
∑

q0�Q1

q0
ϕ(q0)

∑

q�Q/q0

τ(qq0)2B1

ϕ(q)

∑

χ (mod q)

∣∣∣
∑

(n,q0)=1

βnγn,qq0χ(n)
∣∣∣
2


 (log Q)B3
∑

q0�Q1

q0τ(q0)B3

ϕ(q0)

∑

q�Q/q0

τ(q)B3
∑ ∑

n1≡n2 (mod q)

|βn1βn2 |.

Note that
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∑

q�Q/q0

τ(q)B3
∑ ∑

n1≡n2 (mod q)

|βn1βn2 |



∑

q�Q/q0

τ(q)B3
∑∑

n1≡n2 (mod q)

|βn1 |2


 ‖β‖2Qq−1
0 (log Q)B4 +

∑

n1

|βn1 |2
∑

n2∼N
n2 �=n1

τ(|n2 − n1|)B4


 ‖β‖2(Q/q0 + N )(log QN )B5,

from which we conclude that

S12 � ‖β‖2(Q + Q1N )(log QN )B6 .

Combining the above estimates for S11 and S12, we obtain

S1 
 ‖α‖‖β‖(M(log M)−A + Q)
1
2 (Q + Q1N )

1
2 (log QN )B7 .

Again by Cauchy’s inequality, we find

S2
2 � S21S22

with

S21 =
∑

Q1<q0�Q

√
q0

ϕ(q0)

∑

q�Q/q0

τ(qq0)2B1

ϕ(q)

∑∗

χ (mod q)

∣∣∣
∑

(m,q0)=1

αmχ(m)

∣∣∣
2
,

S22 =
∑

Q1<q0�Q

√
q0

ϕ(q0)

∑

q�Q/q0

1

ϕ(q)

∑∗

χ (mod q)

∣∣∣
∑

(n,q0)=1

βnγn,qq0χ(n)
∣∣∣
2
.

As argued in estimating S11 and S12, we may derive that

S21 
 ‖α‖2{M
√

Q(log M)−A + Q(log Q)B8},
S22 
 ‖β‖2

( Q√
Q1

+ √
QN

)
(log QN )B9 .

Therefore, we arrive at

S2 
 ‖α‖‖β‖(M√
Q(log M)−A + Q)

1
2

( Q√
Q1

+ √
QN

) 1
2
(log QN )B10 .
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Inserting the estimates for S1, S2 into (4.3), we find

∑

q�Q

μ2(q)τ (q)r |E(α,β, γ q; q, Ξq)|


 ‖α‖‖β‖(M N )
1
2 Q(log M N Q)B11Δ(M, N , Q; Q1),

where

Δ(M, N , Q; Q1)
2 = Q

M N
+

√
Q

M
+ Q1

M
+

(
1 + 1

N

√
Q

Q1

)
(log M N )−A.

Taking

Q1 =
{
(M/N )

2
3 Q

1
3 , M � N Q,

Q(log M N )−A, M > N Q,

the proof is completed by noting that
√

Q �
√

M N (log M N )−B �
M(log M N )−B/2. ��

5 Lower bound for H1(X)

Recalling the definition (3.4), we may write

H1(X) =
∑

n�1

Ψ
( n

X

)
μ2(n)|λ f (n) − η · Ω(1, n)|

( ∑

d|(n,P(z))
�d

)2

.

To seek a positive lower bound for H1(X),we need only consider those n with
few prime factors. To that end, we introduce the interval

I (P) = ]P, P + PL−1],
and the set of the products of primes

Pi (X; Pi1, Pi2, . . . , Pii ) = {p1 p2 . . . pi : p j ∈ I (Pi j ) for each j � i}
for each positive integer i � 2. Furthermore, for each fixed i , we assume that
{Pi j } is a decreasing sequence as powers of (1 + L−1) as j varies, and the
product of Pi j ’s falls into [X, 2X ]; i.e.,

Pi j exp(−
√
L) > Pi( j+1) � X

1
12 (1 � j < i),

∏

1� j�i

Pi j ∈ [X, 2X ].

(5.1)
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When Kloosterman sums meet Hecke eigenvalues 85

In this way, we can bound H1(X) from below by the summation over
Pi (X; Pi1, Pi2, . . . , Pii ); for this, we employ the variants of the Sato–Tate
distributions stated above. Due to the positivity of each term, we can drop
those n’s with “bad” arithmetic structures. To this end, we introduce the fol-
lowing restrictions on the size of Pi j :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

P
3
4
21X δ < P22, δ = 10−2018,√
P31 exp(

√L) < P32,√
P41 exp(

√L) < P42P43,√
Pi1 exp(

√L) < Pi2 · · · Pi(i−1)

and
√

Pi3 · · · Pii exp(
√L) < Pi2, i � 5.

(5.2)

Now summing up to i = 7, we then have the lower bound

H1(X) �
∑

2�i�7

H1,i (X), (5.3)

where

H1,i (X) =
∑†

Pi1,Pi2,...,Pii

∑

n∈Pi (X;Pi1,Pi2,...,Pii )

Ψ
( n

X

)

× |λ f (n) − η · Ω(1, n)|
( ∑

d|(n,P(z))
�d

)2

,

with † yielding that Pi j ’s are powers of (1 + L−1) satisfying the restrictions
(5.1) and (5.2).

Recalling the choice (2.2), we find, for each n ∈ Pi (X; Pi1, Pi2, . . . , Pii ),

that n has no prime factors smaller than X
1
12 . Note that z will be chosen such

that z � X
1
12 , we then have (n, P(z)) = 1 and

∑

d|(n,P(z))
�d = �1 = 1

for such n. Hence we can write

H1,i (X) = (1 + o(1))L2i−1
∫

Ri

Σ(X,αi )dαi , (5.4)

where for αi = (α2, . . . , αi ), we adopt the convention

Pi (X,αi ) = Pi (X; X1−α2−···−αi , Xα2, . . . , Xαi ),

Σ(X,αi ) =
∑

n∈Pi (X,αi )

Ψ
( n

X

)
|λ f (n) − η · Ω(1, n)|,
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and the multiple-integral is over the area Ri with

R2 := {α2 ∈ [ 1
12 , 1[: 3

4 (1 − α2) + δ < α2 <
1
2 },

R3 := {(α2, α3) ∈ [ 1
12 , 1[2: 1

2 (1 − α2 − α3) < α2, α3 < α2 < 1 − α2 − α3},
R4 := {(α2, α3, α4) ∈ [ 1

12 , 1[3: 1
2 (1 − α2 − α3 − α4) < α2 + α3}

∩ {(α2, α3, α4) ∈ [ 1
12 , 1[3: α4 < α3 < α2 < 1 − α2 − α3 − α4},

Ri := {(α2, . . . , αi ) ∈ [ 1
12 , 1[i−1: 1

2 (1 − α2 − · · · − αi ) < α2 + · · · + αi−1}
∩ {(α2, . . . , αi ) ∈ [ 1

12 , 1[i−1: 1
2 (α3 + · · · + αi ) < α2}

∩ {(α2, . . . , αi ) ∈ [ 1
12 , 1[i−1: αi < αi−1 < · · · < α2 < 1 − α2 − · · · − αi }

(5.5)

for i � 5 with δ = 10−2018. Note that α j < 1/j for 2 � j � i in the above
coordinates.

It remains to seek a lower bound for Σ(X,αi ).

Proposition 5.1 For i ∈ [2, 7] ∩ Z and αi := (α2, . . . , αi ) ∈ Ri , we have

Σ(X,αi ) �
√

l3i /ui · (1 + o(1)) · |Pi (X,αi )|

for all sufficiently large X, where

li = (1 − 4|η| · ( 8
3π )

i−1(1112 )
i + Biη

2)+

and

ui = 16i · |η|4 + 4 · (223 )i · |η|3 + 6 · 4i · |η|2 + 4 · (2√5)i · |η| + 2i

with the convention that x+ = max{0, x} and Bi ’s being given below by (6.7).
Consequently, for i ∈ [2, 7] ∩ Z, we have

∫

Ri

Σ(X,αi )dαi � (1 + o(1))
√

l3i /ui · Ii , (5.6)

where

Ii =
∫

Ri

dαi

α2 · · ·αi (1 − α2 − · · · − αi )
. (5.7)

The proof of Proposition 5.1will be given in the next section. Proposition 2.1
then follows by substituting (5.4) and (5.6) into (5.3).
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6 Proof of Proposition 5.1

For the seek of proving Proposition 5.1, we would like to introduce the fol-
lowing averages

A�(X,αi ) =
∑

n∈Pi (X,αi )

Ψ
( n

X

)
|λ f (n)|�,

B(X,αi ) =
∑

n∈Pi (X,αi )

Ψ
( n

X

)
|Ω(1, n)|2,

C(X,αi ) =
∑

n∈Pi (X,αi )

Ψ
( n

X

)
λ f (n)Ω(1, n),

where Pi (X,αi ) is given as before for i ∈ [2, 7] ∩ Z.
By Hölder’s inequality, we have

Σ(X,αi ) � Σ2(X,αi )
3
2Σ4(X,αi )

− 1
2 ,

where

Σ�(X,αi ) :=
∑

n∈Pi (X,αi )

Ψ
( n

X

)
|λ f (n) − η · Ω(1, n)|�.

To prove Proposition 5.1, it suffices to prove that

Σ2(X,αi ) � li (1 + o(1)) · |Pi (X,αi )|,
Σ4(X,αi ) � ui (1 + o(1)) · |Pi (X,αi )|

with li , ui are given as in Proposition 5.1.

