Duality and Yang-Mills fields on quaternionic Kähler manifolds

Krzysztof Galickial and Yat Sun Poon
Department of Mathematics, Rice University, P.O. Box 1892, Houston, Texas 77251

(Received 22 August 1990; accepted for publication 5 December 1990)

Abstract

The concept of a self-dual connection on a four-dimensional Riemannian manifold is generalized to the $4 n$-dimensional case of any quaternionic Kähler manifold. The generalized self-dual connections are minima of a modified Yang-Mills functional. It is shown that our definitions give a correct framework for a mapping theory of quaternionic Kähler manifolds. The mapping theory is closely related to the construction of Yang-Mills fields on such manifolds. Some monopole-like equations are discussed.

I. INTRODUCTION

A quaternionic Kähler manifold is a Riemannian manifold whose holonomy group can be reduced to a subgroup of $\mathrm{Sp}(n) \cdot \mathrm{Sp}(1), n>1{ }^{1,2}$ By definition, such manifold has dimension $4 n$. As demonstrated by Salamon, ${ }^{2,3}$ it can be also viewed as a higher-dimensional analogy of the anti-self-dual Einstein four-manifold. The bundle of two-forms on a quaternionic Kähler manifold M has the following irreducible decomposition as representation of $\mathrm{Sp}(n) \cdot \mathrm{Sp}(1)$:

$$
\begin{equation*}
\Lambda^{2} T^{*} M=S^{2} \mathbb{H} \oplus S^{2} \mathbb{E} \oplus\left(S^{2} \mathbb{H} \oplus S^{2} \mathbb{E}\right)^{\perp} \tag{1.1}
\end{equation*}
$$

where \mathbb{H} and \mathbb{E} are vector bundles associated to the standard representations of $\operatorname{Sp}(n)$ and $\operatorname{Sp}(1)$, respectively. This decomposition resembles the decomposition of $\Lambda^{2} T^{*} M$ into the direct sum of self-dual and anti-self-dual two-forms when M is four dimensional. Just as in the four-dimensional case we are able to interpret the decomposition (1.1) in terms of the Hodge *-operator.

If the curvature of a connection ∇ is in cither the $S^{2} \mathbb{H}$ or the $S^{2} E$ part of (1.1) then ∇ is a minimum of the Yang-Mills functional and if the curvature is in the orthogonal complement of $S^{2} H \oplus S^{2} \mathbb{E}$ then ∇ is most likely a saddle point. We have found that the Yang-Mills functional can be modified so that whenever the curvature of $\bar{\nabla}$ is in one and only one component of (1.1) the connection is its minimum.

We demonstrate that our definitions are compatible with the description of Yang-Mills fields on four-manifolds and that they give a correct framework for mapping theory of quaternionic Kähler manifolds. On the other hand, when the energy functional is interpreted as a classical Lagrangian, our quaternionic mapping theory yields many new examples of quantum field theories with $\mathrm{SU}(2)$ [or $\mathrm{SO}(3)$] gauge symmetry and composite gauge fields: four-dimensional sigma models. We show that some fundamental properties of the well-known four-dimensional σ-models on the quaternionic projective spaces are shared by such models on arbitrary quaternionic Kähler manifolds. Finally, we demonstrate that our formalism provides a global picture for the generalized monopole equation of Pedersen and Poon. ${ }^{4}$

[^0]
II. DUALITY

Let M be a $4 n$-dimensional Riemannian manifold whose holonomy group is contained in $\mathrm{Sp}(n) \cdot \mathrm{Sp}(1) \subset \mathrm{SO}(4 n)$. Then the cotangent bundle of M can be identified with

$$
T^{*} M=\mathbb{E} \otimes \mathbb{H}
$$

where \mathbb{E} and \mathbb{H} are the standard representations of $\mathrm{Sp}(n)$ and $\operatorname{Sp}(1)$, respectively. Then $S^{2} H$ is a real rank 3 subbundle of End $T M$. Locally, at each $x \in M, S^{2} \mathbb{H}$ has a basis $\{I, J, K\}$ satisfying

$$
\begin{equation*}
I^{2}=J^{2}=-1, \quad I J=-J I=K \tag{2.1}
\end{equation*}
$$

The metric g on M is compatible with the bundle $S^{2} H$ in the sense that for each $A \in S^{2} H_{x}, g$ is Hermitian with respect to A, i.e., $g(A X, A Y)=g(X, Y)$ for all $X, Y \in T_{x} M$. One can use the metric to define an isomorphism

$$
\text { End } T M \cong T^{*} M \otimes T^{*} M
$$

under which $S^{2} H$ is isometrically embedded in $\Lambda^{2} T^{*} M$. Explicitly, any element $A \in S^{2} \mathbb{H}_{x}$ is mapped into ω_{A} by

$$
\omega_{A}(X, Y)=g(A X, Y), \quad X, Y \in T_{x} M .
$$

Let $\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$ be a local orthogonal frame of $S^{2} H \subset \Lambda^{2} T^{*} M$. For convenience of further computations let us normalize $\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$ to have length $2 n$ and then define

$$
\begin{equation*}
\Omega=\omega_{1} \wedge \omega_{1}+\omega_{2} \wedge \omega_{2}+\omega_{3} \wedge \omega_{3} . \tag{2.2}
\end{equation*}
$$

This Ω is a globally defined, nondegenerate four-form on M and it is parallel. It is usually called the fundamental fourform or the quaternionic structure on M as its parallelism determines reduction of the structure group on M. The condition $\nabla \Omega=0$ can be used to define quaternionic Kähler geometry in dimension bigger than 4 . In dimension 4 we shall say that M is quaternionic Kähler if it is self-dual and Einstein. The parallelism of Ω immediately implies that $d \Omega=0$. Recently, Swann ${ }^{5}$ showed that the converse is also true provided $\operatorname{dim} M \geqslant 12$.

