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(SOUS-VARIETES ET DEFORMATIONS
DES STRUCTURES D’EINSTEIN-WEYL)
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ABSTRACT. Motivated by new explicit positive Ricci curvature metrics on the four-
sphere which are also Einstein-Weyl, we show that the dimension of the Einstein-
Weyl moduli near certain Einstein metrics is bounded by the rank of the isometry
group and that any Weyl manifold can be embedded as a hypersurface with pre-
scribed second fundamental form in some Einstein-Weyl space. Four-dimensional
Einstein-Weyl manifolds are proved to be absolute minima of the L?-norm of the
curvature of Weyl manifolds and a local version of the Lafontaine inequality is
obtained. The above metrics on the four-sphere are shown to contain minimal
hypersurfaces isometric to S* x 52 whose second fundamental form has constant

length.

1. INTRODUCTION

Manifolds M™ with conformal structure [g] and torsion-free affine connection D,
such that parallel translation induces conformal transformations, are called Weyl
manzfolds. If, furthermore, the trace-free symmetric part of the Ricci curvature of D
vanishes, the geometry is said to be Einstein-Weyl. Many examples and general re-
sults have been obtained [6, 17, 18, 19, 16, 22], in particular in dimensions three and
four. In Chapter 2, we prove that four-dimensional Einstein-Weyl manifolds are min-
ima for a natural functional. Furthermore, we observe that the Lafontaine inequality
for scalar-flat half-conformally-flat four-manifolds has a local interpretation.

Recently, compact four-dimensional Einstein-Weyl manifolds with symmetry group
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of dimension at least four have been classified and this classification includes new ex-
plicit families of Einstein-Weyl structures on S* and S? x S§% containing the canonical
Einstein metrics [15, 14]. In Chapters 3 and 4 we investigate the Einstein-Weyl mod-
uli near Einstein metrics. We first show that these moduli are finite-dimensional
and in certain cases show that the rank of the isometry group of the Einstein metric
provides an upper bound for the dimension. Chapter 4 concludes by discussing some
explicit families of Einstein-Weyl structures near Einstein metrics.

In Chapters 5 and 6 we study Weyl submanifolds. We show that the notion of
second fundamental form extends naturally to Weyl geometry and that Weyl man-
ifolds may be embedded as hypersurfaces with prescribed second fundamental form
in Einstein-Weyl spaces. This extends known results for Einstein metrics proved by
Koiso [9].

The techniques of the four-dimensional classification referred to above also gives
new Einstein-Weyl geometries on S™, CP(m) and the total space of the bundle
P(O(k) ® O) — CP(m — 1). These conformal classes contain metrics of positive
scalar curvature which happen to have positive Ricci curvature when the dimension
is four. In Chapter 7, we give examples of minimal hypersurfaces in these manifolds

and contrast their properties with examples given by Chern et al. [2].

Acknowledgements. We would like to thank the Erwin Schrodinger International In-
stitute for Mathematical Physics, Vienna, for kind hospitality during the preparation
of this paper and Anders Bisbjerg Madsen for useful conversations. The second

named author would also like to thank Odense University for financial support.

2. THE CURVATURE FUNCTIONAL

The problem of finding metrics which are minima of some functional plays a central
role in Riemannian geometry. One of the most natural such problems in dimension

four is to find critical points of the functional

R(g) = [ |R?["vol,

on the space of smooth Riemannian metrics of a given smooth, compact oriented

four-manifold M. Here R? is the Riemannian curvature tensor of the metric g. It
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1s well known that the vanishing of the trace-free part of the Ricci curvature of the
metric g (i.e. that g be an Einstein metric) is a sufficient condition for the metric to

be an absolute minimum of R [12].

We may consider similar ideas in Weyl geometry. The compatibility between D
and [g] means that Dg = w ® g for some one-form w, depending on g, where g is a
representative metric in the conformal class. We may express the Weyl connection D

in terms of the metric connection V of g using this one-form
D:V—I—%(wﬂ(X)g—Id@w—w@Id).