6.1 Bounding Σ4(X, α i ) from above

From Weil’s bound for Kloosterman sums, we have

Σ4(X,αi ) �
∑

0���4

(
4

�

)
· (2i · |η|)4−� · A�(X,αi ). (6.1)

By the definition of Pi (X,αi ) and multiplicativity of Hecke eigenvalues, it
follows from Lemma 3.1 that

A�(X,αi ) � ci
�(1 + o(1))|Pi (X,αi )|,
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from which and (6.1) we conclude that

Σ4(X,αi ) �
∑

0���4

(
4

�

)
· (2i · |η|)4−� · ci

� · (1 + o(1))|Pi (X,αi )|

= ui · (1 + o(1))|Pi (X,αi )|,

provided that X is large enough, where ui ’s are given as claimed.

6.2 Bounding Σ2(X, α i ) from below

We now turn to the lower bound for Σ2(X,αi ). Squaring out, we may write

Σ2(X,αi ) = A2(X,αi ) + η2 · B(X,αi ) − 2η · C(X,αi ). (6.2)

By the definition of Pi (X,αi ) and multiplicativity of Hecke eigenvalues, if
follows from Lemma 3.1 that

A2(X,αi ) = (1 + o(1))|Pi (X,αi )|. (6.3)

The lower bound for B(X,αi ) follows from joint equidistributions of
Kloosterman sums. By twisted multiplicatitivity, Ω(1, n) can be expressed
as the product the two Kloosterman sums, the equidistributions of which are
known in a certain sense. To formulate the precise distributions, we would like
to introduce the corresponding measures firstly. Following [14], we define a
measure μ(1) on [− 1, 1] to be the image of the measure μST under the map-
ping θ �→ cos θ, so that dμ(1) = 2

π

√
1 − x2dx . Furthermore, for k � 2, we

define a measure μ(k) on [− 1, 1] to be the image of μ(1) ⊗ μ(1) ⊗ · · · ⊗ μ(1)

under the mapping

[− 1, 1]k → [− 1, 1]
(x1, x2, . . . , xk) �→ x1x2 · · · xk .

Then for x ∈ [0, 1], we have the following recursive relation

μ(1)([− x, x]) = 4

π

∫ x

0

√
1 − t2dt, (6.4)

μ(k)([− x, x]) = μ(1)([− x, x]) + 4

π

∫ 1

x
μ(k−1)([− x/t, x/t])

×
√
1 − t2dt, k � 2. (6.5)
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Lemma 6.1 With the notation as above, for i ∈ [2, 7] ∩ Z and αi :=
(α2, . . . , αi ) ∈ Ri as given by (5.5), the sets

{21−iΩ(p1, p2, . . . pi ) : n = p1 p2 . . . pi ∈ Pi (X,αi )}

and

{21−iΩ(p2 . . . pi , p1) : n = p1 p2 . . . pi ∈ Pi (X,αi )}

equidistribute in [− 1, 1] with respect toμ(i−1) andμ(1), respectively, as X →
+∞, where the measures μ( j) on [− 1, 1] are defined recursively by (6.4) and
(6.5).

The original statement of Lemma 6.1, in the case i ∈ {3, 4, 5}, can be found
in [14, Propositions 6.1, 6.2 and 6.3] and the case i ∈ {6, 7} can be treated
in a similar way. The case i = 2 follows from [11, Theorem 1.5] by taking
K (n) = symk(θp(n2)) therein.
The following rearrangement type inequality, due to Matomäki [29], allows

us to derive a lower bound for B(X,αi ) from the equidistributions of Kloost-
erman sums arising from the above factorization.

Lemma 6.2 Assume that the sequences (an)n�N and (bn)n�N contained in
[0, 1] equidistribute with respect to some absolutely continuous measures μa
and μb, respectively, as N → +∞. Then

(1 + o(1))
∫ 1

0
xyl(x)dμa([0, x]) � 1

N

∑

n�N

anbn

� (1 + o(1))
∫ 1

0
xyu(x)dμa([0, x]),

where yl(x) is the smallest solution to the equation μb([yl, 1]) = μa([0, x])
and yu(x) is the largest solution to the equation μb([0, yu]) = μa([0, x]).

We now write

B(X,αi ) =
∑

p1 p2...pi ∈Pi (X,αi )

Ψ
( p1 p2 . . . pi

X

)
|Ω(p2 · · · pi , p1)|2

× |Ω(p1, p2 · · · pi )|2.

By Lemma 6.2, we have

B(X,αi ) � Bi (1 + o(1))|Pi (X,αi )| (6.6)
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with

Bi = 4i
∫ 1

0
x2yi (x)

2dμ(1)([− x, x]),

where yi (x) is the unique solution to the equation

μ(1)([− x, x]) = μ(i−1)([− 1,−y] ∪ [y, 1]) = 1 − μ(i−1)([− y, y]).
With the help of Mathematica 10, we can obtain

B2 � 0.233838, B5 � 0.023523

B3 � 0.099779, B6 � 0.011685

B4 � 0.047473, B7 � 0.005567.

(6.7)

To conclude Proposition 5.1, it remains to control C(X,αi ) effectively. It
is highly desired that λ f (n) does not correlate with Ω(1, n) as n runs over
primes or almost primes. Quantitatively, we expect, as discussed in Sect. 2,
that

C(X,αi ) = o(|Pi (X,αi )|)
for αi ∈ Ri as given by (5.5) and X → +∞. Unfortunately, this non-
correlation is not yet known even as n runs over consecutive integers. Our
success builds on the observation that |λ f (p)|2 is approximately 1 on average;
however, |λ f (p)| and |Ω(n, p)| are both smaller than 1 on average in a suit-
able family, so that one may obtain a relatively small scalar in the upper bound
of C(X,αi ), even though the sign changes of λ f (n)Ω(1, n) are not taken into
account.

Precisely speaking, we are able to bound C(X,αi ) as follows.

Proposition 6.1 With the notation as above, we have, for all sufficiently large
X, that

|C(X,αi )| � 2 ·
( 8

3π

)i−1(11
12

)i
(1 + o(1))|Pi (X,αi )|

for each i ∈ [2, 7] ∩ Z.

The lower bound forΣ2(X,αi ) in Proposition 5.1 then follows by combin-
ing (6.2), (6.3), (6.6) and Proposition 6.1, as well as

|Pi (X,αi )| = XL−2i (1 + o(1))

α2 · · ·αi (1 − α2 − · · · − αi )
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from the prime number theorem. The complete proof of Proposition 6.1 will
be given in the next section.

7 Proof of Proposition 6.1

By the definition of Pi (X,αi ) and twisted multiplicativity of Kloosterman
sums, we may write

C(X,αi ) =
∑

p1 p2···pi ∈Pi (X,αi )

Ψ
( p1 p2 · · · pi

X

)
λ f (p1 p2 · · · pi )

× Ω(p2 · · · pi , p1)Ω(p1, p2 · · · pi ).

Weil’s bound gives

|C(X,αi )| � 2C∗(X,αi ),

where

C∗(X,αi ) =
∑

p1 p2···pi ∈Pi (X,αi )

Ψ
( p1 p2 · · · pi

X

)
|λ f (p1 p2 · · · pi )|

× |Ω(p1, p2 · · · pi )|.
It suffices to prove that

C∗(X,αi ) �
( 8

3π

)i−1(11
12

)i
(1 + o(1))|Pi (X,αi )|

for i ∈ [2, 7] ∩Z.We prove these inequalities case by case. The case i = 2 is
a bit different, which essentially relies on Lemma 3.8 and the remaining cases
will be concluded by Lemmas 3.5 and 3.6 amongst other things.

7.1 Bounding C∗(X, α2)

We first consider the case i = 2. From the twisted multiplicativity for Kloost-
erman sums and multiplicativity for Hecke eigenvalues, we may write

C∗(X,α2) =
∑

p1 p2∈P2(X,α2)

Ψ
( p1 p2

X

)
|λ f (p1)||λ f (p2)||Ω(p1, p2)|.

We then apply Lemma 3.8 with

(n, p) = (p1, p2), ν(n) = |λ f (p1)|, γq = |λ f (p2)|,
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getting

C∗(X,α2) = 8

3π

∑

p1 p2∈P2(X,α2)

Ψ
( p1 p2

X

)
|λ f (p1)||λ f (p2)|

+ O
(
L10{X

1
2+α2 + X1− 1

4α2 + XL−20 + X
3+2α2

4 }
)
.

The desired inequality for i = 2 now follows fromLemma3.1 and 3
7 < α2 <

1
2

by (5.5).

7.2 Bounding C∗(X, α3)

We now consider the case i = 3. By multiplicativity, we may write

C∗(X,α3) =
∑

p1 p2 p3∈P3(X,α3)

Ψ
( p1 p2 p3

X

)
|λ f (p1)||λ f (p2)||λ f (p3)|

× |Ω(p1 p3, p2)||Ω(p1 p2, p3)|.

In view of the Chebyshev approximation for | cos θ | (see Lemma C.3), we
consider

C∗
k (X,α3) :=

∑

p1 p2 p3∈P3(X,α3)

Ψ
( p1 p2 p3

X

)
|λ f (p1)||λ f (p2)||λ f (p3)|

× |Ω(p1 p3, p2)|symk(cos θp3((p1 p2)2)).

