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The concept of a self-dual connection on a four-dimensional Riemannian manifold is
generalized to the 4n-dimensional case of any quaternionic Kéhler manifold. The generalized
self-dual connections are minima of a modified Yang—Mills functional. It is shown that our
definitions give a correct framework for a mapping theory of quaternionic K#hler manifolds.
The mapping theory is closely related to the construction of Yang-Mills fields on such
manifolds. Some monopole-like equations are discussed.

I. INTRODUCTION

A quaternionic Kdhler manifold is a Riemannian mani-
fold whose holonomy group can be reduced to a subgroup of
Sp(n)-Sp(1), n> 1.2 By definition, such manifold has di-
mension 4n. As demonstrated by Salamon,?? it can be also
viewed as a higher-dimensional analogy of the anti-self-dual
Einstein four-manifold. The bundle of two-forms on a qua-
ternionic K&hler manifold M has the following irreducible
decomposition as representation of Sp(n)-Sp(1):

A’T*M =S’Ho S’Ee (S’He S’E)*, (1.1)

where H and E are vector bundles associated to the standard
representations of Sp(#) and Sp(1), respectively. This de-
composition resembles the decomposition of A>T *M into
the direct sum of self-dual and anti-self-dual two-forms
when M is four dimensional. Just as in the four-dimensional
case we are able to interpret the decomposition (1.1) in
terms of the Hodge *-operator.

If the curvature of a connection V is in either the S *H or
the S 2E part of (1.1) then V is a minimum of the Yang-Mills
functional and if the curvature is in the orthogonal comple-
ment of S ?H @ S °E then V is most likely a saddle point. We
have found that the Yang—Mills functional can be modified
so that whenever the curvature of V is in one and only one
component of (1.1) the connection is its minimum.

We demonstrate that our definitions are compatible
with the description of Yang-Mills fields on four-manifolds
and that they give a correct framework for mapping theory
of quaternionic K&hler manifolds. On the other hand, when
the energy functional is interpreted as a classical Lagran-
gian, our quaternionic mapping theory yields many new ex-
amples of quantum field theories with SU(2) [or SO(3)]
gauge symmetry and composite gauge fields: four-dimen-
sional sigma models. We show that some fundamental prop-
erties of the well-known four-dimensional o-models on the
quaternionic projective spaces are shared by such models on
arbitrary quaternionic Kédhler manifolds. Finally, we dem-
onstrate that our formalism provides a global picture for the
generalized monopole equation of Pedersen and Poon.*
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Il. DUALITY

Let M be a 4n-dimensional Riemannian manifold whose
holonomy group is contained in Sp(n)-Sp(1) CSO(4n).
Then the cotangent bundle of M can be identified with

T*M =EeoH,

where E and H are the standard representations of Sp(n)
and Sp(1), respectively. Then S ?H is a real rank 3 subbundle
of End TM. Locally, at each xeM, S *H has a basis {/,J,K}
satisfying

I’=J?= -1, U= —JI=K. (2.1)

The metric g on M is compatible with the bundle S *H in the
sense that for each 45 °H, g is Hermitian with respect to 4,
ie., g(AX,AY) = g(X,Y) for all X,YeT, M. One can use the
metric to define an isomorphism

End TM=T*MeT*M

under which S ?H is isometrically embedded in A>T *M. Ex-
plicitly, any element 4<S *H, is mapped into w, by

w, (X, Y) =g(AX,)Y), X, YeT M.

Let {w,w,w;} be a local orthogonal frame of
S?HC A*T *M. For convenience of further computations let
us normalize {®,0,,0;} to have length 2» and then define

Q=0 Ao, + 0, Ao, + 0, \w;. (2.2)

This © is a globally defined, nondegenerate four-form on M
and it is parallel. It is usually called the fundamental four-
form or the quaternionic structure on M as its parallelism
determines reduction of the structure group on M. The con-
dition V€ = 0 can be used to define quaternionic Kéhler
geometry in dimension bigger than 4. In dimension 4 we
shall say that M is quaternionic Kahler if it is self-dual and
Einstein. The parallelism of ) immediately implies that
dQ} = 0. Recently, Swann® showed that the converse is also
true provided dim M>12.