Pointwisely, Ω can be described as follows. At any point $x \in M, T_{x}^{*} M=\mathbb{E}_{x} \otimes \mathbb{H}_{x}$, where \mathbb{E}_{x} is the $2 n$-dimensional complex representation of $\operatorname{Sp}(n)$ and \mathbb{H}_{x} is the two-dimensional complex representation of $\operatorname{Sp}(1)$. Let ω_{E} and ω_{H} be the symplectic forms on \mathbf{E}_{x} and \mathbb{H}_{x}, respectively, and j_{E} and j the quaternionic structures. Then the metric g on $T_{x}^{*} M$ can be expressed as

$$
\begin{equation*}
g=\omega_{E} \otimes \omega_{H} \tag{2.3}
\end{equation*}
$$

Let $\left\{e^{j}, j_{E} e^{j}: j=1, \ldots, n\right\}$ be a symplectic basis on \mathbb{E}_{x} and $\{h, j h\}$ a symplectic basis on \mathbb{H}_{x}. We define

$$
\begin{align*}
& \omega_{0}^{j} \doteq(1 / \sqrt{2})\left(e^{j} \otimes h+j_{E} e^{j} \otimes j h\right), \\
& \omega_{1}^{j}=(i / \sqrt{2})\left(e^{j} \otimes h-j_{E} e^{j} \otimes j h\right), \\
& \omega_{2}^{j}=(1 / \sqrt{2})\left(j_{E} e^{j} \otimes h-e^{j} \otimes j h\right), \tag{2.4}\\
& \omega_{3}^{j}=(i / \sqrt{2})\left(j_{E} e^{j} \otimes h+e^{j} \otimes j h\right)
\end{align*}
$$

Now $\left\{\omega_{0}^{j}, \omega_{1}^{j}, \omega_{2}^{j}, \omega_{3}^{j}, j=1, \ldots, n\right\}$ forms an orthonormal basis on $T_{x}^{*} M$. Let

$$
\begin{align*}
& \omega_{1} \doteq \sum_{j=1}^{n}\left(\omega_{0}^{j} \wedge \omega_{1}^{j}+\omega_{2}^{j} \wedge \omega_{3}^{j}\right), \\
& \omega_{2} \doteq \sum_{j=1}^{n}\left(\omega_{0}^{j} \wedge \omega_{2}^{j}-\omega_{1}^{j} \wedge \omega_{3}^{j}\right), \tag{2.5}\\
& \omega_{3}=\sum_{j=1}^{n}\left(\omega_{0}^{j} \wedge \omega_{3}^{j}+\omega_{1}^{j} \wedge \omega_{2}^{j}\right) .
\end{align*}
$$

Then $\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$ forms an orthogonal basis on $S^{2} \mathbb{H}_{x}$. We shall choose Ω as in (2.2). The orthogonal basis for $S^{2} \mathbb{E}_{x}$ can be written as
$\Sigma_{0}^{j j} \doteq\left(\omega_{0}^{t} \wedge \omega_{0}^{j}+\omega_{1}^{i} \wedge \omega_{1}^{j}\right)+\left(\omega_{2}^{i} \wedge \omega_{2}^{j}+\omega_{3}^{i} \wedge \omega_{3}^{j}\right)$,
$1 \leqslant i<j \leqslant n$,
$\Sigma_{1}^{i j} \doteq\left(\omega_{0}^{i} \vee \omega_{1}^{\prime}-\omega_{2}^{\prime} \wedge \omega_{3}^{\prime}\right)+\left(\omega_{0}^{j} \wedge \omega_{1}^{i}-\omega_{2}^{j} \wedge \omega_{3}^{i}\right)$,

$$
1 \leqslant i \leqslant j \leqslant n,
$$

$\Sigma_{2}^{i j} \doteq\left(\omega_{0}^{i} \wedge \omega_{2}^{j}+\omega_{1}^{i} \wedge \omega_{3}^{j}\right)+\left(\omega_{0}^{j} \wedge \omega_{2}^{i}+\omega_{1}^{j} \wedge \omega_{3}^{i}\right)$,
$1 \leqslant i \leqslant j \leqslant n$,
$\Sigma_{3}^{i j}=\left(\omega_{0}^{i} \wedge \omega_{3}^{j}-\omega_{1}^{i} \wedge \omega_{2}^{j}\right)+\left(\omega_{0}^{j} \wedge \omega_{3}^{i}-\omega_{1}^{j} \wedge \omega_{2}^{i}\right)$,

$$
\begin{equation*}
1 \leqslant i \leqslant j \leqslant n . \tag{2.6}
\end{equation*}
$$

Here, $\Sigma_{0}^{i j}$ give $n(n-1) / 2$ basis elements and $\Sigma_{A}^{i j}, A=1,2,3$, give $n(n+1) / 2$ basis elements, respectively. One can easily check that

$$
\begin{align*}
& \operatorname{vol}(M)=[1 /(2 n+1)!] \Omega^{n} \tag{2.7}\\
& \operatorname{vol}(M)=[1 / 12 n(2 n+1)] \Omega \wedge * \Omega \tag{2.8}
\end{align*}
$$

where $\operatorname{vol}(M)$ is the volume form of M and " $*$ " is the Hodge *-operator. As a consequence we have

$$
\begin{equation*}
* \Omega=[6 /(2 n-1)!] \Omega^{n-1} \tag{2.9}
\end{equation*}
$$

Note that all these equations are valid even when n is equal to 1.

Definition 2.1: A two-form ω on M is c-self dual if

$$
\begin{equation*}
* \omega=c \omega \wedge \Omega^{n-1} \tag{2.10}
\end{equation*}
$$

When $n=1$ then $c^{2}=1$, because $*^{2}=1$, and the above equation is reduced to the conformally invariant self-dual or anti-self-dual equations on a four-dimensional oriented Riemannian manifold. Notice that the above definition depends on the choice of both the fundamental four-form Ω and the constant c. In dimension higher than 4 , as we shall now see, there are three different constants c that give nontrivial solutions to (2.10). Similar equations were studied in Ref. 6.