Note that if w is exact, w = d), then D is just the metric connection of e~*g, cf. [18, 6].
Likewise, the curvature tensor RP of D is given by
RP =R+ ldw® g+ 15(Vw)ag 2.1)

+ 3dwog + ; (w @w)oyg — §lw*g0y,

where S(Vw)(z,y) = 3 ((Vow)(y) + (Vyw)(z)) and for a two-tensor a, apg is the

four-tensor

(a®g)(z,y,2,t) = alz, 2)g9(y,t) + a(y, t)g(z, 2) — a(z,t)g9(y, 2) — a(y, 2)g(z, ).

For symmetric o, this is just the Kulkarni-Nomizu product of « and g [1]. If 9 and rP
denote the Ricci curvatures of V and D respectively and s9, sP their g-traces, then

we write the decomposition into irreducible components
RP =W + 5:5(r")0g + 57my8" 909 + (;dwog + jdw ® g),
or equivalently
RP =W + [nlj?“g + %SO(VW) + iw ®o w] Bg
+ [zn(i_l)sg _ (ns?) |w|2 _ id*w] gog + (%dw@g + %dw ® g),

where 75, So, ®o indicate trace-free parts and we have used the relations

P =5 - Yn—-2)(n - — (n—1)d"w,
S(pr) — 9 4 %(n —2) (w Qw — |w|zg + 2Vw — dw) + %d*wg.

Note that the (3,1)-tensor corresponding to RP is conformally invariant.
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As in the Riemannian case we look for extrema of the L?-norm of the total curva-

ture. In dimension four we have the well-defined functional

c(lg), D) = [ |B”[ vol,

on the space of smooth Weyl structures ([g], D) of a given smooth, compact oriented
four-manifold M. Recall that the Euler characteristic x(M) of M can be expressed
in terms of the curvature of an arbitrary Riemannian metric g via the generalised

Chern-Weil formula

1 2 2 2 2
x(M) = — [ (IWe + [W-[" 4+ 3(s%)* —21r5]?) voly,

where W, and W_ denote the self-dual and anti-self-dual Weyl curvatures respec-
tively. Using this, it follows that

C([g], D) = 4/M ‘SO(TD)‘Z vol, +8m%x(M).

Thus, if ([g], D) satisfies the Einstein-Weyl equations So(rP) = 0, the pair is an
absolute minimum of C. This new result may serve as further motivation for the

study of the Einstein-Weyl equations
S(rP) = %ng.

Remark 2.1. If we express the signature 7(M) in terms of curvature

1 2 2
(M) = 5 [ (Wl = W-[") vol,,

then we may write the functional as

C(lgh, D) = [ (41W=l +31duf’ + §(s”)?) vol, —8* (x(M) & 37(M))

Thus, Weyl-scalar-flat (s? = 0), half-conformally-flat (i.e. either W, = 0 or W_ = 0)
locally-conformally-metric (dw = 0) structures are also absolute minima of C([g], D).
On the other hand, for Einstein-Weyl manifolds (Sor” = 0), we have a Hitchin-
Thorpe inequality
3 3 2
X(M) > S (M) + 7o [ |dwf vol,,

with equality if and only if M is half-conformally-flat and s® = 0 [16]. Furthermore,
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for half-conformally-flat Weyl spaces with s = 0 we get a “local version” of the

Lafontaine inequality [11] in this conformal setting
3 3 2
X(M) < S |r(M)| + 1 [ |dwf” vol, (2.2)

The conditions s = 0 and dw = 0 imply that g is locally conformal to a scalar-flat

metric and thus the Lafontaine inequality is true also for locally-conformally scalar-
flat half-conformally-flat manifolds. One has equality in (2.2) if and only if M is also
Einstein-Weyl.

3. SLICES

We have seen how a Weyl manifold is described by a pair (g,w) consisting of a
metric and a one-form. For a conformally equivalent metric efg the corresponding
one-form is w+df and the new scalar curvature is e s?. A compact Weyl manifold M
has a unique, up to homothety, metric g in the conformal class such that the one-
form w is co-closed [5]. We call this metric the Gauduchon metric. If furthermore
the manifold is Einstein-Weyl, then the corresponding vector field w! is Killing [22]
and we have the Gauduchon constant G [17, 6] given by

G =38 —1(n+2)w|

= s” + ln(n — 4)|w|’.