Applying Lemma 3.6 with

s = 1, (m, n, q) = (p1, p2, p3), (M, N ) = (X1−α2−α3, Xα2),

αm = |λ f (p1)|, βn = |λ f (p2)|, γm,n = |Ω(p1 p3, p2)|,

we obtain

C∗
k (X,α3) 
 (k + 1)

∑

p1 p2 p3∈P3(X,α3)

|λ f (p3)|(p
− 1

8
3 + X− α2

4 p
1
8
3 + X

2α2+α3−1
2 )


 (k + 1) exp(−√
L)|P3(X,α3)|

by Cauchy’s inequality and Lemma 3.1. Therefore, it follows fromLemmaC.3
that

123



When Kloosterman sums meet Hecke eigenvalues 93

C∗(X,α3) = 8

3π
(1 + o(1))

∑

p1 p2 p3∈P3(X,α3)

Ψ
( p1 p2 p3

X

)

× |λ f (p1)||λ f (p2)||λ f (p3)||Ω(p1 p3, p2)|.

By Lemmas 3.5 and C.3, we further have

C∗(X,α3) =
( 8

3π

)2
(1 + o(1))

∑

p1 p2 p3∈P3(X,α3)

Ψ
( p1 p2 p3

X

)

× |λ f (p1)||λ f (p2)||λ f (p3)|.

Then Lemma 3.1 yields

C∗(X,α3) �
( 8

3π

)2(11
12

)3
(1 + o(1))|P3(X,α3)|

as expected.

7.3 Bounding C∗(X, α i ) for i ∈ [4, 7] ∩ Z

The cases for i � 4 can be treated in a similar way to that for i = 3, and we
only present the details for i = 7 here. From multiplicativities, we may write

C∗(X,α7) =
∑

p1 p2···p7∈P7(X,α7)

Ψ
( p1 p2 · · · p7

X

)
|λ f (p1)||λ f (p2)| · · · |λ f (p7)|

×
∏

2� j�7

|Ω(p1 p2 · · · p7/p j , p j )|.

In view of Lemma C.3, we consider

C∗
k(X,α7)

=
∑

p1 p2···p7∈P7(X,α7)

Ψ
( p1 p2 · · · p7

X

)
|λ f (p1)||λ f (p2)| · · · |λ f (p7)|

× |Ω(p1 p3 p4 · · · p7, p2)|
∏

3� j�7

symk j−2
(cos θp j ((p1 p2 · · · p7/p j )2))

for k = (k1, . . . , k5) ∈ Z5
�0. The term with k = (0, . . . , 0) is expected to

contribute as the main term. We now assume at least one of k1, k2, . . . , k5 is
positive, and only consider the case k1k2 · · · k5 �= 0 without loss of generality
(the remaining cases are simpler). Applying Lemma 3.6 with
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s = 5, (m, n, q) = (p1, p2, p3 p4 · · · p7), (M, N ) = (X1−α2−···−α7, Xα2),

αm = |λ f (p1)|, βn = |λ f (p2)|, γm,n = |Ω(p1 p3 p4 · · · p7, p2)|,

we get

C∗
k(X,α7) 
 k1k2 · · · k5

∑

p1 p2···p7∈P7(X,α7)

|λ f (p1)||λ f (p2)| · · · |λ f (p7)|

× {(p3 p4 · · · p7)
− 1

8 + X− α2
4 (p3 p4 · · · p7)

1
8 + X

2α2+α3+α4+···α7−1
2 }


 k1k2 · · · k5 exp(−
√
L)|P7(X,α7)|

by Cauchy’s inequality and Lemma 3.1. Therefore, it follows from Lem-
mas C.3 and 3.5 that

C∗(X,α7) =
( 8

3π

)6
(1 + o(1))

∑

p1 p2···p7∈P7(X,α7)

Ψ
( p1 p2 · · · p7

X

)

× |λ f (p1)||λ f (p2)| · · · |λ f (p7)|,
which yields the desired upper bound in view of Lemma 3.1.

8 Upper bound for H2(X)

First, we may write

H2(X) � H21(X) + |η| · H22(X) (8.1)

with

H21(X) =
∑

n�1

Ψ
( n

X

)
μ2(n)|λ f (n)|τΔ(n;α, β)

( ∑

d|(n,P(z))
�d

)2
,

H22(X) =
∑

n�1

Ψ
( n

X

)
μ2(n)|Ω(1, n)|τΔ(n;α, β)

( ∑

d|(n,P(z))
�d

)2
.

8.1 Dimension-reduction in H22(X)

We now transform H22(X) in the flavor of [42], so that the dimension of sifting
|Ω(1, n)| in H22(X) can be reduced. It is a pity that there are some slips in the
original arguments of [42], whichwill be definitely remedied in this section.As
one may find from the definition (2.1), the restriction p | d ⇒ p > (log n)A

in [42] is replaced by d � n
1

1+Δ withΔ > 1. This new restriction is technical,
and it will be reflected in the application of Lemma 4.1.
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By twisted multiplicativity, H22(X) becomes

H22(X) =
∑ ∑

mΔ�n

Ψ
(mn

X

)
μ2(mn)|Ω(m, n)||Ω(n,m)|

× αω(m)βω(n)
( ∑

d|(mn,P(z))

�d

)2
.

The Weil bound gives

H22(X) �
∑ ∑

mΔ�n

Ψ
(mn

X

)
μ2(mn)|Ω(n,m)|

× αω(m)(2β)ω(n)
( ∑

d|(mn,P(z))

�d

)2
.

Following the arguments on smooth partition of units in [42] (see e.g., [10]),
we have

H22(X) �
∑

(M,N )

H22(X; M, N ), (8.2)

where M, N run over powers of 1 + L−B with B appropriately large and

H22(X; M, N ) =
∑ ∑

mΔ�nd

U (m)V (n)Ψ
(mn

X

)
μ2(mn)|Ω(n,m)|

× αω(m)(2β)ω(n)
( ∑

d|(mn,P(z))

�d

)2

withU, V being certain smooth functions supported on ]M, M(1+L−B)] and
]N , N (1 + L−B)], respectively. By symmetry, we may assume that

M N � X, MΔ 
 N . (8.3)

Note that there are at most O(L2B+2) tuples of (M, N ) in summation.
To evaluate H22(X; M, N ), we make the transformation by

H22(X; M, N ) =
∑

m

U (m)μ2(m)αω(m)�(m, N ),
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where

ξ(n) =
∑ ∑

[d1,d2]=n

�d1�d2 (8.4)

and

�(m, N ) :=
∑ ∑

(nd,m)=1
mΔ�nd
d|P(z)

V (nd)Ψ
(mnd

X

)
|Ω(nd,m)|μ2(nd)

× (2β)ω(nd)
∑

l|(m,P(z))

ξ(dl).

Moreover, one can employ Mellin inversion to separate variables n, d subject
to the restrictions in nd > m, V (nd) and Ψ (mnd/X). Due to the appearance
of μ2(nd), we can also introduce the Möbius formula to relax the implicit

restriction (n, d) = 1. Noting that N � X
Δ

1+Δ � √
X in view of (8.3) and ξ

is supported on squarefree numbers up to
√

X exp(−2
√L) by the choice of

(�d), we are in a good position to apply Lemmas 4.1 and 3.3, getting

H22(X; M, N ) =
∑

m

U (m)μ2(m)
( 8α
3π

)ω(m)

�∗(m, N ) + O(XL−2B−4),

where

�∗(m, N ) :=
∑ ∑

(nd,m)=1
mΔ�n
d|P(z)

V (nd)Ψ
(mnd

X

)
μ2(nd)(2β)ω(nd)

∑

l|(m,P(z))

ξ(dl).

Rearranging all above summations, we may obtain

H22(X; M, N ) =
∑ ∑

mΔ�n

U (m)V (n)Ψ
(mn

X

)
μ2(mn)

×
( 8α
3π

)ω(m)

(2β)ω(n)
( ∑

d|(mn,P(z))

�d

)2 + O(XL−2B−4).

Taking into account all admissible tuples (M, N ), we find

H22(X) �
∑

n

Ψ
( n

X

)
μ2(n)τΔ

(
n; 8α

3π
, 2β

)( ∑

d|(n,P(z))
�d

)2 + O(XL−2).
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Taking α, β > 0 such that

8α

3π
+ 2β � 2, (8.5)

so that

τΔ

(
n; 8α

3π
, 2β

)
� 2ω(n)

for all squarefree n � 1. Hence the above upper bound for H22(X) becomes

H22(X) � 1

2

∑

n

Ψ
( n

X

)
μ2(n)2ω(n)

( ∑

d|(n,P(z))
�d

)2 + O(XL−2). (8.6)

8.2 Bounding H21(X) initially

On the other hand, from the trivial inequality τΔ(n;α, β) � (α + β)ω(n) it
follows that

H21(X) �
∑

n�1

Ψ
( n

X

)
μ2(n)|λ f (n)|(α + β)ω(n)

( ∑

d|(n,P(z))
�d

)2
.

Taking α, β > 0 such that

α + β � 2, (8.7)

so that

H21(X) �
∑

n�1

Ψ
( n

X

)
μ2(n)|λ f (n)|2ω(n)

( ∑

d|(n,P(z))
�d

)2
.

By Cauchy’s inequality, we have

H21(X) �
√

H ′
21(X)H ′′

21(X) (8.8)

with

H ′
21(X) =

∑

n�1

Ψ
( n

X

)
μ2(n)|λ f (n)|22ω(n)

( ∑

d|(n,P(z))
�d

)2
,

H ′′
21(X) =

∑

n�1

Ψ
( n

X

)
μ2(n)2ω(n)

( ∑

d|(n,P(z))
�d

)2
.