Theorem 2.2: Let ω be a nonzero c-self-dual two-form. Then $c=c_{i}, i=1,2,3$, where

$$
\begin{align*}
& c_{1}=\frac{6 n}{(2 n+1)!}, \quad c_{2}=\frac{-1}{(2 n-1)!} \\
& c_{3}=\frac{3}{(2 n-1)!} \tag{2,11}
\end{align*}
$$

Moreover, when $c=c_{1}$ then $\omega \in S^{2} \mathbb{H}$, when $c=c_{2}$ then $\omega \in S^{2} \mathbb{E}$, and when $c=c_{3}$ then ω is in the orthogonal complement of $S^{2} \mathbb{H} \oplus S^{2} \mathbb{E}$ in $A^{2} T^{*} M$.

Proof: As the basis for $S^{2} \mathbb{H}$ is given in (2.5) and the basis for $S^{2} \mathbb{E}$ in (2.6) the proof is an easy exercise in linear algebra. Therefore, we only spell out the constraints on the coefficients of the two-form ω. Using the orthonormal basis $\left\{\omega_{0}^{j}, \omega_{1}^{j}, \omega_{2}^{j}, \omega_{3}^{j}: j=1, \ldots, n\right\}$ any two-form ω can be written as

$$
\omega=\sum_{i, j, \alpha, \beta} \omega_{\binom{i}{\alpha}\left(\begin{array}{l}
j \\
)
\end{array}\right.} \omega_{\alpha}^{i} \wedge \omega_{\beta}^{j}
$$

Then $* \omega=c_{1} \omega \wedge \Omega^{n-1}$ if and only if

$$
\begin{align*}
& \omega_{\binom{1}{0}\binom{i}{2}}=-\omega_{\binom{i}{1}}\binom{i}{3}=\omega_{\binom{j}{0}\binom{j}{2}}=-\omega_{\binom{j}{1}\binom{j}{3}} \\
& \omega_{\binom{i}{0}\binom{i}{3}}=\omega_{\binom{i}{1}\binom{i}{2}}=\omega_{\binom{j}{0}\binom{j}{3}}=\omega_{\binom{i}{1}\binom{j}{2}}, \tag{2.12}
\end{align*}
$$

for all i, j
and

$$
\begin{equation*}
\left.\left.\omega_{(}^{i}\right)_{\alpha}^{j}\right)_{\beta}=0 \quad \forall i \neq j \quad \forall \alpha, \beta \tag{2.14}
\end{equation*}
$$

Similarly, $* \omega=c_{2} \omega \wedge \Omega^{n-1}$ if and only if

$$
\begin{align*}
& \omega_{\binom{i}{0}\binom{j}{1}}=-\omega_{\binom{i}{2}\binom{j}{3}} \omega^{\omega}\binom{1}{0}\binom{j}{2}=\omega_{\binom{1}{1}\binom{j}{3}}{ }^{*} \\
& \omega_{\binom{0}{0}\binom{j}{3}}=-\omega_{\binom{1}{1}\binom{j}{2}} \forall i, j \text {, } \\
& \omega_{\binom{i}{\alpha}\binom{j}{\alpha}}=\omega_{\binom{i}{\beta}}\binom{j}{\beta} \quad \forall i, j, \alpha, \beta, \tag{2.15}\\
& \omega_{\binom{i}{\alpha}\binom{j}{\beta}}=\omega_{\binom{j}{\alpha}\binom{i}{\beta}}, \quad \forall i, j, \alpha, \beta, \alpha \neq \beta .
\end{align*}
$$

Finally, $* \omega=c_{3} \omega \wedge \Omega^{n-1}$ if and only if

$$
\begin{align*}
& \sum_{i=1}^{n} \omega_{\binom{i}{0}\binom{i}{1}}=\sum_{i=1}^{n} \omega_{\left(\begin{array}{l}
i
\end{array}\right)\binom{i}{0}}=\sum_{i=1}^{n} \omega_{\binom{i}{0}\binom{i}{3}}=0, \\
& \sum_{\alpha=0}^{3} \omega_{\binom{i}{\alpha}\binom{j}{\alpha}}=0 \quad \forall i, j, \\
& \omega_{\binom{1}{0}\binom{i}{1}}+\omega_{\binom{j}{0}\binom{i}{1}}=\omega^{\binom{i}{2}\binom{j}{3}}+\omega_{\binom{j}{2}\binom{i}{3}} \quad \forall i, j, \tag{2.16}\\
& \left.\omega_{\binom{i}{0}\binom{i}{2}}+\omega_{\binom{i}{0}\binom{i}{2}}=-\binom{\omega_{(}^{i}}{1}\binom{j}{3}+\omega_{\binom{j}{1}\binom{i}{3}}\right) \quad \forall i, j, \\
& \omega_{\binom{i}{0}\binom{i}{3}}+\omega_{\binom{i}{0}\binom{i}{3}}=\omega_{\binom{i}{1}\binom{i}{2}}+\omega_{\binom{i}{1}\binom{i}{2}} \quad \forall i, j \text {. }
\end{align*}
$$

Definition 2.3: Let P be a principal bundle on M with connection ∇. This connection is c-self-dual if its curvature two-form is c-self-dual.

Definition 2.4: For any real constant c, a generalized "Yang-Mills" functional on the space of connections on P is defined by
$\mathrm{YM}_{c}(\nabla) \doteq \frac{1}{2} \int_{M}\left[\|F\|^{2}+c^{2}\left\|F \wedge \Omega^{n-1}\right\|^{2}\right] \operatorname{vol}(M)$,
where F is the curvature of the connection.
$\mathrm{YM}_{c}(\nabla)$ has the following Euler-Lagrange equations

$$
\begin{equation*}
d * F+c^{2}\left(d *\left(F \wedge \Omega^{n-1}\right)\right) \wedge \Omega^{n-1}=0 \tag{2.18}
\end{equation*}
$$

