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ABSTRACT. A geometric classification of the compact four-dimensional
Finstein-Weyl manifolds with at least four-dimensional symmetry group is
given. Our results also sharpen previous results on four-dimensional Einstein
metrics and correct Parker’s topological classification of cohomogeneity-one
four-manifolds.

1. INTRODUCTION

The FEinstein-Weyl equations are a conformally invariant generalisation of the
Einstein equations, introduced by Weyl [26]. They have been thoroughly studied in
dimension three [4, 8, 10, 12, 23, 24, 25], where it is known that any solution on a
compact manifold is either a compact quotient of hyperbolic three-space H? or has
a cohomogeneity-one action of the two-torus 7. Furthermore, in any dimension,
a compact Einstein-Weyl manifold which is not Einstein has a non-trivial symme-
try [24]. To find new examples in higher dimensions, it is therefore natural to look
for solutions with a high degree of symmetry.

In this paper we will give a full classification of the compact four-dimensional
Einstein-Weyl structures for which the symmetry group is at least four-dimensional.
Restricting to dimension four allows us to take advantage of various topological
consequences of the Einstein-Weyl equations [22, 20, 7]. The assumption that the
group of symmetries is at least four-dimensional implies that the solutions are
either homogeneous or have cohomogeneity one. Our results also sharpen previous
results [9, 2] on four-dimensional Einstein metrics (Theorem 3.1) and correct the
topological classification [19] of cohomogeneity-one four-manifolds (Remark 6.4).

Let (M,[g]) be a conformal manifold. A torsion-free connection D preserving
the conformal class [¢] is called a Weyl connection. Fixing a choice of Riemannian
metric ¢ in the conformal class, we obtain a one-form w from the equation Dg =
w® g. Conversely, the one-form w together with the Levi-Civita connection V of g,
determine D by

D=V- %(w!ld—g@wﬁ),

where w is the vector field such that w = g(w!, "), and (w Y 1d)(X,Y) = w(X)Y +
w(Y)X. Under a conformal change g — exp(A)g, we have w — w + dA and so it
makes sense to call D closed if dw = 0 and ezact if w is exact.

The Einstein-Weyl equations state

SrP = Ag,

where S7P is the symmetric part of the Ricci curvature r? = Tr(Z — Rx zY)of D
and A: M — R is an arbitrary function. Suppose (g, D) satisfy the Einstein-Weyl
equations. If D is exact, then ¢ is conformal to an Einstein metric § and D is
the Levi-Civita connection V of g. If D is closed, then g is locally conformal to
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Einstein. A symmetry of (M, [g¢], D) is a diffecomorphism preserving the conformal
class [g] and the connection D.

Main Theorem. Let (M,[g], D) be a four-dimensional Einstein-Weyl manifold
whose symmetry group G is at least four-dimensional, then either

(a) D is exact, g is conformal to an Einstein metric § of cohomogeneity at most
one, D is the Levi-Civita connection N of § and (M, §) is given by Theorem 3.1,
or

(b) D is closed, but not exact, and (M, [g], D) is finitely covered by S* x S3 with
its standard Einstein- Weyl structure, or

(¢) D is not closed, (M,[g], D) is of cohomogeneity one and M is given in either
Table 2 or 4 with ([g], D) described in §6 or §7, respectively.

Let us comment on each part of this theorem. For part (a), Jensen [9] and
Bérard Bergery [2] showed that the compact four-dimensional Einstein manifolds
with symmetry group of dimension at least four, are finitely covered by either the
flat metric on 7%, the symmetric metrics on S*, CP? or S? x S?, or by the Page

metric on CP? #@2 We determine which finite quotients occur.

In part (b), we referred to the standard Einstein-Weyl structure on S x 53, This
is given as follows. Let gcan be the canonical metric on S with sectional curvature
one and let ST = {exp(if) : 0 € [0,2nx) }. Then for any constant s,

g = Jean + $2d6%, w = 2sdf

is Einstein-Weyl and is called the standard structure on S' x S®. The constant s
corresponds to reparameterisation of the circle S*. Gauduchon [7] showed that any
closed non-exact four-dimensional Einstein-Weyl structure is locally equivalent to
this standard structure and says such manifolds are of type S' x S3. He showed
that these manifolds are finitely covered by a mapping torus of $2. However, these
mapping tori need not be finite quotients of S x S3. Thus the content of (b) is
that the symmetry assumption restricts which manifolds of type S x S may arise.

In part (c), with one exception (on CPZ), all the solutions come in one-dimen-
sional families. Moreover, nearly all the solutions obtained are new: a few isolated
cases were given in [22], but even for these metrics the information we obtain here
i1s much more explicit. It is worth noting that the diffeomorphism types occurring
in part (c) are those arising in the Einstein case (part (a)) except for the four-
torus 7*. However, the list of equivariant diffeomorphism types is different (see §7,
particularly Remark 7.3).

Having obtained some of these families of solutions, Einstein-Weyl structures
were studied from the point of view of deformation theory [21]. We plan to study
the limits of the one-dimensional families in future work. The results presented here
are based in part on [15], where it was also shown that many of the new Einstein-
Weyl structures obtained here have higher-dimensional generalisations. These will
be presented elsewhere, together with various cohomogeneity-one structures on non-
compact manifolds [13, 14].

The paper is organised as follows. We first show that if (M, [¢]) is not a standard
sphere, then the symmetry group acts as 1sometries with respect to a representative
of [¢] known as the Gauduchon metric: when D is exact, this metric is the Einstein
metric. We then identify precisely which manifolds occur in the Einstein case. In §4,
we deal with homogeneous Einstein-Weyl manifolds, showing that they are either
Einstein or finite quotients of S x $3. We then turn to cohomogeneity-one Einstein-
Weyl structures. This reduces to three cases corresponding to the symmetry group
being SO(4), St x SO(3) or U(2). The case of SO(4) only gives S x S3-structures
and Einstein metrics. The other two cases are covered in §§6 and 7 respectively. In
each case, a certain amount of work can be done purely topologically. Thereafter,
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we explicitly solve the relevant system of ordinary differential equations over an
open interval. The final step is to include the boundary conditions and either
determine the solutions explicitly or at least determine the topology of the solution
space.

Acknowledgements. We would like to thank Hans Jgrgen Munkholm for advice on
many topological aspects of the problem. We also thank Paul Tod and Andrew
Dancer for many useful conversations, Jgrgen Ellegaard Andersen for information
on the topology of three-manifolds and McKenzie Wang for answering questions
about homogeneous four-manifolds.

2. THE SYMMETRY GROUP

We define the symmetry group of a Weyl manifold (M™, [¢], D) to be the group of
conformal transformations preserving the connection D. Note that for a conformal
map ¢: M — M with ¢*g = exp(f)g, the pull-back connection is given by D?}Y =
o7 (Dg. x#:Y) and satisfies D?g = (¢*w — df) @ g. Hence D? is always a Weyl
connection and ¢ lies in the symmetry group if and only if ¢*w = w + df.

The following Lemma shows that one may equivalently define the symmetry
group to consist of conformal transformations ¢ which are projective, that is ¢ pre-
serves unparameterised geodesics and so D? — D = a Y Id, for some one-form o.

Lemma 2.1. Suppose Dy, Dy are two Weyl connections on (M,[g]). Then Dy =
Dy if and only of Dy and Dy are projectively equivalent.

