
EINSTEIN-WEYL DEFORMATIONS AND SUBMANIFOLDS(SOUS-VARI�ET�ES ET DEFORMATIONSDES STRUCTURES D'EINSTEIN-WEYL)HENRIK PEDERSEN, YAT SUN POON, AND ANDREW SWANNAbstract. Motivated by new explicit positive Ricci curvature metrics on the four-sphere which are also Einstein-Weyl, we show that the dimension of the Einstein-Weyl moduli near certain Einstein metrics is bounded by the rank of the isometrygroup and that any Weyl manifold can be embedded as a hypersurface with pre-scribed second fundamental form in some Einstein-Weyl space. Four-dimensionalEinstein-Weyl manifolds are proved to be absolute minima of the L2-norm of thecurvature of Weyl manifolds and a local version of the Lafontaine inequality isobtained. The above metrics on the four-sphere are shown to contain minimalhypersurfaces isometric to S1 � S2 whose second fundamental form has constantlength. 1. IntroductionManifolds Mn with conformal structure [g] and torsion-free a�ne connection D,such that parallel translation induces conformal transformations, are called Weylmanifolds. If, furthermore, the trace-free symmetric part of the Ricci curvature of Dvanishes, the geometry is said to be Einstein-Weyl . Many examples and general re-sults have been obtained [6, 17, 18, 19, 16, 22], in particular in dimensions three andfour. In Chapter 2, we prove that four-dimensional Einstein-Weyl manifolds are min-ima for a natural functional. Furthermore, we observe that the Lafontaine inequalityfor scalar-
at half-conformally-
at four-manifolds has a local interpretation.Recently, compact four-dimensional Einstein-Weyl manifolds with symmetry groupThe second named author was partially supported by NSF grant DMS-9306950.Joint ESI/Odense preprint. 1



2 H. PEDERSEN, Y. S. POON, AND A. SWANNof dimension at least four have been classi�ed and this classi�cation includes new ex-plicit families of Einstein-Weyl structures on S4 and S2�S2 containing the canonicalEinstein metrics [15, 14]. In Chapters 3 and 4 we investigate the Einstein-Weyl mod-uli near Einstein metrics. We �rst show that these moduli are �nite-dimensionaland in certain cases show that the rank of the isometry group of the Einstein metricprovides an upper bound for the dimension. Chapter 4 concludes by discussing someexplicit families of Einstein-Weyl structures near Einstein metrics.In Chapters 5 and 6 we study Weyl submanifolds. We show that the notion ofsecond fundamental form extends naturally to Weyl geometry and that Weyl man-ifolds may be embedded as hypersurfaces with prescribed second fundamental formin Einstein-Weyl spaces. This extends known results for Einstein metrics proved byKoiso [9].The techniques of the four-dimensional classi�cation referred to above also givesnew Einstein-Weyl geometries on Sn, CP(m) and the total space of the bundleP(O(k) � O) ! CP(m � 1). These conformal classes contain metrics of positivescalar curvature which happen to have positive Ricci curvature when the dimensionis four. In Chapter 7, we give examples of minimal hypersurfaces in these manifoldsand contrast their properties with examples given by Chern et al. [2].Acknowledgements. We would like to thank the Erwin Schr�odinger International In-stitute for Mathematical Physics, Vienna, for kind hospitality during the preparationof this paper and Anders Bisbjerg Madsen for useful conversations. The secondnamed author would also like to thank Odense University for �nancial support.2. The Curvature FunctionalThe problem of �nding metrics which are minima of some functional plays a centralrôle in Riemannian geometry. One of the most natural such problems in dimensionfour is to �nd critical points of the functionalR(g) = ZM jRgj2 volgon the space of smooth Riemannian metrics of a given smooth, compact orientedfour-manifold M . Here Rg is the Riemannian curvature tensor of the metric g. It