Notice that

$$
\begin{aligned}
0 & \leqslant\left\|* F-c F \wedge \Omega^{n-1}\right\|^{2} \\
& =\|* F\|^{2}-2\left\langle * F, c F \wedge \Omega^{n-1}\right\rangle+c^{2}\left\|F \wedge \Omega^{n-1}\right\|^{2} \\
& =\|F\|^{2}-2 c(\operatorname{tr} F \wedge F) \wedge \Omega^{n-1}+c^{2}\left\|F \wedge \Omega^{n-1}\right\|^{2} \\
& =\|F\|^{2}-16 c \pi^{2} p_{1}(P) \wedge \Omega^{n-1}+c^{2}\left\|F \wedge \Omega^{n-1}\right\|^{2}
\end{aligned}
$$

or

$$
c\left(8 \pi^{2}\right) p_{1}(P) \wedge \Omega^{n-1} \leqslant \frac{1}{2}\left[\|F\|^{2}+c^{2}\left\|F \wedge \Omega^{n-1}\right\|^{2}\right],
$$

where $p_{1}(P)$ is the first Pontrjagin class of the bundle P on M. Hence, after integrating over M, we get

$$
\begin{equation*}
8 \pi^{2} c \int_{M} p_{1}(P) \wedge \Omega^{n-1} \operatorname{vol}(M) \leqslant \mathrm{YM}_{c}(\nabla) \tag{2.19}
\end{equation*}
$$

The equality holds if and only if

$$
* F=c F \wedge \Omega^{n-1}
$$

i.e., if F is c-self-dual. In such case we shall call the connection ∇ itself a c-self-dual-connection. As $p_{1}(P)$ is a topological invariant of the bundle P, we define

$$
\begin{equation*}
Q(P) \doteq 8 \pi^{2} \int_{M} p_{1}(P) \wedge \Omega^{n-1} \operatorname{vol}(M) \tag{2.20}
\end{equation*}
$$

and call it a topological charge of the bundle P. We have just demonstrated the following proposition.

Proposition 2.5: Any c-self-dual connection is minimum of the Yang-Mills energy functional $\mathrm{YM}_{c}(\boldsymbol{\nabla})$.

The following result is due to Ref. 7.
Proposition 2.6: Any c-self-dual connection is an extremum of the Yang-Mills energy functional YM($\boldsymbol{\nabla}$). Moreover, c_{1} - and c_{2}-self-dual connections are minimizing.

Proof: Suppose $\boldsymbol{\nabla}$ is a c-self-dual connection. Then

$$
d * F=c d *\left(F \wedge \Omega^{n-1}\right)=0
$$

as $d F=d \Omega=0$. Hence, $d * F=0$ or ∇ is a Yang-Mills connection.

Let us write $F(\nabla) \in \Lambda^{2} T^{*} M$ as
$F(\nabla)=F_{1}+F_{2}+F_{3}$,
where $F_{1} \in S^{2} \mathbb{H}, F_{2} \in S^{2} \mathbb{E}$, and $F_{3} \in\left(S^{2} \mathbb{H} \oplus S^{2} \mathbb{E}\right)^{\perp}$. Then

$$
\mathrm{YM}(\nabla)=\frac{1}{2} \int_{M}\left(\left\|F_{1}\right\|^{2}+\left\|F_{2}\right\|^{2}+\left\|F_{3}\right\|^{2}\right) \operatorname{vol}(M)
$$

because (1.1) is an orthogonal decomposition with respect to the usual norm $\|\cdot\|$ on $\Lambda^{2} T^{*} M$. Notice that the topological charge of P can be written in terms of the components of $F(\nabla)$:

$$
\begin{aligned}
Q(P)= & \int_{M} \operatorname{tr}(F \wedge F) \wedge \Omega^{n-1} \operatorname{vol}(M) \\
= & \int_{M}\left(\frac{1}{c_{1}}\left\|F_{1}\right\|^{2}+\frac{1}{c_{2}}\left\|F_{2}\right\|^{2}\right. \\
& \left.+\frac{1}{c_{3}}\left\|F_{3}\right\|^{2}\right) \operatorname{vol}(M) .
\end{aligned}
$$

Hence, we can write $Y M(\nabla)$ as

$$
\begin{align*}
2 \mathrm{YM}(\nabla)= & c_{1} Q(P)+\int_{M}\left(\left(1-\frac{c_{1}}{c_{2}}\right)\left\|F_{2}\right\|^{2}\right. \\
& \left.+\left(1-\frac{c_{1}}{c_{3}}\right)\left\|F_{3}\right\|^{2}\right) \operatorname{vol}(M) \\
= & c_{1} Q(P)+\int_{M}\left(\left(1+\frac{3}{2 n+1}\right)\left\|F_{2}\right\|^{2}\right. \\
& \left.+\left(1-\frac{1}{2 n+1}\right)\left\|F_{3}\right\|^{2}\right) \operatorname{Vol}(M), \tag{2.21}\\
2 \mathrm{YM}(\nabla)= & c_{2} Q(P)+\int_{M}\left(\left(1-\frac{c_{2}}{c_{1}}\right)\left\|F_{1}\right\|^{2}\right. \\
& \left.+\left(1-\frac{c_{2}}{c_{3}}\right)\left\|F_{3}\right\|^{2}\right) \operatorname{rol}(M) \\
= & c_{2} Q(P)+\int_{M}\left(\left(1+\frac{2 n+1}{3}\right)\left\|F_{1}\right\|^{2}\right. \\
& \left.+\frac{4}{3}\left\|F_{3}\right\|^{2}\right) \operatorname{vol}(M), \tag{2.22}
\end{align*}
$$

or

$$
\begin{align*}
2 \mathrm{YM}(\nabla)= & c_{3} Q(P)+\int_{M}\left(\left(1-\frac{c_{3}}{c_{1}}\right)\left\|F_{1}\right\|^{2}\right. \\
& \left.+\left(1-\frac{c_{3}}{c_{2}}\right)\left\|F_{2}\right\|^{2}\right) \operatorname{vol}(M) \\
= & c_{3} Q(P)+\int_{M}\left((-2 n)\left\|F_{1}\right\|^{2}\right. \\
& \left.+4\left\|F_{2}\right\|^{2}\right) \operatorname{vol}(M) \tag{2.23}
\end{align*}
$$

It follows now from (2.21), (2.22), and Theorem 2.2 that c_{1} and c_{2}-self-dual connections are minima of $Y M(\nabla)$.

We do not know of any examples of c_{3}-self-dual connections but (2.23) seems to indicate that, if they exist, they will be unstable.

