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4 Deformation of 2-Step Nilmanifolds

with Abelian Complex Structures

C. McLaughlin1,2 H. Pedersen3 Y.S. Poon2 S. Salamon3

Abstract. We develop deformation theory for abelian invariant complex structures on a
nilmanifold, and prove that in this case the invariance property is preserved by the Kuran-
ishi process. A purely algebraic condition characterizes the deformations leading again to
abelian structures, and we prove that such deformations are unobstructed. Various exam-
ples illustrate the resulting theory, and the behavior possible in 3 complex dimensions.

AMS Subject Classification: 32G05; 53C15, 53C56, 57S25, 17B30

1 Introduction

In this paper, we study complex structures associated to compact quotients of nilpo-
tent groups. These manifolds are called nilmanifolds, and an investigation of the
special class of Kodaira manifolds was completed in [7]. The present paper opens this
discussion to a wider class of nilmanifolds.

A left-invariant complex structure on a Lie group is said to be abelian if the
complex space of (1,0)-vectors is an abelian algebra with respect to Lie bracket.
This definition only makes sense in the algebraic setting, and in this context it is of
particular interest to know to what extent a study of invariant complex structures
on nilmanifolds captures the general situation.

There is a total of six 6-dimensional 2-step nilpotent groups admitting abelian
complex structures [14]. If Rn denotes a n-dimensional abelian group and H2n+1 a
(2n+1)-dimensional Heisenberg group, then the 2-step nilpotent groups with abelian
complex structures are R6, H5×R

1, H3×R
3, H3×H3, the Iwasawa groupW6 and one

additional group which we denote by P6. These groups are the 6-dimensional instances
of the respective series: R2n, H2n+1 ×R2m−1, H2n+1 ×H2m+1, W4N+2 and P4N+2. For
example, W4N+2 is the real group underlying a generalized complex Heisenberg group.

1some results herein were reported in [10] to fulfill a degree requirement
2partially supported by NSF DMS-0204002
3partially supported by EC contract HPRN-CT-2000-00101
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The compact quotients of R2n are complex tori, and their deformation and moduli
are well studied [3]. A detailed account of the moduli space of complex structures
of a special compact quotient of H2n+1 × R was recently given in [7], and in [8] a
somewhat different method is directed towards the study of W6. The present paper
helps to unite these two approaches, particularly via the examples in §6.

This paper presents a general approach to computing the deformations of 2-step
nilmanifolds with abelian complex structures. To analyze data on deformation theory,
our first step is to identify the Dolbeault cohomology of a 2-step nilmanifold with
abelian complex structure with the appropriate Lie algebra cohomology (Theorem 1).
General results of this nature were proved in [4], though we shall need our own explicit
description of this identification. The second step is to extend this identification to the
determination of harmonic representatives for Dolbeault cohomology with coefficients
in the tangent sheaf (Theorem 3).

We derive the first main result of this paper in §4.3:

Theorem Let G be a 2-step nilpotent Lie group with co-compact subgroup Γ. Then
any abelian invariant complex structure on X = Γ\G has a locally complete family of
deformations consisting entirely of invariant complex structures.

This is proved by showing that an application of Kuranishi’s method does not
take one outside the subspace of invariant tensors. The theorem implies that any
deformation of an abelian invariant complex structure is necessarily equivalent to an
invariant one, at least of the deformation is sufficiently small.

Given this result, it makes sense to ask under what conditions the deformed in-
variant structures remain abelian. Indeed, our techniques enable us to prove that
deformations preserving the abelian property are always unobstructed and faithfully
represented at the infinitesimal level:

Theorem On a 2-step nilmanifold X with an abelian complex structure, a vector
in the virtual parameter space H1(X,ΘX) is integrable to a 1-parameter family of
abelian complex structures if and only if it lies in a linear subspace defining the abelian
condition infinitesimally.

The ‘only if’ part is obvious, but the force of this result is the backwards implica-
tion. Once we convert to Lie algebra cohomology, it reduces the constraints of abelian
deformations to purely algebraic equations that we introduce in §5 and collectively
call ‘Condition A’. Using this, one may carry out an effective computation in terms
of structural constants of the nilpotent groups in question.

Further analysis of abelian deformations yields a characterization of the Kodaira
manifolds (defined in §2.1) as those corresponding to a Lie algebra with 1-dimensional
center and for which all infinitesimal parameters are integrable and lead to abelian
deformations. The precise statement is Theorem 6 in §5.1.

2



In the final section, we compute the relevant cohomology dimensions for a number
of nil 6-manifolds, each equipped with a natural abelian complex structure. In so
doing, we are able to compare the techniques of this article with those of [14], but
we emphasize a complication that arises from a choice of complex structure with
added symmetry. The first theorem above allows one to dispense with the Kuranishi
method in the explicit construction of parameter spaces, and replace it with a more
direct calculation involving invariant differential forms. This we do in Example 8,
after having first illustrated the power of the second theorem above in estimating the
dimension of a potential moduli space.

2 Abelian complex structures

Suppose that a Lie algebra g admits an endomorphism J such that

J ◦ J = −1 and [JA, JB] = [A,B] (1)

for all A,B in g. It can be extended by left-translation to an endomorphism of the
entire tangent bundle of G. Then J defines an invariant almost complex structure
on the group G which is integrable, since (1) implies the vanishing of the Nijenhuis
tensor. A complex structure satisfying (1) is called abelian, and the identity also
implies that the center c is J-invariant.

Now assume that the Lie algebra is 2-step nilpotent. In particular, the first derived
algebra is contained in the center. Taking the quotient of the algebra g with respect
to the center, we obtain an abelian algebra t. When the complex structure is abelian,
it induces a complex structure on t. The identities

g(1,0) = t(1,0) ⊕ c(1,0) and g(0,1) = t(0,1) ⊕ c(0,1)

concerning type (1,0) and (0,1) vectors are therefore valid at the level of vector spaces.
Let {Xi, JXi : 1 6 i 6 n} be a real basis for t and {Zα, JZα : n+1 6 α 6 n+m}

a real basis for c. A basis of (1, 0) vectors for the complex tangent bundle of G is
composed of the elements

Tj =
1
2
(Xj − iJXj) and Wα = 1

2
(Zα − iJZα). (2)

The complex structural constants Eα
kj and F

α
kj are defined by

[

T k, Tj
]

=
∑

α

Eα
kjWα +

∑

α

F α
kjWα, (3)

and satisfy
F α
kj = −E

α

jk.
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We continue to use Roman indices in the range 1, . . . , n and Greek indices for
n + 1, . . . , n +m. Let ωj be the left-invariant (1,0)-forms dual to the vectors Tj for
1 6 j 6 n and annihilating the Wα. They span the space t∗(1,0). Similarly, there are
left-invariant (1,0)-forms ωα dual to Wα, annihilating the Tj . The dual form of the
structural equation (3) is

dωα =
∑

i,j

Eα
jiω

i ∧ ωj . (4)

The forms ωi are all exact, and ∂ωα = 0. Thus,

Lemma 1. The forms ω1, . . . , ωn, ωn+1, . . . , ωn+m are all ∂-closed.