EINSTEIN-WEYL DEFORMATIONS AND SUBMANIFOLDS 3is well known that the vanishing of the trace-free part of the Ricci curvature of themetric g (i.e. that g be an Einstein metric) is a su�cient condition for the metric tobe an absolute minimum of R [12].We may consider similar ideas in Weyl geometry. The compatibility between Dand [g] means that Dg = ! 
 g for some one-form !, depending on g, where g is arepresentative metric in the conformal class. We may express theWeyl connection Din terms of the metric connection r of g using this one-formD = r+ 12 �!] 
 g � Id
! � ! 
 Id� :Note that if ! is exact, ! = d�, thenD is just the metric connection of e��g, cf. [18, 6].Likewise, the curvature tensor RD of D is given byRD = Rg + 12d! 
 g + 12S(r!)
̂g+ 14d!
̂g + 14 (! 
 !)
̂g � 18j!j2g
̂g; (2.1)where S(r!)(x; y) = 12 ((rx!)(y) + (ry!)(x)) and for a two-tensor �, �
̂g is thefour-tensor(�
̂g)(x; y; z; t) = �(x; z)g(y; t) + �(y; t)g(x; z)� �(x; t)g(y; z)� �(y; z)g(x; t):For symmetric �, this is just the Kulkarni-Nomizu product of � and g [1]. If rg and rDdenote the Ricci curvatures of r and D respectively and sg, sD their g-traces, thenwe write the decomposition into irreducible componentsRD = W + 1n�2S0(rD)
̂g + 12n(n�1)sDg
̂g + (14d!
̂g + 12d! 
 g);or equivalentlyRD =W + h 1n�2rg0 + 12S0(r!) + 14! 
0 !i
̂g+ h 12n(n�1)sg � (n�2)8n j!j2 � 12nd�!i g
̂g + (14d!
̂g + 12d! 
 g);where rg0, S0, 
0 indicate trace-free parts and we have used the relationssD = sg � 14(n� 2)(n � 1)j!j2 � (n� 1) d�!;S(rD) = rg + 14(n� 2) �! 
 ! � j!j2g + 2r! � d!�+ 12d�! g:Note that the (3; 1)-tensor corresponding to RD is conformally invariant.



4 H. PEDERSEN, Y. S. POON, AND A. SWANNAs in the Riemannian case we look for extrema of the L2-norm of the total curva-ture. In dimension four we have the well-de�ned functionalC([g];D) = ZM ���RD���2 volgon the space of smooth Weyl structures ([g];D) of a given smooth, compact orientedfour-manifold M . Recall that the Euler characteristic �(M) of M can be expressedin terms of the curvature of an arbitrary Riemannian metric g via the generalisedChern-Weil formula�(M) = 18�2 ZM �jW+j2 + jW�j2 + 16(sg)2 � 2 jrg0j2� volg;where W+ and W� denote the self-dual and anti-self-dual Weyl curvatures respec-tively. Using this, it follows thatC([g];D) = 4 ZM ���S0(rD)���2 volg +8�2�(M):Thus, if ([g];D) satis�es the Einstein-Weyl equations S0(rD) = 0, the pair is anabsolute minimum of C. This new result may serve as further motivation for thestudy of the Einstein-Weyl equationsS(rD) = 1nsDg:Remark 2.1. If we express the signature � (M) in terms of curvature� (M) = 112�2 ZM �jW+j2 � jW�j2� volg;then we may write the functional asC([g];D) = ZM �4 jW�j2 + 3 jd!j2 + 13(sD)2� volg�8�2 (�(M)� 3� (M)) :Thus, Weyl-scalar-
at (sD = 0), half-conformally-
at (i.e. either W+ = 0 or W� = 0)locally-conformally-metric (d! = 0) structures are also absolute minima of C([g];D).On the other hand, for Einstein-Weyl manifolds (S0rD = 0), we have a Hitchin-Thorpe inequality �(M) > 32 j� (M)j+ 316�2 ZM jd!j2 volg;with equality if and only if M is half-conformally-
at and sD = 0 [16]. Furthermore,



