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Summary. In 1986, R. D. Cook proposed differential geometry to assess local in¯uence of minor
perturbations of statistical models. We construct a conformally invariant curvature, the conformal
normal curvature, for the same purpose. This curvature provides a measure of local in¯uence
ranging from 0 to 1, with objective bench-marks to judge largeness. We study various approaches to
using the conformal normal curvature and the relationships between these approaches.
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1. Introduction

A general method was introduced by Cook (1986) for assessing the in¯uence of local departures
from the assumptions underlying a statistical model. Using di�erent perturbation schemes,
this local in¯uence approach has been applied successfully in various analyses. Typical
examples are the applications of the approach to the diagnostics and in¯uence analyses in
mixed model analysis of variance (Beckman et al., 1987), in regression transformations
(Lawrance, 1988), in generalized linear modelling (Thomas and Cook, 1990), in non-linear
regression (St Laurent and Cook, 1993), in structural equation models (Lee and Wang, 1996)
and in principal components analysis (Shi, 1997). Some e�ort has also been devoted to
relating Cook's approach to other work in the literature. For example, Farebrother (1992)
pointed out that there is a close relationship between the condition number that is tradi-
tionally used by numerical analysts and the measure of in¯uence in the local in¯uence
approach.

The method is powerful because it is relatively simple to use. It utilizes certain ideas from
di�erential geometry to assess the behaviour of the likelihood displacement function. More
speci®cally, the normal curvature along a direction l at the optimal point of the function, Cl,
is computed. Large values of Cl indicate strong local in¯uence. The directions which give
large normal curvatures carry important information about how to perturb the postulated
model. In particular, the direction corresponding to the maximum of Cl is of special interest.
More details are summarized in Section 2.1.
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Although the method has been demonstrated to be very useful, several issues were raised in
the discussion of Cook (1986) (see, for example, Beckman (1986), Lawrance (1986), Loynes
(1986) and Prescott (1986)). The normal curvature may take any value and is not invariant
under a uniform change of scale. As a result, there is no objective criterion to judge the
largeness of normal curvatures and the relative size of the components of the directions
corresponding to large normal curvatures. Although in some situations the lack of objective
criteria does not cause signi®cant di�culties, an objective and yet ¯exible criterion is surely
welcome and could enhance the applicability of the method. Furthermore, the method requires
the computation of eigenvalues and eigenvectors. This hinders its popularity in problems
with large dimensions and leads to intractability in theoretical developments.

To facilitate the application and interpretation of the local in¯uence approach, it is
necessary to address these issues. In this respect, there are the contributions by Schall and
Dunne (1992). They demonstrated the close relationship between the concepts of parameter
collinearity and local in¯uence in regression diagnostics, and they introduced a modi®cation
of Cook's normal curvature, named the scaled curvature. This scaled curvature is invariant
over reparameterizations of the perturbation scheme and has an upper bound of 1. However,
the other issues remain unresolved. In fact, unlike Cook's normal curvature, the scaled
curvature does not have a clear geometric basis, and only in special circumstances are the two
curvatures equivalent diagnostics.

The purpose of this paper is to develop methods which address these di�culties. With a
clear geometrical basis, a measure, named the conformal normal curvature, which is a one-to-
one function of the normal curvature, and assumes values in the interval [0, 1], is constructed.
One of the many properties of the conformal normal curvature is its conformal invariance
(Kobayashi, 1972). On the basis of this and its other properties, objective bench-marks to
judge largeness are provided. Using the conformal normal curvature, an aggregate measure
for each basic perturbation vector of the perturbation space is constructed. Di�erent numbers
of eigenvectors can be used in the aggregation. When all eigenvectors are considered, the
aggregate contribution for each basic perturbation vector is equivalent to its conformal
normal curvature. A perturbation vector is basic if it is in the direction of one and only one
perturbation parameter. It turns out that the conformal normal curvature of a basic per-
turbation vector is an e�ective measure of local in¯uence, and the computation of eigen-
vectors is no longer necessary.

In the next section, we construct the conformal normal curvature and examine its basic
properties. In Section 3, we discuss various approaches and the advantages of using the
conformal normal curvature to assess local in¯uence. In Section 4, an example in linear
regression is presented. The paper is concluded with a discussion in Section 5.