III. QUATERNIONIC MAPS AND SIGMA MODELS

In this chapter we introduce a new concept of quaternionic maps. We shall do it in such a way that it generalizes the theory of holomorphic mappings between Kähler manifolds. On the other hand we shall see that it is also very natural in studying instantons on four-manifolds and fourdimensional σ-models with composite $\mathrm{SU}(2)$ [or $\mathrm{SO}(3)$] gauge fields and Yang-Mills fields on quaternionic Kähler manifolds.

It is well-known that, if one defines a quaternionic Kähler submanifold to be a submanifold with a quaternionic structure given by restriction, then it is automatically a totally geodesic submanifold. ${ }^{4}$ We shall therefore not insist that the whole quaternionic structure be preserved by such mappings. Instead we adopt a weaker definition.

Definition 3.1: Let M, N be quaternionic Kähler manifolds. A map f from M to N is called quaternionic if $f^{*} S^{2} \mathbb{H}_{N} \subset S^{2} \mathbb{H}_{M}$.

The following theorem is in an obvious analogy to the
well-known result stating that holomorphic maps between Kähler manifolds are energy minimizing.

Theorem 3.2: On the space of differentiable mappings between two compact oriented quaternionic Kähler manifolds, M and N define the following functional:

$$
\begin{align*}
E(f)= & \frac{1}{2} \sum_{i=1}^{3} \int_{M}\left(\left\|f^{*} \omega_{1}\right\|^{2}\right. \\
& \left.+c^{2}\left\|f^{*} \omega_{i} \wedge \Omega^{m-1}\right\|^{2}\right) \operatorname{vol}(M) \tag{3.1}
\end{align*}
$$

where $c=c_{1}=6 m /(2 m+1)!, 4 m=\operatorname{dim} M$, and

$$
\begin{equation*}
Q(f) \doteq \int_{M} f^{*} \Omega_{N} \wedge \Omega_{M}^{m-1} \tag{3.2}
\end{equation*}
$$

Then $c Q(f) \leqslant E(f)$ and the equality holds if and only if the map f is quaternionic.

Proof: Let Ω_{M}, Ω_{N} be the fundamental four-forms on M and N, respectively. Once they are fixed $Q(f)$ is a homotopy invariant. As usual, we shall call it the degree or the topological charge of f.

Let $\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$ be a local orthogonal frame on $S^{2} \mathbb{H}_{N}$ such that

$$
\Omega_{N}=\omega_{1} \wedge \omega_{1}+\omega_{2} \wedge \omega_{2}+\omega_{3} \wedge \omega_{3}
$$

We have to show that $E(f)$ is well defined. If $\omega_{i}=\Sigma_{j} \phi_{i j} \mu_{j}$ is an SO (3) rotation of the frame field on $S^{2} \mathbb{H}_{N}$ then pointwisely

$$
f^{*} \omega_{i}=\sum_{j=1}^{3}\left(\phi_{i j}\right) f^{*} \mu_{j}
$$

Furthermore,

$$
\begin{aligned}
\sum_{i=1}^{3}\left\|f^{*} \omega_{i}\right\|^{2} & =\sum_{i=1}^{3} f^{*} \omega_{i} \wedge * f^{*} \omega_{i} \\
& =\sum_{i=1}^{3} \sum_{j, k}\left(\phi_{i j} f^{*} \mu_{j}\right) \wedge *\left(\phi_{i k} f^{*} \mu_{k}\right) \\
& =\sum_{i=1}^{3} \sum_{j, k}\left(\phi_{i j} \phi_{i k}\right)\left(f^{*} \mu_{j} \wedge * f^{*} \mu_{k}\right) \\
& =\sum_{i=1}^{3} \sum_{j, k}\left(\phi_{j i}^{-1} \phi_{i k}\right)\left(f^{*} \mu_{j} \wedge * f^{*} \mu_{k}\right) \\
& =\sum_{j, k} \delta_{j k} f^{*} \mu_{j} \wedge * f^{*} \mu_{k}=\sum_{j=1}^{3} f^{*} \mu_{j} \wedge * f^{*} \mu_{j} \\
& =\sum_{i=1}^{3}\left\|f^{*} \mu_{j}\right\|^{2} .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\sum_{i=1}^{3} & \left\|f^{*} \omega_{i} \wedge \Omega^{m-1}\right\|^{2} \\
& =\sum_{i=1}^{3}\left(f^{*} \omega_{i} \wedge \Omega^{m-1}\right) \wedge *\left(f^{*} \omega_{i} \wedge \Omega^{m-1}\right) \\
& =\sum_{i=1}^{3} \sum_{j, k}\left(\phi_{i j} \phi_{i k}\right)\left(f^{*} \mu_{j} \wedge \Omega^{m-1}\right) \wedge *\left(f^{*} \mu_{k} \wedge \Omega^{m-1}\right) \\
& =\sum_{j=1}^{3}\left(f^{*} \mu_{j} \wedge \Omega^{m-1}\right) \wedge *\left(f^{*} \mu_{j} \wedge \Omega^{m-1}\right) \\
& =\sum_{j=1}^{3}\left\|f^{*} \mu_{j} \wedge \Omega^{m-1}\right\|^{2}
\end{aligned}
$$

Hence, $E(f)$ is independent of the choice of any normalized frame on $S^{2} \mathrm{H}_{N}$ and therefore well defined. Now the inequality $c Q(f) \leqslant E(f)$ follows from

$$
0 \leqslant\left\|* f^{*} \omega_{i}-c f^{*} \omega_{i} \wedge \Omega^{m-1}\right\|^{2}
$$

which can be written as

$$
\begin{align*}
& c\left\langle * f^{*} \omega_{i}, f^{*} \omega_{i} \wedge \Omega^{m-1}\right\rangle \\
& \quad \leqslant \frac{1}{2}\left(\left\|f^{*} \omega_{i}\right\|^{2}+c^{2}\left\|f^{*} \omega_{i} \wedge \Omega^{m-1}\right\|^{2}\right) \tag{3.3}
\end{align*}
$$

Since

$$
\left\langle * f^{*} \omega_{i}, f^{*} \omega_{i} \wedge \Omega^{m-1}\right\rangle=f^{*} \omega_{i} \wedge f^{*} \omega_{i} \wedge \Omega^{m-1}
$$

and

$$
f^{*} \Omega_{N}=\sum_{i=1}^{3} f^{*} \omega_{i} \wedge f^{*} \omega_{i}
$$

the inequality $c Q(f) \leqslant E(f)$ is simply obtained by summation of (3.3) over i and integration over M.

