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In [8], Hitchin proved that a compact K/ihlerian twistor space is in fact a 
projective algebraic manifold. Moreover, it is the twistor space associated to either 
the Euclidean 4-sphere S 4 or the complex projective plane C F  2 with Fubini-Study 
metric. The twistor spaces are ••3 and the flag of lines in ~ p 2  respectively. In 
[10, 11], the author proved the existence of self-dual metric with positive scalar 
curvature on the connected-sums of two or three copies of the complex projective 
planes. Their twistor spaces are Moish6zon spaces. In fact, they are the small 
resolution of the intersection of two quadrics in ~ p s  with four nodes and the 
double covering of C P  3 branched along a quartic with thirteen nodes. Recently, 
the joint work of Donaldson and Friedman [3] produced a general procedure to 
construct new twistor spaces and hence self-dual manifolds. In this article, we shall 
follow the spirit of Hitchin's work and prove the following: 

Theorem. I f  the twistor space of a compact self-dual manifold is Moish~zon, the 
self-dual conformal class contains a metric with positive scalar curvature. 

After a brief introduction, we shall apply a theorem of Grauert to show that the 
sections of a sufficiently large power of the anticanonical bundle on the twistor 
space generate the meromorphic function field when the twistor space is 
Moish6zon. This piece of information will enable us to apply a Bochner type 
argument to prove the existence of metric with positive scalar curvature in the 
given conformal class. 

For a given self-dual manifold X, the twistor space Z is the total space of the 
sphere bundle of the anti-self-dual two forms. It has a naturally defined complex 
structure determined by the self-dual conformal class I-1]. The fibres of the 
fibration from Z onto X are nonsingular rational curves. The antipodal map on 
each fibre is the restriction of an antiholomorphic involution z on Z. Of course, it 
has no fixed points. It is the so-called real structure on Z. Objects that are invariant 
under the real structure are said to be real. For example, the fibres from Z onto X 
- - - - . . _ _ _ _  
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are called real twistor lines, the canonical bundle K of Z is real. There is always a 
holomorphic line bundle such that its second power is K. This bundle is denoted by 
K ~/2. The obstruction to the bundle K 1/z to have nontrivial index is the second 
Stiefel Whitney class of X. Since the twistor space is determined only by the 
conformal class of a metric [7], twistor correspondence can associate certain 
holomorphic objects on the twistor space to conformal invariant objects on the 
manifold X. For example, when ~+ and S TM _ are the m-th symmetric power of the 
+1/2 and - 1 / 2  spinor bundles, there are conformal invariant differential 
operators given by the composition of orthogonal projection and covariant 
derivatives [1,7]: 

D m : S m _ ---*Sm _ ( ~  S _ ( ~  S + ---r S m _ - 1 ( ~  S + 

Din: S ~- ---,S~ |  |  + --, S~ + ~ |  +. 

Here we are using the fact that the (complexified) tangent bundle of X is 
isomorphic to S_ | and that 

s ~_ |  |  = ( s~  - 1 | s+)| +,  |  

is an orthogonal irreducible decomposition. Then the twistor correspondence 
gives the following natural isomorphisms: 

m 1 

kerD,n = Hi (Z ,  C(K ~ + ~-)) (l) 

and 

kerOm=Ho(Z ,  (9(K 4)). (2) 

Dm is the Dirac operator;/)m is the twistor operator. Of course, if X is not a spin 
manifold, rn has to be an even integer. 

Suppose that Z is a Moish~zon space, in other words, the algebraic dimension 
of Z is equal to the its dimension. Since Z is three dimensional, it can be blown-up, 
with a finite collection of points and/or nonsingular curves on Z as centres, to a 
projective algebraic 3-fold W [9]. Let I~ be the blowing-up of Z with conjugate 
centres. Since exceptional divisors of blowing-up are simply the projectivization of 
the normal bundles, the differential of the real structure -r induces an anti- 
holomorphic map: 

Z: I~'--* W, 

such that z o p =/3, where p and/3 are the blowing-down maps from W and ITV onto 
Z respectively. Let Q be the inverse of z, then # is an antiholomorphie map such that 

0o/~=p, z o g=identity, Q o z=identity. 

Since W is projective algebraic, there is a positive line bundle L on W. Let 
{ U~: �9 e A } be a good covering on W such that the transition function of the bundle 
L with respect to this covering is given by {g~p}. Then {o(U~):a~A} forms a 
covering of W. Let 

h~p(z) : = g~ao z(z). 
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Then {h~p} is the transition functions of a holomorphic line bundle/ ,  on [4" with 
respect to the covering {o(U~)}. From this description, it is obvious that if O is a 
positive (1,1)-form representing the first Chern class of L on W, then z ' t0 is a positive 
(1,/)-form representing the first Chern class of bundle L. Therefore, W is also 
projective algebraic. Let V be the fibre product of W and I~ over Z. As a closed 
complex subvariety of the product of the two projective algebraic manifolds W and 
W,, V is a projective algebraic variety. However, on V, there is an induced real 
structure inherited from W x I,V defined by: 

~:(v, ~) ~(~(~), T(v)). 

