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The concept of a self-dual connection on a four-dimensional Riemannian manifold is 
generalized to the 4n-dimensional case of any quaternionic KHhler manifold. The generalized 
self-dual connections are minima of a modified Yang-Mills functional. It is shown that our 
definitions give a correct framework for a mapping theory of quaternionic Kahler manifolds. 
The mapping theory is closely related to the construction of Yang-Mills fields on such 
manifolds. Some monopole-like equations are discussed. 

1. INTRODUCTION 

A quaternionic Kahler manifold is a Riemannian mani- 
fold whose holonomy group can be reduced to a subgroup of 
Sp(n)*Sp(l), n> 1. ‘J By definition, such manifold has di- 
mension 4n. As demonstrated by Salamon,2*3 it can be also 
viewed as a higher-dimensional analogy of the anti-self-dual 
Einstein four-manifold. The bundle of two-forms on a qua- 
ternionic Kahler manifold M has the following irreducible 
decomposition as representation of Sp( n) *Sp ( 1) : 

A2T*M=S2H@S2E$ (S2WfBS2E)‘, (1.1) 
where I-I and E are vector bundles associated to the standard 
representations of Sp( n) and Sp( 1 ), respectively. This de- 
composition resembles the decomposition of A’T*M into 
the direct sum of self-dual and anti-self-dual two-forms 
when M is four dimensional. Just as in the four-dimensional 
case we are able to interpret the decomposition ( 1.1) in 
terms of the Hodge *-operator. 

If the curvature of a connection V is in either the S ‘W or 
the S ‘E part of ( 1.1) then V is a minimum of the Yang-Mills 
functional and if the curvature is in the orthogonal comple- 
ment of S ‘Bi @  S ‘E then V is most likely a saddle point. We 
have found that the Yang-Mills functional can be modified 
so that whenever the curvature of V is in one and only one 
component of ( 1.1) the connection is its minimum. 

We demonstrate that our definitions are compatible 
with the description of Yang-Mills fields on four-manifolds 
and that they give a correct framework for mapping theory 
of quaternionic Kahler manifolds. On the other hand, when 
the energy functional is interpreted as a classical Lagran- 
gian, our quaternionic mapping theory yields many new ex- 
amples of quantum field theories with SU( 2) [or SO(3)] 
gauge symmetry and composite gauge fields: four-dimen- 
sional sigma models. We show that some fundamental prop- 
erties of the well-known four-dimensional a-models on the 
quaternionic projective spaces are shared by such models on 
arbitrary quaternionic KPhler manifolds. Finally, we dem- 
onstrate that our formalism provides a global picture for the 
generalized monopole equation of Pedersen and Poon.4 
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II. DUALITY 

Let Mbe a 4n-dimensional Riemannian manifold whose 
holonomy group is contained in Sp( n ) .Sp( 1) C SO( 4n ) . 
Then the cotangent bundle of M can be identified with 

T*M= EelHI, 

where E and W are the standard representations of Sp(n) 
and Sp( 1 ), respectively. Then S 2W is a real rank 3 subbundle 
of End TM. Locally, at each x&f, S’W has a basis {I,J,K} 
satisfying 

12=J2= -& IJ= -JJI=K. (2.1) 
The metric g on M is compatible with the bundle S 2W in the 
sense that for each A& ‘II,, g is Hermitian with respect to A, 
i.e., g(AX,A Y) = g(X, Y) for all X, YET,M. One can use the 
metric to define an isomorphism 

End TM=T**M@ T*M 

under which S *II is isometrically embedded in A’T *M. Ex- 
plicitly, any element AGS’ 2W, is mapped into w, by 

Let {w,,w2,w3} be a local orthogonal frame of 
S ‘II C A2T *M. For convenience of further computations let 
us normalize {u,,w2,w3) to have length 2n and then define 

n=w, Aw, +w, Aw, 4-q Aw,. (2.2) 
This a is a globally defined, nondegenerate four-form on M 
and it is parallel. It is usually called the fundamental four- 
form or the quaternionic structure on M as its parallelism 
determines reduction of the structure group on M. The con- 
dition VSZ = 0 can be used to define quaternionic Kahler 
geometry in dimension bigger than 4. In dimension 4 we 
shall say that M is quaternionic Klhler if it is self-dual and 
Einstein. The parallelism of R immediately implies that 
&I = 0. Recently, Swarm’ showed that the converse is also 
true provided dim M) 12. 