Finally, when $c=6 m /(2 m+1)$!, the assertion that $c Q(f)=E(f)$ is equivalent to the requirement that

$$
* f^{*} \omega=c f^{*} \omega \wedge \Omega_{M}^{m}
$$

holds for all $\omega \in S^{2} \mathbb{H}_{N}$, or that $f^{*} \omega \in S^{2} \mathbb{H}_{M}$ by Theorem 2.2., i.e., f is quaternionic.

Example 3.3: If $\operatorname{dim} M=4, S^{2} \mathbb{H}_{M} \cong \Lambda_{+}^{2}$. As the Hodge $*$-operator is conformally invariant, any orientation preserving conformal automorphism is a quaternionic map in our sense.

In Ref. 8 Atiyah gave a geometric construction for all basic $\operatorname{SU}(2)$-instantons, i.e., anti-self-dual Yang-Mills fields on the Euclidean four-sphere with topological charge -1 , as follows: The Euclidean four-sphere is viewed as the quaternionic projective line $\mathbb{H} \mathbb{P}^{1}$. The tautological bundle is the bundle \mathbb{H} with charge -1 . The natural connection ∇ of Hil is anti-self-dual. Let f be an orientation preserving conformal automorphism which is not an isometry. Then $f^{*} \nabla$, the pull-back connection of $f^{*} \mathbb{H}$, is a new anti-self-dual connection.

Example 3.4: The above example can be easily generalized as follows: The quaternionic projective space $H^{H}{ }^{n}$ has a tautological bundle H . By definition, any element of $G L^{+}(n+1, \mathbb{H})$ is an orientation preserving quaternionic linear map. In other words, if $f \in G L^{+}(n+1, H)$ is considered as an automorphism of $\mathbb{H} \mathbb{P}^{n}$, then $f^{*} \mathbb{H}$ is isomorphic to \mathbb{H}. It follows that $f^{*} S^{2} \mathbb{H} \equiv S^{2} \mathbb{H}$ and hence f is aquaternionic map. As the natural connection ∇ on \mathbb{H} is c_{1}-self-dual, so is $f^{*} \nabla$. Besides, as long as f is not an isometry, $f^{*} \nabla$ is not gauge equivalent to $\boldsymbol{\nabla}$. We do not know if these are all c_{1}-self-dual connections on $\mathbb{H P}^{n}$.

Example 3.5: Another well-known example of a mapping which in our language is quaternionic is a general SU(2)-instanton over four-sphere with the topological charge $k^{8,9}$ The $S^{2} \mathbb{H}$ bundle on the quaternionic projective space $\mathbb{H} \mathbb{P}^{k}$ has a canonical $\mathrm{Sp}(1)$-connection and all instantons over S^{+}are induced by an appropriate choice of $f: S^{4} \rightarrow \mathbb{H} \mathbb{P}^{k}$. In fact f can be described explicitly as follows: If $u \in \mathbb{I I P}^{p^{k}}$ is a local (Fubini-Study) quaternionic coordinate on the quaternionic projective space and $x \in S^{4}$ is a local quaternionic coordinate on the four-sphere identified with the quaternionic projective line $\mathbb{H P}^{1}$ then

$$
\begin{equation*}
\mathbf{u}(x)=[\lambda \cdot(\mathbb{B}-x \mathbf{1})]^{\dagger} \tag{3.4}
\end{equation*}
$$

where $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ is a quaternionic row vector, \mathbf{u} is a quaternionic column vector, \mathbb{B} is a symmetric quaternionic $k \times k$ matrix, \dagger denotes quaternionic conjugation and transposition, and (λ, \mathbb{B}) are subject to the following two conditions:
$\operatorname{Im}\left(\mathbf{B}^{\dagger} \mathbf{B}+\lambda^{\dagger} \lambda\right)=\mathbf{0}$,
$\left(\forall x \in \mathbb{H} \mathbb{P}^{1}(\mathbb{B}-x \mathbf{1}) \boldsymbol{\xi}=\mathbf{0}, \lambda \cdot \xi=0\right.$ where $\left.\xi \in \mathbb{H}^{k}\right) \Rightarrow \xi=0$.

In the same way k-instantons over the complex projective plane can be generated by quaternionic maps from $\mathbf{C P} \mathbf{P}^{2} \rightarrow \mathbf{H P}^{2 k}{ }^{20.11}$

The energy functional (3.1) may also be interpreted as an $\mathrm{SO}(3)$ locally gauge invariant Lagrangian of the interesting class of nonlinear field theories called σ-modeis. In particular, if $\operatorname{dim} M=4$, one can think of M as a physical, possibly curved, space-time and $f(x), x \in M$, becomes an N-valued classical field with the action functional given by $E(f)$. $E(f)$ is manifestly invariant with respect to the global coordinate transformation on M (diffeomorphisms of M) as well as it is gauge invariant under the following gauge transformations

$$
\begin{equation*}
\left(f^{*} \omega_{i}\right)_{x} \rightarrow \sum_{j} \Phi_{i j}(x)\left(f^{*} \omega_{j}\right)_{x} \tag{3.6}
\end{equation*}
$$

where $\Phi_{i j}(x)$ is a local $\operatorname{SO}(3)$ transformation and $\left(f^{*} \omega_{i}\right)$ is the curvature two-form of a gauge field A_{j} on M defined as follows:

$$
\begin{equation*}
d\left(f^{*} \omega_{i}\right)=\sum_{j, k} \epsilon_{i j k} A_{j} \wedge f^{*} \omega_{k} . \tag{3.7}
\end{equation*}
$$

The gauge potential one-form on A_{j} transforms in the usual way

$$
\begin{equation*}
\delta\left(\epsilon_{i j k} A_{k}\right)=-d_{A} \Phi_{i j}(x) \tag{3.8}
\end{equation*}
$$

$A_{j}(f)$ depends on the choice of $f(x)$, i.e., it is a composite gauge field. If $N=\mathbb{H} \mathbb{P}^{n}$ and $\mathbf{u} \in \mathbb{H} \mathbb{P}^{n}$ as before then

$$
A(\mathbf{u})=-\frac{1}{2} \frac{\mathbf{u}^{\dagger} \cdot d \mathbf{u}-d \mathbf{u}^{\dagger} \cdot \mathbf{u}}{1+\mathbf{u}^{\dagger} \cdot \mathbf{u}}=i A_{1}+j A_{2}+k A_{3}
$$

This particular example was introduced and extensively studied by Gürsey and Tze. ${ }^{12}$ Here we see that many interesting global and local properties of $\mathbb{H P}^{n}$-model are common for a large class of field theoretical models based on $E(f)$. All of them have duality equations built in and all possess global topological invariants.