EINSTEIN-WEYL DEFORMATIONS AND SUBMANIFOLDS 5for half-conformally-
at Weyl spaces with sD = 0 we get a \local version" of theLafontaine inequality [11] in this conformal setting�(M) 6 32 j� (M)j+ 316�2 ZM jd!j2 volg : (2.2)The conditions sD = 0 and d! = 0 imply that g is locally conformal to a scalar-
atmetric and thus the Lafontaine inequality is true also for locally-conformally scalar-
at half-conformally-
at manifolds. One has equality in (2.2) if and only if M is alsoEinstein-Weyl. 3. SlicesWe have seen how a Weyl manifold is described by a pair (g; !) consisting of ametric and a one-form. For a conformally equivalent metric efg the correspondingone-form is !+df and the new scalar curvature is e�fsD. A compact Weyl manifoldMhas a unique, up to homothety, metric g in the conformal class such that the one-form ! is co-closed [5]. We call this metric the Gauduchon metric. If furthermorethe manifold is Einstein-Weyl, then the corresponding vector �eld !] is Killing [22]and we have the Gauduchon constant G [17, 6] given byG = sg � 14(n+ 2)j!j2= sD + 14n(n� 4)j!j2:Also, in this gauge the Einstein-Weyl equations for the pair (g; !) becomerg = 1nsDg + 14(n� 2)(j!j2g � ! 
 !)and for n = 3 the compact solutions to these equations are all known [22, 19].For n > 4 it is easily seen [6, 19], that an Einstein-Weyl solution with G 6 0 is eitherEinstein or belongs to a known one-parameter family of four-dimensional manifoldsof type S1 � S3, cf. Remark/Example (7) in section 4. Thus, from the point of viewof Einstein-Weyl geometry we may concentrate on the case of positive Gauduchonconstant and scale the Gauduchon metric by a homothety to get G = 1.The group of di�eomorphisms acts on the pair (g; !) by pullback and '�(d�g!) =d�'�g'�!, that is, the pullback of the co-di�erential of ! with respect to g is theco-di�erential of the pullback of ! with respect to the pullback of g. Therefore,



6 H. PEDERSEN, Y. S. POON, AND A. SWANNthe conformal slice d�! = 0 is invariant under the group of di�eomorphisms andwe may think of the moduli space of Einstein-Weyl structures on M as a subsetof the quotient space of W = f (g; !) : d�! = 0, G = 1 g by the action of thedi�eomorphism group D. Recall that the Ebin slice S(g) to the action of D at g isgiven in�nitesimally by r� _g = 0, where _g = @gt=@tjt=0 is the tangent vector of acurve of metrics through g0 = g [3].De�nition 3.1. Let (g0; !0) be an Einstein-Weyl solution on M . The subset fMof S(g0)� 
1M given by d�! = 0, G = 1 and rg = 1nsDg + 14(n� 2)(j!j2g � ! 
 !)is called the premoduli space of Einstein-Weyl structures around (g0; !0).To get a neighbourhood of (g0; !0) in the moduli space M we must still divide bythe action of the compact group of isometries of g0 preserving !0.4. Infinitesimal Deformations Around Einstein MetricsSuppose (gt; !t) is a smooth curve in the premoduli space around (g0; !0) = (g; 0),where g0 is an Einstein metric with sg0 = G = 1. From the Killing condition rt!t =12d!t we get r _! = 12d _!, so _!] is a Killing vector for g0, where _! = @!t=@tjt=0.Furthermore we have _G = 0, so_sg = 14(n+ 2)�2g(!; _!)� g( _g; ! 
 !)� = 0and similarly _sD = 0.Now, an arbitrary in�nitesimal deformation satis�es_sg = �Tr _g +r�r� _g � g(rg; _g);so the condition _sg = 0, the Ebin gauge condition r� _g = 0 and the fact that rg0 =1nsg0g0 imply �Tr _g = 1nsg0 Tr _g:It then follows that Tr _g = 0, because the smallest non-zero eigenvalue of the Lapla-cian is not less than 1n�1sg0 [13]. We now getTheorem 4.1. The metric part of the linearised Einstein-Weyl equations near anEinstein metric g0 with sg0 = 1 co��ncide with the linearised Einstein equations.