Pointwisely, Sz can be described as follows. At any point 
xdM, TZM = E, o II,, where E, is the 2n-dimensional 
complex representation of Sp( n ) and W, is the two-dimen- 
sional complex representation of Sp( 1). Let wE and wH be 
the symplectic forms on E, and III,, respectively, and j, and 
j the quaternionic structures. Then the metric g on T,*M 
can be expressed as 
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g = WE @W,,. (2.3) 

Let CeJ, jae’: j = 1 ,...,n} be a symplectic basis on lE, and 
{hjh) a symplectic basis on W, . We define 

w/,+(l/fi)(eJe9h+j,e’ejh), 

w{ &(i/@)(eleh -j,ejejh), 

w/2&(1/$)( j,ejeh -ejsjh), (2.4) 

o/l~(i/JZ)(j,eJ~h+eL,ijh). 
Now{wj,,w<,wI,,w<3,j= 1 ,...,n) forms an orthonormal ba- 
sis on T:M. Let 

w,$ (wi,Aw{ +w<Aw{), 
/= 1 

w,& (w$Aw/; - 0’; Aw$), 
/=I 

” 

V=c (w$AwJ, +w’, Au<). 
/= I 

(2.5) 

Then {w,,wZ,w3} forms an orthogonal basis on S2HX. We 
shall choose R as in (2.2). The orthogonal basis for S ‘E, 
can be written as 

2#e(w; ACIJ~> + co; Aw; ) + (w; A\wi + w; Am/;), 

l<i<j<n, 

Eye(w;,Vw: -w;Aw;)+(w~Aw; -w”;Aw;,, 

1 giQj<n, 
2~~(w:,Aw~ +w; Awf3) + (w:,Aw: +w< Ati;), 

1 (iq’j<n, 
Zt:&(w:,Aw<, -w; Aw/,) + (wJ,Aw; -w{ Ao;), 

1 <iCj<n. (2.6) 
Here, Z;{ give n(n - 1)/2 basis elements and 22, A = 1,2,3, 
give n (n + 1)/2 basis elements, respectively. One can easily 
check that 

vol(M) = [ 1/(2n + l)!]nn (2.7) 
vol(M) = [ 1/12n(2n + l)]flA**n, (2.8) 

where vol (M) is the volume form of Mand “*” is the Hodge 
*-operator. As a consequence we have 

*R = [6/(2n - l)!]fl”+‘. (2.9) 
Note that all these equations are valid even when n is equal to 
1. 

Definition 2. I: A two-form w on M  is c-self dual if 

*w=cwAW-‘. (2.10) 
When n = 1 then c2 = 1, because *’ = 1, and the above 

equation is reduced to the conformally invariant self-dual or 
anti-self-dual equations on a four-dimensional oriented Rie- 
mannian manifold. Notice that the above definition depends 
on the choice of both the fundamental four-form fi and the 
constant c. In dimension higher than 4, as we shall now see, 
there are three different constants c that give nontrivial solu- 
tions to (2.10). Similar equations were studied in Ref. 6. 

Theorem 2.2: Let w be a nonzero c-self-dual two-form. 
Then c = c,, i = 1,2,3, where 
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6n -1 
“= (2n+l)!’ “= (2n-l)!’ 

3 
c3 = (2n - l)! ’ 

Moreover, when c = c, then wcS2H, when c = c2 then 
WES*J!Z, and when c = cj then w is in the orthogonal comple- 
mentofS’He,S21EinA2T*M. 

Proofi As the basis for S ‘H is given in (2.5) and the basis 
forS ‘E in (2.6) the proof is an easy exercise in linear algebra. 
Therefore, we only spell out the constraints on the coeffi- 
cients of the two-form w. Using the orthonormal basis 
(w$,wJ,,w/;,w/;:j= l,...,n} any two-form w can be written 
as 

cd=~wi I.j.U .B I,,(; ) wL Aw $+ 
Then *w = c, w A R” - ’ if and only if 

“LK1= “w = “id(:) = “W )~ 
“cJ(1) = - “(x;) = “w = - “(:)(:I 
“txi = “We = “1X) = “(X:). (2.12) 

for all ij 

u(~)(~) = “(;j(;j = y)(;) = “(;)(;, = 0 ‘tlfj, (2.13) 

and 

vi#j va&. (2.14) 