Also, in this gauge the Einstein-Weyl equations for the pair (g,w) become
! =159+ 4(n - 2)(|jwf’g —w B w)

and for n = 3 the compact solutions to these equations are all known [22, 19].
For n > 4 it is easily seen [6, 19], that an Einstein-Weyl solution with G < 0 is either
Einstein or belongs to a known one-parameter family of four-dimensional manifolds
of type S* x 3, cf. Remark/Example (7) in section 4. Thus, from the point of view
of Einstein-Weyl geometry we may concentrate on the case of positive Gauduchon
constant and scale the Gauduchon metric by a homothety to get G = 1.

The group of diffeomorphisms acts on the pair (g,w) by pullback and ¢*(d*w) =
d*e*sp*w, that 1s, the pullback of the co-differential of w with respect to g is the
co-differential of the pullback of w with respect to the pullback of g. Therefore,
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the conformal slice d*w = 0 is invariant under the group of diffeomorphisms and
we may think of the moduli space of Einstein-Weyl structures on M as a subset
of the quotient space of W = {(g,w) : &'w = 0, G = 1} by the action of the
diffeomorphism group D. Recall that the Ebin slice S(g) to the action of D at g is
given infinitesimally by V*g = 0, where g = 0g;/0t|;—o is the tangent vector of a

curve of metrics through go = g [3].

Definition 3.1. Let (go,wo) be an Einstein-Weyl solution on M. The subset M
of S(go) x W' M given by d*w =0, G =1 and r? = LsPg + L(n — 2)(|w|’9 — w @ w)

is called the premoduli space of Einstein-Weyl structures around (go,wp).

To get a neighbourhood of (go,wo) in the moduli space M we must still divide by

the action of the compact group of isometries of go preserving wy.

4. INFINITESIMAL DEFORMATIONS AROUND EINSTEIN METRICS

Suppose (g;,w;) is a smooth curve in the premoduli space around (go,wo) = (g,0),
where go is an Einstein metric with s% = G = 1. From the Killing condition Viw; =
%dwt we get Vw = %dolz, so w! is a Killing vector for go, where w = Ow;/0t|s—o.

Furthermore we have G = 0, so

8 = 1(n +2)(2g(w, ) — g(g,w ®w)) = 0

and similarly $? = 0.

Now, an arbitrary infinitesimal deformation satisfies
89 =ATrg+V'Vig—g(r,g),
so the condition §? = 0, the Ebin gauge condition V*g = 0 and the fact that r% =
159 gy imply

ATrg = %390 Trg.

It then follows that Tr g = 0, because the smallest non-zero eigenvalue of the Lapla-

cian is not less than —1-s% [13]. We now get

Theorem 4.1. The metric part of the linearised Einstein-Weyl equations near an

Einstein metric go with s9° = 1 coincide with the linearised Einstein equations.



EINSTEIN-WEYL DEFORMATIONS AND SUBMANIFOLDS 7

Proof. We have
7= L1(Pg+s7g)
+1(n = 2) (|o’§ + 2g(w,b)g — 9(9,w BW)g — b Bw — w B @)
=9,
sincew =0, =0and sP =1latt=0.

Corollary 4.2. The space of infinitessmal Einstein-Weyl deformations of an FEin-
stein metric go with s% = 1 is finite-dimensional. In particular, let (M,go) be a
locally symmetric Einstein manifold of compact type and let [[_, M, be the irre-
ducible decomposition of the universal Riemannian covering manifold M. Consider
the following lists of compact symmetric manafolds:
SU(p+q Esg
0 St 077D E
SU¢)  SU(2¢)
S0()  Sp(t)

SU(L) (£>=3);

G,
2) ———, Gy
2) so()’ 7"
(3) Hermitian symmetric spaces of real dimension at least four;
(4) S

If N =1 and M, is not on list (1) or N = 2 and M, is not on lists (1)~(3) or N =3
and M, is not on the lists (1)—(4), then (M, go) has at most an m-dimensional family

of wnfinitesimal Ewnstein-Weyl deformations, where m is the rank of the isometry

group of go.