123



98 P. Xi

8.3 Concluding an upper bound for H2(X)

The evaluations for H ′
21(X), H ′′

21(X) and H22(X) will rely on asymptotic
computations of the average of Selberg sieve weights against some general
multiplicative functions. The later should be of independent interests and we
will state a general situation by Theorem B.1 in the appendix.

To evaluate H22(X) and H ′′
21(X),wemay takeh(n) = 2ω(n) inTheoremB.1,

so that

H22(X) � (1 + o(1))S
(
ϑ,

log X

4 log z

) X

log X
(8.9)

H ′′
21(X) � (1 + o(1))S

(
ϑ,

log X

4 log z

) X

log X
, (8.10)

where S(·, ·) is given by (B.5).
The evaluation of H ′

21(X) can be done by taking h(n) = |λ f (n)|22ω(n)
in Theorem B.1, and it suffices to verify the conditions of non-vanishing,
meromorphic continuation (B.2), first moment (B.3) and secondmoment (B.4)
with some constants L , c0 > 0.

In fact, it is well-known (see [33, Proposition 2.3] for instance) that

∑

p�x

λ f (p)2 log p

p
= log x + O f (1),

which yields (B.3) with some L depending only on f . To check the condition
(B.2) on meromorphic continuation, it may appeal to Lemma 3.1 and derive
that

∑

n�1

μ2(n)|λ f (n)|22ω(n)n−s = ζ(s)2L(sym2 f, s)2F(s)

for �s > 1 and F(s) admits a Dirichlet series convergent absolutely in �s >
0.9.Hence the meromorphic continuation condition (B.2) holds withH∗(s) =
L(sym2 f, s)2F(s) and c0 = 0.1. The non-vanishing condition is guaranteed
by the zero-free region of L(sym2 f, s) (see [20, Theorem 5.44] for instance).
After checking all above conditions, we conclude from Theorem B.1 that

H ′
21(X) � (1 + o(1))S

(
ϑ,

log X

4 log z

) X

log X
. (8.11)

In conclusion, Proposition 2.2 follows immediately by combining (8.1),
(8.8)–(8.11).
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9 Estimate for H3(X)

We rewrite H3(X) by

H3(X) =
∑

n�1

Ψ
( n

X

)
μ2(n)(λ f (n) − η · Kl(1, n))

( ∑

d|(n,P(z))
�d

)2

=
∑

d�D
d|P(z)

μ2(d)ξ(d)
∑

n≡0 (mod d)

Ψ
( n

X

)
μ2(n)(λ f (n) − η · Kl(1, n))

with ξ given by (8.4). In view of |ξ(d)| � 3ω(d) for all squarefree d � 1,
Proposition 2.3 then follows from the following two lemmas.

Lemma 9.1 For any A > 0, there exists some B = B(A) > 0 such that

∑

q�
√

XL−B

3ω(q)

∣∣∣∣∣∣

∑

n≡0 (mod q)

Ψ
( n

X

)
μ2(n)Kl(1, n)

∣∣∣∣∣∣

 XL−A,

where the implied constant depends on A and Ψ.

Lemma 9.2 For any A > 0, there exists some B = B(A) > 0 such that

∑

q�XL−B

3ω(q)

∣∣∣∣∣∣

∑

n≡0 (mod q)

Ψ
( n

X

)
μ2(n)λ f (n)

∣∣∣∣∣∣

 XL−A,

where the implied constant depends on A, f and Ψ.

Lemma 9.1, which can be regarded as a Bombieri–Vinogradov type equidis-
tribution for Kloosterman sums, was initiated by Fouvry and Michel [14]
deriving from the spectral theory of automorphic forms without the weights
3ω(q) and μ2(n). The current version is given by Sivak-Fischler [39] and the
author [41] with minor efforts.

Lemma 9.2 is not surprising to those readers that are familiar with automor-
phic forms, but the rigorous proof would require several extra lines. To simply
the arguments, we assume the form f is of level 1. In fact, the inner sum over
n, denoted by T , can be rewritten as

T =
∑

d�2
√

X

μ(d)
∑

n≡0 (mod [q,d2])
Ψ

( n

X

)
λ f (n)

=
∑

d�2
√

X

μ(d)
∑

n�1

Ψ
(n[q, d2]

X

)
λ f (n[q, d2]).
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By Hecke relation (see e.g., [19, Formula (8.37)])

λ f (mn) =
∑

�|(m,n)

μ(�)λ f (m/�)λ f (n/�),

we get

T =
∑

d�2
√

X

μ(d)
∑

�|[q,d2]
μ(�)λ f ([q, d2]/�)

∑

n�1

Ψ
(n�[q, d2]

X

)
λ f (n).

By partial summation and the well-known estimate (see e.g., [19, Theo-
rem 8.1])

∑

n�N

λ f (n) 
 f N
1
2 log N ,

we derive that

T 
 f,g
√

XL
∑

d�2
√

X

∑

�|[q,d2]
μ2(�)

|λ f ([q, d2]/�)|
√[q, d2]�

�
√

XL
∑

d�2
√

X

1

[q, d2]
∑

�|[q,d2]
μ2(�)|λ f (�)|

√
�.

Hence the original double sum in the lemma is bounded by


 √
XL

∑

q�XL−B

3ω(q)
∑

d�2
√

X

1

[q, d2]
∑

�|[q,d2]
μ2(�)|λ f (�)|

√
�


 √
XL

∑

��4XL−B

μ2(�)|λ f (�)|
√
�

∑

d�2
√

X

1

d2

∑

q�XL−B

q≡0 (mod �/(�,d2))

3ω(q)(q, d2)

q


 √
XL

∑

��4XL−B

μ2(�)|λ f (�)|√
�

∑

d�2
√

X

3ω(d)(�, d)

d2 .

The lemma then follows from Cauchy’s inequality and the Rankin–Selberg
bound

∑

��L

|λ f (�)|2 
 L ,

as well as the choice B = 2A + 4.
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10 Numerical computations: concluding Theorems 1.1 and 1.2

In view of Propositions 2.1–2.3, we may conclude that

H±(X) > ε0XL−1, (10.1)

with some absolute constant ε0 > 0, from the inequality

ρ · A1(η) > A2(η) (10.2)

by choosing ρ, ϑ, z appropriately for a given η ∈ R, where

A1(η) :=
∑

2�i�7

Ii ·
√

l3i /ui ,

A2(η) := (2 + |η|)S
(1
4
, 6

)
= (2 + |η|)16e2γ

(2c1(6)

3
+ c2(6)

9

)
(10.3)

subject to the restrictions (8.5), (8.7) and the choice

ϑ = 1

4
, z = X

1
12 . (10.4)

10.1 Upper bound for A2(η)

From the definitions (B.6) and (B.7), we find

σ(s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s2

8e2γ
, s ∈ ]0, 2],

s2

8e2γ

(
4 + log 4 − 2 log s − 8s − 4

s2

)
, s ∈ ]2, 4],

s2

8e2γ

(
4

∫ s

4

(t − 2)2 log(t − 2)

t3
dt − (8 + 2 log 4) log s

+49 + 35 log 4 + 8(log 4)2

4
− 48 + 8 log 4

s

+32 + 4 log 4

s2

)
, s ∈ ]4, 6],
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and

f(s) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2, s ∈ ]0, 2],
4 log(s/2) + 2, s ∈ ]2, 4],
8

∫ s

4

log(t − 2)

t
dt − (8 log 2 − 4) log s + 16(log 2)2

−4 log 2 + 2, s ∈ ]4, 6].
Note that

c1(6) = 1

6

∫ 6

0
σ ′(6 − u)f(u)2du.

From the positivity of σ ′ and the monotonicity of f, it follows that

c1(6) = 1

6

∑

1� j�6

∫ j

j−1
σ ′(6 − u)f(u)2du � 1

6

∑

1� j�6

f( j)2
∫ j

j−1
σ ′(6 − u)du

= 1

6

∑

1� j�6

f( j)2(σ (7 − j) − σ(6 − j))

= 1

6
f(1)2σ(6) + 1

6

∑

3� j�6

(f( j)2 − f( j − 1)2)σ (7 − j).

On the other hand,

c2(6) =
∫ 1

0
σ ′(6(1 − u))du

∫ 3u

0
f(6u − 2v){2f(6u) − f(6u − 2v)}dv

= 1

12

∫ 6

0
σ ′(6 − u)du

∫ u

0
f(v){2f(u) − f(v)}dv.

Note that f(v){2f(u) − f(v)} � f(u)2 for all v ∈ [0, u]. Hence
c2(6) � 1

12

∫ 6

0
σ ′(6 − u)f(u)2udu.

From the positivity of σ ′ and the monotonicity of f, it follows that

c2(6) � 1

12

∑

1� j�6

f( j)2 j
∫ j

j−1
σ ′(6 − u)du

= 1

12

∑

1� j�6

f( j)2 j (σ (7 − j) − σ(6 − j))

= 1

12
f(1)2σ(6) + 1

12

∑

2� j�6

{f( j)2 j − f( j − 1)2( j − 1)}σ(7 − j).
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Inserting the special values for σ and f, we obtain

c1(6) � 2.43762, c2(6) � 5.15051

upon the choice (10.4). Combining the above two bounds and (10.3), we con-
clude that

A2(η) � 111.53(2 + |η|).

10.2 Lower bound forA1(η) and concluding Theorem 1.1

With the help of Mathematica 10, we can find

I2 � 0.28768, I5 � 0.14893

I3 � 1.04781, I6 � 0.00424

I4 � 0.85019, I7 � 7.25032 × 10−6.