Now suppose that there exists a discrete subgroup Γ of G such that the left
quotient space Γ\G is compact. The resulting quotient is called a nilmanifold. Since
the complex structure J is left-invariant, it descends to a complex structure on X =
Γ\G. Such a discrete subgroup always exists if there is a basis such that the real
structural constants are rational [11].

Later in this paper, we shall study the deformation theory on such compact com-
plex manifolds. At an appropriate juncture (in §4.1), we shall find it convenient to
introduce an invariant Hermitian metric on X . We shall choose such a metric so that
{Xj, JXj , Zα, JZα} forms a Hermitian frame. First we describe some simple examples
of nilmanifolds and complex structures.

2.1 Kodaira manifolds and other examples

Our first example of a compact nilmanifold with an abelian complex structure is a
Kodaira manifold, a generalization of a Kodaira surface. We proceed to list algebraic
constructions of this and similar examples.

Example 1. On the vector space R2n+2 with basis {Xj, Yj, Z, A}, define a Lie algebra
by setting

[Xj , Yj] = −[Yj, Xj ] = Z, 1 6 j 6 n,

and declaring all other brackets to be zero. This turns the vector space into the direct
sum g = h2n+1 ⊕ t1 of the Heisenberg algebra and the 1-dimensional algebra.

We define an almost complex structure J on the Lie algebra g by means of the
equations

JXj = Yj , JZ = A, (5)

so that the equations JYj = −Xj and JA = −Z are also understood. The endomor-
phism J defines an abelian complex structure on g, and therefore on the manifold
H2n+1×R and a compact quotient thereof. In the niotation (2), its complex structure
equation is

[T j, Tj ] = −1
2
i(W +W ). (6)
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The moduli problem of the compact quotient of such complex manifolds was studied
extensively in [7].

We next describe a more general extension of the Heisenberg group, and then a
product example.

Example 2. Let H2n+1 × R2m+1 be the product of a real Heisenberg group and an
abelian Lie group with dimensions as specified. Let {Xj, Yj, Z} be a basis for h2n+1,
and let {Z0, Z2k−1, Z2k} (with 1 6 k 6 m) be a basis for R2m+1. The non-zero
structural constants are determined by the single set of equations

[Xj , Yj] = Z.

An abelian complex structure is defined by setting

JXj = Yj, JZ = Z0, JZ2k−1 = Z2k, (7)

in analogy to (5).

Example 3. The product H2n+1×H2m+1 is a 2-step nilpotent group with 2-dimensional
center. Let {Xj , Yj, Z1, Xk, Yk, Z2} (with 1 6 j 6 n, 1 6 k 6 m) be a basis for its Lie
algebra h2n+1 ⊕ h2m+1. The non-zero structural constants are

[Xj, Yj] = Z1 and [Xk, Yk] = Z2.

Define an almost complex structure J on this space by

JXj = Yj, JXk = Yk, JZ1 = Z2; (8)

once again this defines an abelian complex structure.

We describe the remaining classes of examples in 6 dimensions for simplicity.

Example 4. The group structure of W6 underlies that of the complex Heisenberg
group. On the algebra level, the structural equations of W6 are

[X1, X3] = −1
2
Z1, [X1, X4] = −1

2
Z2, [X2, X3] = −1

2
Z2, [X2, X4] =

1
2
Z1. (9)

An abelian complex structure is defined by

JX1 = X2, JX3 = −X4, JZ1 = −Z2, (10)

and this is denoted J1 in [8]. Beware that J is not the standard bi-invariant complex
structure J0 that makes W6 a complex Lie group; indeed

J0 [A,B] = [J0A,B] , A, B ∈ g,

and so J0 is definitely not abelian. Nonetheless, both J0 and J1 induce the same
orientation on W 6.
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Example 5. The structural equations for P6 are given by

[X1, X2] = −1
2
Z1, [X1, X4] = −1

2
Z2, [X2, X3] = −1

2
Z2,

and correspond to a degeneration of (9). An abelian complex structure J on P6 is
defined by

JX1 = X2, JX3 = −X4, JZ1 = −Z2. (11)

The associated Hermitian manifold Γ\P6 was studied in [1, §5], where it was shown
that J is only one of a finite number of complex structures compatible with a fixed
Riemannian metric.

3 Cohomology theory

In order to perform deformation theory on the compact complex nilmanifold X , we
need to calculate cohomology with coefficients in the holomorphic tangent sheaf. We
achieve this by identifying Dolbeault and Lie algebra cohomology, in the spirit of [13].

3.1 Lie algebra cohomology

With respect to a complex structure J , the complexified Lie algebra has a type
decomposition. We may write

gC = g1,0 ⊕ g0,1, tC = t1,0 ⊕ t0,1, cC = c1,0 ⊕ c0,1.

These are all spaces of left-invariant vectors on G. The definitions are extended to
invariant (p, q)-forms in the standard way. For instance,

∧kg
∗(0,1)
C

= g∗(0,k) is the space
of G-invariant (0, k)-forms.

Motivated by the property of the Chern connection on holomorphic tangent bun-
dles [6], we define a linear operator ∂ on (0, 1)-vectors as follows. For any (1, 0)-vector
V and (0, 1)-vector Ū , set

∂ŪV := [Ū , V ]1,0.

We obtain a linear map
∂ : g1,0 → g∗(0,1) ⊗ g1,0.

In view of (3),
∂T k

Tj = [T k, Tj]
1,0 =

∑

α

Eα
kjWα, (12)

whence
∂Tj =

∑

k,α

Eα
kjω

k ⊗Wα and ∂Wα = 0.

6



Extend this definition to a linear map on g∗(0,k) ⊗ g1,0 by setting

∂(ω ⊗ V ) = ∂ω ⊗ V + (−1)kω ∧ ∂V,

where V ∈ g∗(0,k) and V ∈ g1,0. For instance, any element µ in g∗(0,1) ⊗ g1,0 can be
written as

µ =
∑

i,j

µi
jω

j ⊗ Ti +
∑

i,α

µi
αω

α ⊗ Ti +
∑

j,β

µβ
jω

j ⊗Wβ +
∑

α,β

µβ
αω

α ⊗Wβ. (13)

By Lemma 1 and (12),

−∂µ =
∑

i,j

µi
jω

j ∧ ∂Ti +
∑

i,α

µi
αω

α ∧ ∂Ti

=
∑

i,j,k,β

µi
jE

β
kiω

j ∧ ωk ⊗Wβ +
∑

i,k,α,β

µi
αE

β
kiω

α ∧ ωk ⊗Wβ.