2. Conformal normal curvature

2.1. In¯uence graph and normal curvature
Let L��� denote the log-likelihood for a postulated model, where � is a p� 1 vector of
unknown parameters. Let L��j!� be the log-likelihood corresponding to the perturbed model
for a given !, where !T � �!1, . . ., !n� is an n� 1 vector in 
 of Rn, and 
 represents the set
of relevant perturbations (n does not necessarily represent the sample size). It is assumed that
there is an !0 such that L��j!0� � L��� for all �. Let �̂ and �̂! be the maximum likelihood
estimators of � under L��j!0� and L��j!� respectively. The likelihood displacement function
(Cook, 1986) is given by
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f�!� � 2fL��̂j!0� ÿ L��̂!j!0�g �2:1�
and can be used to assess the local in¯uence of a minor perturbation. Let

��!� � �!T, f�!��T �2:2�
be the in¯uence graph formed by the values of the �n� 1� � 1 vector. Cook (1986) proposed
the normal curvature to assess the local in¯uence of the perturbation.

Geometrically, the normal curvature is a function of the ®rst fundamental form I (Thorpe,
1979) and the second fundamental form � (Thorpe, 1979) of the graph of the likelihood
displacement function f. They are symmetric matrices represented by

Iij � �ij �
@f

@!i

@f

@!j

,

�ij �
1

�1� jrf j2�1=2
@2f

@!i@!j

,

�2:3�

where �ij equals 1 when i � j and is 0 otherwise, and jrf j represents the norm of the gradient
vector of f. These two forms are evaluated on vectors v and w by I�v, w� � vTIw and ��v,
w� � vT�w. A straight line in 
 passing through !0 is de®ned by !�a� � !0 � al, where a is in
R1 and !0 and l are ®xed column vectors in Rn. Then the normal curvature of the graph � in a
direction l at the point !0 is

Cl � C�l, l � � ��l, l �
I�l, l � �

lTHf l

lT�In � rfrT
f �l�1� jrf j2�1=2 j!�!0

, �2:4�

where In is the n� n identity matrix and

Hf �
�

@2f

@!i@!j

�
is the Hessian matrix.

We are primarily interested in the curvature at a critical point on the graph. When !0 is a
critical point, then rf �!0� � 0. If we choose l to be such that lTl � 1, then equation (2.4) is
reduced to

Cl � lTHf l j!�!0 : �2:5�
Cook (1986) proposed to use the normal curvature to study characteristics of in¯uence

graphs. According to equation (2.5), he further deduced that

Cl � ÿ2�lT �Fl �j!�!0 , �2:6�
where �F is the n� n matrix with elements @2L��̂!�=@!i@!j. Let � be the p� n matrix with
elements �ij � @2L��j!�=@�i@!j and �L be the p� p matrix with elements

�Lij �
@2L��j!�
@�i@�j

�2:7�

evaluated at � � �̂ and ! � !0. Then equation (2.6) can be written as (Cook, 1986)

Cl � ÿ2flT�T� �L �ÿ1�lgj���̂,!�!0 : �2:8�
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The matrix ÿ �F is positive semide®nite at !0 because the likelihood displacement function
achieves its minimum at this point. Let Cmax � maxl�Cl� which corresponds to the maximum
eigenvalue of ÿ �F , and let emax be the eigenvector for Cmax. Cook (1986) suggested that a large
value of Cmax is an indication of a serious local problem, and if the ith element in emax is
relatively large special attention should be paid to the element being perturbed by !i.
Although this approach has been demonstrated to be very useful, several issues that were
raised in the discussion of Cook (1986) and mentioned in Section 1 remain unresolved. To
address these issues, we introduce the conformal normal curvature.