For η = ±1, we obtain A1(η) ≈ 3.687 × 10−11, A2(η) � 334.59, so that
(10.2) holds by taking ρ = 9.076 × 1012. It suffices to solve the inequality

τΔ(n;α, β) < 9.076 × 1012. (10.5)

To conclude Theorem 1.1, we should explore a lower bound for τΔ(n;α, β),
which grows as long as ω(n) increases.

Recall the definition (2.1) of the truncated divisor function τΔ(n;α, β):

τΔ(n;α, β) =
∑

d|n
d�n

1
1+Δ

αω(d)βω(n/d).

Wewould like to prove a lower bound for τΔ(n;α, β) by elementary methods.
To this end, let us recall a previous result of Soundararajan [40], which gives
a lower bound for the truncated convolution of multiplicative functions by
complete convolutions. The following lemma can be found in [40, Theorem 4]
with minor modifications on notation.

Lemma 10.1 Let t > 0 be a rational number and g a multiplicative function
with 0 < g(p) � 1/t for all primes p. Then, for each squarefree number
n � 2, we have

∑

d|n
d�n

1
1+t

g(d) � A(t)
∑

d|n
g(d),
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where, if t has the continued fraction expansion [a0, a1, . . . , ak],

A(t) := 1

1 + a0 + a1 + · · · + ak
. (10.6)

In particular, if t is a positive integer, then A(t) = 1/(1 + t).

We now produce a lower bound for τΔ(n;α, β) by virtue of Lemma 10.1
subject to the restrictions (8.5) and (8.7). Taking α, β,Δ such that αΔ = β >

0,Δ ∈ Q ∩ ]1,+∞[, we conclude from Lemma 10.1 that

τΔ(n;α, β) = βω(n)
∑

d|n
d�n

1
1+Δ

( 1

Δ

)ω(d)
� βω(n)A(Δ)

∑

d|n

( 1

Δ

)ω(d)

= A(Δ)(α + β)ω(n).

Following the above arguments, we are now in a position to solve the
inequality

A(Δ)(α + β)ω(n) < 9.076 × 1012,

where Δ,α, β > 0 are chosen freely subject to the following restrictions

Δ = β/α ∈ Q ∩ ]1,+∞[, 8α

3π
+ 2β � 2, α + β � 2.

In particular, we would like to take

Δ = 14

13
, α = 39π

52 + 42π
, β = 21π

26 + 21π
,

in which case one has A(Δ) = 1
15 . It now suffices to solve the inequality

1

15

( 81π

52 + 42π

)ω(n)
< 9.076 × 1012,

which yields ω(n) < 100.29, i.e., ω(n) � 100.
To conclude the quantitative statement in Theorem 1.1, we would like to

argue as follows. Put N (X) := {n ∈ [X, 2X ] : λ f (n) > Kl(1, n), ω(n) �
100, μ2(n) = 1}. Trivially, we have
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H+(X) � ρ
∑

τΔ(n;α,β)<ρ
Ψ

( n

X

)
μ2(n){|ψ(n)| + ψ(n)}

( ∑

d|(n,P(z))
�d

)2

� 2ρ
∑

ψ(n)>0
ω(n)�100

Ψ
( n

X

)
μ2(n)|ψ(n)|

( ∑

d|(n,P(z))
�d

)2

with ψ(n) = λ f (n) − Kl(1, n). By Cauchy’s inequality, we find

H+(X)2 � 4ρ2|N (X)|
∑

ψ(n)>0
ω(n)�100

Ψ 2
( n

X

)
μ2(n)|ψ(n)|2

( ∑

d|(n,P(z))
�d

)4
.

Note that
∣∣∣∣

∑

d|(n,P(z))
�d

∣∣∣∣ � 2ω(n)

for each squarefree n, from which and Weil’s bound for Kloosterman sums, it
follows that

H+(X)2 � 4ρ2|N (X)|
∑

ω(n)�100

Ψ 2
( n

X

)
μ2(n)|ψ(n)|24ω(n)

( ∑

d|(n,P(z))
�d

)2

� 4101ρ2|N (X)|
∑

ω(n)�100

Ψ 2
( n

X

)
μ2(n)(|λ f (n)|2 + 4100)

×
( ∑

d|(n,P(z))
�d

)2

� 4101ρ2|N (X)|
∑

n�1

Ψ 2
( n

X

)
μ2(n)(|λ f (n)|2 + 4100)

( ∑

d|(n,P(z))
�d

)2
.

We now proceed as in the proof of Proposition 2.2, and the last sum over n
can be bounded by O(XL−1) with an absolute constant. Therefore,

H+(X)2 
 XL−1 · |N (X)|.
Combining this with (10.1), we then arrive at

|N (X)| � XL−1.

Similar arguments can also lead to

|{n ∈ [X, 2X ] : λ f (n) < Kl(1, n), ω(n) � 100, μ2(n) = 1}| � XL−1.
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We now complete the proof of Theorem 1.1.

10.3 The case of general η

Given an η ∈ R, one may see that those li ’s in Proposition 5.1 are not always
positive. To obtain a positive lower bound for A1(η), we need to solve the
inequality A1(η) > 0, which holds provided that

|η| ∈ [0, 1.23] ∪ [11.84, + ∞[. (10.7)

For such η we may choose a considerably large ρ such that (10.2) holds, and
thus we can always produce almost primes in Theorem 1.2 for a general η ∈ R
satisfying (10.7).

In fact, as |η| is sufficiently large, we find from Lemma 5.1 that

A1(η) � c1|η|, A2(η) � c2|η|
for some constant c1, c2 > 0. Therefore, a certain absolute ρ could be found
for all such large |η|, for which we may explore a uniform r in Theorem 1.2.
This is not surprising since Kloosterman sums will dominate the contributions
to H±(X) if |η| is quite large, and the difficulty of Theorem 1.2 becomes
close to the sign changes of Kloosterman sums with almost prime moduli, as
considered in [13,14,29,39,41,42].

On the other hand, if |η| decays to zero, we also have uniform bounds for
A1(η) andA2(η). Following a similar argument, the choice of r in Theorem1.2
can also be made uniformly in all such small |η|.

It remains to consider the complementary range of η to (10.7). Recall that

li = (1 − 4|η| · ( 8
3π )

i−1(1112 )
i + Biη

2)+

in Proposition 5.1, and the positivity of li lies in the essential part of this paper.
For any η with |η| ∈ [1.23, 11.94], one may find li > 0.2 as long as i � 17.
Therefore, one may sum up to i = 17 in (5.3) with

Ri := {(α2, . . . , αi ) ∈ [ 1
18 , 1[i−1: 1

2 (1 − α2 − · · · − αi ) < α2 + · · · + αi−1}
∩ {(α2, . . . , αi ) ∈ [ 1

18 , 1[i−1: 1
2 (α3 + · · · + αi ) < α2}

∩ {(α2, . . . , αi ) ∈ [ 1
18 , 1[i−1: αi < αi−1 < · · · < α2 < 1 − α2 − · · · − αi }

for i = 17. To evaluate the Selberg sieve weight, we may re-take z = X
1
19 , so

that
∑

d|(n,P(z))
�d = �1 = 1
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if n is restricted to P17(X,α17). Following the above arguments in proving
Proposition 2.1, we may obtain a positive lower bound for H1,17(X), and thus
that for H1(X). To complete the proof of Theorem 1.2, it remains to produce
an explicit numerical upper bound for H2(X). This requires a delicate analysis
on σ(s), f(s), and the details are omitted here.

The Mathematica codes can be found at http://gr.xjtu.edu.cn/web/ping.xi/
miscellanea or requested from the author.
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Philippe Michel for their valuable suggestions, comments and encouragement. Sincere thanks
are also due to the referee for his/her patient comments and corrections that lead to a much
more polished version of this article. This work is supported in part by NSFC (Nos. 11971370,
11601413, 11771349, 11801427).

Appendix A: Multiplicative functions against Möbius

We would like to evaluate a weighted average of general multiplicative func-
tions against Möbius function. This will be employed in the evaluation of
Selberg sieve weights essentially given by (2.2).

Let g be a non-negative multiplicative function with 0 � g(p) < 1 for each
p ∈ P . Suppose the Dirichlet series

G(s) :=
∑

n�1

μ2(n)g(n)n−s (A.1)

converges absolutely for �s > 1. Assume there exist a positive integer κ and
some constants L , c0 > 0, such that

G(s) = ζ(s + 1)κF(s), (A.2)

where F(s) is holomorphic for �s � −c0 and does not vanish in the region

D :=
{
σ + i t : t ∈ R, σ � − 1

L · log(|t | + 2)

}
, (A.3)

and |1/F(s)| � L for all s ∈ D.We also assume

∣∣∣∣∣∣

∑

p�x

g(p) log p − κ log x

∣∣∣∣∣∣
� L (A.4)
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holds for all x � 3 and

∑

p

g(p)2 p2c0 < +∞. (A.5)

We are interested in the asymptotic behaviour of the sum

Mκ(x, z; q) =
∑

n�x
n|P(z)
(n,q)=1

μ(n)g(n)
(
log

x

n

)κ
,

where q is a positive integer and x, z � 3.