IV. GENERALIZED BOGOMOLNY EQUATIONS

In this section we discuss some special solutions of the c -self-duality equations. If $M=\mathbb{R}^{4} \ni\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ and P is a principal bundle over M then one can study x_{0}-invariant solutions to the usual self-dual equations. They are called time invariant instantons or monopoles. In our case, let $M=\mathbb{R}^{4 n} \simeq \mathbb{R}^{4} \otimes \mathbb{R}^{n} \ni\left\{x_{\alpha}^{i}\right\}_{\alpha=0, \ldots, 3}^{i=1, \ldots, n}, P$ be a principal bundle over M, and let $\mathrm{YM}_{c}(\nabla)$ be our Yang-Mills functional. In an obvious analogy to the four-dimensional case we can study x_{0}^{i} invariant c-self-dual connections on M or " c-monopoles" on $\mathbb{R}^{3} \otimes \mathbb{R}^{\prime \prime}$. Let us start with the following observation.

Proposition 4.1: Let $M=\mathbb{R}^{4} \otimes \mathbb{R}^{n}$ be the $4 n$-dimensional Euclidean flat space with global linear coordinates x_{α}^{i}, $\alpha=0,1,2,3 ; i=1, \ldots, n$. For any $\left(x_{1}, \ldots, x_{n}\right)$ in \mathbb{R}^{n} we define

$$
p: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4} \otimes \mathbb{R}^{n}
$$

by

$$
\begin{equation*}
\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \rightarrow x_{\alpha}^{i}=x_{\alpha} x^{i} \tag{4.1}
\end{equation*}
$$

Suppose P is a principal bundle over M with connection ∇ and curvature F. Then $p^{*} \nabla$ is an anti-self-dual connection on $p^{*} P$ if

$$
\begin{equation*}
* F=-[1 /(2 n-1)!] F \wedge \Omega^{n-1} \tag{4.2}
\end{equation*}
$$

i.e., F is c_{2}-self-dual.

Proof: In the x_{α}^{i}-coordinates $d x_{\alpha}^{i}$ is exactly the one-form ω_{α}^{i} of (2.4). Now a two-form F satisfies the equation

$$
* F=-[1 /(2 n-1)!] F \wedge \Omega^{n-1}
$$

if and only if

$$
\begin{equation*}
F=-\frac{1}{6} *(F \wedge * \Omega) \tag{4.3}
\end{equation*}
$$

Using Theorem 2.2 we get the following equations

$$
\begin{aligned}
& F_{\binom{i}{0}\binom{j}{1}}=-F_{\binom{i}{2}\binom{j}{3}} \\
& F_{\binom{i}{0}\binom{j}{2}}=F_{\binom{i}{1}\binom{j}{3}}, F_{\binom{i}{0}\binom{j}{3}}=-F_{\binom{i}{1}\binom{j}{2}}, \quad \forall i, j \\
& F_{\binom{i}{\alpha}\binom{j}{\alpha}}=F_{\binom{i}{\beta}\binom{j}{\beta}}, \quad \forall i, j, \alpha, \beta \\
& F_{\binom{i}{\alpha}\binom{j}{\beta}}=F_{\binom{j}{\alpha}\binom{i}{\beta}}, \quad \forall i, j, \alpha, \beta, \alpha \neq \beta
\end{aligned}
$$

Let us denote the components of $p^{*} F$ by $F_{\alpha \beta}$. As a consequence of the chain rule we get

$$
\begin{equation*}
F_{\alpha \beta}=\sum_{i, j} x^{i} x^{j} F_{\binom{i}{\alpha}\binom{j}{\beta}} \tag{4.5}
\end{equation*}
$$

and therefore

$$
\begin{align*}
& F_{01}=\sum_{i, j} x^{i} x^{j} F_{\binom{i}{0}\binom{j}{1}}=-F_{23} \\
& F_{02}=\sum_{i, j} x^{i} x^{j} F_{\binom{i}{0}\binom{j}{2}}=F_{13} \tag{4.6}\\
& F_{03}=\sum_{i, j} x^{i} x^{j} F_{\binom{i}{0}\binom{j}{3}}=-F_{12}
\end{align*}
$$

In other words, $p^{*} \nabla$ is an anti-self-dual connection.
Recently, Pedersen and Poon used twistorial approach to find a generalization of the Bogomolny equations. ${ }^{5}$ They introduced Yang-Mills-Higgs equations $\mathbb{R}^{3} \otimes \mathbb{R}^{n}$. If one considers monopoles on \mathbb{R}^{3} as time invariant instantons on \mathbb{R}^{4} the following simple geometric description of generalized monopoles comes with no surprise.

Proposition 4.2: Let $x_{\mu}^{i}, \mu=0,1,2,3 ; i=1, \ldots, n$ be a global linear coordinate on $\mathbb{R}^{4} \otimes \mathbb{R}^{n}$ and let

$$
p: \mathbb{R}^{4} \otimes \mathbb{R}^{n} \rightarrow \mathbb{R}^{3} \otimes \mathbb{R}^{n}
$$

be a projection

$$
\left(x_{0}^{i}, x_{1}^{i}, x_{2}^{i}, x_{3}^{i}\right) \rightarrow\left(x_{1}^{i}, x_{2}^{i}, x_{3}^{i}\right)
$$

If ($\boldsymbol{\nabla}, \Phi^{i}$) is a generalized monopole then

$$
\begin{equation*}
\boldsymbol{\nabla}^{\prime} \doteq p^{*} \boldsymbol{\nabla}+\sum_{i} \Phi^{i} d x_{0}^{i} \tag{4.7}
\end{equation*}
$$

is a c_{2}-self-dual connection. Conversely, any c_{2}-seff-dual connection that is x_{0}^{i}-invariant determines a solution of the generalized monopole equation.