Pointwisely, £} can be described as follows. At any point
xeM, T*M =E, 8 H,, where E, is the 2n-dimensional
complex representation of Sp(#) and H, is the two-dimen-
sional complex representation of Sp(1). Let w; and w,, be
the symplectic forms on E, and H_, respectively, and j; and
J the quaternionic structures. Then the metric g on T*M
can be expressed as
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=Wy, ®Wy. (2.3)

Let {e’, jpe’ j= 1,...,n} be a symplectic basis on E, and
{h,jh} a symplectic basis on H, . We define

wh=(1/V2)(e’@h +je'ajh),
oh=(i/2)(e'eh —jrelajh),

wh=(1/\2)(jre'oh —e'ojh),
wh, =(/N2)(jreloh + elejh).

Now{w4,w4,w%,0%, j=1,..,n} forms an orthonormal ba-
sison T¥M. Let

(2.4)

wy =Y (Ao +wlNoi),
i=

0=y (Wi Aok —w) Awt),
i=h

3= Y (wh Awh + o) Ao)).
=

Then {w,,w,,w,} forms an orthogonal basis on SH,. We

shall choose €} as in (2.2). The orthogonal basis for S°E,
can be written as

(2.5)

l=(wp Ao + o) Ao) + (o) Aol + ol Awt),

1<i<j<n,

=) Vo —wy Awh) + (0h Aol — o) ANob),
1<igjg<n,

lz(wy Aob + o) Aot) + (wh Aoy, + 0’ Awb),
1<igj<n,

Sl=(wh Nok — o) Aob) + (0h Aoy, — ol Aob),

1<igj<n. (2.6)

Here, 24 give n(n — 1)/2 basis elements and 2%, 4 = 1,2,3,
give n(n + 1)/2 basis elements, respectively. One can easily
check that

vol(M) = [1/(2n + QY 2.7)
vol(M) = [1/12n(2n + 1) JO A *Q, (2.8)

where vol (M) is the volume form of M and *“#” is the Hodge
x-operator. As a consequence we have

(= [6/(2n— 1)]Q" 1 (2.9)
Note that all these equations are valid even when 7 is equal to

.
Definition 2.1: A two-form w on M is c-self dual if

*w=coAQ" . (2.10)

When » = 1 then ¢ = 1, because ** = 1, and the above
equation is reduced to the conformally invariant self-dual or
anti-self-dual equations on a four-dimensional oriented Rie-
mannian manifold. Notice that the above definition depends
on the choice of both the fundamental four-form £ and the
constant ¢. In dimension higher than 4, as we shall now see,
there are three different constants ¢ that give nontrivial solu-
tions to (2.10). Similar equations were studied in Ref, 6.

Theorem 2.2: Let w be a nonzero c-self-dual two-form.
Thenc=c;,i= 12,3, where
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Gn —1
cl=—-—-—————-—, C‘z.:————"
(2n + 1)1 (21 — 1)
3
=——— e, 2.11
T PR (211

Moreover, when ¢ =c¢, then weS’H, when ¢=c, then
weS’E, and when ¢ = c, then w is in the orthogonal comple-
ment of S’H & S2E in AT *M.

Proof As the basis for S *H is given in (2.5) and the basis
for S°Ein (2.6) the proofis an easy exercise in linear algebra.
Therefore, we only spell out the constraints on the coeffi-
cients of the two-form . Using the orthonormal basis
{wi,w),whwh:j=1,.,n} any two-form w can be written
as

o= Wy iy O A@ 4.

20N

Then *@ = ¢, 0 A" ~ ' if and only if

(2.12)

VOTNOT VO™ DT D

@ =0 Vitj Yap. (2.14)
(cz)(ﬁ)
Similarly, *» = ¢, AQ" ~ ' if and only if
W iy = = Wy pve @y gy = @y f v
(1) @6 RGO
Wrin ey = — Oy Vi J
(o) 0a)
i AVt Vl’;jya’.B, (215)
7)

“O0 TN
O TN

Finally, *@ == ¢, AQ" ' if and only if

'y Vi, ja,B.asp.