Lemma A.1 Let q � 1. Under the assumption as above, we have

Mκ(x, z; q) = H ·
∏

p|q
(1 − g(p))−1 · mκ(s) + O(κω(q)(log z)−A)

for all A > 0, x � 2, z � 2 with x � zO(1), where s = log x/ log z,

H =
∏

p

(1 − g(p))
(
1 − 1

p

)−κ

,

and mκ(s) is a continuous solution to the differential-difference equation

{
mκ(s) = κ!, s ∈ ]0, 1],
sm′

κ(s) = κmκ(s − 1), s ∈ ]1,+∞[. (A.6)

The implied constant depends on A, κ, L and c0.

Proof We are inspired by [15, Appendix A.3]. Write Mκ(x, x; q) =
Mκ(x; q). By Mellin inversion, we have

Mκ(x; q) =
∑

n�x
(n,q)=1

μ(n)g(n)
(
log

x

n

)κ = κ!
2π i

∫ 2+i∞

2−i∞
G(t, q)

xt

tκ+1 dt,

where

G(t, q) =
∑

n�1
(n,q)=1

μ(n)g(n)

nt
, �t > 1.
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Note that

G(t, q) =
∏

p�q

(
1 − g(p)

pt

)
=

∏

p|q

(
1 − g(p)

pt

)−1 G∗(t)
ζ(t + 1)κ

,

where

G∗(t) =
∏

p

(
1 − g(p)

pt

)(
1 − 1

pt+1

)−κ =
∏

p

(
1 − g(p)2

p2t

) 1

F(t)
,

which is absolutely convergent and holomorphic for t ∈ C by (A.2), (A.4) and
(A.5). Hence we find

Mκ(x; q) = κ!
2π i

∫ 2+i∞

2−i∞

∏

p|q

(
1 − g(p)

pt

)−1 G∗(t)xt

ζ(t + 1)κ tκ+1 dt.

Shifting the t-contour to the left boundary of C and passing one simple pole at
t = 0, we get

Mκ(x; q) = κ!G∗(0)
∏

p|q
(1 − g(p))−1 + O(κω(q)(log 2x)−A)

for any fixed A > 0.
For s = log x/ log z, we expect that

Mκ(x, z; q) = c(q)mκ(s) + O(κω(q)(log z)−A) (A.7)

for all A > 0, x � 2, z � 2 and q � 1, where c(q) is some constant defined
in terms of g and depending also on q, and mκ(s) is a suitable continuous
function in s > 0. As mentioned above, this expected asymptotic formula
holds for 0 < s � 1, in which case we may take

c(q) = G∗(0)
∏

p|q
(1 − g(p))−1, mκ(s) = κ!.

We now move to the case s > 1 and prove the asymptotic formula (A.7) by
induction. Since x � zO(1), this induction will have a bounded number of
steps. We first consider the differenceMκ(x, z; q)−Mκ(x; q). In fact, each
n that contributes to this difference has a prime factor at least z, and we may
decompose n = mp uniquely up to the restriction z � p < x, m | P(p).
Hence
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Mκ(x, z; q) = Mκ(x; q) +
∑

z�p<x
(p,q)=1

g(p)
∑

m�x/p
m|P(p)
(m,q)=1

μ(m)g(m)
(
log

x

mp

)κ

= Mκ(x; q) +
∑

z�p<x
(p,q)=1

g(p)Mκ(x/p, p; q). (A.8)

Substituting (A.7) to (A.8), we get

Mκ(x, z; q) = c(q)κ! + c(q)
∑

z�p<x
(p,q)=1

g(p)mκ

( log(x/p)

log p

)

+ O(κω(q)(log x)−A)+O
(
κω(q)

∑

z�p<x
(p,q)=1

g(p)(log(2x/p))−A
)
.

By partial summation, we find

Mκ(x, z; q) = c(q)
{
κ! + κ

∫ s

1
mκ

( s

u
− 1

)du

u

}
+ O(κω(q)(log z)−A).

Hence, by (A.7), mκ(s) should satisfy the equation

mκ(s) = κ! + κ

∫ s

1
mκ

( s

u
− 1

)du

u
= κ! + κ

∫ s

1
mκ(u − 1)

du

u

for s > 1. Taking the derivative with respect to s gives (A.6). ��
Remark 6 To extend mκ(s) to be defined on R, we may put mκ(s) = 0 for
s � 0.

Appendix B: A two-dimensional Selberg sieve with asymptotics

This section devotes to present a two-dimensional Selberg sieve that plays an
essential role in proving Proposition 2.2.

Let h be a non-negativemultiplicative function. Suppose theDirichlet series

H(s) :=
∑

n�1

μ2(n)h(n)n−s (B.1)

converges absolutely for �s > 1. Assume there exist some constants L , c0 >
0, such that

H(s) = ζ(s)2H∗(s), (B.2)
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where H∗(s) is holomorphic for �s � 1 − c0, and does not vanish in the
region D as given by (A.3) and |1/H∗(s)| � L for all s ∈ D. We also assume

∣∣∣∣∣∣

∑

p�x

h(p) log p

p
− 2 log x

∣∣∣∣∣∣
� L (B.3)

holds for all x � 3 and

∑

p

h(p)2 p2c0−2 < +∞. (B.4)

Define

S(X, z; h, �) =
∑

n�1

Ψ
( n

X

)
μ2(n)h(n)

( ∑

d|(n,P(z))
�d

)2
,

where � = (�d) is given as in (2.2) and Ψ is a fixed non-negative smooth
function supported in [1, 2] with normalization (2.3).

Theorem B.1 Let X, D, z � 3 with X � DO(1) and X � zO(1). Put
τ = log D/ log z and

√
D = Xϑ exp(−√L), ϑ ∈ ]0, 1

2 [. Under the above
assumptions, we have

S(X, z; h, �) = (1 + o(1))S(ϑ, τ )XL−1,

where S(ϑ, τ ) is defined by

S(ϑ, τ ) = 16e2γ
(c1(τ )

4τϑ2 + c2(τ )

τ 2ϑ

)
, (B.5)

where

c1(τ ) =
∫ 1

0
σ ′((1 − u)τ )f(uτ)2du,

c2(τ ) =
∫ 1

0

∫ 1

0
σ ′((1 − u)τ )f(uτ − 2v){2f(uτ) − f(uτ − 2v)}dudv.

Here σ(s) is the continuous solution to the differential-difference equation

⎧
⎨

⎩
σ(s) = s2

8e2γ
, s ∈ ]0, 2],

(s−2σ(s))′ = − 2s−3σ(s − 2), s ∈ ]2,+∞[,
(B.6)
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and f(s) = m2(s/2) as given by (A.6), i.e., f(s) is the continuous solution to
the differential-difference equation

{
f(s) = 2, s ∈ ]0, 2],
sf′(s) = 2f(s − 2), s ∈ ]2,+∞[. (B.7)

Remark 7 Theorem B.1 is a generalization of [42, Proposition 4.1] with a
general multiplicative function h and the extra restriction d | P(z), but spe-
cializing k = 2 therein. It would be rather interesting to extend the case to
a general k ∈ Z+ and we would like to concentrate this problem in the near
future.

We now choose z = √
D, so that the restriction d | P(z) is redundant, in

which case one has τ = 2. Note that

c1(2) = 4
∫ 1

0
σ ′(2u)du = 1

e2γ
,

c2(2) = 4
∫ 1

0
σ ′(2(1 − u))udu = 1

3e2γ
.

For ϑ = 1/4, we find S(ϑ, τ ) = S(1/4, 2) = 112/3, which coincides with
4c(2, F) in [42, Proposition 4.1] by taking F(x) = x2 therein.

We now give the proof of Theorem B.1. To begin with, we write by (8.4)
that

S(X, z; h, �) =
∑

d|P(z)
ξ(d)

∑

n≡0 (mod d)

Ψ
( n

X

)
μ2(n)h(n)

=
∑

d|P(z)
ξ(d)h(d)

∑

(n,d)=1

Ψ
(nd

X

)
μ2(n)h(n).

By Mellin inversion,

∑

(n,d)=1

Ψ
(nd

X

)
μ2(n)h(n) = 1

2π i

∫

(2)
Ψ̃ (s)(X/d)sH!(s, d)ds,

where, for �s > 1,

H!(s, d) =
∑

n�1
(n,d)=1

μ2(n)h(n)

ns
.
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For �s > 1, we first write

H!(s, d) =
∏

p�d

(
1 + h(p)

ps

)
=

∏

p|d

(
1 + h(p)

ps

)−1H(s)

=
∏

p|d

(
1 + h(p)

ps

)−1
ζ(s)2G(s).

Note that

G(1) = lim
s→1

H(s)

ζ(s)2
=

∏

p

(
1 + h(p)

p

)(
1 − 1

p

)2
.

By (B.2),H!(s, d) admits ameromorphic continuation to�s � 1−c0.Shifting
the s-contour to the left beyond �s = 1, we may obtain

∑

(n,d)=1

Ψ
(nd

X

)
μ2(n)h(n)

= Ress=1 g̃(s)G(s)(X/d)s
∏

p|d

(
1 + h(p)

ps

)−1
ζ(s)2 + O((X/d)L−100).

We compute the residue as

Ress=1[· · · ]
= d

ds
Ψ̃ (s)G(s)(X/d)s

∏

p|d

(
1 + h(p)

ps

)−1
ζ(s)2(s − 1)2

∣∣∣
s=1

= Ψ̃ (1)G(1)
∏

p|d

(
1 + h(p)

p

)−1 X

d

(
log(X/d) +

∑

p|d

h(p) log p

p + h(p)
+ c

)

=G(1)
∏

p|d

(
1 + h(p)

p

)−1 X

d

(
log X −

∑

p|d

p log p

p + h(p)
+ c

)
,

where c is some constant independent of d.
Define β and β∗ to be multiplicative functions supported on squarefree

numbers via

β(p) = p

h(p)
+ 1, β∗(p) = β(p) − 1 = p

h(p)
.
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Define L to be an additive function supported on squarefree numbers via

L(p) = β∗(p) log p

β(p)
.