Proof. Assume Dy and D5 are projectively equivalent. Then there is a one-form o
such that Dy — Dy = a¥Id. Now D; =V — %(wz VId —g®w§), where D;g = w; @4,
so 2a ¥ Id = —w ¥V 1d4g @ w!, for w = w; — wy. Evaluating w on this gives
(20 4+ w) Vw = |w|?g, which implies a = w = 0. O

If M 1s compact, then the component of the identity of the group of conformal
transformations preserves some metric in the conformal class provided M is not
conformally equivalent to the Euclidean sphere S™ [11], cf. [17]. Thus, if M is not
the Euclidean sphere, the symmetry group has dimension strictly smaller than n(n+
1)/2.

Gauduchon [6] proved that a compact Weyl manifold admits a unique metric, up
to homothety, such that d*w = 0. We call this the Gauduchon metric. If M is in
addition Einstein-Weyl, then for this metric w! is a Killing vector [24] preserving w.
Thus, if M is not Einstein, the symmetry group is at least one-dimensional.

Lemma 2.2. If M s a compact Weyl manifold which is not the Fuclidean sphere,
then the component of the identity G of the symmetry group of M preserves the
Gauduchon metric.

Proof. Let g be a metric in the conformal class preserved by (. To find the
Gauduchon metric § = exp(f)g one solves the equation £°f = 0, where £ =
A9 + (n — 2)whs /2 and the adjoint is taken with respect to the L2-inner product
defined by ¢ [6, 24]. As G preserves ¢ and w, one sees that it preserves the kernel
of £*. Thus for any a € G, a*j = exp(f o a)g is also a Gauduchon metric, so
a*§ = p(a)g, for some constant p(a). This defines a homomorphism p: G — Ryq.
But G 1s compact, so p = 1. O

3. EINSTEIN FOUR-MANIFOLDS

Here we commence the proof of the Main Theorem. Let (M, [¢], D) be a compact
Einstein-Weyl four-manifold whose symmetry group has dimension at least four.
Let GG denote the component of the identity of the symmetry group. If M is
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conformal to the Euclidean four-sphere, then Gauduchon [7, lemme 4] has shown
that the Einstein-Weyl structure is that of the standard FEinstein metric. Hence
we may assume that M is not conformal to the Euclidean sphere. By Lemma 2.2,
G preserves the Gauduchon metric g.

If D is exact, then w = 0 for the Gauduchon metric and so g is Einstein with
isometry group G. We then have (M, g) given by

Theorem 3.1. Let (M, g) be a compact four-dimensional Einstein manifold whose
wsometry group has dimension at least four. Then either

1. M is homogeneous and so is cither the flat torus T or the standard, locally
symmelric, metric on S*, RP*, CP? 52 x 52, $2 x RP?, RP? x RP? or
(S? x S%)/{%(1,1)}, or
2. M is of cohomogeneity one and isometric to one of
(a) the standard metric on (S? X(¢,=1) S?), where ¢ = diag(—1,1,1) is reflec-
tion in the equatorial plane,

(b) the standard metric on (S? X (5,-1) S%) or (}RPZ, X(éy_l)Sz), where § =
diag(—1,—=1,1) is a rotation through m,

(c) Ccp? #@2 with the Page metric, or ils Zo-quotient CP* # RP*.

This result is essentially due to Jensen [9] in the homogeneous case and Bérard
Bergery [2] for metrics of cohomogeneity one. What is not discussed in these ac-
counts is which of the finite quotients of the symmetric spaces occur. This we will
now provide for the homogeneous case and the case of cohomogeneity one will fol-
low from our later discussions. Note that cohomogeneity-one quotients of 7% have
three-dimensional symmetry group and so do not occur in the above theorem.

We need to determine the (non-trivial) finite groups I' acting freely and iso-
metrically on the symmetric spaces S*, CP? and S? x S?, such that the resulting
quotients are homogeneous. Note that the order of I' must divide the Euler char-
acteristic of the symmetric space, because x(M) = |T'|x(M/T) for a free action.
Thus for S*, the only possibility is T' = Zs and S*/T' = RP* (see [27]).

For CP? T is Z3 = (f). If Q is the Kahler form, then f maps a generator
of HZ(CPZ, 7) = 7 to another generator, so f*[Q2] = [Q?], since f has order 3. The
Lefschetz number of f is now 3, so f must have a fixed point, contradicting the
assumption that I' acts freely.

Lemma 3.2. The isometry group of S? x 5% is (O(3) x O(3)) % Za, where Zo swaps
the two factors.

Proof. Let Q1, Q2 be the pull-backs of the volume forms on the two S?-factors.
Then an isometry f maps {€21,£2} to harmonic representatives for a pair of gen-
erators of H%(S? x S%,7Z) and so acts as an element of GL(2,7Z). Also f preserves
the inner products g(€2;,;), so the action of f on (£21,4) coincides with the ac-
tion of an element a of the group (Za X Zs) x Z2 generated by ai(z,y) = (—z,y),
as(z,y) = (z,—y) and s(z,y) = (y, ). Now replacing f by foa~! we may assume
f acts trivially on (€, s).

Let 7, : 5% — 5% x S? be the inclusion i,(x) = (z, 2) and let p; be the projection
to the first factor. Then p; o f o i, is an element of PSL(2,C) for all z. But S? is
simply-connected, so we can lift the map z — py o f o4, to SL(2,C) C C* and
hence conclude that p; o f o i, is independent of z. Repeating the argument with

the other S%-factor, shows that f € SO(3) x SO(3). O

Lemma 3.3. Let M be compact Riemannian manifold with isometry group G and
suppose I 1s a discrete subgroup of G which acts freely on M. Then the dimension
of the isometry group Isom(M/T) of M/T is the same as the dimension of the
centraliser C(T).
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Proof. Any Killing vector field on M/T lifts to a Killing vector field on M commut-
ing with T, so dimIsom(M/T) < dim C(T'). On the other hand, C(T) is a subgroup
of the normaliser Ng(T') and elements of Ng(T')/T act isometrically on M/T. O

Proposition 3.4. IfT' is a non-trivial finite group acting freely and isomeirically
on S? x 5% and (S? x S?)/U is homogeneous, then U is a subgroup of Za x Zqy =
(&1, 1)}

Proof. Let f be a non-trivial element of I'. First assume that f does not swap the
S%-factors, so f(z,y) = (a(z),B(y)) for some a, 3 € O(3). Now since o? and 32
lie in SO(3), f? = (a?,8%) has a fixed-point and so must be the identity, thus a
and 3 are either £1d or conjugate to d. = diag(1,¢,—1), ¢ = £1. Since f is fixed-
point free, we have without loss of generality that 7 = —Id. Now the centraliser
C(8:,—1) of (6, —1) in the isometry group of 5% x 5% is O(2) x O(3) which acts with
three-dimensional orbits on S? x S2. By the previous Lemma, the isometry group
of the quotient has the same dimension as the centraliser C(T"). But C(T) < C(f),
so the quotient can only be homogeneous if @« = +£1d. Thus f € {(£1,+1)}.

If f swaps the S%-factors then f(z,y) = (a(y), 3(z)), for some a, 3 € O(3). Now
2 (z,y) = (aB(z), Ba(y)), which can not be the identity as (z,y) — (a(y),a"1(z))
has (a(y),y) as a fixed-point. Now f? preserves the S?-factors, so we may apply
the above arguments to get o = —1d. Thus f(z,y) = (a(y), —a~!(z)). Now, if
((v,9),¢) is an element of C(f) = C((a, —a™1),—1) < (O(3) x O(3)) x Zs, then
J = ea~'ya®, so the centraliser of f has dimension 3, which implies the quotient
can not be homogeneous. O

This completes the proof of Theorem 3.1. O

4. HoMOGENEOUS EINSTEIN-WEYL FOUR-MANIFOLDS
The aim of this section is to prove:

Proposition 4.1. A compact homogeneous Einstein-Weyl four-manifold is either
finitely covered by S* x S3 or is a homogeneous Einstein manifold.