2.2. Conformal normal curvature and its properties

De®nition 1. The conformal normal curvature at a point !0 of a graph � in the direction l is

Bl �
��l, l �

I�l, l � ftr��2�g1=2 j!�!0
: �2:9�

Since the matrix representation of � is symmetric, when the eigenvalues of the second
fundamental form are �i, 14 i4 n, then tr��2� � �n

i�1 �
2
i . Except when the second funda-

mental form is identically 0, the conformal normal curvature is well de®ned. De®ne kHf k
� ptr�H 2

f �. Then, by equations (2.4) and (2.9),

Bl �
1

lT�In �rfrT
f �l

lTHf l

kHf k j!�!0
: �2:10�

From equations (2.5)±(2.8), it can be further deduced that the conformal normal curvature of
the graph in a direction l at a critical point !0 is

Bl �
lTHf l

kHf k j!�!0
� ÿ lT �Flp

tr� �F 2� j!�!0
� ÿ lT�T� �L �ÿ1�lp

trf�T� �L �ÿ1�g2 j���̂,!�!0
: �2:11�

It is clear from equation (2.11) that the computation of Bl requires almost no more e�ort than
does the computation of Cl. Moreover, the conformal normal curvature enjoys numerous
properties. They are summarized in the next few theorems.

First, we concern ourselves with conformal reparameterizations. When 
 represents the set
of perturbations, a reparameterization is a smooth map �: 
! � from the domain 
 to a
new domain � with the same dimension such that the Jacobian matrix of � is non-singular
throughout 
. In particular, it is a one-to-one map and hence has an inverse map. We
consider reparameterizations as `modi®cations of the perturbation scheme' (Cook (1986),
rejoinder). Furthermore, an n� n matrix M is a conformal matrix if there is a positive
number � such that MMT � �In. A reparameterization is conformal at !0 if its Jacobian
matrix at !0 is a conformal matrix.

Theorem 1. If a reparameterization of 
 is conformal at a critical point !0 on the graph of
f over 
, then the conformal normal curvature in any direction at !0 is invariant under
reparameterization.

Proof. Let ��!� and  �x� be the reparameterization and its inverse respectively. Let g be the
composition g�x� � f �  �x�. When !0 is a critical point for f, ��!0� is a critical point for g.
Therefore, when we apply the chain rule to calculate the Hessian for g in terms of derivatives
of f, we have Hg � 	THf	, where 	 is the Jacobian matrix of  . Since � is conformal at !0,
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so is its inverse at ��!0�. Therefore, at ! � !0, 	T	 � �In for a positive number � , and
hence kHgk � � kHf k. Let � be the Jacobian matrix of �. The reparameterization takes the
direction l at !0 to ��l � at ��!0�. At ! � !0, � � �1=��	T; then, by equation (2.4),

Ĉ��l � �
��l �THg��l �
��l �T��l � �

�	Tl �T�	THf	��	Tl �
�	Tl �T�	l � � lT�Hf � l

lT� l
� �Cl,

where the derivatives are evaluated at !0. By equation (2.11), B̂��l � � Ĉ��l �=kHgk �
�Cl=� kHf k � Bl as claimed. &

An example of a conformal reparameterization is ��!� �M!� c such that M is a con-
formal matrix. For example, in linear regression analysis, when !T � �!1, . . ., !n� is the
vector of case weights for a sample of size N � n (Cook (1986), section 4), the conformal
normal curvature is invariant with respect to the reparameterization �1� !i�=2 that was
studied by Loynes (1986). A class of reparameterizations studied by Cook (1986) (rejoinder)
is when ��!� � �k�!1�, . . ., k�!n��T where k�t� is a smooth function. Such a reparameteriza-
tion is conformal at !0 � �a1, . . ., an�T if there is a non-zero constant a such that derivatives
_k�ai� are all equal to a. The conformal normal curvature is also invariant when a single
explanatory variable in a linear regression model is perturbed with di�erent units or when a
set of explanatory variables is perturbed accordingly (see Section 4.3).

Theorem 2. For any direction l, Bl satis®es the condition that 04 jBl j4 1.

Proof. If fe1, . . ., eng is an orthonormal basis of eigenvectors of � with eigenvalues �i,
i � 1, . . ., n, then, for any l � �i aiei, ��l, l � � �i �ia

2
i . Then

jBl j �
���P

i

�ia
2
i

���.�P
i

a2i

��P
i

�2
i

�1=2
:

By the Schwarz inequality and ��i a
2
i �2 ÿ�i a

4
i � 2 �i< j a

2
i a

2
j 5 0, jBl j4 1. &

Theorem 2 tells us that Bl is a normalized measure, and thus it becomes easier to interpret
its magnitude. Furthermore, Bei

is equal to the normalized eigenvalue �̂i which is

�̂i � �i

��Pn
k�1

�2
k

�1=2

: �2:12�

It is an eigenvalue of the matrix of the bilinear form of Bl in equation (2.10). Therefore, we
have the following simple observation.

