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Abstract. It is proved that if the twistor space of a self-dual four-manifold

of positive scalar curvature contains a real effective divisor of degree two, then

the four-manifold is difFeomorphic to the connected sum nCP2 of n complex

projective planes for some n . It follows that if the four-manifold is known to

be homeomorphic to 4CP2 , then it is also difFeomorphic to 4CP2 .

1. Introduction.

It was proved by Donaldson and Friedman [2] and independently by Floer

[3] that on the connected sums nCP2 of n complex projective planes there is

a self-dual conformai class. Their existence theorem is nicely complemented

by LeBrun's explicit construction [6]. However, LeBrun's conformai classes on

nCP2 are so special that their associated twistor spaces have algebraic dimen-

sion three. In other words, the twistor spaces are Moishezon.
On the other hand, Campana showed [1] that if the twistor space Z of a

self-dual conformai class on a compact manifold X is Moishezon, then X is

homeomorphic to nCP2 for some n . Therefore, the natural question is

Question 1. Is X necessarily diffeomorphic to nCP2 ?

Note that when Z is Moishezon, the conformai class of X contains a metric
of positive constant scalar curvature [9]. Hence we ask

Question 2. Suppose that X is a smooth manifold homeomorphic to nCP2.

If X admits a self-dual metric of positive constant scalar curvature, is X dif-
feomorphic to nCP2 ?

An affirmative answer to Question 2 will imply an affirmative answer to Ques-

tion 1. Due to the work in [8] and [10], when n = 0, 1,2, and 3, the answer to

Question 2 is indeed affirmative. One way to prove this result is to find an effec-

tive elementary divisor in the twistor space. Then the restriction of the twistor

fibration to this divisor will exhibit the differentiable structure on X [10]. By

definition, an elementary divisor is a divisor whose intersection number with
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a real twistor line is equal to one. On a Moishezon space, there are plenty
of effective divisors. Therefore, instead of considering elementary divisors, we

may consider the case when there are real effective divisors whose intersection

number with any real twistor line is equal to two. In the subsequent discussion,

by the degree of a divisor in a twistor space, we mean the intersection number

of the divisor with any twistor line.

Theorem 1. Suppose X is a simply connected self-dual manifold of positive scalar

curvature. If the twistor space Z admits a real effective divisor of degree two,

then X is diffeomorphic to nCP2 for some n .

This theorem has the following immediate consequence.

Theorem 2. Suppose X is homeomorphic to 4CP2. If X is a self-dual manifold

of positive scalar curvature, then X is diffeomorphic to 4CP2.

Remark. Note that the geometric constraints on X in Theorem 1 impose topo-
logical constraints on X, namely, the intersection form being positive definite.

Due to Donaldson and Freedman's work, with the simply connectivity, X is

homeomorphic to nCP2.

2. Degree two divisors

The twistor space Z of a Riemannian four-manifold X is the total space

of the bundle of anti-self-dual 2-forms of unit length. The fibration p from

Z onto X is called the twistor fibration. The fibrewise antipodal map o is

called the real structure. When the conformai class on X is self-dual, Z has a
natural complex structure such that a is antiholomorphic and that the fibres of

the twistor fibration are holomorphic rational curves in the complex manifold
Z . These rational curves are called the real twistor lines. The normal bundle

of any real twistor line is isomorphic to H © H, where H is the degree-one line

bundle on CPX.
On the twistor space Z , there is a naturally defined holomorphic line bundle

K-'/2 on Z such that (K"1/2)2 = K~> . We shall call K"1/2 the fundamental

line bundle and the corresponding complete linear system the fundamental sys-

tem. Since the fundamental line bundle is real, in the sense that the pull-back

of K~xl2 by the real structure is conjugate linearly isomorphic to K-1/2, the

fundamental system is real, and when it is nonempty, it contains real elements.

Lemma 2.1. Let S be an effective degree-two divisor. If S is real and irreducible,

then it is nonsingular.

Proof. Due to the reality of 5, it was proved in [5] that if 5 is singular at
one point z in the twistor space, it is singular along the real twistor line L

through z . Also due to the reality and the assumption that S is a degree-two

divisor, there is a real line bundle F of vanishing real Chern class such that the

associated line bundle of S is K_1|/2F. Therefore, the section s with 5 as its

zero divisor is an element of

H°iZ, J^K-'^F)),

where ^ is the ideal sheaf of the twistor line L in the twistor space. Since

the only section of K~'/2F vanishing along L to order three is the zero section

[5], the restriction map r :

r : H°(Z , Jr2(K-'/2F)) --> H°(L, cf(YTxl2Y ® S2W))
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is an injection, where N is the normal bundle of the twistor line L in the

twistor space.