Here the Einstein-Weyl structure on S' x S is given by the product metric,
where the circle may have any prescribed length, and the pull-back of a one-form of
appropriate constant length on the circle. These are special cases of what Gaudu-
chon [7] calls manifolds of type S* x S, see the introduction.

Proof. Assume D is not exact and let G be the symmetry group of M = G/H.
Let m be an Adg-invariant complement to h C g. Since G preserves the Weyl one-
form w, we have a further Adg-invariant splitting m = kerw & (kerw)™. As G acts
effectively on M, we have that § acts effectively on m, and so h < 0(3)@o(1) = su(2).
In particular, rank b 1s at most 1 and dimg = 4 + dimbh < 7. Note that g can not
be Abelian, otherwise M is a torus and m (M) = Z* forces the structure to be
Einstein [22].

The classification of compact Lie groups now implies that are there are only
four cases to consider: (A) g = u(1) @ su(2), (B) g = 2u(l) & su(2) with (a) h =
u(l) < su(2) or (b) h = u(l)a < u(l) ®su(2), and (C) g = u(l) ® 2su(2) with
h =su(2)a < 2su(2), where the subscript A indicates a subalgebra not contained
in either factor.

In case (B)(a), M is finitely covered by T2 x S? which by the Einstein-Weyl
inequality [20] can not admit an Einstein-Weyl structure. In the remaining three
cases, M is finitely covered by S' x S. The Einstein-Weyl inequality then implies
that D is closed and Gauduchon’s results [7] give that the structure on S' x S? is
standard. O
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5. COHOMOGENEITY-ONE EINSTEIN-WEYL MANIFOLDS

Proceeding with the proof of the Main Theorem, the previous two sections im-
ply that we may assume that M is neither Einstein nor homogeneous. Since the
dimension of (G is at least four, the principal orbits must be three-dimensional and
thus G acts with cohomogeneity one on M. The only possibilities for G are now
SO(4), ST x SO(3) and U(2) and the principal orbits are finitely covered by either
S3 = 80(4)/ SO(3), St x 5% = St x SO(3)/ SO(2) or 53 = U(2)/ U(1) [2, 1, 16].
The first of these cases is dealt with below after having established a result relevant
to all three cases. The remaining two are the subject of the next two sections.

Suppose for the moment that M is not of type S* x S [7]. This implies that the
conformal scalar curvature is strictly positive and that w1 (M) is finite [22]. Tt now
follows that the orbit space M /G is a closed interval [0, £], since if it were a circle
then the exact homotopy sequence together with connectedness of the principal
orbits would give an infinite fundamental group.

Proposition 5.1. Let M be a compact manifold of cohomogeneily one with finite
fundamental group. Let m: M — M/G = [0, ] be the projection. Then n=1(0,£) is
a union of principal orbits G/H and there are two special orbits m=1(0) = G/ K,
and 7=1(€) = G/ Ka, where the subgroups K; contain H and the quotients K;/H are
diffeomorphic to spheres.

Suppose in addition that M is Finstein-Weyl. Let~y be a geodesic of the Gaudu-
chon metric g orthogonal to one, and hence all, principal orbits G/H. Parameterise
v by arc length so that wy(t) =1, fort € [0,€]. Then the Gauduchon metric and
one-form w take the form g = dt® + g; and w = wy, where (g¢,w;) are homogeneous
Weyl structures on G/H.

Proof. The topological assertions may be found in [16]. The choice of v implies
that ¢ = dt? + g; and w = a(t)dt + w;, for some function «: [0,] — R. For a
fixed volume form vol on G/H, g; has volume vol; = f(t) vol. Note that (g;,w:) is
the Gauduchon gauge on 7~ 1(t), because the conformal factor taking g; to the
Gauduchon metric is G-invariant and hence constant on G/H. We now have

0=d'w=—xd+(a(t)dt) - d"w; = —(af)'/ ],

and thus it is sufficient to show «(0) = 0. However, ¢ is a radial coordinate on the
disk bundle (M \ (G/K3)) — G/K1, so o must vanish at 0 in order for w to be
smooth. O

Corollary 5.2. Suppose M s a compact Einstein-Weyl four-manifold of cohomo-
geneity one under G = SO(4). Then M is either Einstein or is a finite quotient
of St x S3.
Proof. If M/ is an interval, then the fact that S® = SO(4)/ SO(3) is isotropy
irreducible; implies that the G-invariant one-forms wy must be zero.

If M/G is a circle, then the topology of M is either St x 3 (St x 53)/(—1,-1)
or S! x RP? since the fibre has a transitive action of SO(4) and so can only be S3
or RP?. Again, the Einstein-Weyl structure must be standard by [20, 7]. O

Remark 5.3. In [22] it was shown that an Einstein-Weyl structure in the Gauduchon
gauge (g,w) is smooth as soon as ¢ is C? and w is C'. This will be used repeatedly
when finding boundary conditions later.

Notation 5.4. The topology of the manifolds M appearing in the Proposition is in
general determined by the principal and special orbits together with a double coset
of (Ng(H) N Ng(K1))\Ng(H)/(Ng(H) N Ng(K2)). However in all the cases we
actually encounter Ng(K;) contains Ng(H) and this double coset space is trivial.

We will write [G/K, | G/H | G/K2] for these manifolds M.
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6. SYMMETRY GROUP St x SO(3)

Let M be a four-manifold of cohomogeneity one under an effective action of G =
St x SO(3) such that the orbit space is an interval [0,¢]. The principal orbit G /H
is then a finite quotient of S' x S$? and H is a one-dimensional subgroup of G. We
will let SO(2) denote the subgroup {1} x SO(2) < S x SO(3) consisting of the
matrices (§ §) and let § € SO(3) be diag(—1,-1,1).

Lemma 6.1. (a) The only proper Lie subgroup of SO(3) strictly containing SO(2)
is O(2) = S(O(1) x O(2)).

(b) The only one-dimensional Lie subgroups H of ST x SO(3) containing SO(2)
are Zpx SO(2), Zpx O(2) and Zag x SO(2), where Zay is generated by (exp(mi/l),d).

Proof. Part (a) is well-known. For part (b), let p1, pa: ST x SO(3) — ST, SO(3) be
the projections. Then H is a subgroup of pi (H) x p2(H), part (a) implies pa(H) is
either SO(2) or O(2) and the dimension restriction forces pi(H) = Z;, for some k.
Write (ker p1)NH = {1} x N < {1} xp2(H). Then H is an extension of Zj by N and
N contains SO(2). If N equals p2(H), then I is simply the product p1 (H) X pa(H)
giving the first two cases. Otherwise we have po(H) = O(2), N = SO(2) and
that y = (exp(2mi/k),d) is an element of H mapping to the generator of Zj. As
~*% € ker p1, we necessarily have that k is even. O

Proposition 6.2. If M* is of cohomogeneity one under G = St x SO(3), then the
principal orbit is either ST x S?, S* x RP? or ST xa 5% = (5" x 5?)/{£(1,1)} and
the corresponding possible spectal orbits are given in Table 1.