Proof: The curvature F^{\prime} of the connection ∇^{\prime} is given by
$F^{\prime}=p^{*} F+\sum_{j}\left(\nabla \Phi^{j}\right) \wedge d x_{0}^{j}+\frac{1}{2} \sum_{i<j}\left[\Phi^{i}, \Phi^{j}\right] d x_{0}^{i} \wedge d x_{0}^{j}$,
where F is the curvature two-form of ∇. Now, using Eqs. (4.4), we get

$$
\begin{aligned}
& \boldsymbol{\nabla}_{\binom{j}{1}} \Phi^{i}=F_{\binom{i}{2}\binom{j}{3}} \boldsymbol{\nabla}_{\binom{j}{2}} \Phi^{i}=-F_{\binom{i}{1}\binom{j}{3}}, \nabla_{\binom{j}{3}} \Phi^{i}=F_{\binom{i}{1}\binom{j}{2}}, \\
& F_{\binom{i}{\alpha}\binom{j}{\alpha}}=\frac{1}{2}\left[\Phi^{i}, \Phi^{j}\right], \quad \forall i j ; \alpha=1,2,3, \\
& \boldsymbol{\nabla}_{\binom{i}{\alpha}} \boldsymbol{\Phi}^{j}=\boldsymbol{\nabla}_{\binom{j}{\alpha}} \Phi^{i}, \quad \forall i_{2} ; \quad \alpha=1,2,3,
\end{aligned}
$$

which can be written as
$F_{\binom{i}{\alpha}\binom{i}{\beta}}=\sum_{\gamma} \epsilon_{\alpha \beta \gamma} \nabla_{\binom{i}{r}} \Phi^{j}+\frac{1}{2} \delta_{\alpha \beta}\left[\Phi^{i}, \Phi\right], \forall i j ; \forall \alpha, \beta=1,2,3$
$\boldsymbol{\nabla}_{\binom{1}{a}} \boldsymbol{\Phi}^{\boldsymbol{j}}=\boldsymbol{\nabla}_{\binom{\Lambda}{\alpha}} \boldsymbol{\Phi}^{\boldsymbol{\top}}, \quad \forall i, j ; \alpha=1,2,3$.
The converse is obvious.
We can also obtain "monopole" analogs of c-self duality equations in the c_{1} and c_{3} cases. The first one is not interesting, however, because it yields n decoupled self-dual Bogomolny equations. In the second case we can explicitly write down the set of equations

$$
\begin{align*}
& F_{\binom{i}{\alpha}\binom{j}{\beta}}+F_{\binom{j}{\alpha}\binom{i}{\beta}}=\sum_{\gamma} \epsilon_{\alpha \beta \gamma}\left(\boldsymbol{\nabla}_{\binom{i}{\gamma}} \Phi^{i}+\nabla_{\binom{j}{\gamma}} \Phi^{i}\right), \quad \forall i, j ; \forall \alpha, \beta, \\
& \sum_{i=1}^{n} \nabla_{\binom{i}{\alpha}} \Phi^{i}=0, \forall \alpha, \quad\left[\Phi^{i}, \Phi^{i}\right]=-\sum_{\alpha=1}^{3} F_{\binom{i}{\alpha}\binom{j}{\alpha}} \quad \forall i, j . \tag{4.11}
\end{align*}
$$

For $n=1$ these are just the usual Bogomolny equations with the reversed orientation. We do not know any nontrivial solutions of (4.11) for $n>1$ at the moment. Finally, let us remark that we could introduce additional invariance and reduce the c-self-duality equation to $2 n$ dimensions, assuming that the c-self-dual equations of $\mathbb{R}^{4} \otimes \mathbb{R}^{n}$ be both x_{0}^{i} and x_{1}^{i} invariant. Then we obtain an analog of the well-known vortex equation of the two-dimensional Yang-Mills-Higgs theory. Again the c_{2} case is the most natural generalization and we shall address this problem in a future work.

ACKNOWLEDGMENT

The authors were partially supported by the NSF Grant DMS-8906806.
${ }^{\text {'S }}$ S. Ishihara, J. Diff. Geom. 9, 483 (1974).
${ }^{2}$ S. Salamon, Invent. Math. 67, 143 (1982).
${ }^{3}$ S. Salamon, Ann. Scient. Ec. Norm. Sup. 19, 31 (1986).
${ }^{4}$ H. Pedersen and Y. S. Poon, Commun. Math. Phys. 117, 569 (1989).
"A. Swann, "On the Fundamental 4-Form of a Quaternion-Hermitean Manifold," Oxford preprint, 1989.
${ }^{6}$ E. Corrigan and P. Goddard, Commun. Math. Phys. 100, 1 (1985).
${ }^{7}$ M. M. Capria and M. S. Salamon, Nonlinearity 1, 517 (1988).
${ }^{*}$ M. F. Atiyah, Geometry of Yang-Mills Fields (Lezioni Fermiane, Pisa 1979).
${ }^{4}$ M. F. Atiyah, V. G. Drin'feld, N. J. Hitchin, and Yu. I. Manin, Phys. Lett. A65, 185 (1978).
${ }^{10}$ N. Buchdal, J. Diff, Geom. 24, 19 (1986).
"S. K., Donaldson,"Vector bundles on flag manifolds and the Ward correspondence," in Geometry Today, Progress in Math., No. 60 (Birkhauser, Boston, 1985).
${ }^{12}$ F. Güsey and C. H. Tze, Ann. Phys. 128, 29 (1980).

[^0]: ${ }^{1}$ Present address: Dept. of Math., The Univ. of New Mexico, Albuquerque, NM 87131.