By the construction of twistor spaces [5], it is known that

N*H®(V+)X,

where (\+)x is the fibre of the locally defined positive spinors on the manifold

X at the point x = p(z). While the restriction of the fundamental bundle

K-1/2 onto any twistor line is the bundle H2 and the bundle F is trivial on
any real twistor line,

H°(L,cf(K-x/2F®S2N*))

is naturally identified as the vector space S2(V+)X . Therefore, the section 5 is

uniquely determined by r(s) as a quadratic polynomial on (V+)x. Then the

divisor S is uniquely determined by the zeros of this quadratic polynomial

r(s). Since S is real, the zeros of r(s) form a conjugate pair.

On the other hand, in order to resolve the singularity of S along L, we blow

up the twistor space Z along L. Then the exceptional divisor of the blowing

up is the projectivized normal bundle over L, so it is a quadric Q naturally
identified with L x P((V+)X). Since L is the projectivized negative spinors

over x, i.e., 7°((F_)X), the real structure on Z extends over the blow-up space

Z , so the induced real structure on

LxPiiV+)x)~PiiV-)x)xPiiV+)x)

is the antipodal map on each factor of this product. Since s vanishes along L

to order two, the proper transform S of S will intersect the exceptional quadric

Q. As S is uniquely determined by a conjugate pair u and ü of zeros of r(s)

on (V+)x , S intersects Q along a conjugate pair of curves, namely

C := P((V-)X x u   and   C := P((K_)X) x 8.

In particular, the singularity of S along L is completely resolved by blowing
up L. Since real twistor lines are mutually disjoint and S can only be singular

along finitely many real twistor lines, after blowing up finitely many real twistor

lines on the twistor space, the proper transform of S to S is a nonsingular

irreducible surface.

To calculate the self-intersection number of C on the smooth surface S, we
may assume that S contains only one twistor line as its singularity. In this case,

S is a member of the system \—\K + F - 2Q\. By the adjunction formula,

-K§ = -Kt -S = -K-Q+\K-F + 2Q = -\K - F + Q.

Therefore, the self-intersection number on S is

C2= -2-K§-C = -2-\K-C-F-C + Q-C

= -2-\K-L-F-L + Q-C =-2+ 2-0+1 = 1.

Since C is a curve with positive self-intersection number on S, S is necessarily
a projective algebraic surface. On the other hand, by reality, C is a curve on

S, which has all the features of C. In particular, C2 = 1. Yet, since C and C
are two generators of the same family on the exceptional quadric Q, they are

disjoint on S. This is a contradiction to the Hodge index theorem stating that
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irreducible curves with positive self-intersection on projective algebraic surfaces

must intersect. Therefore, S is nonsingular.     D

3. Proof of the theorems

To prove Theorem 1, we assume there is a real degree two effective divisor

S in Z . Due to Lemma 2.1, if S is singular, it is reducible to the sum of a

conjugate pair of effective elementary divisors D and D [9]. By [Lemma 1.10,
9], D contains a unique real twistor line L such that the associated map of

the complete liner system \L\ on D exhibits D as a blow up of Ct?2 n times
such that L is linearly equivalent to the proper transform of the hyperplane

class on CP2 . Let W be a differentiable chart on X with piL) as center

and U = p~x(W). Then U intersects D along a tubular neighborhood of

L in D. We can choose W so small that the intersection U C\D does not

meet any exceptional divisors of the blow up from CP2 to D. Then D \ U is

diffeomorphic to R4 # nCP2. Since the associated bundle of D has degree one

on any real twistor line, D intersects any real twistor line transversely at one

point except when the twistor line is the unique L contained in D. Therefore,

the twistor fibration p is a diffeomorphism from D\U to X \ W. Hence,
X is diffeomorphic to S4 # nCP2, which is «CP2. This is a result already

observed in [7] and [10].
What we need to study next is the case when all the real degree-two effective

divisors are irreducible. By Lemma 2.1, they are actually nonsingular. Given

the assumptions on X, it is not hard to repeat the arguments in [5] to show

that when S is a nonsingular irreducible element of the fundamental system,

S is the blow-up of a rational ruled surface 2n times, such that S contains a

real twistor line as an irreducible fibre of the ruling.