Proof. The principal orbits are G/H, where H is given by the previous Lemma.
However, the factors Zj and Z, are central subgroups of both G and H and just
shorten the S'-factor. So by rescaling, we may assume H is either SO(2), O(2)
or Zis x SO(2). The special orbits G/K are now determined by the condition that
K/H be a sphere. Note that even though RP! is just a circle, we use it to denote
the quotient S'/{%1}, which has half the length of the S'-factor in the principal

orbit. O
H,G/H K,G/K Boundary conditions
SO(2), St x §?
S0(3), St f>0,f hh"=0h=
S'x S0(2), 5° B> 0, f 88 =0, =
7o x SO(2), RP! x §? f,h>0,f 0,5 =
0(2), S* x RP? ditto
Za x SO(2), St xa S? ditto

0(2), S x RP? and

Zo w SO(2), ST xa S?
St x 0(2), RP? >0, f,f" W, 5,8 =0 f=
Zo x O(2), RP' x RP? f,h>0,f 0,3 =0

TABLE 1. Principal orbits G/H, special orbits G/ K and boundary
conditions when G = St x SO(3)

Theorem 6.3. Let M be a compact four-dimensional non-exact Einstein-Weyl
manifold of cohomogeneity one under G = S x SO(3). Then M/G is an interval
and M is giwen in Table 2.
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G/H G/K, G/ K M Einstein-Weyl
Stox S?
St St Stox 58 type S! x $3
St S? sS4 one-dimensional family

St RP' xS?  S" x(_1) 5% type ST x §3
St St x RP? SUx BPP type ST x S8
St St xa 5% St X(~1,-1) 52 type St x S

S? 5?2 5?7 x 5?2 one-dimensional family
5?2 RP x5? RP? x §2 one-dimensional family
5?2 St xRrp? §? X(¢,=1) S?  one-dimensional family
52 Sl xaS? 57 x (=1,-1) 5?2 one-dimensional family
St x RP?
RP? R P 5% x RP? one-dimensional family
RP? RP!xRP? RP? x RP? one-dimensional family
Sl XA Sz
RP? RP? 52 x (6,-1) 52 one-dimensional family

RP? RP!'xRP? RP? X(éy_l)Sz one-dimensional family

TaBLE 2. Topology of and Einstein-Weyl structures on four-
manifolds M of cohomogeneity one under G = S! x SO(3),
with principal orbit G/H and special orbits G/Ky, G/K5. Here
¢ =diag(—1,1,...,1) and 6 = diag(—1,—1,1).

The proof of Theorem 6.3 divides into two parts. First we shall show that M/G is
not a circle and then determine via essentially topological arguments which four-
manifolds M with cohomogeneity-one S* x SO(3)-actions and M/G = [0,] can
not admit Einstein-Weyl structures or only admit structures of type S* x S3. We
will then construct all Einstein-Weyl solutions with the given symmetry on the
remaining manifolds.

Topology. Suppose M/G is a circle. If G/H is S* x S? then M has the topology
of T? x S? or a Zoquotient. If G/H is S* x RP?, then the only topology for M
is 7% x RP?. In the case G/H = S* xa S*, M has the topology of (S! x S?) x S*
or a Zs-quotient. In all these cases, M is finitely covered by 72 x S?, which does
not satisfy the Einstein-Weyl inequality [20].

Now that M/G is an interval will identify those of type S' x S®. For [S! |
St x 5% S1] and [ST | ST x 5% | St x RP?] the S'-factors split off to give
SUx [*]S? %] =5"%xS% and S* x [*| S? |RP?] = S' x RP?, respectively. The
manifold [ S! | §*xS? | RP' x 5% ] is the Zo-quotient of $*x S% =[S | S1x5? | §']
by (z,2,t) — (—z,2,—1t) € ST x §? x [0, £]. Note that this Zs-action preserves the
standard Einstein-Weyl structure on St x $3. Similarly [S? | ST x 5% | ST xa 5?]
is the quotient by (z,2,t) — (—z, —x,{ —1).

We now show that those combinations of orbit types not appearing in the Table
do not admit Einstein-Weyl structures. This will mainly be based on the fact that
if M is Einstein-Weyl then so is any finite unbranched cover M’ — M.

The first case is [RP! xS? | ST x S | RP* x.5?], which we may rewrite as

[RP! xS% | ST x S? |RP' xS?] = [RP! | S | RP!] x 52
= ([RP" | S* | *]4[*| S |RP']) x S?
= (RP*#RP?) x S? = K? x §%,
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where K? is the Klein bottle. However K? x S? is double-covered by T? x S$? which
does not satisfy the Einstein-Weyl inequality [20].

The manifolds [RP! xS' | ST x §? | ST x RP?] and [RP* xS* | S' x 52 | S! xa
52 are Zo-quotients of [RP! xS? | ST x S? | RP! xS?] by (z,2,t) — (2, —x, L —1)
and (z,2,t) — (—z,—x,{ — ), respectively, so are not Einstein-Weyl.

Similarly, we have [S! x RP? | S' x §? | §! x RP?] = S' x (RP®#ED")
which has oriented cover T2 x $? and so is not Einstein-Weyl. The Zs-action
(z,2,1) — (=2, —2,£ —t) on [ST x RP? | S x S? | S x RP?] gives [S* x RP? |
St x 5% St xa S?] and so this latter space can not be Einstein-Weyl.

The one remaining case with principal orbit S! x S? is

Ma =[5" xa S?| S x S*| S xa S?].

There is a free involution ¢ on Ma induced by the map (1,—1) on S! x S2.
From (6.1), below, we see that this involution preserves any S x SO(3)-invariant
Einstein-Weyl structure on Ma. However, Ma/c = K2 x BRP? and so MAa 1s not
Einstein-Weyl.

For each of the other two possible principal orbits there is only one case to con-
sider. However, [RP' x RP? | S'xRP? | RP! x RP?]is K?xRP? and [RP' x RP? |
St x A 5% | RP' x RP?]is the quotient of K2 xS = [RP* xS? | ST x S? | RP! x5?]
by (z,z,t) — (—z,—=,1t), so neither of these is Einstein-Weyl.

Remark 6.4. A smooth classification of compact four-manifolds of cohomogeneity
one has been given in [19]. However, the group Zsx SO(2) is not given as a possibil-
ity for either H or K; and hence the above eight spaces involving the orbit S* x o S?
are missing from that classification, as are the two distinct manifolds with principal
orbits S x A S? and orbit space S'.

Explicit Solutions. For each of the three choices of stabiliser H, the Einstein-
Weyl structure lifts to an ST x SO(3)-invariant structure on S x 52 x (0, ). Since
S? is isotropy irreducible, S? admits no non-zero invariant one-forms and any invari-
ant metric is a constant multiple of the canonical metric g, of sectional curvature
one. Thus Proposition 5.1 implies that the Einstein-Weyl structure takes the form

g =dt* + f(t)?d0? + h(t)gean,  w = B(t) d0, (6.1)

where # is the arc-length parameter on a circle of length 27 and f, h and / are
smooth functions on [0, ¢] with f, A > 0 on (0, £).

Using formula for warped-product metrics [3] (cf. [2, 18, 22]), the Einstein-Weyl
equations become

—fTH—z%HzA, (6.2)
—%”—Qf}zlJr%?—z:A, (6.3)
I —Qﬁf% =0, (6.5)

where A is some function. In addition, at 0 and ¢ the functions f, A and 3 satisfy
certain boundary conditions depending on the type of the principal and special
orbits. These conditions at 0 are given in Table 1 and those at ¢ are the same,
except that the value 1 is replaced by —1.

We will first find the general non-exact S x SO(3)-invariant Einstein-Weyl so-
lutions and then impose the boundary conditions.
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Equation (6.5) implies that v := 3/f? is a constant and since our structure is
in the Gauduchon gauge, non-exactness implies v # 0. Eliminating A from the
remaining equations gives

h// f/h/ 1 9
W Fh tv /=0 (6.6)
oot 1
gt
f hr k4
Multiplying (6.6) by 2hh’/ f? shows that § := 1y2h%+ (h’z/fz) Is a strictly positive
constant, and so writing r := \/42/46 > 0, we have

¥ f? =0. (6.7)

=671 - 227! (6.8)

with h(t) € [0,1/7].