This calculation gives us a necessary and sufficient condition for µ to be ∂-closed,
which we now record as

Lemma 2. Suppose that an element µ in g∗(0,1)⊗g1,0 is given by formula (13). Then
∂µ = 0 if and only if

∑

i

(µi
jE

α
ki − µi

kE
α
ji) = 0 and

∑

i

µi
αE

β
ji = 0,

for each j, k, α, β.

We have a sequence

0 → g1,0 → g∗(0,1) ⊗ g1,0 → · · · → g∗(0,k−1) ⊗ g1,0
∂k−1

→ g∗(0,k) ⊗ g1,0
∂k→ · · ·

The next result comes as no surprise, reflecting as it does the fact that our ∂ operators
are the natural ones induced on invariant differential forms.

Lemma 3. The above sequence is a complex, i.e. ∂k ◦ ∂k−1 = 0 for all k > 1.

Proof: It suffices to verify the lemma for k = 1. Let {ωp}, {œq} be dual bases of g∗(1,0)

and g1,0, where the indices p, q run over the entire range 1, . . . , n+m. By definition,

∂V =
∑

p

ωp ⊗ [œp, V ]
1,0.

Applying ∂ again,

∂
2
V =

∑

p

∂ωp ⊗ [œp, V ]
1,0 −

∑

p,q

(ωp ∧ ωq)⊗ [œq, [œp, V ]
1,0]1,0.
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Since [œp,œq]
1,0 = 0, we can delete the penultimate projection 1,0 above. The Jacobi

identity
[œp, [œq, V ]]− [œq, [œp, V ]] = [[œp,œq], V ]

implies that
∑

p,q

ωp ∧ ωq ⊗ [œq, [œp, V ]]
1,0 = −1

2

∑

p,q

ωp ∧ ωq ⊗ [[œp,œq], V ]1,0.

If σ is a (1, 0)-form, we can now contract σ with ∂
2
V to obtain the following form

of type (0, 2):

σ(∂
2
V ) =

∑

p

σ([œp, V ])∂ω
p + 1

2

∑

p,q

σ([[œp,œq], V ])(ωp ∧ ωq)

= −2
∑

p

dσ(œp, V )∂ω
p −

∑

p,q

dσ([œp,œq], V )(ω
p ∧ ωq).

For this to vanish for all V and σ, we need to show that

2
n+m
∑

r=1

∂ωr ⊗œr = −
∑

p,q

(ωp ∧ ωq)⊗ [œp,œq].

This equation amounts to stating that the ωp ∧ ωq component of 2∂œr equals

ωr([œp,œq]) = 2dωr(œp,œq) = 2∂ωr(œp,œq),

which is correct. QED

Definition 1. Define Hk
∂
(g1,0) to be the kth cohomology ker ∂k/ Im ∂k−1 of the above

complex; more precisely,

Hk
∂
(g1,0) =

ker
(

∂k : g∗(0,k) ⊗ g1,0 → g∗(0,k+1) ⊗ g1,0
)

∂k−1 (g∗(0,k−1) ⊗ g1,0)
.

We shall interpret these spaces geometrically in the next subsection.

3.2 Dolbeault cohomology

Let Γ be a J-invariant co-compact lattice in G, and X = Γ\G the associated nilman-
ifold parameterizing left cosets. Let ψ:G → G/C be the quotient map, where C is
the center of G. Since G is 2-step abelian, G/C is abelian. In terms of the abelian
varieties F := C/C ∩ Γ and M := ψ(G)/ψ(Γ), we obtain a holomorphic fibration

Ψ:X −→ M

with fiber F .
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Lemma 4. Let OX and ΘX be the structure sheaf and the tangent sheaf of X. For
p > 1, the direct image sheaves with respect to Ψ are

RpΨ∗OX =
∧pc∗(0,1) ⊗OM = c∗(0,p) ⊗OM ,

RpΨ∗Ψ
∗ΘM =

∧pc∗(0,1) ⊗ΘM = c∗(0,p) ⊗ΘM .

Proof: The second identity is a consequence of the first, and the projection formula.
To prove the first, note that for any point m in M ,

(RpΨ∗OX)m = Hp(Ψ−1(m),OX) ∼= Hp(C,OX).

This has constant rank and, by Grauert’s Theorem, the direct image sheaf is locally
free. As Ψ−1(m) is isomorphic to a complex torus, for all p > 1,

Hp(Ψ−1(m),OX) =
∧pH1(Ψ−1(m),OX),

The vector bundle RpΨ∗OX is isomorphic to
∧pR1Ψ∗OX . Since the space of vertical

(0,1)-forms is trivialized by the left-invariant (0,1)-forms given in Lemma 1, we have

RpΨ∗OX
∼=

∧pR1Ψ∗OX
∼=

∧pc∗(0,1) ⊗OM ,

as required. QED

Lemma 5. Let OX and ΘX be the structure sheaf and the tangent sheaf of X. Then

Hk(X,OX) =
∧kg∗(0,1) = g∗(0,k),

Hk(X,Ψ∗ΘM) =
∧k(g∗(0,1))⊗ t1,0 = g∗(0,k) ⊗ t1,0.

Proof: Consider the Leray spectral sequence with respect to the ∂-operator and the
holomorphic projection Ψ. One has

Ep,q
2 = Hp(M,RqΨ∗OX), Ep,q

∞ ⇒ Hp+q(X,OX).

From the previous lemma, when q > 1,

Ep,q
2 = Hp(M,

∧qc∗(0,1) ⊗OM) =
∧qc∗(0,1) ⊗Hp(M,OM )

=
∧qc∗(0,1) ⊗Hp(M,OM) =

∧qc∗(0,1) ⊗
∧pt∗(0,1).

Note that every element in Ep,q
2 is a linear combination of the tensor products of ver-

tical (0, q)-forms and (0, p)-forms lifted from the base. Since these forms are globally
defined and the differential d2 is generated by the ∂-operator, we have d2 = 0. It
follows that the Leray spectral sequence degenerates at the E2-level. Therefore,

Hk(X,OX) =
⊕

p+q=k

Ep,q
2 =

∧k(c∗(0,1) ⊕ t∗(0,1)) =
∧kg∗(0,1).
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Next, the spectral sequence for Ψ∗ΘM gives

Ep,q
2 = Hp(M,RqΨ∗Ψ

∗ΘM), Ep,q
∞ ⇒ Hp+q(X,Ψ∗ΘM).