Proof. Except for the excluded spaces, the Einstein metric has no infinitesimal Ein-
stein deformations [10]. Therefore we are left with the Killing vectors w! modulo
isometries of go. In general, the finite-dimensionality follows because the linearised
Einstein equations are elliptic: as Trg = 0 = V*g, the equation r — %g =0 1s

equivalent to V*Vg — 2]?2(9) =0[1]. O

Remarks and Examples. (1) It follows in particular, that the number of infinites-

imal Einstein-Weyl deformations of the standard n-sphere is equal to the rank |[(n +



8 H. PEDERSEN, Y. S. POON, AND A. SWANN

1)/2| of SO(n + 1). We will now give some examples which show that at least some

of these deformations may be integrated to give a non-trivial moduli space.

2) Consider an odd-dimensional sphere and the Hop ration w: 5" — n).
Consid dd-di ional sph d the Hopf fibrati S§2ntl CP

On the sphere we consider metrics given by

g:gB‘|‘m0'®0';

for # € R, where gp is the Fubini study metric and o is the connection one-form
with horizontal spaces given by the orthogonal complement to the fibres of the Hopf
fibration. For certain values of z this metric is Einstein. We may consider the
standard Einstein metric corresponding to # = =z, say. Let w = yo, for y € R,
and consider the Weyl structure (g,w) on S§?"**!. Using the O’Neill formulae for
Riemannian submersions, the Einstein-Weyl operator E = S(rP) — A g is given by

2 1
E = (AB—E(AB—)\)—A)gB—I— (m—)\—l—z(n—l)yz—mA)a@a,
Lo

(]

where A and Ap are the Einstein constants for S?"*! and CP(n) respectively [18].
The condition Tr £ = 0 gives

T (n—1) y? n ( m)
A=rA—+——— 272 A l1——).
m0+4(n—|—1)m+n—|—1B Zo

Therefore, the operator is a function
E:R*> - R C §*T*§%nHL

where

A —1 9?
Bey) = =25 (1-2) -
n+1 Zo 4n+1) ez

As the gradient of this smooth function satisfies
dE(zo,0) s 40
z =|-——
01 zo(n +1)’ ’
it follows from the Inverse Function Theorem that E'_l(O) is a one-dimensional sub-

manifold of R? near (zo,0). Indeed, E~1(0) is the ellipsoid
(z — 5%0)” y?

=1
228 Apzef(n—1)
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of Einstein-Weyl solutions, with (zg,0) corresponding to the standard Einstein metric
and (0,0) a degenerate structure. A priori we could allow z and y to be functions in an
appropriate Banach space, but it is easily seen that we do not get more solutions this
way. However, the method can be generalised to Einstein metrics of positive scalar
curvature on principal S'-bundles over a compact Kahler-Einstein base manifolds.

(3) For the three-sphere the number of infinitesimal deformations is two and all
these have been integrated [19], using a relation [7] between four-dimensional self-dual
manifolds and three-dimensional Einstein-Weyl geometry.

(4) The r-dimensional family of Einstein-Weyl structures obtained in [18, Theo-
rem 4.2] on r-torus bundles over products of m Kahler-Einstein manifolds for » < m,
also provide examples where the rank of the isometry group agrees with the dimen-
sion of the space of known deformations: the Einstein-Weyl structures are close to the
Einstein metrics found by Wang & Ziller [23] and if the base manifolds are chosen to
be products of Kahler-Einstein manifolds without continuous families of isometries,
such as for example those found by Tian & Yau [20, 21] on the blow-up of CP(2)
in k points, for 4 < k < 8 (see [4]), then the isometry group of the Einstein metric
on the torus bundle is the torus 7 itself, which has rank ». Note however, that the
Einstein metrics on these T"-bundles are not known to be rigid, so the full moduli
space of Einstein-Weyl deformations could be larger.