If we change the metric ¢ by a homothety ¢ — § = Mg and let { = /),
then g is still in the Gauduchon gauge and has the form (6.1). However, the new
constants are given by ¥ = v/A2, d = /A2 and 7 = r/A. Thus by rescaling we may
assume r = 1.

As f > 0 on (0,¢), we have that h/(tg) = 0 at some t; € (0,¢) if and only if
h(tg) = 1. However, (6.6) shows that & is not constant on any open subinterval
of (0,¢), so Rolle’s Theorem implies that A’ has at most one zero on (0, £).

Let H(h) := h'? and let - denote differentiation with respect to h. Then substi-
tuting (6.8) into (6.7) gives

3h . Aht+4R* -2 2

H H =—=.
it TR ey B

(6.9)

The homogeneous equation has a solution Ho(h) = (1 — h?)3/?/h and the general
solution of (6.9) is H(h) = v(h)Ho(h), where v satisfies

b= (14 qh?)(1—h?)~3/2 (6.10)

for some constant q.
Choose ¢ so that sin¢ = h. Since h > 0 on (0, £), we may demand that ¢ € [0, 7]
and solve (6.10) to get

" ):{V<@>+v<o>, for 0 < < /2,

(6.11)
V() +v(n) —gm, form/2<p <,

where V() := (¢ + 1)tany — qp. These expressions are not defined at m/2.
However, ¢(tg) = /2 corresponds to h(tp) = 1 and so occurs for at most one ¢y €
(0,¢). From (6.6), we have h”(ty) < 0, and together with A’ = ¢’ cos ¢, this implies
that ¢ is strictly positive on (0, ). Without loss of generality we may assume
¢ > 0on (0,£), even when there is no such ;.

We need to determine the conditions for f = \/d=Tv(p)|cos p|/sing to be C?
at tg. From (6.11), we have

lim v(h)(1 — A2 = lim wv(p)|cos | = ¢ + 1.
t—1o p—m/2

Thus f(tg) > 0 only if ¢ > —1. Now write v(¢) = £V (¢) + cx, where =+ is the sign
of cos . We have 2ff' = ¢'d(f?)/dp, ¢'(to) > 0 and

d 2
% =37 (—qcotp + (¢ F cx) cosec? ),
so ¢ = —c_ =: ¢ and v(0) = ¢qm — v(m). Tt is straightforward to check that

continuity of f'' at t; imposes no further conditions.
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Using ¢ as a coordinate, we have

dip?

Wip)

where W(p) = (¢ 4+ 14 (¢ — qp) cot ) and ¢ > —1 if 7/2 € (p(0),¢(£)). Thus the
Einstein-Weyl structure depends on the five parameters d, ¢, ¢, ¢(0), ¢(£). We also
have

g= + W (p)d~1d6* + sin’ ¢ gean, w= :I:2W(g0)(5_1/2d9,

2 /2

K" =W(p)eos®p, " =W(p) =df,
Ay L
C2f dp 281/

= %(2(] + (g — ¢) cot p) cosec? ¢ f,
W= —singpgp’z +cos o =32 (—sinp 62 f% 4 cos o f'),
B=x262752 B =482y

i (—qcot e + (qp — ¢) cosec® @),

Using these expressions one gets the following Lemma.

Lemma 6.5. Let ¢ be 1 ift =0 and —1 if t = £. Then the boundary conditions
are equivalent to the following:

(a) special orbit S*: sinp = 0 and ¢ = qyp;

(b) special orbit S* or RP*: sing > 0, ¢ = e26/?cotp — 1 — cot?> ¢ and ¢ =
(£2011% — cot ) (pcot p — 1) — ¢;

(c) special orbit RP' xS?, ST xBP?, ST A S or RP! x RP%: ¢ = 71/2, ¢ = q7/2
and ¢ > —1.

From this one sees immediately that there are no solutions when both orbits
are of type (c), in agreement with our topological results. Each of the other pairs
of special orbits do give Einstein-Weyl structures. Write A := ¢(0), B := ¢(¥),
so 0 < A < B < m and observe that we may swap the special orbits via the
transformation t — £ — ¢, o — 7 — .

For [ST | St x S? | S'], wehave A=0, B=mandec=0=qm soq=0
and W = 1. Thus g = dp? 4+ §71d6? + sin® ¢ gean and w = £2671/2d0, which is
the standard structure on S* x S3. Similarly, we get W = 1 and structures of
type ST x S3 if one special orbit is S* and the other is of type (c).

The only combination (a)-(b) possible is S* = [S* | ST x S? | S?]. Here
we get A = 0 and ¢ = 0 from the S'-orbit, whereas t = £ gives B < «m, ¢ =
—26Y2cot B—1—cot’B, ¢ = —(251/2 + cot B)(B cot B — 1) — B. The condition
¢ = 0 determines ¢, and hence ¢ and W, in terms of B and we get the following
family of Einstein-Weyl structures on S* depending on the parameter B € (0, 7):

_ 1—DBecotB 2+4(1—BcotB)(gocotgo—BcotB) 40?
g_gocotgo—BcotB 7 (B + B cot? B — cot B)?
+sin’ ¢ gean, (6.12)
W= 44 pcoty — Beot B o,

B+ Beot?B —cot B

where the coordinate ¢ runs over [0, B].

The remaining two combinations of special orbit types are (b)—(b) and (b)—(c).
The simplest to compute is (b)—(c). Here B =m/2, ¢ = ¢gr/2 and 0 < A < 7/2 with
g=26"2cot A—1—cot? A, c = (251/2 —cot A)(Acot A—1) — A. These equations
may be solved to get d, ¢ and ¢ in terms of A. Letting C' = n/2— A € (0,7/2) and
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v =n/2— ¢ €][0,C], the Einstein-Weyl solutions become
B 14 CtanC (14 Ctan C)(C'tanC' — ¢ tan y)
g_C'tanC'—1/)tan1/) (C'+ C'tan? C) + tan C)2
+ cos? ¥ gean, (6.13)
Ctan (' — ¢ tan e
C+Ctan?C +tanC '
For the combination (b)—(b), the boundary conditions give

c= (251/2 —cot A)(Acot A—1)— A= —(251/2 +cot B)(Bcot B—1)— B,
(6.14)

g=26"%cot A—1—cot? A= —2"*cot B—1—cot” B. (6.15)

dy? + 4 6>

w==4

From the last equation (6.15), we get that either 201/2 = cot A — cot B or cot A +
cot B = 0. The former is not possible, because putting this expression for 2§/2
into (6.14) leads to A— B = tan(A— B), which has no solution with 0 < B— A < .
Thus cot B = —cot A, which for A, B € (0, 7) implies B = 7 — A. Setting C' =
/2 — Aand ¢ = 7/2 — ¢, we once again obtain the solutions (6.13) except that
¥ now lies in the interval [—C, C]. Thus we see that the solutions on S? x S? and
5?2 x RP? are simply the lifts of the solutions of type (b)—(c) to the double covers.

Note that the condition ¢ > —1 is fulfilled by all the above solutions whenever
¢ runs over an interval containing 7 /2.

7. SYMMETRY GRrouP U(2)

For the proof of the Main Theorem, the last remaining case i1s that of an ef-
fective action of G = U(2) on M* such that M/G = [0,€]. The principal or-
bits are finite quotients of S® = U(2)/ U(1), where U(1) = {diag(exp(i0),1) }.
As the only one-dimensional subgroups of U(2) containing U(1) are U(1) x Zj, =
{ diag(exp(if), exp(27il/k) }, the principal orbits are thus the Lens spaces L(k, 1).
The possible special orbits are given in Table 3.