Therefore, for each squarefree number d, we have

β(d) =
∏

p|d

( p

h(p)
+ 1

)
, β∗(d) = d

h(d)
, L(d) =

∑

p|d

β∗(p) log p

β(p)
.

In this way, we may obtain

S(X; h, �) = G(1)X{S1(X) · (log X + c) − S2(X)} + O(XL−2),

where

S1(X) =
∑

d|P(z)

ξ(d)

β(d)
,

S2(X) =
∑

d|P(z)

ξ(d)

β(d)
L(d).

Note that

S1(X) =
∑ ∑

d1,d2|P(z)

�d1�d2

β([d1, d2])
=

∑ ∑

d1,d2|P(z)

�d1�d2

β(d1)β(d2)
β((d1, d2))

=
∑ ∑

d1,d2|P(z)

�d1�d2

β(d1)β(d2)

∑

l|(d1,d2)
β∗(l).

Hence we may diagonalize S1(X) by

S1(X) =
∑

l�
√

D
l|P(z)

β∗(l)y2l , (B.8)

where, for each l | P(z) and l �
√

D,

yl =
∑

d|P(z)
d≡0 (mod l)

�d

β(d)
.
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From the definition of sieve weights (2.2), we find

yl = 4μ(l)

β(l)(log D)2

∑

d�
√

D/ l
dl|P(z)

μ(d)

β(d)

(
log

√
D/ l

d

)2
.

Applying Lemma A.1 with g(p) = 1/β(p) and q = l, we have

yl = 4μ(l)

G(1)β∗(l)(log D)2
m2

( log(
√

D/ l)

log z

)
+ O

( τ(l)
β(l)

(log z)−A
)
. (B.9)

Inserting this expression to (B.8), we have

S1(X) = 16(1 + o(1))

G(1)2(log D)4

∑

l�
√

D
l|P(z)

1

β∗(l)
m2

( log(
√

D/ l)

log z

)2
.

Following [17, Lemma 6.1], we have

∑

l�x
l|P(z)

1

β∗(l)
= 1

W (z)

{
σ(2 log x/ log z) + O

((log x/ log z)5

log z

)}
(B.10)

with

W (z) =
∏

p<z

(
1 − 1

β(p)

)
,

from which and partial summation, we find

S1(X) = 16τc1(τ )

G(1)2W (z)(log D)4
· (1 + o(1))

with τ = log D/ log z and

c1(τ ) =
∫ 1

0
σ ′((1 − u)τ )f(uτ)2du. (B.11)

We now turn to consider S2(X). Note that L(d) is an additive function
supported on squarefree numbers. We then have
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S2(X) =
∑ ∑

d1,d2|P(z)

�d1�d2

β([d1, d2])L([d1, d2])

=
∑ ∑

dd1d2|P(z)

�dd1�dd2

β(dd1d2)
{L(d) + L(d1) + L(d2)},

where there is an implicit restriction that d, d1, d2 are pairwise coprime. By
Möbius formula, we have

S2(X) =
∑ ∑ ∑

dd1,dd2|P(z)

�dd1�dd2

β(d)β(d1)β(d2)
{L(d) + L(d1) + L(d2)}

∑

l|(d1,d2)
μ(l)

=
∑∑∑∑

ldd1,ldd2|P(z)

μ(l)�ldd1�ldd2

β(l)2β(d)β(d1)β(d2)
{L(ldd1) + L(ldd2) − L(d)}

= 2S21(X) − S22(X)

with

S21(X) =
∑

l|P(z)
β∗(l)yl y′

l ,

S22(X) =
∑

l|P(z)
v(l)y2l ,

where for each l | P(z), l �
√

D,

y′
l =

∑

d|P(z)
d≡0 (mod l)

�d L(d)

β(d)
.

and

v(l) = β(l)
∑

uv=l

μ(u)L(v)

β(u)
. (B.12)

Moreover, we have

y′
l =

∑

dl|P(z)

�dl L(dl)

β(dl)
=

∑

d|P(z)

�dl L(d)

β(dl)
+ L(l)yl

=
∑

p<z

β∗(p) log p

β(p)

∑

d|P(z)

�pdl

β(pdl)
+ L(l)yl

=
∑

p<z

yplβ
∗(p) log p

β(p)
+ L(l)yl .
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It then follows that

S21(X) =
∑

p<z

β∗(p) log p

β(p)

∑

l|P(z)
β∗(l)yl ypl +

∑

l|P(z)
L(l)β∗(l)y2l

=
∑

p<z

β∗(p) log p

β(p)

∑

pl|P(z)
β∗(l)yl ypl

+
∑

p<z

β∗(p)2 log p

β(p)

∑

pl|P(z)
β∗(l)y2pl

= S′
21(X) + S′′

21(X),

say.
From (B.9), it follows, by partial summation, that

S′
21(X) = − 16(1 + o(1))

G(1)2(log D)4

∑

l|P(z)

1

β∗(l)
m2

( log(
√

D/ l)

log z

)

×
∑

p<z
p�l

log p

β(p)
m2

( log(
√

D/(pl))

log z

)
.

Up to a minor contribution, the inner sum over p can be relaxed to all primes
p � z. In fact, the terms with p | � contribute at most


 1

(log D)4

∑

l|P(z)

1

β∗(l)
m2

( log(
√

D/ l)

log z

)∑

p|l

log p

p


 1

(log D)3 log log D

∑

l|P(z)

1

β∗(l)
m2

( log(
√

D/ l)

log z

)


 1

W (z)(log D)3 log log D
.

We then derive that

S′
21(X) = − 16(1 + o(1))

G(1)2(log D)4

∑

l|P(z)

1

β∗(l)
m2

( log(
√

D/ l)

log z

)

×
∑

p<z

log p

β(p)
m2

( log(
√

D/(pl))

log z

)
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+ O
( log z

log log z

1

W (z)(log D)4

)

= − 32τc′
21(τ ) log z

G(1)2W (z)(log D)4
· (1 + o(1)),

where

c′
21(τ ) =

∫ 1

0

∫ 1

0
σ ′((1 − u)τ )f(uτ)f(uτ − 2v)dudv.

In a similar manner, we can also show that

S′′
21(X) = 32τc′′

21(τ ) log z

G(1)2W (z)(log D)4
· (1 + o(1)),

where

c′′
21(τ ) =

∫ 1

0

∫ 1

0
σ ′((1 − u)τ )f(uτ − 2v)2dudv.

In conclusion, we obtain

S21(X) = S′
21(X) + S′′

21(X) = 32τ(c′′
21(τ ) − c′

21(τ )) log z

G(1)2W (z)(log D)4
· (1 + o(1)),

We now evaluate S22(X). For each squarefree l � 1, we have

v(l) = β(l)
∑

u|l

μ(u)

β(u)

∑

p|l/u

β∗(p) log p

β(p)

= β(l)
∑

p|l

β∗(p) log p

β(p)

∑

u|l/p

μ(u)

β(u)

= β(l)
∑

p|l

β∗(l/p)β∗(p) log p

β(l/p)β(p)

= β∗(l) log l.

Hence

S22(X) =
∑

p<z

β∗(p) log p
∑

pl|P(z)
β∗(l)y2pl

= 16(1 + o(1))

G(1)2(log D)4

∑

l|P(z)

1

β∗(l)
∑

p<z
p�l

log p

β∗(p)
m2

( log(
√

D/(pl))

log z

)2
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by (B.9). From partial summation, it follows that

S22(X) = 32τc′′
21(τ ) log z

G(1)2W (z)(log D)4
· (1 + o(1)).

Combining all above evaluations, we find

S(X, z; h, �)

=G(1)X{S1(X) · (log X + c) − 2S21(X) + S22(X)} + O(XL−2)

= (1 + o(1))
16τ X log z

G(1)W (z)(log D)4

{
c1(τ )

log X

log z
+ 4c′

21(τ ) − 2c′′
21(τ ))

}
.

Hence Theorem B.1 follows by observing that c2(τ ) = 2c′
21(τ ) − c′′

21(τ ) and

G(1)W (z) =
∏

p<z

(
1 − 1

p

)2 ·
∏

p�z

(
1 + h(p)

p

)(
1 − 1

p

)2

= (1 + o(1))
e−2γ

(log z)2

by Mertens’ formula.

Appendix C: Chebyshev approximation

A lot of statistical analysis of GL2 objects relies heavily on the properties of
Chebychev polynomials {Uk(x)}k�0 with x ∈ [− 1, 1], which can be defined
recursively by

U0(x) = 1, U1(x) = 2x,

Uk+1(x) = 2xUk(x) − Uk−1(x), k � 1.

It is well-known that Chebychev polynomials form an orthonormal basis of
L2([− 1, 1]) with respect to the measure 2

π

√
1 − x2dx . In fact, for any f ∈

C([− 1, 1]), the expansion

f (x) =
∑

k�0

βk( f )Uk(x) (C.1)

holds with

βk( f ) = 2

π

∫ 1

−1
f (t)Uk(t)

√
1 − t2dt.
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In practice, the following truncated approximation is usually more effective
and useful, which has its prototype in [28, Theorem 5.14].