(5) In the process of classifying compact four-dimensional Einstein-Weyl structures
with big symmetry, Madsen [14] found a one-parameter family of Einstein-Weyl struc-

tures on S* which may be written as

A(Acot A—1) y 5
= d A 2
I~ ot A— y cot(Ay) y" +sin’(yA) gs

4A(Acot A —1) 56

(A+ Acot®? A — cot A)*(cot A — ycot(Ay)) ’
4A(cot A — y cot(Ay))
B A+ Acot? A —cot A

where (y,8) € (0,1) x (0,27) are coordinates, gs: is the standard metric on S? and

_|_

d8,

A € [0,7) is a parameter with A = 0 corresponding to the Einstein metric on 5*. This
solution has S* x SO(3)-symmetry and Madsen also found another one-parameter

family with U(2)-symmetry, but we have not yet been able to find a two-parameter



10 H. PEDERSEN, Y. S. POON, AND A. SWANN

family of solutions integrating all the infinitesimal deformations on S*.

(6) Corollary 4.2 also shows that S? x S? can have at most a two-parameter family
of Einstein-Weyl solutions near the Einstein metric and also in this case Madsen [14]

found a new explicit one-parameter family of such structures.

(7) As an example of a moduli of Einstein-Weyl structures away from an Einstein
metric, consider the manifold S* x §™7!. Let g; be the product of the metric t2d6?
on S' = {exp(z8) : § € [0,27)} and the canonical metric gean on S™ ! with sectional
curvature one. Let w; be the one-form 2t df and note that w; is harmonic with respect

to g;. This gives

,r,gt —

(n - 2)gcan = (n - 2)(gt - tzdez)
i(n = 2)(Jwe[’ge — w ® wy)

and hence (g;,w;) is a one-parameter family of Einstein-Weyl geometries on S* x §™~*
with sP* = 0, which we call the standard structures. In four-dimensions this is
the full local moduli: the Hitchin-Thorpe inequality for Einstein-Weyl manifolds in
Remark 2.1, shows that any Einstein-Weyl structure on S* x S® must satisfy dw = 0,

but Gauduchon [6] proves that all such closed structures are standard.

5 WEYL SUBMANIFOLDS

Let (M, [g], D) be a Weyl manifold and i: M — M an immersed submanifold
and let 7 and 7~ be the orthogonal projections from +*TM to T'M and the normal
bundle TM~, respectively. We pull back the conformal structure from M to M. In
the following, X,Y, Z, W are vectors in TM and ¢ belongs to TM~. We obtain a
torsion-free connection D on TM by DxY = w(DxY'). This connection is compatible
with the conformal structure. Indeed, if Dg = @ ® g, then Dg = w® g, where g = i*§

and w = 2*@. The conformal invariant B defined by the Gauss formula
DxY = DxY +B(X,Y)

1s called the second fundamental form of the Weyl structure. If o denotes the second

fundamental form of the isometric immersion i: (M,g) — (M,g), then 8 = a +
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%W‘(Qﬁ)g. We also have a Weyl version of the Weingarten formula
Dx¢ = —B:X + D¥¢.

Here g(B(X,Y),€) = g(B¢X,Y) and DV becomes a connection on the normal bundle
satisfying DVg~ = w ® g~, where g~ is the metric on TM~ induced by g. The
endomorphism B of TM is symmetric and the normal vector H which satisfies
g(H,¢) = %Tr B¢, n = dim M, is called the mean curvature with respect to g. We
shall focus on two conformally invariant conditions of the Weyl submanifold: H = 0

and B = 0, referred to as minemal and totally geodesic, respectively.