290007 2200~ 2 %00~
2000 =0 v

Definition 2.3: Let P be a principal bundle on M with
connection V. This connection is e-self-dual if its curvature
two-form is ¢-self-dual.

Definition 2.4: For any real constant ¢, a generalized
“Yang—-Mills” functional on the space of connections on Pis

defined by
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YMC(V)iif LIFIP + FFA Q[P ]vol (M),
N 2.17)

where F'is the curvature of the connection.
YM. (V) has the following Euler~Lagrange equations

d*F+cMd*( FAQ"-H)AQ"~ ' =0. (2.18)
Notice that
O<||*F — cFAQ"~'|)?
= [|*F|? = 2(xF,cFAQ" ") + &|[FAQ"|?
= “F“2 —2c(tr FARYAQ" ! + CZHF/\Q"‘ 1”2
= |IFI? = 16crp (P) AQ" " + CIFAQ" |
or
0(877'2)1’1 (PYANQ"™ IQ%[“FHZ - CZHF/\Q,"” 1”2],

where p,(P) is the first Pontrjagin class of the bundle P on
M. Hence, after integrating over M, we get

877'ch P (PYAQ" ™ ' vol(M)<KYM, (V). (2.19)
M

The equality holds if and only if
*F=cFAQ"",
i.e., if F'is c-self-dual. In such case we shall call the connec-

tion V itself a c-self-dual-connection. As p, (P) is a topologi-
cal invariant of the bundle P, we define

Q(P)iSﬂ'ZJ‘ P (PYANQ" ! vol (M) (2.20)
M

and call it a topological charge of the bundle P. We have just
demonstrated the following proposition.

Proposition 2.5: Any c-self-dual connection is minimum
of the Yang-Mills energy functional YM, (V).

The following result is due to Ref. 7.

Proposition 2.6: Any c-self-dual connection is an extre-
mum of the Yang-Mills energy functional YM (V). More-
over, ¢,- and c,-self-dual connections are minimizing.

Proof: Suppose V is a c-self-dual connection. Then

d*F=cd* (FAQ"~")=0

asdF = dQ = 0. Hence, d *F = O or V is a Yang-Mills con-
nection.
Let us write F (V)eA>T*M as

F(V)=F +F, +F;,
where F,cS°H, F,cS’E, and F,e(S’H & S2E)*. Then
YMCO) =4[ QIR+ 15+ I Pvolcany
M

because (1.1) is an orthogonal decomposition with respect
to the usual norm || || on A>T *M. Notice that the topological
charge of P can be written in terms of the components of
F(V):

Q(P) =f tr( FAF)ANQ"~ ! vol(M)
M

1 1
=f ( — (17 I+ — IR |1
M \C Cy

+ 1 (728 ||2)vol(M).
C3

2
0
o
[4;]
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Hence, we can write YM(V) as

2YM(V) = ¢, Q(P) + JM ((1 - ?—) |, |12

2

+ (1 _ c—‘) IF, ||2) vol(M)
c

3

—ao@ + [ ((1+52) IR

1
1— Fz)le,
+( 2n+1)“ s Jvol(3D)

(2.21)

2YM(V) =, Q(P) + f ((1 - c—z) s
M c

1

+ (1 - —?—)}|F3|{2>vol(M)

3

—ao)+ [ ((1+ 2 1A

2y ot

(2.22)

or

2YM(V) = ¢, Q(P) +f ((1 ~ 6—3) \F, |2
M [

+ <1 - Z—3) IF, |12)vol(M)

2

=¢,0(P) +f ((=2n) |F P
M

+ 4||F, ||*) vol(M). (2.23)
It follows now from (2.21), (2.22), and Theorem 2.2 that ¢,-
and c,-self-dual connections are minima of YM (V). |

We do not know of any examples of ¢,-self-dual connec-
tions but (2.23) seems to indicate that, if they exist, they will
be unstable.