Moreover, Ep,q
2 is equal to

Hp(M,
∧qc∗(0,1) ⊗ΘM) =

∧qc∗(0,1) ⊗Hp(M,ΘM) =
∧qc∗(0,1) ⊗

∧pt∗(0,1) ⊗ t1,0.

Elements in t1,0 are holomorphic vector fields onM and hence globally defined sections
of Ψ∗ΘM onX . Elements in

∧qc∗(0,1) are pulled back to globally defined (0, q)-forms on
X . Crucially, elements in

∧pt∗(0,1) are globally-defined holomorphic (0, p)-forms on X ,
and the operator d2 is identically zero. Therefore, the spectral sequence degenerates
at E2. We have

Hk(X,Ψ∗ΘM) =
⊕

p+q=k

Ep,q
2 =

∧k(c∗(0,1) ⊕ t∗(0,1))⊗ t1,0 =
∧k(g∗(0,1))⊗ t1,0,

as required. QED

Theorem 1. Let X be a 2-step nilmanifold with an abelian complex structure. There
is a natural isomorphism Hk(X,ΘX) ∼= Hk

∂
(g1,0).

Proof: On the manifold X , we have the exact sequence

0 → c1,0 ⊗OX → ΘX → Ψ∗ΘM → 0.

A piece of the corresponding long exact sequence is

→ c1,0 ⊗Hk(X,OX) → Hk(X,ΘX) → Hk(X,Ψ∗ΘM)
δk→ c1,0 ⊗Hk+1(X,OX) →

¿From the last section, the coboundary map is

δk : g
∗(0,k) ⊗ t1,0 → g∗(0,k+1) ⊗ c1,0,

and so

Hk(X,ΘX) ∼= ker δk ⊕
g∗(0,k) ⊗ c1,0

δk−1(g∗(0,k−1) ⊗ t1,0)
.

We calculate the coboundary maps by chasing the commutative diagram

0 → T ∗(0,k+1) ⊗ c1,0 → T ∗(0,k+1) ⊗ΘX → T ∗(0,k+1) ⊗Ψ∗ΘM → 0

↑ ↑ ↑

0 → T ∗(0,k) ⊗ c1,0 → T ∗(0,k) ⊗ΘX → T ∗(0,k) ⊗Ψ∗ΘM → 0

10



The vertical maps are ∂’s for Dolbeault cohomology. More specifically, if ∇ is the
Chern connection, if ω is a (0, k)-form and V a vector field of type (1, 0), then

∂(ω ⊗ V ) = ∂ω ⊗ V + (−1)kω ∧ ∂
∇

V.

In the following computation, we let {ep} be a left-invariant basis for g1,0 and {ωp}
the dual basis.

Let ω be a (0, k)-form. Let V be an element in t1,0, considered as a holomorphic
vector field on M and a holomorphic section of Ψ∗ΘM . Let Ṽ a smooth lifting of this
section to be a section of ΘX . Then

δk(ω ⊗ V ) = ∂ω ⊗ Ṽ + (−1)k
∑

p

ω ∧ ωp ⊗ [ep, Ṽ ]
1,0.

The element Tj in gC could be considered as holomorphic vector field on M . It could
also be considered as a smooth vector field on X . Considering the latter a lifting of
the former and applying the above formula, we see that δk = ∂k on g∗(0,k) ⊗ t1,0. Now
∂k(g

∗(0,k) ⊗ c1,0) = 0, and so

δk−1(g
∗(0,k−1) ⊗ t1,0) = ∂k−1(g

∗(0,k−1) ⊗ g1,0).

Since the Lie algebra g is 2-step nilpotent, Im ∂k−1 ⊆ g∗(0,k) ⊗ c1,0. Also, we have

ker δk = ker ∂k ∩ (g∗(0,k) ⊗ t1,0).

Therefore,

Hk(X,ΘX) = ker ∂k ∩ (g∗(0,k) ⊗ t1,0)⊕
g∗(0,k) ⊗ c1,0

Im ∂k−1

=
ker ∂k ∩ (g∗(0,k) ⊗ t1,0 ⊕ g∗(0,k) ⊗ c1,0)

Im ∂k−1

= Hk
∂
(g), (14)

as stated. QED

To summarize the results in this section, we shall say that a tensor on X is
invariant if its pull-back to G by the quotient map is invariant by left-translation by
G. Lemma 5 and Theorem 1 then allow us to formulate

Theorem 2. The Dolbeault cohomology on X with coefficients in the structure and
tangent sheaf can be computed using invariant forms and invariant vectors.

Although the above proof relies on the 2-step property, one might expect that
this result has a more generally validity, at least in the nilpotent context. For an
independent approach to this problem, see [4].
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4 Deformation theory

We shall shortly be in a position to apply the Kuranishi method to construct de-
formations. But first, we shall exhibit harmonic representatives in the Dolbeault
cohomology groups.

4.1 Harmonic theory

Theorem 1 reduces the question to finite-dimensional vector spaces, and we may
choose an invariant Hermitian structure on X of the type mentioned mentioned after
Lemma 1. We use the resulting inner product on g∗(0,k)⊗g1,0 to define the orthogonal
complement of Im ∂k−1 in ker ∂k. Denote this space by Im⊥ ∂k−1.

Theorem 3. The space Im⊥ ∂k−1 is a space of harmonic representatives for the Dol-
beault cohomology Hk(X,ΘX) on the compact complex manifold X.

Proof: It suffices to prove that an element
∑

p

σp ⊗ ep ∈ Im⊥ ∂k−1 ⊆ g∗(0,k) ⊗ g1,0 (15)

is ∂
∗

-closed on the manifold X .
Any section of the trivial bundle over X with fibre g∗(0,k−1) ⊗ g1,0 is a sum of

elements of the type fη⊗V , where f is a smooth function, η ∈ g∗(0,k−1) and V ∈ g(1,0).
By Lemma 1, σp and η are ∂-closed. Using double angular brackets for the L2 inner
product and summing over repeated indices, we calculate

〈〈∂
∗

(σp ⊗ ep), fη ⊗ V 〉〉 = 〈〈σp, ∂(fη)〉〉〈ep, V 〉+ (−1)k−1〈〈σp ⊗ ep, fη ∧ ∂V 〉〉

= 〈〈∂
∗

σp, fη〉〉〈ep, V 〉+ (−1)k−1〈〈σp ⊗ ep, fη ∧ ∂V 〉〉.