Lemma C.1 Suppose f : [− 1, 1] → R has C + 1 continuous derivatives on
[− 1, 1] with C � 2. Then for each positive integer K > C, there holds the
approximation

f (x) =
∑

0�k�K

βk( f )Uk(x) + O
(

K 1−C‖ f (C+1)‖1
)

uniformly in x ∈ [− 1, 1], where the implied constant depends only on C.

Proof For each K > C , we introduce the operator ϑK mapping f ∈
CC+1([− 1, 1]) via

(ϑK f )(x) :=
∑

0�k�K

βk( f )Uk(x) − f (x).

This gives the remainder of approximation by Chebychev polynomials up to
degree K . Obviously, (ϑK f )(·) ∈ CC+1([− 1, 1]) and in fact, ϑK is a bounded
linear functional on CC+1([− 1, 1]),which vanishes on polynomials of degree
� K .

Using a theorem of Peano ([7, Theorem 3.7.1]), we find that

(ϑK f )(x) = 1

C !
∫ 1

−1
f (C+1)(t)HK (x, t)dt, (C.2)

where

HK (x, t) = −
∑

k>K

λk(t)Uk(x)

with

λk(t) = 2

π

∫ 1

t

√
1 − x2(x − t)CUk(x)dx .

Put x = cos θ, t = cosφ, so that

λk(t) = λk(cosφ) = 2

π

∫ φ

0
(cos θ − cosφ)C sin θ sin((k + 1)θ)dθ.

123



When Kloosterman sums meet Hecke eigenvalues 121

We deduce from integration by parts that

‖λk‖∞ 
 1

k

(
k − 1

C

) ,

where the implied constant is absolute. For any x, t ∈ [− 1, 1], the Stirling’s
formula log#(k) = (k − 1/2) log k − k + log

√
2π + O(1/k) gives

HK (x, t) 

∑

k>K

1(
k − 1

C

) = C !
∑

k>K

#(k − C)

#(k)



∑

k>K

( e

k − C

)C(
1 − C

k

)k−1/2


 K 1−C ,

from which and (C.2) we conclude that

‖ϑK f ‖∞ 
 K 1−C‖ f (C+1)‖1.

This completes the proof of the lemma. ��
We now turn to derive a truncated approximation for |x | on average.

Lemma C.2 Let k, J be two positive integers and K > 1. Suppose
{x j }1� j�J ∈ [− 1, 1] and y := {y j }1� j�J ∈ C are two sequences satisfy-
ing

max
1� j�J

|y j | � 1,

∣∣∣∣
∑

1� j�J

y jUk(x j )

∣∣∣∣ � k BU (C.3)

with some B � 1 and U > 0. Then we have

∑

1� j�J

y j |x j | = 4

3π

∑

1� j�J

y j + O
(

U K B−1(log K )δ(B) + ‖y‖21
U K B

)
.

where δ(B) vanishes unless B = 1, in which case it is equal to 1, and the
O-constant depends only on B.

123



122 P. Xi

Proof In order to apply Lemma C.1, we would like to introduce a smooth
function R : [− 1, 1] → [0, 1] with R(x) = R(− x) such that

{
R(x) = 0, x ∈ [−Δ,Δ],
R(x) = 1, x ∈ [− 1,−2Δ] ∪ [2Δ, 1],

where Δ ∈ ]0, 1[ be a positive number to be fixed later. We also assume the
derivatives satisfy

R( j)(x) 
 j Δ
− j

for each j � 0 with an implied constant depending only on j .
Put f (x) := R(x)|x |. Due to smooth decay of R at x = 0, we may apply

Lemma C.1 to f (x) with C = 2, getting

f (x) =
∑

0�k�K

βk( f )Uk(x) + O(K −1‖ f ′′′‖1).

Note that f ′′′(x) vanishes unless x ∈ [− 2Δ,−Δ] ∪ [Δ, 2Δ], in which case
we have f ′′′(x) 
 Δ−2. It then follows that

f (x) =
∑

0�k�K

βk( f )Uk(x) + O
( 1

KΔ

)
.

Moreover, f (x) − |x | vanishes unless x ∈ [− 2Δ, 2Δ]. This implies that
f (x) = |x | + O(Δ). In addition, β0( f ) = 4

3π + O(Δ). Therefore,

|x | = 4

3π
+

∑

1�k�K

βk( f )Uk(x) + O
(
Δ + 1

KΔ

)
.

We claim that

βk( f ) 
 k−2 (C.4)

for all k � 1 with an absolute implied constant. It then follows that

∑

1� j�J

y j |x j | − 4

3π

∑

1� j�J

y j

=
∑

1�k�K

βk( f )
∑

1� j�J

y jUk(x j ) + O
(
‖y‖1Δ + ‖y‖1

KΔ

)
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 U
∑

1�k�K

k B−2 + ‖y‖1Δ + ‖y‖1
KΔ


 U K B−1(log K )δ(B) + ‖y‖1Δ + ‖y‖1
KΔ

,

where the implied constant depends only on B. To balance the first and last
terms, we take Δ = ‖y‖1/(U K B), which yields

∑

1� j�J

y j |x j | − 4

3π

∑

1� j�J

y j 
 U K B−1(log K )δ(B) + ‖y‖21
U K B

as expected.
It remains to prove the upper bound (C.4). Since Uk(cos θ)= sin((k+1)θ)/

sin θ , it suffices to show that

βk :=
∫ π

2

0
R(cos θ)(sin 2θ) sin((k + 1)θ)dθ 
 k−2 (C.5)

for all k � 3 with an absolute implied constant. From the elementary identity
2 sin α sin β = cos(α − β) − cos(α + β), it follows that

βk =
∫ arccosΔ

0
R(cos θ)(sin 2θ) sin((k + 1)θ)dθ

= α(k − 1, R) − α(k + 3, R)

2
,

where, for � � 2 and a function g ∈ C2([− 1, 1]),

α(�, g) :=
∫ arccosΔ

0
g(cos θ) cos(�θ)dθ.

From integration by parts, we derive that

α(�, g) = 1

�

∫ arccosΔ

0
g′(cos θ)(sin θ) sin(�θ)dθ

= α(� − 1, g′) − α(� + 1, g′)
2�

,

and also

α(�, g′) = α(� − 1, g′′) − α(� + 1, g′′)
2�

.
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It then follows that

α(�, g) = α(� − 2, g′′) − α(�, g′′)
4�(� − 1)

− α(�, g′′) − α(� + 2, g′′)
4�(� + 1)

.

We then further have

βk = 1

8
(βk,1 − βk,2)

with

βk,1 = α(k − 3, R′′) − α(k − 1, R′′)
(k − 1)(k − 2)

− α(k − 1, R′′) − α(k + 1, R′′)
k(k − 1)

,

βk,2 = α(k − 1, R′′) − α(k + 1, R′′)
k(k + 1)

− α(k + 1, R′′) − α(k + 3, R′′)
(k + 1)(k + 2)

.

Note that

α(k − 3, R′′) − α(k − 1, R′′)

=
∫ arccosΔ

arccos 2Δ
R′′(cos θ){cos((k − 3)θ) − cos((k − 1)θ)}dθ

= 2
∫ arccosΔ

arccos 2Δ
R′′(cos θ)(sin(k − 2)θ)(sin θ)dθ

and

α(k − 1, R′′) − α(k + 1, R′′) = 2
∫ arccosΔ

arccos 2Δ
R′′(cos θ)(sin kθ)(sin θ)dθ.

Hence

βk,1 = 2

(k − 1)(k − 2)

∫ arccosΔ

arccos 2Δ
R′′(cos θ)(sin(k − 2)θ)(sin θ)dθ

− 2

k(k − 1)

∫ arccosΔ

arccos 2Δ
R′′(cos θ)(sin kθ)(sin θ)dθ

= 2

(k − 1)(k − 2)

∫ arccosΔ

arccos 2Δ
R′′(cos θ){sin(k − 2)θ − sin kθ}(sin θ)dθ

+ 4

k(k − 1)(k − 2)

∫ arccosΔ

arccos 2Δ
R′′(cos θ)(sin kθ)(sin θ)dθ.
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The first term can be evaluated as

= 2

(k − 1)(k − 2)

∫ arccosΔ

arccos 2Δ
R′′(cos θ)(sin(k − 1)θ)(cos θ)(sin θ)dθ


 1

k2

∫ arccosΔ

arccos 2Δ
Δ−2 cos θdθ 
 1

k2
.

Again from the integration by parts, the second term is

4

(k − 1)(k − 2)

∫ arccosΔ

arccos 2Δ
R′(cos θ)(cos kθ)dθ


 1

k2

∫ arccosΔ

arccos 2Δ
Δ−1dθ 
 1

k2
.

Hence βk,1 
 k−2, and similarly βk,2 
 k−2. These yield (C.5), and thus
(C.4), which completes the proof of the lemma. ��

Note that Uk(cos θ) = symk(θ). Taking x j = cos θ j in Lemma C.2, we
obtain the following truncated approximation for | cos |.
Lemma C.3 Let k, J be two positive integers and K > 1. Suppose
{θ j }1� j�J ∈ [0, π ] and y := {y j }1� j�J ∈ C are two sequences satisfying

max
1� j�J

|y j | � 1,

∣∣∣∣
∑

1� j�J

y j symk(θ j )

∣∣∣∣ � k BU

with some B � 1 and U > 0. Then we have

∑

1� j�J

y j | cos θ j | = 4

3π

∑

1� j�J

y j + O
(

U K B−1(log K )δ(B) + ‖y‖21
U K B

)
.

where δ(B) is defined as in Lemma C.2.
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