HIl. QUATERNIONIC MAPS AND SIGMA MODELS

In this chapter we introduce a new concept of quater-
nionic maps. We shall do it in such a way that it generalizes
the theory of holomorphic mappings between Kéhler mani-
folds. On the other hand we shall see that it is also very
natural in studying instantons on four-manifolds and four-
dimensional o-models with composite SU(2) [or SO(3)]
gauge fields and Yang—Mills fields on quaternionic Kéhler
manifolds.

It is well-known that, if one defines a quaternionic
Kéhler submanifold to be a submanifold with a quaternionic
structure given by restriction, then it is automatically a total-
ly geodesic submanifold.* We shall therefore not insist that
the whole quaternionic structure be preserved by such map-
pings. Instead we adopt a weaker definition.

Definition 3.1: Let M, N be quaternionic Kédhler mani-
folds. A map f from M to N is called quaternionic if
S*S M, CSH,,.

The following theorem is in an obvious analogy to the
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well-known result stating that holomorphic maps between
Kihler manifolds are energy minimizing.

Theorem 3.2: On the space of diffferentiable mappings
between two compact oriented quaternionic Kihler mani-
folds, M and ¥ define the following functional:

(/)= s s
i=1
+€2Hf*w,»/\0"’“'H')vol(M), (3.1)
where ¢c = ¢, = 6m/(2m + 1), 4m = dim M, and
Q(f)_»—.f S*QyAQL - (3.2)
M

Then cQ( f)<E( f) and the equality holds if and only if the
map fis quaternionic.

Proof: Let §2,,, Q1 be the fundamental four-forms on M
and N, respectively. Once they are fixed Q( f) is a homotopy
invariant. As usual, we shall call it the degree or the topologi-
cal charge of f.

Let {@,,0,@,} be a local orthogonal frame on S 2H,
such that

Qv =0, o, + 0, Ao, + o, \Now,.

We have to show that E( f') is well defined. If o, = 3, Pyt is
an SO(3) rotation of the frame field on S °H,, then pointwi-
sely

3
Sro; =% ($,)/*u,.
i=1
Furthermore,

vle Vf*o,ll” = 23: S[*o; N+ *w,

f=1

Z Z(¢,f*u,)A*(¢J*/tk)

Similarly,

S I/, nam

=3 (f*0, AQ" =) Ax(fro, AQ" 1)

=1

3

Z Z (¢fj¢ll‘)(f*ﬂj/\ﬂm~l)/\*(f*’uk/\Qm—-l)

3
=X ([ AQ" ) Ax(f*u, AQ7 )
i=
3
P LT
~
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Hence, E ( f) is independent of the choice of any normal-
ized frame on S?H, and therefore well defined. Now the
inequality cQ( f)<E( f) follows from

o<l *0, — ¢f *w, AQ™ 1|
which can be written as
c(t *o, fro, A"
U ol + Sl fro, AQT ).
Since
(0, [ro, AQ7 B =f*0, Af*to, AQ" !
and

F*Q

(3.3)

3
N= 2 Sre, Nfro;,
i=1
the inequality ¢Q( f) <E( f) is simply obtained by summa-
tion of (3.3) over i and integration over M.
Finally, when ¢ = 6m/(2m + 1)}, the assertion that
c@( f) = E(f) is equivalent to the requirement that

**0 = cf*o AN Q7!

holds for all weS *H , or that f*weS *H,, by Theorem 2.2.,
i.e., f is quaternionic, |

Example 3.3: If dimM =4, S'H,, =A% . As the
Hodge *-operator is conformally invariant, any orientation
preserving conformal automorphism is a quaternionic map
in our sense.