EINSTEIN-WEYL DEFORMATIONS AND SUBMANIFOLDS 7Proof. We have_r = 1n( _sDg + sD _g)+ 14(n� 2) �j!j2 _g + 2g(!; _!)g � g( _g; ! 
 !)g � _! 
 ! � ! 
 _!�= 1n _g;since ! = 0, _sD = 0 and sD = 1 at t = 0.Corollary 4.2. The space of in�nitesimal Einstein-Weyl deformations of an Ein-stein metric g0 with sg0 = 1 is �nite-dimensional. In particular, let (M;g0) be alocally symmetric Einstein manifold of compact type and let QNa=1Ma be the irre-ducible decomposition of the universal Riemannian covering manifold fM . Considerthe following lists of compact symmetric manifolds:(1) SU(p+ q)S(U(p)�U(q)) (p > q > 2); E6F4 ;SU(`)SO(`) ; SU(2`)Sp(`) ; SU(`) (` > 3);(2) G2SO(4) ; G2;(3) Hermitian symmetric spaces of real dimension at least four;(4) S2:If N = 1 and Ma is not on list (1) or N = 2 and Ma is not on lists (1){(3) or N = 3and Ma is not on the lists (1){(4), then (M;g0) has at most an m-dimensional familyof in�nitesimal Einstein-Weyl deformations, where m is the rank of the isometrygroup of g0.Proof. Except for the excluded spaces, the Einstein metric has no in�nitesimal Ein-stein deformations [10]. Therefore we are left with the Killing vectors _!] moduloisometries of g0. In general, the �nite-dimensionality follows because the linearisedEinstein equations are elliptic: as Tr _g = 0 = r� _g, the equation _r � 1n _g = 0 isequivalent to r�r _g � 2 �R( _g) = 0 [1].Remarks and Examples. (1) It follows in particular, that the number of in�nites-imal Einstein-Weyl deformations of the standard n-sphere is equal to the rank b(n+



8 H. PEDERSEN, Y. S. POON, AND A. SWANN1)=2c of SO(n+ 1). We will now give some examples which show that at least someof these deformations may be integrated to give a non-trivial moduli space.(2) Consider an odd-dimensional sphere and the Hopf �bration � : S2n+1 ! CP(n).On the sphere we consider metrics given byg = gB + x� 
 �;for x 2 R, where gB is the Fubini study metric and � is the connection one-formwith horizontal spaces given by the orthogonal complement to the �bres of the Hopf�bration. For certain values of x this metric is Einstein. We may consider thestandard Einstein metric corresponding to x = x0, say. Let ! = y �, for y 2 R,and consider the Weyl structure (g; !) on S2n+1. Using the O'Neill formulae forRiemannian submersions, the Einstein-Weyl operator E = S(rD)� � g is given byE = ��B � xx0 (�B � �)� �� gB +  x2x0�+ 14(n � 1)y2 � x�!� 
 �;where � and �B are the Einstein constants for S2n+1 and CP(n) respectively [18].The condition TrE = 0 gives� = � xx0 + (n� 1)4(n+ 1) y2x + nn+ 1�B �1 � xx0� :Therefore, the operator is a functionE : R2! R� S2T �S2n+1;where E(x; y) = �Bn+ 1 �1� xx0�� n� 14(n+ 1) y2x :As the gradient of this smooth function satis�esdE(x0; 0) =  � �Bx0(n+ 1) ; 0! 6= 0;it follows from the Inverse Function Theorem that E�1(0) is a one-dimensional sub-manifold of R2 near (x0; 0). Indeed, E�1(0) is the ellipsoid(x� 12x0)2x20=4 + y2�Bx0=(n � 1) = 1