Theorem 3. If fei: 14 i4 ng is a collection of orthonormal eigenvectors of �, then
�i B

2
ei
� 1:

This theorem has useful consequences. The curvature of the graph at a point is uniform in
all directions if the second fundamental form is diagonalizable to a constant multiple of the
identity matrix. Such a point is called an umbilic point in di�erential geometry (Do Carmo,
1976). To study the uniformity of the curvature of an in¯uence graph at an extremal point,
we compare the curvature with a totally umbilic space whose curvature is the mean curvature
of the graph at the given point, i.e. we measure the departure of the graph from being
spherical (Do Carmo, 1976). Since �i B

2
ei
� 1, if the conformal normal curvatures for all

eigenvectors are identical, then they are all equal to 1=
p
n. With reference to this, we can

assess the local in¯uence more systematically and objectively.
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3. Assessment of local in¯uence

Normal curvature Cl and the associated direction l are used to assess local in¯uence. In partic-
ular, Cook (1986) suggested inspecting the eigenvector emax with maximum normal curvature
Cmax regardless of its size. Since normal curvature and its conformal counterpart di�er only
by an overall positive factor, the two curvatures are equivalent diagnostic measures, and the
eigenvector emax gives the maximum conformal normal curvature. However, the conformal
normal curvature is preferred because its invariance property and normalized nature facilitate
its interpretation. Moreover, the discussion in the last section suggests that an objective
bench-mark to judge the e�ect of Bei

and Bl at various levels can be determined with reference
to the mean curvature by using geometric concepts. Therefore, the following de®nition is
established.

De®nition 2. An eigenvector e is q in¯uential if jBej5 q=
p
n.

3.1. In¯uence of individual eigenvector
An in¯uential eigenvector can be further examined. Let Ei be the column vector in Rn whose
ith entry is 1 and all other entries are 0. We call Ei the ith basic perturbation vector of the
perturbation space. To analyse the contribution of basic perturbation vectors to the in¯uence
of an in¯uential eigenvector e, we can ®nd basic perturbation vectors which are close to e.
When �̂i is the normalized eigenvalue given in equation (2.12), let fei: 14 i4 ng be a
collection of orthonormal eigenvectors, with corresponding normalized eigenvalues �̂i. The
collection of basic perturbation vectors fEi: 14 i4 ng at an extremal point is also ortho-
normal with respect to the ®rst fundamental form and the usual dot product. When
ei � �n

j�1 aijEj, then �n
j�1 a

2
ij � 1. It means that for any ®xed i, if the contribution of all the aij

is uniform, then jaijj � 1=
p
n. It could be used to construct bench-marks to judge largeness.

Furthermore, the line spanned by ei is close to the line spanned by Ej if jaijj is close to 1. This
method can be applied to study emax or any individual in¯uential eigenvectors.

3.2. Aggregate contribution of basic perturbation vectors
More generally, we can analyse the in¯uence of basic perturbation vectors to all in¯uential
eigenvectors. De®ne �i � j�̂ij. We arrange the absolute values of the normalized eigenvalues by

�max � �1 5 . . .5 �k 5 q=
p
n > �k�1 . . . �n 5 0

and use aij to denote the jth element of the normalized eigenvector corresponding to �i.

De®nition 3. The aggregate contribution of the jth basic perturbation vector to all q-
in¯uential eigenvectors is m�q�j �

p��k
i�1 �ia

2
ij�.

As �n
j�1 m�q�2j � �j ��k

i�1 �ia
2
ij� � �k

i�1 �i ��n
j�1 a

2
ij� � �k

i�1 �i, if the contribution of all basic
perturbation vectors is uniform then each is equal to

�m�q� �
r�

1

n

Pk
i�1
�i

�
: �3:1�

Therefore, we refer to �m�q� when determining the signi®cance of the contribution of individ-
ual basic perturbation vectors.