H,G/H K,G/K Boundary conditions
U(1), 53
U(2), * LR 3,8 =0, f' R =
Ul) x U(1), CPY h>0, f, " 0, 8,8 =0, [ =
U(1) x Zy, RP? fh>0, f' b, B =
U(1) x Zg, L(k, 1), k > 2
Uy x U(1), CPY k>0, f,f" 10, 8,8 =0, f =1
U(1) X Zog, L(2k, 1) foh>0, f 0,3 =0

TABLE 3. Principal orbits G/ H, special orbits G/ K and boundary
conditions when G = U(2).

Theorem 7.1. Let M be a compact four-dimensional non-exact Einstein-Weyl
manifold of cohomogeneity one under G = U(2). Then either M/G is a circle
and M s a finite quotient of S* x S3 or M/G is an interval and M is given in
Table 4.

As in the case of ST x SO(3)-symmetry we first look at the problem topologically.
However, in this case we can not deduce so much and will have to rely on the more
involved analysis of the differential equations.
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G/H G/K; G/K» M Einstein-Weyl
SS
* 54 one-dimensional family
cp! Ccp? one-dimensional family and
an 1solated solution
* RpP? RPp* one-dimensional family
cp! cp! Ccp? #C_P2 one-dimensional family
cp! RP? CP?# RP* one-dimensional family

L(25,1), j>2
cp! L{44,1) 5% x RP?  one-dimensional family
cp! cp! 5?2 x 52 one-dimensional family
L2j+1,1), j=2
Ccp? L{4j+2,1) CP? #RP* one-dimensional family
cp! cp! Ccp? #C_P2 one-dimensional family

TaBLE 4. Topology of and Einstein-Weyl structures on four-
manifolds M of cohomogeneity one under G = U(2), with principal
orbit G/H and special orbits G/K1, G/Ks. Note that the same
diffeomorphism type can appear as several different GG-manifolds,

see Remark 7.3.

When M/G is a circle, then M is obtained from G/H x [0, ] by identifying the
fibres over the endpoints via an isometry ¢. Topologically the resulting manifolds
correspond to the elements of Ng(H)/H. Taking an n-fold cover of the circle yields
the manifold obtained using the identification ¢”. However, in our case this latter
group is finite, so we can find n such that ¢” € H and topologically M is finitely
covered by G/H x S'. Now G/H is itself a finite quotient of S3, so M is a finite
quotient of ST x S3. As before, [20, 7] imply that the Einstein-Weyl structure is
standard.

Now consider the case when M/G is an interval.

Notation 7.2. We will write M (k) for [CP' | L(k,1) | CP*] and M (k)/Z for its
Zoquotient [CP' | L(k, 1) | L(2k,1)].

Remark 7.3. The above notation was used in [22], M (k) is the S?-bundle over CP!
built from the circle bundle P(k) = L(k,1) — CP'. The diffeomorphism type
of M (k) depends only on the parity of k: if & is even then M (k) is diffeomorphic
to S? x S%; for k odd, M (k) is Ccp? #C_P2 This is proved by calculating the in-
tersection form of M (k) (see [5, p. 4]). However, the equivariant diffeomorphism
types of M (k) are distinct for all £ > 0. This is reflected in the (non-)existence of
Einstein-Weyl structures: M (2) and M (3) have no solutions, whilst for all other &,
the family of U(2)-invariant Einstein-Weyl structures on M (k) is one-dimensional.
Thus S? x S? and CP? #C_P2 have countably infinitely many one-dimensional fam-
ilies of solutions.

From the topological point of view, two cases that can be excluded easily from
the Einstein-Weyl classification are RP*#RP* = [RP? | S | RP?] and its Zj-
quotients [ L(2k,1) | L(k,1) | L(2k,1)]. We claim that RP*#RP* and its Zj-
quotients can not be Einstein-Weyl. The space RP*# RP* has oriented double
cover St x 53 where Zy acts by (exp(it),p) — (exp(—it),—p). However, this
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action does not preserve dt and hence the Einstein-Weyl structures on S x $3 are
not Zo-invariant and do not descend to the quotient.

We now turn to the analysis of the differential equations. The manifolds L(k, 1)
are circle bundles over S?. Write gpg for the Fubini-Study metric on S? = CP' and
note that 4grs = gean = rrs. Let wpg be the Kahler form on CP! and let & be the
connection one-formon 7: L(k,1) — CP* such that do = 2kn*wps. Proposition 5.1
implies that the Einstein-Weyl structure takes the form

g =dt* + f(t)?0* + h(t)’grs, w=8) o, (7.1)

where f, h and / are smooth functions on [0, ] with f, A > 0 on (0, £).
The Einstein-Weyl equations now take the form

_%H_Q%H—A (7.2)
_f7“—2§2/+2k2f—2+%§—z—m (7.3)
_%ﬁ_ %‘2_ f;zl % —2k2£—4 A, (7.4)
5/_25f7/ =0, (7.5)

where A is some function. The boundary conditions at 0 are given in Table 3 and
those at ¢ are the same, except that the value 1 is replaced by —1. Our choice
of grs instead of g..n 1s partly motivated by the simple form of these boundary
conditions.

We commence by finding the general non-exact Einstein-Weyl solutions, before
imposing the boundary conditions. Formally this has many similarities to the
previous case with S x SO(3)-symmetry, but various details differ.

Equation (7.5) implies that v := 3/f? is a constant and since our structure is
in the Gauduchon gauge, non-exactness implies v # 0. Eliminating A from the
remaining equations gives

h// f/h/ f
T + k? 2f2 (7.6)

f// h/2 2f2 5 o
— k — — = = .
f R -3 h# h2 4 V=0 (77
Multiplying (7.6) by 2hh'/ f? shows that § := Z'yzhz—(kz/hz)—l—(h’z/fz) is constant.
Let A =2§/4% and B = (2\/k2y2 +62)/4% > 0, then we have
L2 f2(h® — A+ B)(A+ B — h?) = h*h'>.
If we rescale the metric by a homothety g — A2g, then v +— /A% § — J/\2,
A A?A and B — A?B. Thus we may rescale to have B = 1 and hence
e (1— A2)h2R"*
k(1 — (A —h?%)?)’
Note that A < 1, so h/(tg) = 0 for some tq € (0,€) if and only if h(tg)? = 1 + A.

Equation (7.6) and Rolle’s Theorem imply that A’ has at most one zero on (0, £).
Putting H(h) := h’* and substituting (7.8) into (7.7) gives

(7.8)

. _ A2 4
jpg B A+
h(1— (A — h?)?) (7.9)
PO 2AR0 4 (T—9A%)h! —8A(L— A%)R? —2(1 - A7) 8 '

hz(l—(A—hz)z)z TR
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The homogeneous equation has a solution Ho(h) = (1 — (A — h%)?)3/2/h* and the
general solution of (7.9) is H(h) = v(h)Hy(h), where v satisfies

b= 2h3(2 4 ¢h?) (1 — (A — h%)?)~3/2 (7.10)

for some constant q.
Let g = —sin~ ' A € (—7/2,7/2) and write h? = A+4sin ¢ with ¢ € [po, T—@o].
Then we have 1 — (A — h%)? = cos? ¢ and we may solve (7.10) to get

v(p) = V(p) + e,
where ¢ is the sign of 7/2 — ¢,
V(g) = (24 + (1+ A%)g) tan @ + 2(1 + Ag) sec p — gy,

cr = v(0) = 2(1 4+ Ag) and e— = v(mw) — 2(1 + Aq) — gm. These expressions are not
defined at 7/2, but we may assume that ¢’ > 0 on (0, £), as before.