This antiholomorphic involution on W x [TV leaves V invariant. In fact, when V is 
considered as a variety that is blown down to the given twistor space, the real 
structure ~ on V is a lifting of the real structure on Z. Obviously, we do not know, in 
general, if V is nonsingular or not. Neither do we know if the real structure on V 
has fixed point or not. 

Since V is projective algebraic, there is a very ample line bundle F on V. Then 
~*F is also a very ample line bundle because ~ is an antiholomorphic involution. 
The space of global sections of F is conjugate linearly isomorphic to the space of 
global sections of ~*F. As the tensor product of two very ample line bundles is 
again very ample, there are real very ample line bundles on V, F |  for instance. 

On the other hand, when ~ is any sheafon V, there are the direct image sheaves 
Ri~,~  - on the twistor space Z. The 0-th direct image sheave will be denoted by 
7~,~-. Since Z and V are compact complex manifolds, a theorem of Grauert [5, 6] 
on proper morphisms of complex analytic spaces states that: 

When ~ is a very ample invertible sheave, then 
(i) for all i, n, R~n,~" is a coherent sheaf 

(ii) for i > 0 and n ~> O, R i n , ~ "  = O. 
Let us choose a very ample real line bundle Fo on V. Denote (gv(Fo) by fro. Let 

F = F~ be a positive power of Fo with n so big that the second assertion in the above 
theorem is true for ~ - =  (gv(F)--ff~, i.e. 

R i~z ,~=0  for all i > 0 .  

Since all the higher direct image sheaves o f ~  vanish, a spectral sequence argument 
[4, 6] shows that there is a natural isomorphism 

H~(V, ~)  ~ H~(Z, ~,~)  (3) 

for all i > 0. As when we replace ~ by its positive power ~-", Rig,o ~ "  also vanishes 
by Grauert's theorem, we actually have the natural isomorphisms: 

H~( V, ~ ' )  ~- H~( Z, ~ , ~ " )  (4) 
for all i_>_0, m > l .  

Note that each ~ , ~ m  is coherent. Since ~ "  is actually locally free, n , ~  T M  is 
torsion free. As a consequence, the set Am on which g , :~ ' '  fails to be free is an 
analytic subspace of Z of codimension at least 2. In other words, the dimension of 
A,, is at most 1. 

Let ~ be the bidual sheaf of zc,,~, then ~ is locally free. As ~,~,~ has rank 1, ~ is 
the sheaf of germs of sections of a holomorphic line bundle D on the twistor space 
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Z. Then the bidual sheaf of rc ,~  T M  is (9(D m) = ~m. Since 7r,~,~" is torsion free, there is 
a natural injection: 

0 ~ r c , ~ ' n ~  m , 

Let ~,, be the quotient sheaf of zc,~, ~'~ in ~" .  We have an exact sequence of coherent 
sheaves on Z: 

0--, ~ ,~m-- ,  ~"--,-~---, 0 (5) 

Since rc.~, ~m is free except on the set A,,, -~m is supported by Am. As the dimension of 
Am is at most 1, Grothendieck's vanishing theorem I-6] implies that 

W(Z,~m)=0  for j = 2 , 3 .  

Combining the natural isomorphism (4) with the induced long exact sequence of 
(5), we have 

O~H~ ~-m)-~H~ ~ ' ) -~H~  2,.) 

-~ HI(V, ~r")--, H~(Z, ~")---> HI(Z, ~,,) 
-+H2(I/, ~-m)~ H2(Z, ~m)-+0 

H3(V,.~ ra) -----~ H3(Z,~m). 

Moreover, ~ is a positive power of the ample sheaf :-o on V. When this power is 
sufficiently large, a generalization of Kodaira's vanishing theorem I-6] shows that, 
for all m > l , j > l ,  

hi(V, ~m) - dim Hi(y,, ~m) = 0. (6) 

Therefore, we have 

0---}H~ ~m)--}H~ ~m)--rH~ ~,~)--* 0 (7) 

h2(Z, ~m)= ha(Z, ~m)= 0. (8) 

From the Riemann-Roch formula and the ampleness of ~ ,  we can see that 
z(V, : - ' )  is a cubic polynomial p(m) in m with positive coefficient at the leading term 
m a. Then the equations (6) show that 

h~ ~"~) = p(m). 

The exactness of (7) shows that 

hO(Z, @m) = g{m), (9) 

where g(m) is a cubic polynomial with positive coefficient at m 3. 
So far, we have been working on general compact Moish6zon space. However, 

as we choose F to be real bundle on V, D is a positive power of the fundamental line 
bundle K-1/2. The reason is the following: 

A compact Moish6zon space has Hodge symmetry 1-13]. But a twistor space 
has no nontrivial holomorphic forms 1,8]. Therefore, the Hodge numbers have to 
satisfy the following: 

hO, 2_ h2,O=0, hO.l = h L O = 0 .  
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Then the induced cohomology exact sequence of the exponential sequence shows 
that the Picard group is isomorphic to the additive group H2(Z, Z) via the first 
Chern class. 