The basis {ωi, ωα} of Lemma 1 determines a complex volume form that we may
use to identify ∂

∗

with ± ∗∂ ∗, where ∗ is the corresponding SU(n + m) invariant
antilinear mapping g∗(0,k) → g∗(0,n+m−k). It follows that ∂

∗

σ = 0. The remaining
term

〈〈σp ⊗ ep, fη ∧ ∂V 〉〉 =

∫

X

f〈σp ⊗ ep, η ∧ ∂V 〉 = 〈σp ⊗ ep, ∂(η ⊗ V )〉

∫

X

f

vanishes by assumption (15). QED

Corollary 1. Let µ ∈ g∗(0,k) ⊗ g1,0. Then ∂
∗

µ with respect to the L2-norm on the
compact manifold X is equal to ∂

∗

µ with respect to the Hermitian inner product on
the finite-dimensional vector spaces g∗(0,k) ⊗ g1,0.

Proof: This follows from the displayed formulae in the previous proof. QED
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4.2 The Schouten-Nijenhuis bracket

If ω⊗V and ω′⊗V ′ are vector-valued (0,1)-forms representing elements inH1(X,ΘX),
their product with respect to the Schouten-Nijenhuis bracket is a vector-valued (0,2)-
form

{·, ·} : H1(X,ΘX)×H1(X,ΘX) → H2(X,ΘX).

It is defined at the level of forms by

{ω ⊗ V, ω′ ⊗ V ′} = ω′ ∧ LV ′ω ⊗ V + ω ∧ LV ω
′ ⊗ V ′ + ω ∧ ω′ ⊗ [V, V ′].

Via the isomorphism with Lie algebra cohomology, elements in H1(X,ΘX) lie in
Im⊥ ∂0. Since the vector and form parts are all left-invariant, ιV ω

′ is a constant.
Therefore, LV ω

′ = dιV ω
′ + ιV dω

′ = ιV dω
′, and

{ω ⊗ V, ω′ ⊗ V ′} = ω′ ∧ ιV ′dω ⊗ V + ω ∧ ιV dω
′ ⊗ V ′ + ω ∧ ω′ ⊗ [V, V ′].

The complex structure is abelian, so [V, V ′] = 0 for all (1, 0)-vectors, and

{ω ⊗ V, ω′ ⊗ V ′} = ω′ ∧ ιV ′dω ⊗ V + ω ∧ ιV dω
′ ⊗ V ′. (16)

Using the vector space direct sum g = t⊕ c, we write

g∗(0,1) ⊗ g1,0 = (t∗(0,1) ⊗ t1,0)⊕ (c∗(0,1) ⊗ t1,0)⊕ (c∗(0,1) ⊗ c1,0)⊕ (t∗(0,1) ⊗ c1,0). (17)

If ω ⊗ V ∈ t∗(0,1) ⊗ c1,0 then dω = 0, because all elements in t∗(k,l) are closed. On the
other hand, dω′ ∈ t∗(1,1). Since ιV dω

′ = 0 for V ∈ c1,0, we have

{t∗(0,1) ⊗ c1,0, g∗(0,1) ⊗ g1,0} = 0. (18)

In order to compute {µ,ν} on Im⊥ ∂0, we compute the bracket amongst elements
in the obvious basis. In view of (18), we need to calculate the brackets arising from
the first three summands in (17). There are six types of bracket to calculate. Since
ωk and ωj are closed,

{ωj ⊗ Ti, ω
k ⊗ Tl} = 0

{ωj ⊗ Ti, ω
α ⊗ Tl} = ωj ∧ ιTi

dωα ⊗ Tl = −E
α

ikω
j ∧ ωk ⊗ Tl

{ωj ⊗ Ti, ω
α ⊗Wσ} = ωj ∧ ιTi

dωα ⊗Wσ = −E
α

ihω
j ∧ ωh ⊗Wσ (19)

{ωα ⊗ Tl, ω
β ⊗ Tj} = −E

β

lhω
α ∧ ωh ⊗ Tj − E

α

jhω
β ∧ ωh ⊗ Tl

{ωα ⊗ Tl, ω
β ⊗Wγ} = ωα ∧ ιTl

dωβ ⊗Wγ = −E
β

lhω
α ∧ ωh ⊗Wγ

{ωα ⊗Wβ, ω
γ ⊗Wδ} = 0.
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The above formulae allow us to calculate {µ,ν}. If µ is given in coordinates as
in (13) and ν similarly then, suppressing summation signs, we have

{µ,ν} = −(µi
jν

ℓ
α + νijµ

ℓ
α)E

α

ik ω
j ∧ ωk ⊗ Tℓ

−(µℓ
αν

j
β + νℓαµ

j
β)(E

β

ℓkω
α ∧ ωk ⊗ Tj + E

α

jkω
β ∧ ωk ⊗ Tℓ)

−(µi
jν

δ
γ + νijµ

δ
γ)E

γ

ik ω
j ∧ ωk ⊗Wδ (20)

−(µi
αν

δ
γ + νiαµ

δ
γ)E

γ

ik ω
α ∧ ωk ⊗Wδ (21)

In particular,

{µ,µ} = −2µi
jµ

ℓ
αE

α

ik ω
j ∧ ωk ⊗ Tℓ

−2µℓ
αµ

j
β(E

β

ℓkω
α ∧ ωk ⊗ Tj + E

α

jkω
β ∧ ωk ⊗ Tℓ) (22)

−2µi
jµ

δ
γE

γ

ik ω
j ∧ ωk ⊗Wδ − 2µi

αµ
δ
γE

γ

ik ω
α ∧ ωk ⊗Wδ,

which is of course is an element of g∗(0,2) ⊗ g1,0.

4.3 Kuranishi theory

To construct deformations, we apply Kuranishi’s recursive formula. Let {β1, . . . , βN}
be an orthonormal basis of the harmonic representatives of H1(X,ΘX). For any
vector t = (t1, . . . , tN) in CN , let

µ(t) = t1β1 + · · ·+ tNβN . (23)

We set φ1 = µ, and next define φr inductively for r > 2.
Consider the ∂-operator on X with respect to the Hermitian metric h previously

defined, its adjoint operator ∂
∗

, and the Laplacian

△ = ∂∂
∗

+ ∂
∗

∂. (24)

Let G be the corresponding Green’s operator that inverts △ on the orthogonal com-
plement of the space of harmonic forms, and let { , } denote the Schouten-Nijenhuis
bracket. Then we set

φr(t) =
1
2

r−1
∑

s=1

∂
∗

G{φs(t),φrs(t)} = 1
2

r−1
∑

s=1

G∂
∗

{φs(t),φr−s(t)}, (25)

and consider the formal sum
Φ(t) =

∑

r>1

φr. (26)
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Let {γ1, . . . , γM} be an orthonormal basis for the space of harmonic (0, 2)-forms
with values in ΘX . Define fk(t) to be the L2-inner product 〈〈{Φ(t),Φ(t)}, γk〉〉.
Kuranishi theory asserts the existence of ǫ > 0 such that

{t ∈ C
N : |t| < ǫ, f1(t) = 0, . . . , fM(t) = 0} (27)

forms a locally complete family of deformations ofX . We shall denote this set by Kur.
For each t ∈ Kur, the associated sum Φ = Φ(t) satisfies the integrability condition

∂Φ+ 1
2
{Φ,Φ} = 0 (28)

that now follows from (25) and the definition of G.
More explicitly, we may treat Φ is a linear map from (0, 1)-vectors to (1, 0)-

vectors. It determines a complex structure on our manifold X whose distribution of
(0,1)-vectors is given by

{

Sj = T j +Φ(T j),

V α = Wα +Φ(Wα).
(29)

This set of equations is analogous to the gauge-theoretic defininition of a connection
as dA = d + A, where A is a matrix of 1-forms. In principal bundle language,
dA determines a horizontal distribution formed from the flat one by adding A as a
vertical component. Then (28) is the analogue of setting the curvature of dA to be
zero, and assures us that the new distribution (29) is closed under Lie bracket.