Similarly, *w = cIw A Q2” - ’ if and only if 

1’ “(Xl = “ix:1 “Lx:) = -“GE 
“(;)(g = --w ; ; 

“(‘I( 1 u:);’ I I= f-t ‘2 
q)(]) = $& 

> Vi,.i, 
~iJ,a,P, 

Finally, *w = cJw A 0” - ’ if and only if 

,$, “(J (‘y = $, “(J(;) = $, “(g(;) = Op 

(2.15) 

a$oU(i)(j)zo ffi,j, 

u a 

w(~~(~) + yj(;) = y)(:f fy~(;) W) (2.16) 

“f@ (2j) f “f@ fz’) = - (“(f)(f) -I- “(3 (i)) vu, 
yl(I) f y)(i) = y)(;) + yjcl) vu. w 

Definition 2.3: Let P be a principal bundle on M  with 
connection V. This connection is c-self-dual if its curvature 
two-form is c-self-dual. 

De$ktion 2.4: For any real constant c, a generalized 
“Yang-Mills” functional on the space of connections on Pis 
defined by 
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YM, (V) &$ 
s 

M [IlFll’ +cZ~IFA~2”-‘(J*lvol(~), 
(2.17) 

where F is the curvature of the connection. 
YM, (V) has the following Euler-Lagrange equations 

d*F+c’(d*( F/If-V’-‘))AW-’ =O. (2.18) 

Notice that 

O<ll*F- cFAR”- ‘/I2 
= ll*Fl12 - 2(*F,cFAW-‘) + c21jFAW- ‘11’ 

= llFl12 - 2c(trFAF) An”-’ + c211FARH-‘lj2 

= llFl12 - 16&p,(P) AR”-’ +c~~~FACV-‘\~~ 
or 

c(87j!)p, (PI Ail”-‘c$[llFII” + c211FAW-‘II’l, 
where p, (P) is the first Pontrjagin class of the bundle P on 
M. Hence, after integrating over M, we get 

897% PI (PI AR-’ vol(M)(YM,(v). (2.19) 

The equality holds if and only if 

*F= cFAR”-‘, or 

i.e., if F is c-self-dual. In such case we shall call the connec- 
tion V itself a c-self-dual-connection. Asp, (P) is a topologi- 
cal invariant of the bundle P, we define 

2YM(V) =c,Q(P) +JM((l -2) llF,II’ 

+ (1 -:) llF,IIZ)vol(M) 
p,(P)AR”-‘vol(M) (2.20) 

and call it a topological charge of the bundle P. We have just 
demonstrated the following proposition. 

Proposition 2.5: Any c-self-dual connection is minimum 
of the Yang-Mills energy functional YM, (V). 

The following result is due to Ref. 7. 
Proposition 2.6: Any c-self-dual connection is an extre- 

mum of the Yang-Mills energy functional YM(V). More- 
over, c,- and c,-self-dual connections are minimizing. 

Proofi Suppose V is a c-self-dual connection. Then 

d*F=cd* (FACl”-‘) =0 
as dF = dfl = 0. Hence, d *F = 0 or V is a Yang-Mills con- 
nection. 

Let us write F (V)&\‘T*Mas 

F(V) = F, i-F2 +F,, 
where F,ES’H, F+S%, and F,E(S~W~S~IE)~. Then 

YM(V) = 1 
s 

(IIF, II* + IIF2 II2 + llF3 l12)vol(M) 
M 

because ( 1.1) is an orthogonal decomposition with respect 
to the usual norm II*II on A*T *M. Notice that the topological 
charge of P can be written in terms of the components of 
F(V): 

Q(P) = Mtr( FAF) All”-’ vol(M) 
s 

= 
SC 

M $ II4 II2 + ; IIF2 II2 
I 

+ $ IIFs II2 
> 

vol(M). 

Hence, we can write YM(V) as 

2YM(V) =c,Q(P) +JM((l -;) l lF211’ 

+(I -:) llF,~l*)vcW) 

(2.21) 

+ (1 - ~)llF~l12)WM~ 

=czQ(P) +JM((l +y) llF,l12 

+ 4 IlFj ))2)vol(Mh (2.22) 

=c~Q(p) + ,(‘-2n) llF,l12 
I 

+ 41jF2 I12)vol(M). (2.23) 

It follows now from (2.21), (2.22), and Theorem 2.2 that c,- 
and c,-self-dual connections are minima of YM( V). w 

We do not know of any examples of c,-self-dual connec- 
tions but (2.23) seems to indicate that, if they exist, they will 
be unstable. 