In the following we assume that M has co-dimension one. We choose a metric g

and a normal ¢ of unit length. Then the Gauss and Weingarten formulae become
DxY = DxY +b(X,Y){, Dxt=-BX — jw(X),

where B = B and 8 = b ® €. For the curvature, we have the Gauss and Codazzi

equations
G(RP(X,Y)Z,W) = g(RP(X,Y)Z, W) + b(Y, Z)b(X, W) — b(Y, W)b(X, Z),
§(RP(X,Y)Z,€) = (Dyb)(X, Z) — (Dxb)(Y, 2) + sw(X)H(Y, Z) — w(Y)H(X, Z).
Using (2.1), the Ricci curvature can now be expressed as follows
P(X,Y)=rP(X,Y) + B3(X,Y) — nhb(X,Y) + ¢(X,Y),
rP(X,€) = ndh(X) + D*b(X) + Zhw(X) + 1b(X,w") + 1do(X, €),
rP(¢,€) = Tre,

where H = h¢, B*(X,Y) = Tr(b( X, -)b(Y,-)) and ¢(X,Y) = g(Rﬁ(X,f)Y,f).

Thus, if the ambient space satisfies the Einstein-Weyl equations S(rﬁ) = ﬁsﬁg,
then

S(+P) +b* — nhb + S(e) = 1557, (5.1)

ndh + D*b+ Zhw + 3b(w!, ) + 1(n — 1)dw(¢,-) = 0, (5.2)

Tre = 15 (5.3)
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6. WEYL HYPERSURFACES IN EINSTEIN-WEYL MANIFOLDS

Following the ideas of Koiso [9] on hypersurfaces of Einstein manifolds, we proceed
to study the problem of embedding Weyl manifolds as hypersurfaces in Einstein-Weyl
spaces.

For each choice of metric g on the ambient space, we may consider the mappings
i: M xR — M and i;: M — M given by i(z,t) = exp,tf and i(z) = i(z,t),
respectively. Here exp denotes the exponential map of the metric g. Then there is an
open set U of M x R containing M x {0} such that g; = ;g is a Riemannian metric
on {z € M : (z,t) € U}. Locally we have g = g; + dt* and & = w; + pdt, where

wy = t;w and p = g(w,0/0t). It is convenient to use the following

Lemma 6.1. There exists a metric g in the conformal structure of a Weyl mana-

fold M such that near a given Weyl hypersurface M we have @ = wy.

Proof. Choose a metric go with corresponding one-form @y. Let V' be a neighbourhood
in M, where @y = w; + pdt and set U = M NV. Under a conformal change g, —
(exp fv)g, we have @y — wi + pdt + dyfv + (0fv/0t)dt and we choose fy such
that 8fy /0t = —p. Assume M is covered with such neighbourhoods (V;);c; where
furthermore the induced covering (U;);cr of M admits a partition (¢;)icr of unity.

Let f = > ;cr¥ifv;. Then, on each neighbourhood V;, j € I, we have

of _ Ofvi _ _
i ;% 5 = —p;soz = —p.
Note that near M we have pdt = 7 (@) and (8f/0t)dt = 7 (df), so these ex-

pressions do not depend on the choice of t. Now, extend the function f from this

neighbourhood of M by using a bump function to obtain the metric § on M. []

We are now ready to prove the main existence theorem in this chapter.

Theorem 6.2. Let (M,[g],D) be a real analytic Weyl manifold with an analytic
symmetric bilinear form (B taking values in a real bine bundle L on M. Then, there is
a germ unique Finstein-Weyl space (M, [g], D) in which (M, [g], D) is embedded as a

hypersurface with second fundamental form (.
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Proof. We choose an analytic metric g with corresponding one-form w representing
the Weyl geometry on M. Locally, we may choose a section £ trivialising the bundle L.
We look for metrics g; and one-forms w;, defined locally on M for small t € R, such
that go = g and wy = w. Furthermore, we want the metric § = g; + dt? and the one-
form @ = w; + pdt to satisfy the Einstein-Weyl equations locally on M x R. From
the Lemma it follows that we may assume p = 0. Thus, the second fundamental
form a = af of the isometric immersion coincides with the second fundamental
form B = b¢ of the Weyl space.