We are now ready to make precise the first theorem of the Introduction:

Theorem 4. Let G be a 2-step nilpotent Lie group with co-compact subgroup Γ, and
let J be an abelian invariant complex structure on X = Γ\G. Then the deformations
arising from J parameterized by (27) are all invariant complex structures.

Proof: It suffices to show that every term in the power series (26) lies in g∗(0,1) ⊗ g1,0.
We shall prove this by induction. By Theorem 2, φ1 = µ belongs to this space.

Assume that φs ∈ g∗(0,1) ⊗ g1,0 for all 1 6 s 6 r − 1. The computations of §4.2
show that {φs,φr−s} is always contained in

g∗(0,2) ⊗ g1,0 = g∗(0,2) ⊗ g1,0 = Im ∂1 ⊕ Im⊥ ∂1.

Let π0 denote projection to the subspace Im ∂1.
By Theorem 3, the component Im⊥ ∂1 is the harmonic part of H2(X,Θ). Since

(24) satisfies △ ◦ ∂ = ∂ ◦ △, and Im ∂1 is orthogonal to the harmonic part, △ maps
Im ∂1 isomorphically onto itself. It follows that

G{φs,φr−s} = Gπ0{φs,φr−s} ⊆ Im ∂1.

In particular, it is an invariant tensor. Corollary 1 shows that ∂
∗

G{φs,φr−s} is again
an invariant tensor. The same is true of φr. By induction, (26) is an infinite series of
invariant tensors. QED
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5 Deformations leading to abelian structures

In the light of Theorem 4, we are now ready to identify deformations of J leading not
just to invariant complex structures, but to abelian ones.

Given an element µ = µ(t) in the virtual parameter space H1(X,ΘX) as in (23),
we apply the preceding method to generate the infinite series (26), and consider (29).
For the latter to define an abelian complex structure, the Lie bracket of any pair of
(0, 1)-vectors must in fact vanish identically. In this case, we shall say that µ generates
an abelian deformation. Such an assumption leads to the following equations:

[

Sj, Sk

]

= 0, 1 6 j, k 6 n (30)
[

Sj , V α

]

= 0, 1 6 j 6 n, n + 1 6 α 6 n+m (31)
[

V α, V β

]

= 0, n + 1 6 α, β 6 n +m. (32)

Since Wα is in the center,

[V α, V β] = [Φ(W α),Φ(W β)],

and this vanishes since the original complex structure is abelian. Therefore, equation
(32) is satisfied automatically.

Let us examine the infinitesimal consequence of the first two equations. Let t
represent a real variable, and replace µ by tµ so that Φ becomes

∑

trφr. Then in
the notation of (13), equation (30) leads to

0 =
d

dt

∣

∣

∣

t=0

[

Sj, Sk

]

=
[

T j ,φ1T k

]

+
[

φ1T j, T k

]

=
[

T j , µ
i
kTi

]

+
[

µi
jTi, T k

]

= (µi
kE

α
ji − µi

jE
α
ki)Wα + (µi

kF
α
ji − µi

jF
α
ki)Wα. (33)

The coefficient of Wα vanishes when ∂µ = 0, by Lemma 2. Equation (31) leads to

0 =
d

dt

∣

∣

∣

t=0

[

Sj, V α

]

=
[

T j ,φ1Wα

]

=
[

T j, µ
i
αTi

]

= µi
αE

β
jiWβ + µi

αF
β
jiW β. (34)

The coefficient of Wβ is again 0 when µ is ∂-closed.
The above calculations give a set of necessary conditions limiting the type of

deformations that one needs to consider. They motivate

Definition 2. A form µ given in coordinates as in (13) satisfies Condition A if
∑

i

(µi
jF

α
ki − µi

kF
α
ji) = 0 and

∑

i

µi
αF

β
ji = 0,

for each j, k, α, β.
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It is striking that these conditions are completely analogous to those of Lemma 2.
In view of (33) and (34), we can now state

Proposition 1. A parameter µ represents an infinitesimal abelian deformation if
and only if it is ∂-closed and satisfies Condition A.

Next suppose that µ and ν are vector-valued 1-forms that are both ∂-closed and
satisfy Condition A. Since E

α

ij = −F α
ji, every term in (21) is equal to 0. For example,

the first term −µi
jν

ℓ
αE

α

ikω
j ∧ ωk ⊗ Tℓ is equal to

−µi
jν

ℓ
αF

α
kiω

j ∧ ωk ⊗ Tℓ = −νℓα
(

µi
jF

α
ki − µi

kF
α
ji

)

ωj ⊗ ωk ⊗ Tℓ = 0.

and similarly every term in {µ,ν} is equal to zero. In particular, {µ,µ} = 0.
Using the recursive formula (25), the higher order terms are all equal to zero, and

so the series Φ and µ coincide by construction. Furthermore, {Φ,Φ} = {µ,µ} = 0,
and there is no additional obstruction to integrability. Therefore,

Proposition 2. On a 2-step nilmanifold X with abelian complex structure, an ele-
ment in H1(X,ΘX) is infinitesimally abelian only if it is integrable to a 1-parameter
family of abelian complex structures.

Our main result concerning the deformation of abelian complex structures is

Theorem 5. On a 2-step nilmanifold with abelian complex structure, a parameter
µ in g∗(0,1) ⊗ g1,0 generates an abelian deformation if and only if it is ∂-closed and
satisfies Condition A.

Proof: If µ generates an abelian deformation, it is infinitesimally abelian. By Propo-
sition 1, the form is ∂-closed and satisfies Condition A.

Conversely, if Φ is ∂-closed, it represents a cohomology class in H1(X,Θ). Since it
also satisfies Condition A, it is infinitesimally abelian. By Proposition 2, it represents
an integrable abelian complex structure. QED

5.1 Fully abelian deformations

We are curious to know when the entire virtual parameter space H1(X,ΘX) integrates
to abelian complex structures.