There are two extremes in this method. One is to allow q to be su�ciently big that we
consider the contribution of individual basic perturbation vectors to emax only. Then m�q�j
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� p�maxja1j j, and this method is equivalent to comparing a1j with 1=
p
n as suggested in

Section 3.1. Another extreme is to allow q � 0 so that all eigenvalues are included in our
consideration. This is the total contribution mj � m�0�j �

p��n
i�1 �ia

2
ij�. If the contribution of

all basic perturbation parameters is uniform, then each is equal to

�m � �m�0� �
r�Pn

i�1
�i

�
n

�
�
r�Pn

i�1
j�ij
�

n

r�Pn
i�1
�2
i

��
: �3:2�

The total contribution mj and the conformal normal curvature BEj
of the basic perturbation

vector Ej are deeply related. With the notation of Section 3.1, El � �i ailei. Let B be the
matrix of the bilinear form of Bl. Since Bv � vTBv, and Bei � �̂iei,

BEj
�P

i,k

aijakje
T
i �̂kek �

Pn
i�1
�̂ia

2
ij:

Therefore, if all eigenvalues are non-negative, BEj
is equal to the square of the total con-

tribution of the jth basic perturbation vector. To summarize, we have the following theorem.

Theorem 4. If the Hessian Hf is semipositive de®nite and all eigenvalues are non-negative,
then m2

j � BEj
, for all j.

If the contribution of all BEj
s is uniform, then each is equal to

b � tr���=nptr��2�: �3:3�
Under the condition of theorem 4, �m2 � b. We shall use b to set up objective bench-marks for
the curvatures of the basic perturbation vectors.

Theorem 4 represents an important development in the local in¯uence approach. Since the
Hessian matrix of f �!� in equation (2.1) always satis®es the assumption of theorem 4, the BEj

s
are useful to determine local in¯uence. Note from equation (2.11) that BEj

can be obtained
easily once �F is available, and the computation of eigenvectors is no longer required. In many
practical applications, it is even possible to obtain an explicit expression for BEj

. This not only
enhances the practical applicability of the local in¯uence approach but also removes a real
hindrance for its further development.

We can modify the de®nition of the aggregate contribution by changing the weight of
the eigenvalues. For instance, we can consider the second-order aggregate contribution
M�q�j �

p��k
i�1 �

2
i a

2
ij�. In this case, �M�q� � pf�1=n��k

i�1 �
2
i g is used to construct bench-

marks. We can also consider aggregate contributions of various orders.
In the discussion of Cook (1986), Lawrance raised the question of the relevance of the

individual elements of emax, and some comments were given by Cook (1986) in his rejoinder.
The developments in this section provide more insight into this problem.

4. Application in linear regression

4.1. Case weights in normal linear regression
Consider the linear regression model

Y � X� � �, �4:1�
where X is an N� p matrix and � is an N� 1 normal random vector with E ��� � 0 and
var��� � �2IN. Assuming that �2 is known, let n � N and ! be the n� 1 vector of case
weights, so that the log-likelihood for the perturbed model is
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L��j!� � ÿ 1

2�2
Pn
i�1
!i�yi ÿ xT

i ��2, �4:2�

where !i and yi are the ith elements of ! and Y respectively and xT
i is the ith row of X. It can

be shown that the normal curvature in a direction l at !0 � �1, . . ., 1�T is given by (Cook
(1986), equation (29))

Cl � 2lTDPDl=�2, �4:3�
where D is a diagonal matrix whose entries are the residuals �r1, . . ., rn� and P �
X�XTX �ÿ1XT is the projection matrix. Let Ei, i � 1, . . ., n, be basic perturbation vectors of
dimension n. Then it can be shown that (Cook (1986), equation (32))

CEi
� 2r2i hii=�

2, �4:4�
where hii is the �i, i �th element of P. The conformal normal curvatures at !0 along the
directions l and Ei are respectively given by

Bl � lTDPDl=f tr�DPD�2g1=2, �4:5�
BEi
� r2i hii=ftr�DPD�2g1=2: �4:6�

From equation (3.15), if the contribution of all BEi
s is uniform, then each is equal to

b � tr�DPD�=nftr�DPD�2g1=2: �4:7�
If �2 is unknown and only � is of interest, Cook calculated the normal curvature of the

in¯uence graph of the function LDs�!� (Cook (1986), equation (7)). He found that the normal
curvature is given by equation (4.3) with �2 replaced by �̂2, the usual maximum likelihood
estimate. This is because the log-likelihood in equation (4.2) is a product of a function of �2

and a function of �, and the matrix of observed information in equation (2.8) of � and �2 is a
diagonal block matrix with blocks corresponding to � and �2 respectively. Since the con-
formal normal curvature is independent of � as demonstrated in equations (4.5) and (4.6), if
we are only interested in �, an analysis using conformal normal curvature would not be
a�ected by the estimate of �.