III. QUATERNIONIC MAPS AND SIGMA MODELS 

In this chapter we introduce a new concept of quater- 
nionic maps. We shall do it in such a way that it generalizes 
the theory of holomorphic mappings between Klhler mani- 
folds. On the other hand we shall see that it is also very 
natural in studying instantons on four-manifolds and four- 
dimensional o-models with composite SU(2) [or SO( 3) ] 
gauge fields and Yang-Mills fields on quaternionic KChler 
manifolds. 

It is well-known that, if one defines a quaternionic 
KLhler submanifold to be a submanifold with a quaternionic 
structure given by restriction, then it is automatically a total- 
ly geodesic submanifold. We shall therefore not insist that 
the whole quaternionic structure be preserved by such map- 
pings. Instead we adopt a weaker definition. 

Dejfnition 3. I: Let M, N be quaternionic Klhler mani- 
folds. A map f from M to N is called quaternionic if 
f *s2wN cs2w,. 

The following theorem is in an obvious analogy to the 
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well-known result stating that holomorphic maps between 
Kahler manifolds are energy minimizing. 

Theorem 3.2: On the space of diffferentiable mappings 
between two compact oriented quaternionic Kahler mani- 
folds, M and N define the following functional: 

E(f)+ ,$, J- (llf*%tl’ I 
+ c”}[ f *wi AR” - ‘I[‘)vol(M), (3.1) 

where c = c, = 6m/( 2m + 1 )!, 4m = dim M, and 

Q (j-1 *s,f *RN Ail;- ‘. (3.2) 

Then cQ( f ) <E( f ) and the equality holds if and only if the 
map f is quaternionic. 

Proof: Let fiM, flN be the fundamental four-forms on M 
and N, respectively. Once they are fixed Q( f ) is a homotopy 
invariant. As usual, weshall call it the degreeor the topoIogi- 
cal charge of f: 

Let {o,,wZ,w3} be a local orthogonal frame on S2H, 
such that 

O,., = wI Ao, + w2 Aw, + co3 Au,. 
We have to show that E( f ) is well defined. Ifw, = Zj#iipj is 
an SO( 3) rotation of the frame field on S 2!HlN then pointwi- 
sely 

f*q = i MJf*Pj. 
j= I 

Furthermore, 

$, (F*mi II’ = $, f*mi A *f *at 

= ii, z (4,; ‘$ik ) (f*iJj A  *f *pk ) 

= z fijkf*Pj A *f *I1Lk = j$,f *cLj A *f *p, 

Similarly, 

j$, Ilf*~i~~m-‘II’ 

zz i C (~ij~ik)~*~jA\‘nm-‘,A*(f*~kA\~-l) 
I= I j,k 

= i lv*pj A Cl”‘- ‘II’. 
j= I 

Hence, E ( f ) is independent of the choice of any notmal- 
ized frame on S’W, and therefore well defined. Now the 
inequality cQ( f ) <E(f) follows from 

O<l[*f *oi - cf *w, A i-P - ‘II” 
which can be written as 

c(*f*wi,f*w;AW’-‘) 

G$(llf*Wi((2 + C’llf*Wi Aam- ‘ll”). (3.3) 
Since 

(*f*wi,f*wiAW’-‘) =f*wi Af*o,AW-’ 
and 

3 
f*Ck2, = C f*cu,Af*q, 

i= I 

the inequality cQ( f) <E(f) is simply obtained by summa- 
tion of (3.3) over i and integration over M. 

Finally, when c = 6m/(2m + l)!, the assertion that 
cQ( f ) = E(f) is equivalent to the requirement that 

*f*o=cf*wAfl;-’ 
holds for all wGs2HN, or that f *ocS 2W, by Theorem 2,2., 
i.e., f is quaternionic, 8 

Example 3.3: If dim h4 = 4, S’H, = A’+ . As the 
Hodge *-operator is conformally invariant, any orientation 
preserving conformal automorphism is a quaternionic map 
in our sense. 