Now on V, F is a real line bundle in the sense that ~*F = F. However, ~ is a lifting 
of the real structure on Z. Therefore, re. ~=z . r t ,  i.e. z * T t . ~ - - = n . ~ -  and hence 
v*/)" = D". In other words, D is a real line bundle on Z and "r*cl(D ) = cl(D ). By the 
Leray-Hirsch theorem, one can check that H2(Z, ~)  is generated by ci, the first 
Chern class of the twistor space, and the H2(X, R) via the projection p from the 
twistor space onto X. Therefore 

cl(D) = kcl + p*~, 

where k is a number and ~ is in H2(X,]R). However, z'c1 = c l  and z*~= - ~ ,  the 
reality of cl(D) implies that 

cl(O)=kcl. 

As we have the isomorphism between the Picard group and H2(Z, 7Z), the above 
equality implies that 

D = K  -k. 

As the restriction of K-1  on every real twistor line is the fourth power of the 
hyperplane bundle [8], Eq. (9) shows that k is positive. Note that k can be a half- 
integer. The consequences of Eqs. (8) and (9) are 

h~ K - rak) = g(m) = 0(m a) (10) 

h2(Z,K-mk)--O for all m>__l. (11) 

Before we apply this observation to a Bochner type argument, we should 
remark that in any conformal class on X, we can always choose a metric with 
constant scalar curvature. This is a direct consequence of Schoen and Aubin's 
work on the Yamabe problem [12]. In the following argument, we shall choose our 
self-dual metric to have constant scalar curvature. 

Recall that we have the Dirac operator  D, and the twistor opera to r / ) ,  on S"_ : 

D,: S"_~S"_-I| + , 
- -  . n i i  D,.S_-~S_ + t |  + . 

Let us choose inclusions 

and 

a n  - l| |  |  

S"+I| ~S"_|174 

As a result of Schur's lemma and the irreducibility of these bundles [2], these 
inclusions are uniquely defined up to a constant. Then there are universal nonzero 
Constants 21 and 22 such that 

Ds = 2xD,s + 2fl) ,s ,  
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where s is a smooth section of SL and D is the connection on SL. Since the splitting 
of 

SL (~(S_ @S+) .~-(S n_ - l@S+)@(S n_ + 1 @S+) 

is orthogonal with respect to the induced metric [1], 

IlDsl[ 2 =2Z~HD.sll2 + 2~lpD, slp 2. (12) 

For the Dirac operator D,, we have the well-known Weitzenb6ch formula 
[1, 7] that 

D*.D. = D * D  + ~ ( n  + 2)u, 

where u is the scalar curvature. Therefore, 

l[ D.sll 2 __ [[Dsll 2 + ~ ( n  + 2)u Ilsll 2. (13) 

Then (12) can be expressed as 

~110,s112=(1-2~) IlDsll =-~(n+2)u2~l l s l l5  

Note that 1 - 2  z must be strictly positive, for otherwise, on a self-dual manifold 
with zero scalar curvature, e.g. torus or the K3-surface with the Calabi-Yau metric, 
we would have 

222 t[/5n s 1[ 2 = (1 -- 2 z) II Os It z < O. 

It would imply that all sections of S"_ over a K3-surface is in the kernel of/3.. This is 
a contradiction to the fact that/3,  has only finite dimensional when the underlying 
self-dual 4-fold is compact [7]. 

Therefore, when u is negative, 

IIIDjtl2=a, tlDsH= + a2(n + 2) Ilsl[ 2 

for some positive numbers al, a2. Therefore, a section of S"_ is in the kernel of /) ,  if 
and only if it is the zero section. By Eq. (2) 

0 = dim ker 13. = h~ K -./4) 

for all n >  0. In this case, the twistor space Z cannot fulfill the requirement of 
Eq. (10). 

When the scalar curvature is zero, then Eqs. (12) and (13) become 

IlO,sll 2= [[Osll z, II~,sllZ=al llDsll 2, 

where al is a positive constant. In particular, 

dim ker/5, = dim ker D., for all n. 

From Eqs. (1) and (2), we have 

h~ K-"/4) = hi(Z, K"/4 + �89 

Then, by Serre duality, 

h~ K-"/4)  = h2(Z, K 1 - . /4- ~) 

= h2(Z, K - ("- 2)/4). 
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It  impl ies  tha t  n o t  both  o f  Eqs. (10) and  (11) can  hold.  The  r ema in ing  poss ib i l i ty  is 
that  the scalar  cu rva tu re  u is posi t ive.  
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Note added in proof. Recently, M. Ville in Nancy also obtained results in a similar direction. 
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