In Ref. 8 Atiyah gave a geometric construction for all
basic SU(2)-instantons, ie., anti-self-dual Yang-Mills
fields on the Euclidean four-sphere with topological charge
— 1, as follows: The Euclidean four-sphere is viewed as the
quaternionic projective line HP'. The tautological bundle is
the bundle H with charge - 1. The natural connection V of
H is anti-self-dual. Let f be an orientation preserving con-
formal automorphism which is not an isometry, Then f*V,
the pull-back connection of f*H, is a new anti-self-dual con-
nection.

Example 3.4: The above example can be easily general-
ized as follows: The quaternionic projective space HP" has a
tautological bundle H. By definition, any element of
GL *(n + 1,H) is an orientation preserving quaternionic
linear map. In other words, if f£GL *(n + 1,H) is consid-
ered as an automorphism of HP", then f*H is isomorphic to
H.Itfollowsthat /*S *H=S*Hand hence f isaquaternionic
map. As the natural connection V on H is ¢,-self-dual, so is
S*V. Besides, as long as fis not an isometry, f*V is not gauge
equivalent to V. We do not know if these are all ¢,-self-dual
connections on HP”,

Example 3.5: Another well-known example of a map-
ping which in our language is quaternionic is a general
SU(2)-instanton over four-sphere with the topological
charge £.%° The S*H bundle on the quaternionic projective
space HP* has a canonical Sp(1)-connection and all instan-
tons over S* are induced by an appropriate choice of
SiS*—HP*. In fact f can be described explicitly as follows:
If ucHP* is a local {Fubini-Study) quaternionic coordinate
on the quaternionic projective space and xeS'* is a local qua-
ternionic coordinate on the four-sphere identified with the
quaternionic projective line HP' then
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u(x) = [A-(B —x1)1%, (3.4)
where A = (4,,...,4,) is a quaternionic row vector, u is a
quaternionic column vector, B is a symmetric quaternionic
k X k matrix, T denotes quaternionic conjugation and trans-
position, and (A,B) are subject to the following two condi-
tions:

Im(B'B+ A'A) =0,

(VxeHP'(B — x1)§ =0, A =0 where £&cH*) =& =0.
(3.5)

In the same way k-instantons over the complex projective
plane can be generated by quaternionic maps from
CP2 — HP2k'10.l 1

The energy functional (3.1) may also be interpreted as
an SO(3) locally gauge invariant Lagrangian of the interest-
ing class of nonlinear fieid theories calied o-modeis. In par-
ticular, ifdim M = 4, one can think of M as a physical, possi-
bly curved, space-time and f{x), xeM, becomes an N-valued
classical field with the action functional given by E(f).
E( f) is manifestly invariant with respect to the global coor-
dinate transformation on M (diffeomorphisms of M) as well
as it is gauge invariant under the following gauge transfor-
mations

(f*w,»)x—»z D, (x)(f*w;),,

where ®; (x) isalocal SO(3) transformation and ( f*®,) is
the curvature two-form of a gauge field 4; on M deﬁned as
follows:

d(f*0,) =Y €ud, Nf*o,.
hk

(3.6)

(3.7)

The gauge potential one-form on 4; transforms in the usual
way

S(eud,) = —d, P;(x). (3.8)

A,( f) depends on the choice of f(x), i.e., it is a composite
gauge field. If N = HP" and uecHP” as before then

__l_u -du — du'- u_lA A, + kA,

2 l14utu
This particular example was introduced and extensively
studied by Giirsey and Tze.'? Here we see that many inter-
esting global and local properties of HP”-model are common
for a large class of field theoretical models based on E( ).
All of them have duality equations built in and all possess
global topological invariants.