If h'(tg) = 0, we need to have that f = \/k=2(1 — A2)v(p)|cos ¢|/(A + sin p) is
of class C'? and strictly positive at ¢ = /2. Now

Jlim v(g)leos(e)] = (1+A)(2+ (1+ A)g)

so f(to) > 0 implies
2
- A1
771 (7-11)
Looking at the first derivative we have

dgf:) = kz(j;i:lgoﬂ [(2 4 q(A + sing)) (A + sin ) sec p — ¢(1 + Asin )v(p)]

— k_2(1 — A)(q5 —ece)

as ¢ — /2. Since the limits from the left and right should agree, we have ¢y =
—c_ =: c¢. Continuity of f' at tq imposes no further restrictions.
We now have

k? cos? 2k
? = — = =],
(A+sing)(1 — A?) (1 — A2)L/
= k [_ CcosY g
(1 =A)Y2L A+4sing
1— A? . .
—|—m{A(?—i—Aq)cosgp—csmgp—l—qusmgp} ,
7= 2k? [ sin @ 2 2co8l¢
1—A21lA +sing (A + sing)?
2(1 — A%)cos . .
_ W{A(Q—i—flq)cosgo—csmgp—i—qgosmgo}
1_A2 2 .
_m{(QA—(l—A )q)smgp—i—ccosgo—l—qgocosgo}],
" 2 2k / 4k? 2 -
2hh" + 2h _mf cosp — 1—A2f sin ¢,
B 2k 9 ;L 4k ,
ﬁ_i(l—Az)l/z‘f’ 6 _:l:(l_Az)l/sz
The Einstein-Weyl structure is given by
do? 1— A2 ) 1— A2 1/2
g= %—1— e Wa? + (A +sinp)grs, w:i%Wc‘, (7.12)
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where
9 4

W = - -
7 A4sing

(244 (14 A%)g)sinp + (¢ — gp) cos o + 2(1 + Ag)) .
Regarding & as being given by the topology, we see that the Einstein-Weyl structure
thus depends on the five constants A, ¢, ¢, ¢(0), ¢(£) with the constraint (7.11)
which only applies if 7/2 € (¢(0), ¢(¢)). Using the above expressions, the boundary
conditions are now given by

Lemma 7.4. Lete bel ift =0 and —1 if t = L. The boundary conditions att are
equivalent to the following:
(a) special orbit « (impliesk = 1): sing = —A and ¢ = g(p+sin ¢ cos p)—2 cos g;
(b) special orbit CP': if p = n/2, then ¢ = =2/(1+ A) and

. 1+ 4 1/2k T
cC = — _— —_
1—A 1+ 47

whereas for ¢ # w/2 we have
c=—(2A4 (1 4+ A%)g) tan p — 2(1 + Ag) sec ¢ + g,

o= (e kcos g 9 1 .
(1 — A2)L/2 A+sing’

(c) special orbit L(2k,1): ¢ = 7/2, c=qn/2, ¢ > =2/(1 + A).

This immediately implies that there are no solutions when both special orbits
are L(2k,1). We now consider the other five cases in turn.

Case 1: §* = [# | 8% | #]. The boundary conditions imply ¢({) = 7 — (0) and,
writing ¢ = 7/2 — ¢ and D = (0),
2sin D wsin D
1= "D snDcosD’ ‘=D _sinDcos D’
Hence, the Einstein-Weyl structure is given by (7.12) with
8(D +sin Dcos D — (Dcos D + sin D) cos ¢ — ¢ sin Dsin )

W =
(cos i) — cos D)(D — sin D cos D)

Case 2: RP* = [% | §3 | RP?]. Noting that in the S* solutions we had
c = qm/2, we see that all the solutions on S* descend to RP*, and we obtain the
same expressions, except that ¢ runs over [¢(0), 7/2] instead of [¢(0), 7 — ¢(0)].

Case 3: CP? = [% | §% | CP']. Write D = ¢(0) and E = ¢(f). Note that
sin £ — sin D is h(¢) and so is strictly positive. There are two cases to consider
because of the different form of the boundary conditions.

Case 3a: E = /2. From the boundary conditions we have
2
1—sinD

1—sinD /2 T
cC = - -
1+sinD 1—sinD

= (D +sinDcos D)g — 2cos D.

q:

Substituting the first equation into the last, writing ((1 — sin D)/(1 + sin D))l/2 =
cos D/(1 +sin D) and multiplying through by cos? D, leads to
3+sinD

- D4+2D—n=0.
1—|—sinDCOS + i
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The left-hand-side of this equation F'(D) has derivative F'(D) = sin D cos® D/(1 +
sin D)%, which vanishes only at 0. Also F(7/2) = 0 and /(D) tends to oo as D tends
to —m/2. As F(0) equals 3— 7 which is negative, we deduce that F' has precisely one
zero in (—m/2,7/2) and hence there is one solution to the Einstein-Weyl equations
with B = 7/2.

Case 3b: E # w/2. The boundary conditions imply
cos I/ 1
1= (cosD +2) sin F —sin D’
¢=(D+sinDcosD)g—2cos D
= (2sin D — (1 +sin® D)g) tan E — 2(1 — gsin D)sec F + ¢ .

Equating the last two expressions, substituting for ¢ from the first and multiplying
through by cos D cos E(sin ' — sin D) leads to

{(E — D)(cos E 4+ 2cos D) + 2(sin D — sin E) + cos Dsin(D — E)} cos E = 0.
(7.13)
However, we have assumed F # 7/2, so cos E # 0 and the first factor in (7.13)
must vanish.

Introduce new variables « = (E — D)/2 and § = (D + E)/2. Equation (7.13)
then implies

tan § = (2 + cos? a) sina — 3a cos

(7.14)

sin a(a — sin a cos @)
The variables D and F lie in the region specified by

1. De(—m/2,7/2),

2. sin F > sin D and

3. if F > n/2, then cos E/(1 —sin E) < —2cos D/(1 —sin D).
The latter condition is equivalent to ' < © — B’ where E' € (=7 /2, m/2) satisfies
cos ' /(1 —sin E') = 2cos D/(1 — sin D) or equivalently
34+ 5bsinD
5+ 3sinD’
Note that this is stronger than condition 2.

In terms of o and 3 these constraints become

1. a> 0,

2. 8—a>—-n/2 and

3. sina < 3cos .
Note that one boundary of this region is { (o, ) : « = 0, 8 € (—7/2,7/2) } and
that expanding (7.14) for small & shows that there are indeed solutions. A sketch
of the region and the curve (7.14) is provided in Figure 1 and shows that there is a
one-dimensional family of solutions. It is easily checked that the solution obtained
in Case 3a does not have the property that the first factor of (7.13) vanishes and
so does not lie in this family.

sin B =

Case 4: M(k)/Z2 = [CP' | L(k,1) | L(2k,1)]. The boundary condition at ¢
implies ¢(£) = 7/2 and hence ¢(0) < 7/2. Writing D = 7/2 — ¢(0), the boundary
conditions become

(Dsin D+ (14 A?)cos D+ 2A)qg = —2Acos D — 2,

_ ksin D 5 1
1= (1— A2)L/2 A+4cosD’
q>-2/(1+A4).
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/2

—7/2

FiGURE 1. A one-dimensional family of Einstein-Weyl solutions
on CP?. The curve (7.14) is sketched within the region specified
by the constraints on « and .