EINSTEIN-WEYL DEFORMATIONS AND SUBMANIFOLDS 9of Einstein-Weyl solutions, with (x0; 0) corresponding to the standard Einstein metricand (0; 0) a degenerate structure. A priori we could allow x and y to be functions in anappropriate Banach space, but it is easily seen that we do not get more solutions thisway. However, the method can be generalised to Einstein metrics of positive scalarcurvature on principal S1-bundles over a compact K�ahler-Einstein base manifolds.(3) For the three-sphere the number of in�nitesimal deformations is two and allthese have been integrated [19], using a relation [7] between four-dimensional self-dualmanifolds and three-dimensional Einstein-Weyl geometry.(4) The r-dimensional family of Einstein-Weyl structures obtained in [18, Theo-rem 4.2] on r-torus bundles over products of m K�ahler-Einstein manifolds for r 6 m,also provide examples where the rank of the isometry group agrees with the dimen-sion of the space of known deformations: the Einstein-Weyl structures are close to theEinstein metrics found by Wang & Ziller [23] and if the base manifolds are chosen tobe products of K�ahler-Einstein manifolds without continuous families of isometries,such as for example those found by Tian & Yau [20, 21] on the blow-up of CP(2)in k points, for 4 6 k 6 8 (see [4]), then the isometry group of the Einstein metricon the torus bundle is the torus T r itself, which has rank r. Note however, that theEinstein metrics on these T r-bundles are not known to be rigid, so the full modulispace of Einstein-Weyl deformations could be larger.(5) In the process of classifying compact four-dimensional Einstein-Weyl structureswith big symmetry, Madsen [14] found a one-parameter family of Einstein-Weyl struc-tures on S4 which may be written asg = A(A cotA� 1)cotA� y cot(Ay) dy2 + sin2(yA) gS2+ 4A(A cotA� 1)(A+A cot2A� cotA)2(cotA� y cot(Ay)) d�2;! = �4A(cotA� y cot(Ay))A+A cot2A� cotA d�;where (y; �) 2 (0; 1) � (0; 2�) are coordinates, gS2 is the standard metric on S2 andA 2 [0; �) is a parameter with A = 0 corresponding to the Einstein metric on S4. Thissolution has S1 � SO(3)-symmetry and Madsen also found another one-parameterfamily with U(2)-symmetry, but we have not yet been able to �nd a two-parameter



10 H. PEDERSEN, Y. S. POON, AND A. SWANNfamily of solutions integrating all the in�nitesimal deformations on S4.(6) Corollary 4.2 also shows that S2�S2 can have at most a two-parameter familyof Einstein-Weyl solutions near the Einstein metric and also in this case Madsen [14]found a new explicit one-parameter family of such structures.(7) As an example of a moduli of Einstein-Weyl structures away from an Einsteinmetric, consider the manifold S1 � Sn�1. Let gt be the product of the metric t2d�2on S1 = fexp(i�) : � 2 [0; 2�)g and the canonical metric gcan on Sn�1 with sectionalcurvature one. Let !t be the one-form 2t d� and note that !t is harmonic with respectto gt. This gives rgt = (n� 2)gcan = (n� 2)(gt � t2d�2)= 14(n � 2)(j!tj2gt � !t 
 !t)and hence (gt; !t) is a one-parameter family of Einstein-Weyl geometries on S1�Sn�1with sDt = 0, which we call the standard structures. In four-dimensions this isthe full local moduli: the Hitchin-Thorpe inequality for Einstein-Weyl manifolds inRemark 2.1, shows that any Einstein-Weyl structure on S1�S3 must satisfy d! = 0,but Gauduchon [6] proves that all such closed structures are standard.5. Weyl SubmanifoldsLet (M; [�g];D) be a Weyl manifold and i : M ! M an immersed submanifoldand let � and �? be the orthogonal projections from i�TM to TM and the normalbundle TM?, respectively. We pull back the conformal structure from M to M . Inthe following, X;Y;Z;W are vectors in TM and � belongs to TM?. We obtain atorsion-free connectionD on TM byDXY = �(DXY ). This connection is compatiblewith the conformal structure. Indeed, if D�g = �!
 �g, then Dg = !
g, where g = i��gand ! = i��!. The conformal invariant � de�ned by the Gauss formulaDXY = DXY + �(X;Y )is called the second fundamental form of the Weyl structure. If � denotes the secondfundamental form of the isometric immersion i : (M;g) ! (M; �g), then � = � +