In Ref. 8 Atiyah gave a geometric construction for all 
basic SU( 2) -instantons, i.e., anti-self-dual Yang-Mills 
fields on the Euclidean four-sphere with topological charge 
- 1, as follows: The Euclidean four-sphere is viewed as the 

quaternionic projective line HP’. The tautological bundle is 
the bundle H with charge - I. The natural connection V of 
H is anti-self-dual. Let f be an orientation preserving con- 
formal automorphism which is not an isometry. Then f *V, 
the pull-back connection off *MI, is a new anti-self-dual con- 
nection. 

Example 3.4: The above example can be easily general- 
ized as follows: The quaternionic projective space IHIP” has a 
tautological bundle M. By definition, any element of 
GL c (n + 1,W) is an orientation preserving quaternionic 
linear map. In other words, if feGL + (n + 1 JR) is consid- 
ered as an automorphism of HP”, then f *W is isomorphic to 
IHl. It follows that f *S ‘Ill rS %I and hence f isaquaternionic 
map. As the natural connection V on W is c,-self-dual, so is 

f *V. Besides, as long asf is not an isometry, f *V is not gauge 
equivalent to V. We do not know if these are all c,-self-dual 
connections on WIFD”. 

Example 3.5: Another well-known example of a map- 
ping which in our language is quaternionic is a general 
SU( 2)-instanton over four-sphere with the topological 
charge k. **’ The S *H bundle on the quaternionic projective 
space HP’ has a canonical Sp( 1 )-connection and all instan- 
tons over S4 are induced by an appropriate choice of 
fiS4-+HPk. In fact f can be described explicitly as follows: 
If u&IPk is a local (Fubini-Study ) quaternionic coordinate 
on the quaternionic projective space and xGs4 is a local qua- 
ternionic coordinate on the four-sphere identified with the 
quaternionic projective line HP’ then 
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u(x) = [h-(B -xl)]+, (3.4) 
where h = (/z , ,...$lk) is a quaternionic row vector, u is a 
quaternionic column vector, B is a symmetric quaternionic 
k x k matrix, 1- denotes quaternionic conjugation and trans- 
position, and (1,B) are subject to the following two condi- 
tions: 

Im(B+B + kt3L) = 0, 

(tl.x&W'(B-xl)g=O, h-f=0 where &Wk)jf=O. 
(3.5) 

In the same way k-instantons over the complex projective 
plane can be generated by quaternionic maps from 
~pZ-*~p2k*l0.11 

The energy functional (3.1) may also be interpreted as 
an SO ( 3) locally gauge invariant Lagrangian of the interest- 
ing class of nonlinear field theories called a-models. In par- 
ticular, if dim it4 = 4, one can think of Mas a physical, possi- 
bly curved, space-time and f(x), x&, becomes an N-valued 
classical field with the action functional given by E(f). 
E( f) is manifestly invariant with respect to the global coor- 
dinate transformation on M (diffeomorphisms of M) as well 
as it is gauge invariant under the following gauge transfor- 
mations 

Cf*w,),-C~,,(x)(f*W,),, 
i 

(3.6) 

where Cp, (x) is a local SO( 3) transformation and ( f *wi ) is 
the curvature two-form of a gauge field Aj on M defined as 
follows: 

d( f *Oi) = C ElikAj l\f *wk. 
j,k 

(3.7) 

The gauge potential one-form on A, transforms in the usual 
way 

Proposition 4. I: Let M = R4 Q B” be the 4n-dimensional 
Euclidean flat space with global linear coordinates XL, 
a = 0,1,2,3; i = l,..., n. For any (x, ,..., x,) in R” we define 

p: R4+R4@ R” 

by 
(x0,x, ,x, ,x, ) +x; = x,x’. (4.1) 

Suppose P is a principal bundle over A4 with connection V 
and curvature F. Thenp*V is an anti-self-dual connection on 
p*P if 

*F= - [ 1/(2n - l)!]FAQ”-‘, 
i.e., F is c,-self-dual. 

(4.2) 

Proo$ In the xh -coordinates dxh is exactly the one-form 
wh of (2.4). Now a two-form F satisfies the equation 

*F= - [1/(2n - l)!]FAW-’ 

if and only if 
I;= - &*( F/L&). (4.3) 

Using Theorem 2.2 we get the following equations 

F(;)(f) = - F(f)(i) ’ 

F. =F, ,Fi = -Fi 
Lx:) w (OK) 

(J(i)’ vu 

FtL) (:) = “(J CL ), ~Li,d (4.4) 

FcLJ (; ) = FcLl (; ), viJ,a&#b’. 