A(u) =

IV. GENERALIZED BOGOMOLNY EQUATIONS

In this section we discuss some special solutions of the c-
self-duality equations. If M = R*3 (x4,x,x,,%;) and Pis a
principal bundle over M then one can study x;-invariant so-
lutions to the usual seif-dual equations. They are called time
invariant instantons or monopoles In our case, let
M=R"=R*¢R"D{x, },7%, P be a principal bundle
over M, and let YM_ (V) be our Yang~Mills functional. In
an obvious analogy to the four-dimensional case we can
study x}, invariant c-self-dual connections on M or “c-mono-
poles” on R*® R". Let us start with the following observa-
tion.
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Proposition 4.1: Let M = R* © R" be the 4n-dimensional
Euclidean flat space with global linear coordinates X7,
a=0,12,3;i=1,.., n. For any (x,...,x,,) in R" we define

D: R R* ®R"
by

(Xg,X) %5 ,%3 ) X5 = x, X (4.1)

Suppose P is a principal bundle over M with connection V
and curvature F. Then p*V is an anti-self-dual connection on

p*Pif

*F= —[1/Q2n— DINFAQ "},

i.e., Fis c,-self-dual.
Progf: In the x/, -coordinates dx’, is exactly the one-form
o}, of (2.4). Now a two-form F satisfies the equation

*F= —[1/(2n — INFAQ"!
if and only if

(4.2)

F= —x( FA*Q). (4.3)
Using Theorem 2.2 we get the following equations
oo~ ~foe

oo~ oo oo™ "oy 7
Fow=fpey Yook 4
oo =iygy YHebars

Let us denote the components of p*F by F,;. As a conse-
quence of the chain rule we get

F = %F, 4.5
o= 270 0) “
and therefore

F, = YEF o= — Fy,

=2 BT T

Fop =S xX'XF, 5 . =F3, (4.6)

== 2=

Fos =N x%XF,\ ;n= — F,.

D T
In other words, p*V is an anti-self-dual connection. |

Recently, Pedersen and Poon used twistorial approach
to find a generalization of the Bogomoliny equations.’ They
introduced Yang-Mills-Higgs equations R*® R". If one
considers monopoles on R as time invariant instantons on
R* the following simple geometric description of generalized
monopoles comes with no surprise.

Proposition 4.2: Let x,,, 1 = 0,1,2,3; i = 1,...
bal linear coordinate on R*® R" and let

p RPeR"-R e R"

be a projection

,n be a glo-

(x6 ’x’1 ;xé ’xg ) d (-xll ,x£ 7x; )
If (V, ®') is a generalized monopole then

Vep*v + 3 P’ dx}, (4.7)
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is a cy-self-dual connection. Conversely, any c¢,-self-dual
connection that is x;-invariant determines a solution of the
generalized monopole equation.

Proof: The curvature F' of the connection V' is given by
F'=p*F+ % (V&) Adxhy + 4 Y [®,9]dx) Adxi,
’ W (4.8)

where F is the curvature two-form of V. Now, using Egs.

(4.4), we get

VD =F oV @= —F o V@ =F
@ TR6G) e e 06)

=i[®.9], Vij, a=123,

Vi
o)

V&=V @, Vij a=123
() )

J
which can be written as

(4.9)

a

F( )T eaﬁyv( ; )q>f‘ + 18,5 [P,P7], VijV¥a,B =123
B v ¥
)<1>f =V

107

P, Vij; =123 (4.10)

i
a

v A
( ()
The converse is obvious. |
We can also obtain “monopole” analogs of ¢-self duality
equations in the ¢, and ¢, cases. The first one is not interest-
ing, however, because it yields #» decoupled self-dual Bogo-
molny equations. In the second case we can explicitly write
down the set of equations

e

FF =" €y (V. & +V, &), VijVa,p,
()5~ & o TP H TP Vi Vas
3

V. ®=0Va, [®dD]=—-S F,. . Vi
AR o 2 ey Y

a’ \fB 14 4

(4.11)
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For n = 1 these are just the usual Bogomolny equations with
the reversed orientation. We do not know any nontrivial so-
lutions of (4.11) for #> 1 at the moment. Finally, let us
remark that we could introduce additional invariance and
reduce the c-self-duality equation to 2»n dimensions, assum-
ing that the c-self-dual equations of R* ® RB” be both x}, and
x} invariant. Then we obtain an analog of the well-known
vortex equation of the two-dimensional Yang-Mills—Higgs
theory. Again the ¢, case is the most natural generalization
and we shall address this problem in a future work.
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