In general, if �T � ��T
1 , �

T
2 �, and if only �1 is of interest, then the conformal normal

curvature would not depend on �2 if the likelihood function and the partition of � follow a
structure similar to that of � and �2 as above.

4.2. An example
As an illustration, consider the rat data reported in Weisberg (1985), p. 121. The data set
consists of 19 cases, and there are four explanatory variables in the model. They are x0 �
constant, x1 � body weight, x2 � liver weight and x3 � relative dose. The dependent variable
is the percentage of the dose in the liver. Using standard diagnostic techniques in linear
regression, Weisberg (1985) found that the leverage and Cook's distance are relatively large
for case 3. Moreover, Cook (1986) gave a scatterplot of the absolute values of the elements
of emax versus x2 and found that the cases which have relatively small values of x2 are more
in¯uential locally.

The data set was analysed by the methods suggested in the previous sections. The non-zero
normalized eigenvalues are 0.816, 0.462, 0.338 and 0.076. For each case, the conformal
normal curvature of the basic perturbation vector BEj

and the aggregate contributions mj�q�,
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with q varying from 0 to 3, were computed. Results for selected cases are presented in Table
1. When q � 3, only one eigenvector, i.e. emax, is considered as in¯uential, and the mj�3�s are
in one-to-one correspondence with the entries in emax. mj �0� is not presented because it is
equivalent to BEj

. Following the common practice of considering greater than two times the
average as in¯uential, we use 2b and �m�q�p2 as the bench-marks for BEj

and mj�q�
respectively. We use

p
2 instead of 2 in the bench-mark of mj�q� because the relationship

between mj and BEj
given in theorem 4 is quadratic. With the chosen bench-marks, cases 13,

19 and 1 have been identi®ed as in¯uential by all measures. When q � 1 and q � 2, case 5 is
included as in¯uential. When q � 0, case 5 is marginally in¯uential. In an analysis of all
eigenvectors that is not presented here, we found case 5 to be the most in¯uential element in
the eigenvector of the second-largest eigenvalue.

4.3. Perturb explanatory variables in normal linear regression
For the standard linear regression model (4.1), a minor perturbation of the explanatory
variables can be given in the form (Cook (1986), equation (36))

X! � X�WS, �4:8�
where W � �!ij� is an N� p matrix of perturbations, S � diag�s1, . . ., sp� and sj converts the
perturbation !ij to the appropriate size and units so that !ijsj is compatible with the �i, j �th
element of X. Under this perturbation scheme, and assuming that �2 is known, Cook (1986)
showed that the non-zero eigenvalues of the matrix ÿ �F in equation (2.6) are given by

�i � rTr�i=�
2 �P

j

�̂2
j s

2
j =�

2, �4:9�

where r is the vector of residuals and �i, i � 1, . . ., p, is the ith eigenvalue of S�XTX �ÿ1S. It
is clear from equation (4.9) that the normal curvature depends on the choice of sj. The
normalized non-zero eigenvalues of the matrix ÿ �F are given by

�̂i �
�
rTr�i �

P
j

�̂2
j s

2
j

���P
i

�
rTr�i �

P
j

�̂2
j s

2
j

�2�1=2

: �4:10�

Again �̂i is independent of the value of �2. In addition, by theorem 1 or directly from
equation (4.10), �̂i is invariant for the transformation S! aS, i.e., if the ratios of the scales
of perturbation for di�erent explanatory variables are invariant, the conformal normal
curvatures are invariant.