Write A = —cos x with x € (D, x]. Then eliminating ¢ from the boundary condi-
tions leads to

k(Dsin D + (1 4+ cos? x) cos D — 2cos x) — 2sin x(D — cos ysin D) = 0,
kcot(D/2) > 2cot(x/2).
Putting 7 = tan(y/2), we have
G(D,r) = k(7'4(D sin D 4 2cos D + 2) + 2r*Dsin D
+ (DsinD—l—QcosD—Q))
- 4T<D —sin D + 7%(D +sin D))
=0,
2

T> —tan —.

k 2
Lemma 7.5. G(D, 1) is monotone increasing in 7 in the region v > 2tan(D/2)/k.

In the following it will be convenient to write ¢ = tan(D/2). We will refer to
the line 7 = 20 /k with o € (0,00) as the eritical line. The region 7 > 20 /k we will
refer to as the region above the critical line.

Proof. Now (9*G /0% (D, ) = 24k(Dsin D+2 cos D+2) which is strictly positive.

On the critical line 3G /973 is 24G1(D)/(1+0?), where G1(D) := (362 —1)D +
6. However, G4 (D) = 3(1+ ¢%)oD + 606>+ 2 > 0 and G1(0) = 0, so G; > 0 on
the critical line. Hence 8°G/d73 > 0 on and above the critical line.

Consider 0?G' /072, which equals 8G2(D)/(k(1 + ¢?)) on the critical line, where
Ga(D) := k?6 D+ 60[(0c? —1)D + 20]. The function G satisfies G > 0, G4(0) = 0
and G5(0) = 0, so we conclude that G5 > 0 on the critical line. Thus §*G/d7% > 0
on and above the critical line.

Finally, on the critical line G /01 = 4G5(D)/(k*(1 + 0?)), where G3(D) :

=

(130 + 3k%0? — 30? — k?)D + 2602 + 2k?c. This has G4 > 0 and G35(0)
so we conclude that OG/07 is strictly positive on and above the critical line, as
required. O
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The lemma implies that zeros of (G, and hence Einstein-Weyl solutions, above
the critical line are in one-to-one correspondence with points on the critical line
where G is strictly negative.

On the critical line we have

2(k? — 4)o
G(D,20/k) = BT o?) G4(D),
where G4(D) := (k? + 40?)D — 2k?c. We thus conclude that for k = 2, there are
no Einstein-Weyl solutions.

The function Gy satisfies G%(D) = 4o (14+0?)D+(4—k*)o?, G,(0) = 0, G4 (0) =
and 2G7%'(0) = 12 — k?. Thus for k > 4, G, is initially negative, whereas for k <
it 1s initially positive.

We claim G has precisely one zero in (0, 7) if & > 4, and has no zero if k < 3. To
prove this note that zeros of G correspond to solutions of k% — 4 = 4G5(D), where
Gs(D) == (14 ¢?)D/o. Now GL(D) = (1 + 0?)Ges(D)/(20?), where Gg(D) :=
20+ (0% —1)D. But G4(D) = 2%+ (62 +1)oD is strictly positive, and hence G5 is
monotone increasing. However, G5(D) — 2 as D — 0 and G5(D) — oo as D — ,
so (&) has the properties claimed.

Thus for & = 3, the function (G4, and hence G, is strictly positive and there are
no Einstein-Weyl solutions. On the other hand for £ > 4, (G4 is initially negative
and its derivative has one zero, so (G4 1s strictly negative on an open interval and
we obtain a connected one-dimensional family of Einstein-Weyl solutions. Finally,
for k = 1, G4 remains strictly positive, but G contains the factor k% — 4 on the
critical line, so one obtains an Einstein-Weyl solution for each D € (0, 7).

0
3

Case 5: M(k) = [CP' | L(k,1) | CP']. We claim that the only cohomogen-
eity-one Einstein-Weyl structures on M (k) are the pull-backs of those on M (k)/Z.
In particular, there is a one-dimensional family if &£ > 4 or &k = 1 and no solutions
for k =2 or 3.

Without loss of generality we may assume ¢(0) < 7/2 and ¢(0) < ¢(f). Let

D = ¢(0), B = ¢(l), a = (o(f) — ¢(0))/2 and 3 := (p({) + #(0))/2. Write
A = —sinyx with x € (=7/2,7/2).

Lemma 7.6. Fither E = n/2 or E = 7 — D, and in the latler case the Einstlein-
Weyl structure s Zo-invariant.

Proof. Assume that E # n/2. The boundary conditions imply

kcos D 1 kcos B/ 1
q= -2 = - =|- -2 = —.
cos Y sin ) — sin y Cos Y sin B — sin x

Multiplying through by cos x(sin D — sin x)(sin ' — sin x) gives

k(cos Dsin E + cos E'sin D) = k(cos D + cos F) sin x + 2(sin £ — sin D) sin x.

In terms of « and G this implies that either cos 3 = 0 or

2
sin 3 = cosarsin x + — sin «cos x. (7.15)

k

If cos =0, then £+ D = 7 and the boundary conditions reduce to the equations
for the case M (k)/Z.
If (7.15) holds, substitute this expression into the second boundary condition

at £ to get
( kcos &/ ) 1 kcos a
q = — — 92 =

cos X sin F/ — sin x cos ysina '
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Now using the boundary conditions on ¢, we have

0=—(24 + (1 + A%)g)(tan D — tan E) — 2(1 4+ Ag)(sec D —sec ) + ¢(D — E).

Multiplying through by (cos D cos F)/2 and writing in terms of a;, 5 and y gives
0 = (=2sinx + (1 +sin? x)g) sin acos a + 2(1 — ¢sin x) sin a'sin 3
— g(cos® a — sin? 3).
Substituting (7.15) into this equation gives

(4k sin  sin a cos a + cos y(4sin? a — k% cos? a)) (tan o — av).

" ktana
Thus either o = tan « or
k? — 4tan® o
4k tan o
Now D lies in (—n/2,7/2) and F lies in (D, 37/2), so v isin (0, 7). Thus o = tan o
has no relevant solutions.

If (7.16) holds, then

) k? —4tan? o 4k tan o
Smxzkz—i—éltanza and COSXIk2+4tan2a'
Substituting these expressions into (7.15) gives sin 3 = cosa, so § = /2 + « and
either D = 7/2 or £ = w/2. But we have excluded the former and so are left

with B = 7/2. O

tan y = (7.16)

It now remains to show that there are no solutions when F = /2. The boundary
condition for ¢ gives

_ 2 _ (kcosD 5 1
1= 1—siny \ cosy sin D —siny’

which simplifies to

kcosD  2cosy

l—sinD  1—siny’

J cot (% (g - D)) = 2cot (% (g —x)) . (7.17)

The boundary condition for ¢ gives

T D_(l—sinx)?’/zk E(l—sinx
2 cos Y

or equivalently

2 (1 4siny)t/2
_k (1—siny
T2 Cos Y

)(l—l—sinx)
)(3—sinx).

Thus (7.17) implies

o (5 (2 ) = 2o (1 (3-)).

Substitute z = £(1 —sin y)/ cos y = £ tan((7/2 — x)/2) to get
cot(zy) = 1/x, (7.18)

where y = (3 — sinx)/2 is strictly greater than 1. Note that # is bounded below
by 0 and above by the requirement that 22y = 7/2 — D < w. Thus, we need
to show (7.18) has no solutions for 0 < # < 7/(2y). However, cot is monotone
decreasing, so cot(zy) < cot(z). But cot(z) < 1/x, since tanz > x on (0,7/2).
Thus there are no Einstein-Weyl solutions with F = 7/2.
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