Theorem 6. Let X = Γ\G be a compact 2-step nilmanifold endowed with an abelian
complex structure. Suppose that every direction of the virtual parameter space is in-
tegrable to a 1-parameter family of abelian complex structures and that the dimension
of the center of Lie algebra g is equal to 1. Then g is isomorphic to the direct sum of
a Heisenberg algebra and a 1-dimensional abelian algebra.
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Proof: Given the hypothesis on the center, we may as well drop the index α in Eα
ij .

This feature makes the subsequent construction possible.
Given the structural constants, for each set of j, k, l,m, choose an element µ in

g∗(0,1) ⊗ g1,0 by setting µl
k = Ekm and µm

j = Ejl and all other terms are set to zero.
By Lemma 2, each such µ is closed. By equation (23), such µ satisfies the equation
{µ,µ} = 0 and therefore there is no obstruction for it to represent an integrable
complex structure.

By hypothesis, µ represents an abelian complex structure. By Condition A,

EkmElj −EjlEmk = 0.

It follows that |Ekm|
2 = |Emk|

2 for all k and m.
If every Ekm vanishes then the algebra is abelian. On the other hand, if at least

one Ekm is non-zero, then Emk 6= 0. For every Ejl 6= 0, the ratio

Ejl

Elj
=
Ekm

Emk

is independent of the choice of j, l. Hence, there exists a real number θ such that

eiθEjl = Elj, (35)

for every pair of indices (j, l). It follows that

[

T j , Tl
]

= EjlW + FjlW = EjlW − EljW = EjlW − eiθEjlW.

Choosing
Djl = ei(π+θ)/2Ejl, U = e−i(π+θ)/2W

gives
[

T j , Tl
]

= Djl(U + U).

With (35), we find that the matrix (Djl) is skew-Hermitian. If we now choose a basis
of (0, 1)-vectors so that the matrix D is diagonal, the diagonal entries are purely
imaginary or zero. The restriction on the central dimension forces the matrix D to
be a constant multiple of the identity matrix. It follows that the structural equations
exactly mirror those of the Heisenberg algebra as seen in (6). QED

Example 6. There exist examples satisfying the first hypothesis of the theorem, but
not the second. To see this, take g to be the real 8-dimensional Lie algebra with
non-zero complex structural equations

[

T 1, T1
]

=W3 +W 3,
[

T 2, T2
]

= W4 +W 4,
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and real 4-dimensional center. By Lemma 2, µ2
1 = µ1

2 = 0, and µh
α = 0 for 1 6 h 6 2

and 3 6 α 6 4. It follows that

H1(X,ΘX) = 〈ω1 ⊗ T1, ω
2 ⊗ T2, ω

1 ⊗W4, ω
2 ⊗W3〉,

and one may check that each direction is integrable to abelian complex structures.
Globally, the associated compact complex manifold is the product of two primary
Kodaira surfaces.

6 Six-dimensional structures

In dimension 6, there are precisely six classes of 2-step groups or nilmanifolds with an
abelian complex structure [14]. Namely, the abelian group R6, the product H5×R

1 of
a 5-dimensional Heisenberg group with a 1-dimensional group, the product H3×R

3 of
the 3-dimensional Heisenberg group with a 3-dimensional abelian group, the product
H3 ×H3 of two 3-dimensional Heisenberg groups, and the groups P6 and W6. These
were encountered in §2.1.

We shall use Example 4 to illustrate that results in this article produce adequate
information for finding the parameters for integrable and abelian deformations. Using
(10), consider the basis

T1 = X1 − iX2, T2 = X3 + iX4, W = Z5 + iZ6

of g1,0; the corresponding basis for g∗(0,1) is {ω1, ω2, ω}. The structural equations yield

[T 1, T2] = −W,

so that
E12 = −1, F21 = 1,

and all other structural constants are equal to zero. In particular,

dω = ω1 ∧ ω2, ιT1
dω = ω2, ιT2

dω = 0. (36)

Mimicking the proof of Lemma 2, any element µ ∈ g∗(0,1) ⊗ g1,0 can be written as

Φ = µi
jω

j ⊗ Ti + µi
3ω ⊗ Ti + µ3

jω
j ⊗W + µ3

3ω ⊗W,

and
∂µ = µ2

2ω
2 ∧ ω1 ⊗W + µ2

3ω ∧ ω1 ⊗W. (37)

This shows that µ is closed if and only if µ2
2 = µ2

3 = 0. Since ∂T2 = −ω1 ⊗W , the
space of harmonic elements is in the orthogonal complement of ω1 ⊗W . Therefore,

dimH1(X,ΘX) = dim{µ2
2 = µ2

3 = µ3
1 = 0} = 6.
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Using Definition 2, we see immediately that µ satisfies Condition A if and only if

µ1
1 = µ1

3 = 0. (38)

The number of parameters corresponding to abelian deformations is therefore 4.
Alternatively, we can count the number of integrable parameters, disregarding the

abelian issue. To do so, we employ the recursive formula from §4.3, and first calculate
the self-bracket of a harmonic representative µ. Using (36),(16), (19), we deduce that

{µ,µ}= {µ1
1ω

1 ⊗ T1 + µ1
3ω ⊗ T1 + µ3

3ω ⊗W, µ1
1ω

1 ⊗ T1 + µ1
3ω ⊗ T1 + µ3

3ω ⊗W}

= µ1
3(2µ

1
1ω

1 ∧ ω2 ⊗ T1+µ
1
3ω ∧ ω2 ⊗ T1+2µ3

3ω ∧ ω2 ⊗W )−2µ1
1µ

3
3∂(ω

2 ⊗ T2).

Using (25), we take
φ2 = µ1

1µ
3
3ω

2 ⊗ T2.

This quadratic correction term exactly corresponds to the equation d = −av in [8,
Proposition 4.2].

If we set Φ = µ+ φ2, then (28) becomes

µ1
3(2µ

1
1ω

1 ∧ ω2 ⊗ T1 + µ1
3ω ∧ ω2 ⊗ T1 + 2µ3

3ω ∧ ω2 ⊗W ) = 0.

The resulting deformation is therefore integrable if and only if µ1
3 = 0, so there is

a total of 5 integrable parameters. As predicted by Thereom 5, the obstruction µ1
3

already features in the abelian equations (38).
Let g denote a real 6-dimensional nilpotent Lie algebra admitting a complex struc-

ture. The table in [14, Appendix] displays, for each such g, the complex dimension
of the space C(g) of invariant complex structures at a smooth point of one of its con-
nected component. This was done with little regard for when complex structures are
equivalent, in the knowledge that subsequent work would clarify the findings. The
following table compares these computations with results yielded by the techniques
of this paper.