By setting some of the sj to 0, the procedure can be applied to situations in which only some
of the explanatory variables are perturbed. In practical applications, perturbing a single
explanatory variable, say the kth variable, is of special interest because it can isolate a
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Table 1. In¯uential measures of in¯uential cases: case weight perturbation

Number of
influential

Mean Bench-mark Values for the following cases:

eigenvectors Case 1 Case 5 Case 13 Case 19

mj �3� 1 0.207 0.293 0.389 0.127 0.536 0.474
mj �2� 2 0.259 0.367 0.511 0.412 0.543 0.523
mj �1� 3 0.292 0.413 0.511 0.417 0.543 0.559
BEj

19 0.089 0.178 0.264 0.174 0.295 0.312



particular component of a case. The conformal normal curvature in this situation is invariant
to the choice of sk.
The rat data set was analysed again. When only x2 is perturbed, n � 19 and the normalized

non-zero eigenvalues are 0.997 and 0.044 with multiplicity 3. Cases 1, 19, 4 and 2 in this order
are identi®ed as in¯uential by each measure. The values of BEj

and mj�1� for these cases are
presented in Table 2. Since the maximum normalized eigenvalue is close to 1, the aggregate
contributions are dominated by emax.

When x1 and x3 are perturbed simultaneously, the dimension of the perturbation space is
n � 38. Since the standard deviations of x1 and x3 are 16.49 and 0.085 respectively, we choose
s1 and s3 such that the ratio s1=s3 is 200. For a chosen ratio, the conformal normal curvature
is invariant with respect to the values of s1 and s3. (case 1, x1�, (case 3, x1), (case 3, x3) and
(case 1, x3) in this order are identi®ed by each measure as in¯uential. Their values are given in
Table 3. We can see that the conformal normal curvature is in a restricted form of invariance;
it is invariant under conformal reparameterizations, but it may not be invariant under a
general reparameterization. This is nice because in some situations the invariance property is
de®nitely not appropriate. For example, when di�erent s1 and s3 are used so that the ratio
s1=s3 is changed, invariance of the conformal normal curvature is not wanted. For the rat
data set, if the ratio is changed to 100, the conformal normal curvature is changed and x1

becomes not in¯uential at all.

5. Discussion

Although the total contribution formally involves all eigenvectors, only those corresponding
to non-zero eigenvalues are considered because the aggregation is weighted by the eigen-
values. In some situations, such as linear regression, the Hessian matrix Hf is not of full rank,
and hence the number of non-zero eigenvalues is not equal to the dimension of !. Therefore
we can determine the bench-marks with reference to the rank of the Hessian rather than the
dimension of the matrix. We prefer to use the dimension of the Hessian because of its
generality and simplicity of presentation, and because of the geometric meaning of the mean
curvature. In practical situations, e.g. in linear regression, the number of cases is always much
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Table 2. In¯uential measures of in¯uential cases: perturbation of x2

Number of
influential

Mean Bench-mark Values for the following cases:

eigenvectors Case 1 Case 2 Case 4 Case 19

mj �1� 1 0.299 0.324 0.473 0.361 0.370 0.466
BEj

19 0.059 0.119 0.227 0.133 0.140 0.224

Table 3. In¯uential measures of in¯uential cases: perturbation of x1 and x3

Number of
influential

Mean Bench-mark Values for the following cases:

eigenvectors Case 1, x1 Case 3, x1 Case 1, x3 Case 3, x3

mj �2� 1 0.151 0.214 0.279 0.271 0.268 0.268
mj �1� 4 0.213 0.302 0.323 0.313 0.303 0.307
BEj

38 0.045 0.091 0.104 0.098 0.092 0.094



greater than the number of explanatory variables. In such cases, one should carefully decide
whether to use the rank or the dimension of the Hessian matrix to determine the bench-
marks. No matter which bench-marks are used, one must pay attention to the non-linear
relationship between mj and BEj

.
Although the displacement function (2.1) has been emphasized, the methods can be

generalized to other objective functions. However, if a chosen objective function leads to a
Hessian matrix which does not satisfy the condition of theorem 4, the conformal normal
curvature of the basic perturbation vector is not su�cient to determine in¯uence.

Nevertheless, di�erent measures and their objective bench-marks are constructed not only
systematically but also ¯exibly. It is therefore easy to implement them in statistical software,
and to provide a set of measures which can address the need of researchers who have di�erent
requirements for the sensitivity level. For further analysis, these measures can be used to
construct plots. Finally, the results of the numerical examples support the claim that BEj

is a
convenient and e�ective measure for assessing local in¯uence.
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