Let us denote the components of p*F by FaO. As a conse- 
quence of the chain rule we get 

Faa = c x?F i 
ij (JG) 

6(EijkAk) = - d,$(x). (3.8) and therefore 

A, ( f ) depends on the choice of f(x), i.e., it is a composite 
gauge field. If N = HP” and u&W’” as before then 

F,, = c x’$F i 
ij 

(o)(;) = - F23, 

1 u+.du - du+.u 
A(u) = - 1 1 + u+*u 

=iA, +jA, + kA,. 

This particular example was introduced and extensively 
studied by Giirsey and Tze.” Here we see that many inter- 
esting global and local properties of HP”-model are common 
for a large class of field theoretical models based on E( f ). 
All of them have duality equations built in and all possess 
global topological invariants. 

IV. GENERALIZED BOGOMOLNY EQUATIONS 

In this section we discuss some special solutions of the c- 
self-duality equations. If M = B43 (x0,x,,xZ,x3) and P is a 
principal bundle over M then one can study x,-invariant so- 
lutions to the usuai self-dual equations. They are called time 
invariant instantons or monopoles. In our case, let 
M = W4” = B4 Q W” 3 {xh}i:‘;,;,:I;, P be a principal bundle 
over M, and let YM, (V) be our Yang-Mills functional. In 
an obvious analogy to the four-dimensional case we can 
study xb invariant c-self-dual connections on &for “c-mono- 
poles” on W” Q W”. Let us start with the following observa- 
tion. 

F02 = 1 x’2.F i 
ij 

(o)(;) =F131 

(4.5) 

(4.6) 

F03 = 1 x’xjF i 
ij 

(o)(;) = -Fn. 

In other words, p*V is an anti-self-dual connection. H 
Recently, Pedersen and Poon used twistorial approach 

to find a generalization of the Bogomolny equations.5 They 
introduced Yang-Mills-Higgs equations B3 8 B”. If one 
considers monopoles on W3 as time invariant instantons on 
R4 the following simple geometric description of generalized 
monopoles comes with no surprise. 

Proposition 4.2: Let XI, ,u = 0,1,2,3; i = 1,. . .,n be a glo- 
bal linear coordinate on B4 Q B” and let 

p: R4@!Rn-+W3@R’* 
be a projection 

(xb ,x; ,x; ,x: ) + (xi ,x; ,x: ) . 
If (V, <Pi) is a generalized monopole then 

V’kp*V + 1 <pi dx; 
1 

(4.7) 
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is a c,-self-dual connection. Conversely, any c,-self-dual 
connection that is &,-invariant determines a solution of the 
generalized monopole equation. 

Prooj The curvature F’ of the connection V’ is given by 

F’=p*F+ 1 (VW) Adx’o +; C [@,@]dx; Adxi, 
J i<j 

(4.8) 
where F is the curvature two-form of V. Now, using Eqs. 
(4.4)) we get V Q’=F. (2 ,V Q,‘= w (:I -F, ,V @=F W) (3 

Fciiei = PWW, tlij; a = 1,2,3, (4.9) 

VC1)@= VcJ@‘, trij; a = 1,2,3, 

which can be written as 

F i 
O(P) Y (,I 

/ = C eapvV , @ + +S,, [ W,W], Qij;Qa,fl = 1,2,3 

V(i)@= V(,:)@, Qij; a = 1,2,3. (4.10) 

The converse is obvious. q 
We can also obtain “monopole” analogs of c-self duality 

equations in the c, and c3 cases. The first one is not interest- 
ing, however, because it yields n decoupled self-dual Bogo- 
molny equations. In the second case we can explicitly write 
down the set of equations 

F(J (j ) + %a(,; ) = 5 Ealjry (V(;)@ + Vci)@‘), Qij;Qa,K 

[@+@,‘I = - a$, Fta CL)’ Qij. 

(4.11) 

For n = 1 these are just the usual Bogomolny equations with 
the reversed orientation. We do not know any nontrivial so- 
lutions of (4.11) for n > 1 at the moment. Finally, let us 
remark that we could introduce additional invariance and 
reduce the c-self-duality equation to 2n dimensions, assum- 
ing that the c-self-dual equations of R4 (~3 R” be both xb and 
XI invariant. Then we obtain an analog of the well-known 
vortex equation of the two-dimensional Yang-Mills-I-Eggs 
theory. Again the c2 case is the most natural generalization 
and we shall address this problem in a future work. 
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