To describe the structure of S in details we recall that S is real, and hence
the anticanonical bundle K^1 of S is real. Since the intersection number on

5 of -Ks with any exceptional divisor of the blowing up is equal to one, none

of the exceptional divisors is real. If E is the last exceptional divisor of the

blowing up, it is an irreducible (-l)-curve. Its conjugate E is also an irre-

ducible (-l)-curve. As S is a blow-up of a rational surface, E can be realized

as an irreducible component of a reducible fibre of the ruling. By the reality of

the fibre which is also a real twistor line, E is also a component of a reducible

fibre. Since different components of reducible fibres can intersect at most one

point and the intersection number of E and E is even, E is disjoint from E .

Therefore, this pair of (-l)-curves can be blown down simultaneously. The

resulting surface inherits a real structure without real points. This process of

blowing down a conjugate pair of mutually disjoint exceptional divisors can be

carried on until S is blown down to a real minimal surface Q.
By construction, Q is a ruled surface; its infinity section is the unique ra-

tional curve with negative self-intersection. Since the infinity section intersects

a generic fibre once, it is not real. Therefore, the existence of a real structure

on Q implies that Q is a quadric surface. To recognize the real structure on

Q, recall that there is a real twistor line L on S as an irreducible fibre of the

ruling. Therefore, Q is naturally isomorphic to

C x L := F(H°(S, cf(L)y) x L.
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The real structure on H°(S, tf(L)) is the complex conjugation. The real struc-

ture on C x L is the complex conjugation on C and the antipodal map on
L.

The above description shows clearly that there is an S'-family of real twistor

lines on the surface S. They are parametrized by an equator of the Riemann
sphere C. Removing all these real twistor lines on S, we have an open subman-

ifold So as an unbranched double covering of X with a copy of an embedded

S1 removed. This is an unbranched double covering because, by the reality
of S, when a real twistor line is not contained in the complex surface S, it
intersects S transversely at a conjugate pair of points.

On the other hand, as S is the blow-up of CxL 2n times and real twistor

lines do not pass through any points of blowing up, S0 is diffeomorphic to the
disjoint union

[(#+ x s2) ]J(zr x S2)] # 2«CP2,

where D+ and D~ are the upper and lower hemispheres of the Riemann sphere

C with respect to the equator which parametrizes real twistor lines in S. As

So is a double covering of X\SX, this is possible only when one deck of the
covering is (D+ x S2) # nCP2 and the other deck is (D~ x S2) # «CP2, i.e.,
X \ Sx is diffeomorphic, via the twistor fibration, to (Z>+ x S2) # «CP2 and
(Z>- x S2) # «CP2 .

On the other hand, when S is blown down to CP1 x CP1, So is blown
down to (Z)+ x S2) HiD~ x S2). This is a double covering of S4 with a circle

removed. The blow-down of S is identical to CP1 x CP1 as a real fundamental

divisor of the twistor space CP3, and the restriction of the twistor fibration to
CP1 x CP1 gives a smooth compactification of a deck, say D+ x S2 , by a circle
to 54. Thus X is smoothly compactified by a circle to S4 # «CP2 , i.e., «CP2 .
Our proof of Theorem 1 is complete.

Finally, when X is homeomorphic to 4CP2, the topological data on Z,
such as the Chern numbers, are available [5]

c\ = 0,        cxc2 = 24,        c-i = 12.

By the Riemann-Roch formula,

/(Z,K-'/2) = 2.

Since K ® K1/2 is a bundle of negative degree on any real twistor line, its only

section over the twistor space is zero. By Serre duality, on any twistor space,

«3(Z, K-1/2) = 0. When the self-dual conformai class contains a metric of
positive scalar curvature, Hitchin's vanishing theorem [4], together with Serre
duality, implies that «2(Z, ¥rxl2) = 0. Therefore,

«°(Z,K-1/2)-«1(Z,K-1/2) = 2.

In particular, the fundamental system | - jÄj is at least as big as a pencil.

Therefore, Theorem 2 is a direct consequence of Theorem 1 and the existence
of effective degree two divisors.
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