EINSTEIN-WEYL DEFORMATIONS AND SUBMANIFOLDS 1112�?(�!�])g. We also have a Weyl version of the Weingarten formulaDX� = �B�X +DNX�:Here �g(�(X;Y ); �) = g(B�X;Y ) and DN becomes a connection on the normal bundlesatisfying DNg? = ! 
 g?, where g? is the metric on TM? induced by �g. Theendomorphism B� of TM is symmetric and the normal vector H which satis�es�g(H; �) = 1n TrB�, n = dimM , is called the mean curvature with respect to g. Weshall focus on two conformally invariant conditions of the Weyl submanifold: H = 0and � = 0, referred to as minimal and totally geodesic, respectively.In the following we assume that M has co-dimension one. We choose a metric �gand a normal � of unit length. Then the Gauss and Weingarten formulae becomeDXY = DXY + b(X;Y )�; DX� = �BX � 12!(X)�;where B = B� and � = b 
 �. For the curvature, we have the Gauss and Codazziequations�g(RD(X;Y )Z;W ) = g(RD(X;Y )Z;W ) + b(Y;Z)b(X;W )� b(Y;W )b(X;Z);�g(RD(X;Y )Z; �) = (DY b)(X;Z)� (DXb)(Y;Z) + 12!(X)b(Y;Z)� 12!(Y )b(X;Z):Using (2.1), the Ricci curvature can now be expressed as followsrD(X;Y ) = rD(X;Y ) + b2(X;Y )� nh b(X;Y ) + "(X;Y );rD(X; �) = ndh(X) +D�b(X) + n2h!(X) + 12b(X;!]) + 12d�!(X; �);rD(�; �) = Tr ";where H = h �, b2(X;Y ) = Tr(b(X; �)b(Y; �)) and "(X;Y ) = �g(RD(X; �)Y; �).Thus, if the ambient space satis�es the Einstein-Weyl equations S(rD) = 1n+1sD�g,then S(rD) + b2 � nh b+ S(") = 1n+1sDg; (5.1)ndh +D�b+ n2h! + 12b(!]; �) + 14(n� 1)d�!(�; �) = 0; (5.2)Tr " = 1n+1sD: (5.3)



12 H. PEDERSEN, Y. S. POON, AND A. SWANN6. Weyl Hypersurfaces in Einstein-Weyl ManifoldsFollowing the ideas of Koiso [9] on hypersurfaces of Einstein manifolds, we proceedto study the problem of embedding Weyl manifolds as hypersurfaces in Einstein-Weylspaces.For each choice of metric �g on the ambient space, we may consider the mappingsi : M � R ! M and it : M ! M given by i(x; t) = expx t� and it(x) = i(x; t),respectively. Here exp denotes the exponential map of the metric �g. Then there is anopen set U of M �R containing M � f0g such that gt = i�t �g is a Riemannian metricon fx 2 M : (x; t) 2 U g. Locally we have �g = gt + dt2 and �! = !t + � dt, where!t = i�t �! and � = �g (�!; @=@t). It is convenient to use the followingLemma 6.1. There exists a metric �g in the conformal structure of a Weyl mani-fold M such that near a given Weyl hypersurface M we have �! = !t.Proof. Choose a metric �g0 with corresponding one-form �!0. Let V be a neighbourhoodin M , where �!0 = !t + �dt and set U = M \ V . Under a conformal change �g0 7!(exp fV )�g, we have �!0 7! !t + � dt + dMfV + (@fV =@t)dt and we choose fV suchthat @fV =@t = ��. Assume M is covered with such neighbourhoods (Vi)i2I wherefurthermore the induced covering (Ui)i2I of M admits a partition ('i)i2I of unity.Let f = Pi2I 'ifVi. Then, on each neighbourhood Vj , j 2 I, we have@f@t =Xi2I 'i@fVi@t = ��Xi2I 'i = ��:Note that near M we have � dt = �?(�!0) and (@f=@t)dt = �?(df), so these ex-pressions do not depend on the choice of t. Now, extend the function f from thisneighbourhood of M by using a bump function to obtain the metric �g on M .We are now ready to prove the main existence theorem in this chapter.Theorem 6.2. Let (M; [g];D) be a real analytic Weyl manifold with an analyticsymmetric bilinear form � taking values in a real line bundle L on M . Then, there isa germ unique Einstein-Weyl space (M; [�g];D) in which (M; [g];D) is embedded as ahypersurface with second fundamental form �.