The last five columns display the complex dimension

(i) d of C(g),

(ii) h0 of the space dimH0(X,ΘX) of infinitesimal automorphisms,

(iii) h1 of the virtual parameter space H1(X,ΘX),

(iv) of the space Kur of (27), or the number of integrable parameters,

(v) of the subspace Abel of Kur describing abelian deformations.

relative to the complex structures defined by (5),(7),(8),(10),(11), for each of the last
five rows in turn.
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d h0 h1 dimKur dimAbel

T 6 9 3 9 9 9

(Γ\H5)× S1 6 1 4 4 4

(Γ\H3)× T 3 7 2 6 6 6

(Γ\H3)×(Γ\H3) 6 1 4 4 3

Γ\W6 6 2 6 5 4

Γ\P6 6 1 4 4 3

Table

If J is an invariant complex structure with unobstructed deformations on a nil-
manifold, C(g) has the same dimension as the kernel of

∂ : g∗(0,1) ⊗ g1,0 → g∗(0,2) ⊗ g1,0,

whereas dimKur = h1. Since the dimension of the image ∂(g∗(0,0)⊗g1,0) equals 3−h0,
we deduce further that

d = 3− h0 + h1

if J is a generic point of C(g).
At points of C(g) where h0 jumps to a higher value, the Kuranishi method is unable

to detect the additional equivalences that come into play at neighbouring points where
the symmetry group drops. Consequently, we can only assert that d + h0 − 3 is an
upper bound for dimKur. In the Table, these two numbers only disagree for W6, and
this is because J1 was ‘too’ special a choice at which to carry out the computations.
If we work instead at a nearby point J ′ corresponding to µ3

3 6= 0, then h0 = 1 and the
dimensions of Kur and Abel drop to 4 and 3. This is because the orbit J ′ ·W6 under
right translation by the group has dimension 2, whereas dim(J ·W6) = 1.

A more extreme example, not tabulated, is that of the non-abelian complex struc-
ture J0 on Γ\W6 for which h0 = 3, h1 = d = dimKur = 6 and dimAbel = 0 [12, 14].

6.1 Final examples

In general, information onH1 and abelian deformations can be extracted algebraically
using Lemmas 2 and Lemma 2. The computation of Kur is more challenging, though
it is useful to realize that every parameter is integrable when h1 = dimAbel.

In our last two examples, the first applies the theory of §4.3, whereas the second
replies on this theory to pass directly to a calculation with invariant differential forms.
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Example 7. For (Γ\H3)× (Γ\H3) (see Example 3), we may take

T1 =
1
2
(X1 − iY1), T2 =

1
2
(X2 − iY2), W = 1

2
(Z1 − iZ2).

The associated complex structural equations are

[T 1, T1] = −1
2
i(W +W ), [T 2, T2] =

1
2
(W −W ).

In terms of the dual basis {ωi}, any harmonic representative of H1 is a linear combi-
nation of

ω1 ⊗ T1, ω2 ⊗ T2, ω ⊗W, ω1 ⊗ T2 + iω2 ⊗ T1.

If
µ = µ1

1ω
1 ⊗ T1 + µ2

2ω
2 ⊗ T2 + µ3

3ω ⊗W + µ2
1(ω

1 ⊗ T2 + iω2 ⊗ T1),

we obtain
Φ = µ− µ3

3µ
2
1(ω

1 ⊗ T2 − iω2 ⊗ T1).

Then (29) defines an integrable complex structure.

Example 8. The complex structural equations corresponding to Example 5 can be
written in the form dω1 = 0 = dω2 and

2dω3 = iω1 ∧ ω1 + ω1 ∧ ω2 − ω1 ∧ ω2 = iω11 + ω12 − ω12,

in which the last expression is an abbreviation of the middle one. By [8, Theorem 1.1],
any invariant complex structure J ′ sufficiently near to J has a basis of (1, 0) forms
that can be written







α1 = ω1 + Φ1
1ω

1 + Φ1
2ω

2

α2 = ω2 + Φ2
1ω

1 + Φ2
2ω

2

α3 = ω3 + Φ3
1ω

1 + Φ3
2ω

2 + Φ3
3ω

3.
(39)

This is a dual version of (29), and the integrabilty condition (28) amounts to the
assertion that (dα3)0,2 = 0, or equivalently

0 = 2dα3 ∧ α1 ∧ α2

= [(iω11 + ω12 − ω12) + Φ3
3(iω

11 − ω12 + ω12)] ∧ [−Φ1
2ω

22 + Φ2
2ω

12 + Φ1
1ω

12]

= [− iΦ1
2(1 + Φ3

3) + (1− Φ3
3)(Φ

1
1 − Φ2

2)]ω
1122.

Thus, (39) defines an integrable complex structure on condition that

i(1 + Φ3
3)Φ

1
2 = (1− Φ3

3)(Φ
1
1 − Φ2

2),

and the coefficients in (39) are sufficiently small (in particular, |Φ3
3| < 1).
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In this case, the Kuranishi series (26) is infinite, as it is not possible to express one
coefficient as a polynomial in the others. The term Φ3

1ω
1 + Φ3

2ω
2 can be reduced to

zero by a suitable right translation of J , and therefore plays no role in the equivalence
problem. It follows that dimKur = 4. The abelian condition

dα3 ∧ α1 ∧ α2 = 0

can be worked out in the same way, and forces Φ1
2 = 0 and Φ1

1 = Φ2
2, so dimAbel = 3.

The Table and examples allow us to infer that:

(i) It is possible that every direction in the virtual parameter space is integrable but
only some are tangent to abelian deformation. This occurs for (Γ\H3)× (Γ\H3)
and Γ\P6.

(ii) It is also possible that some directions are obstructed, irrespective of the abelian
condition. An example is Γ\W6. This phenomenon was described in [14, Lemma
4.3], and contrasts with the unobstructed deformation theory for (Γ\W6, J0).

(iii) The centers of T 6 and (Γ\H3) × T 3 certainly have dimension greater than 1,
and these examples do not therefore contradict Theorem 6.

All these observations demonstrate the subtle dependence of dimKur and dimAbel
on the underlying algebraic structure of the group G.

The techniques of this paper can in theory be applied to study deformations of
the compact quotients of the six series of 2-step nilmanifolds with abelian complex
structures in any complex dimension.

Other work of the authors shows that in many cases an explicit description of
Kur, and indeed a global moduli space, is possible [7, 10]. It is also realistic to seek
to describe the quotient of the space C(g) by the group of Aut(g) of Lie algebra
automorphisms of g, at least near a generic point of C(g). In this case, in the W6

example, C(g)/Aut(g) is locally isomorphic to the quotient of Kur by the group of
outer automorphisms of g [5, §5].
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