EINSTEIN-WEYL DEFORMATIONS AND SUBMANIFOLDS 13Proof. We choose an analytic metric g with corresponding one-form ! representingthe Weyl geometry onM . Locally, we may choose a section � trivialising the bundle L.We look for metrics gt and one-forms !t, de�ned locally on M for small t 2 R, suchthat g0 = g and !0 = !. Furthermore, we want the metric �g = gt + dt2 and the one-form �! = !t + � dt to satisfy the Einstein-Weyl equations locally on M � R. Fromthe Lemma it follows that we may assume � = 0. Thus, the second fundamentalform � = a � of the isometric immersion co��ncides with the second fundamentalform � = b � of the Weyl space.Now, Koiso [9] proved the relations g0 = �2a and g00 = 2a2� "g, where "g(X;Y ) =�g(R�g(X; �)Y; �), g0 = @g=@t and g00 = @2g=@t2. From (2.1) we then getS(") = 14(g0)2 � 12g00 � 14 j!j2g + 14! 
 ! + 12S(r!):If we take the trace of (5.1) to �nd Tr g00 and substitute into (5.3), we get the Einstein-Weyl equationsg00 = � 2n+1sDg + 2S(rD)� 12g0Tr g0 + (g0)2 + S(r!) + 12! 
 ! � 12j!j2g; (6.1)!0 = 1n�1 �2dTr g0 + 2D�g0 + !Tr g0 + g0(!]; �)� ; (6.2)Tr(g0)2 � (Tr g0)2 = 4(n�1)n+1 sD � 4nsD: (6.3)Note that these equations hold locally on M � R, where the di�erent tensors andoperations refer to gt.Now, solve (6.3) for sD and substitute into (6.1). By Cauchy-Kovalewski's existencetheorem we can solve (6.1) and (6.2) locally, given the real analytic initial data!0 = !; g0 = g and g00 = �2a:Then the global theorem follows from the local uniqueness.By imposing assumptions on completeness, we may obtain global uniqueness. Toprove this, we need the followingLemma 6.3. Let M be a simply-connected, connected manifold with Weyl structures([g1];D1) and ([g2];D2), which are analytic and agree on some open set U . If D1and D2 are complete, then ([g1];D1) = f�([g2];D2) globally for some di�eomorphism fof M .



14 H. PEDERSEN, Y. S. POON, AND A. SWANNProof. By Corollary 6.2 in [8], there is an extension of the identity map on U to ana�ne di�eomorphism f of M . Choose analytic representatives g1 and g2 of the twoconformal structures. Then f�g2 = �g1 on U for some function � on U . Extend �to a global function by � = 1n Tr(f�g2), where the trace is taken with respect to g1.Then �g1 and f�g2 are analytic tensors that agree on an open set, so they agreeglobally.The global uniqueness now follows easily:Theorem 6.4. Let (M; [g];D) be a real analytic hypersurface of a simply-connected,connected, complete Einstein-Weyl manifold (M; [�g];D). Then (M; [�g];D) is uniqueup to Weyl di�eomorphism.7. Examples with Special Second Fundamental FormIn this chapter we study hypersurfaces of some new Einstein-Weyl manifolds M ofcohomogeneity one [15, 14]. We present these solutions in the Gauduchon gauge. Inthis gauge, the examples also have �! pointing along the principal orbits which are thehypersurfaces we consider. Therefore the second fundamental form is given by theGauduchon metric so this chapter also gives new examples in Riemannian geometry.In particular, we are going to see examples in dimension four of totally geodesic orminimal submanifolds of new metrics of positive Ricci curvature.Consider �rst M equal to Sn+1 or S2 � Sn�1 with an Einstein-Weyl structureadmitting S1� SO(n) acting as a group of symmetries such that the orbit space is aclosed interval and the principal orbit is M = S1 � Sn�1. The Weyl structure (�g; �!)must have the form [15, 14].�g = dt2 + f(t)2d�2 + h(t)2gcan; �! = �(t) d�;where t 2 [0; `], � is the arc length parameter of a circle of length 2�, gcan is thecanonical metric of sectional curvature one on Sn�1 and f; h; � 2 C1[0; `] are somefunctions. Note that in this gauge, the pulled back one-form ! on M co��ncides withthe restriction of �!, so the second fundamental form of the Weyl structure is givenby a(X;Y ) = �g(rXY; �), where � = @=@t and X;Y 2 TM . If X1; : : : ;Xn�1 denotes a



EINSTEIN-WEYL DEFORMATIONS AND SUBMANIFOLDS 15local orthonormal basis of TSn�1 and Xn = @=@�, then in this basis the second fun-damental form is a = �diag(hh0; : : : ; hh0; ff 0) and we �nd that the mean curvatureis H = �1n ddt �log(fhn�1)� �:Now, the case M = Sn+1 corresponds to the boundary conditions:f 0(0) = h(0) = h00(0) = 0; h0(0) = 1; (7.1)f(`) = f 00(`) = h0(`) = 0; f 0(`) = �1 and �(`) = �0(`) = 0: (7.2)Since log(fhn�1) tends to �1 both for t ! 0 and for t ! `, there must exista t0 2 (0; `) such that H(t0) = 0, so the corresponding orbit M = S1 � Sn�1 isminimal. This generalises the Cli�ord torus in (S3; gcan) (see also [2]).The case M = S2 � Sn�1 corresponds to the boundary conditions (7.2) at bothendpoints, so the same argument as above gives the existence of a minimal S1�Sn�1in S2 � Sn�1.In [15, 14] it was proved that it is possible to �nd f; h; � satisfying the Einstein-Weyl equations. It easily follows from Chapter 3 that the scalar curvature s�g ofthe Gauduchon metric is positive and that in addition, for dimM = 4, the Riccicurvature r�g is positive. In particular, the explicit metrics on S4 from Chapter 4have r�g > 0 and each contains a minimal S1 � S2 as the principal orbit at y = y0,where y0(3 cot y0 � tan y0) + 1 = 4A cotA;if A < �=2. If we rescale the metric �g by a homothety, so that its volume agrees withthat of the canonical metric, then for this minimal principal orbit, the length of thesecond fundamental form is6p3(y0 cot y0 �A cotA)(1�A cotA)1=2 sinA cot2 y0: (7.3)As A! 0, and hence �g ! gcan, this value approaches 3 in agreement with the resultsof Chern et al. [2]. For (S4; gcan), any hypersurface with jaj2 non-zero and constanthas jaj > 3. However, for A small but non-zero, (7.3) is strictly less than 3. In



16 H. PEDERSEN, Y. S. POON, AND A. SWANNfact, numerical calculations show that (7.3) is monotone decreasing and tends to 0as A tends to �.Next, letM be one of the following manifolds: S2m, CP(m) or the total space of theCP(1)-bundle P(O(k)�O)! CP(m�1). In each case we consider a U(m)-symmetricEinstein-Weyl structure (�g; �!) where�g = dt2 + f(t)2�2 + h(t)2gfs; �! = �(t)�:Here t 2 [0; `], f; h; � 2 C1[0; `], � is the principal connection one-form of the Hopf�bration S2m�1 ! CP(m�1) and gfs is the Fubini-Study metric on CP(m�1). Theprincipal orbits are: M = S2m�1, for M = S2m and CP(m); and M = S2m=Zk, forM = P (O(k) �O). The arguments in the S1 � SO(n)-symmetric case give, mutatismutandis, Einstein-Weyl solutions (�g; �!) with particular principal orbits M as mini-mal submanifolds in the Gauduchon metric. In the case of M = S2m, the re
ectionaround t = `=2 is actually an isometry and the corresponding S2m�1 is thereforetotally geodesic. For instance, S4 has a one-parameter family of U(2)-symmetricEinstein-Weyl structures di�erent from the S1 � SO(3)-symmetric structures. Eachof the U(2)-symmetric Gauduchon metrics therefore has r�g > 0 and contains a to-tally geodesic equator. A similar totally geodesic example is obtained by embeddingS1 � Sn in the Einstein-Weyl manifold S1 � Sn+1.Finally, we want to remark that even if all the principal orbits above are Einstein-Weyl, the induced structure on the orbits from the Einstein-Weyl geometry on M israrely Einstein-Weyl. For example, no principal orbit S1�S2 or S3 in the S1�SO(3)and U(2)-invariant Einstein-Weyl structures on S4 are Einstein-Weyl. On the otherhand, for the standard Einstein-Weyl structure on S1 � Sn, the embedded Sn =f�g � Sn is (Weyl) totally umbilic and Einstein.
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