Now, Koiso [9] proved the relations ¢’ = —2a and g" = 2a® — €9, where ?(X,Y) =
g(RI(X,8)Y,¢), g = Og/Ot and g" = 9%g/0t?. From (2.1) we then get

S(e) = %(g')z— - |w| g+3 lo@w+ 1S(Vw)

If we take the trace of (5.1) to find Tr g"” and substitute into (5.3), we get the Einstein-
Weyl equations

"=~ 5509 +28(r) — 1g' Trg' + (¢')* + S(Vw) + tw ® w — Lw|’g, (6.1)
W= (2 Trg +2D°¢ +wTeg +g(oh, ), (6.2)
Tr(gl)z —(Tl'g) !:_|_11! D %SD. (63)

Note that these equations hold locally on M x R, where the different tensors and
operations refer to g;.
Now, solve (6.3) for s D and substitute into (6.1). By Cauchy-Kovalewski’s existence

theorem we can solve (6.1) and (6.2) locally, given the real analytic initial data
wp=w, go=g and gj=—2a.
Then the global theorem follows from the local uniqueness. [

By imposing assumptions on completeness, we may obtain global uniqueness. To

prove this, we need the following

Lemma 6.3. Let M be a sstmply-connected, connected manzifold with Weyl structures
([91], D1) and ([g2], D2), which are analytic and agree on some open set U. If Dy
and D, are complete, then ([g1], D1) = f*([g2], D2) globally for some diffeomorphism f
of M.
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Proof. By Corollary 6.2 in [8], there is an extension of the identity map on U to an
affine diffeomorphism f of M. Choose analytic representatives g; and gy of the two
conformal structures. Then f*g, = Ag; on U for some function A on U. Extend A
to a global function by A = %Tr(f*gg), where the trace is taken with respect to g;.
Then Ag; and f*g, are analytic tensors that agree on an open set, so they agree

globally. O

The global uniqueness now follows easily:

Theorem 6.4. Let (M, [g], D) be a real analytic hypersurface of a simply-connected,

connected, complete Finstein-Weyl manifold (M,[g], D). Then (M, |g|, D) is unique
up to Weyl diffeomorphism. [

7. EXAMPLES WITH SPECIAL SECOND FUNDAMENTAL FORM

In this chapter we study hypersurfaces of some new Einstein-Weyl manifolds M of
cohomogeneity one [15, 14]. We present these solutions in the Gauduchon gauge. In
this gauge, the examples also have @ pointing along the principal orbits which are the
hypersurfaces we consider. Therefore the second fundamental form is given by the
Gauduchon metric so this chapter also gives new examples in Riemannian geometry.
In particular, we are going to see examples in dimension four of totally geodesic or
minimal submanifolds of new metrics of positive Ricci curvature.

Consider first M equal to S™*! or S? x S"! with an Einstein-Weyl structure
admitting S* x SO(n) acting as a group of symmetries such that the orbit space is a
closed interval and the principal orbit is M = S* x §*~'. The Weyl structure (g, )
must have the form [15, 14].

g = dt* + f(t)’d0? + h(t)*geon, @ = A(t) d,

where t € [0,£], 6 is the arc length parameter of a circle of length 27, gcan is the
canonical metric of sectional curvature one on S™! and f,h,A € C*|0,£] are some
functions. Note that in this gauge, the pulled back one-form w on M coincides with

the restriction of @, so the second fundamental form of the Weyl structure is given

by a(X,Y) = g(VxY,¢), where § = /0t and X, Y € TM. If X;,..., X, denotes a
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local orthonormal basis of 75" and X,, = 3/86, then in this basis the second fun-
damental form is a = — diag(hh’,...,hh/, ff') and we find that the mean curvature
1s
1d et
H = ——— (log(fA"™)) €.

Now, the case M = S™! corresponds to the boundary conditions:

£1(0) = h(0) = B"(0) = 0, H'(0) =1, (7.1)
FO =) =KE) =0, F()=-1 and A =N{)=0.  (7.2)

Since log(fh™ ') tends to —oo both for ¢ — 0 and for ¢ — £, there must exist
a to € (0,£) such that H(t,) = 0, so the corresponding orbit M = S*' x S™7! is
minimal. This generalises the Clifford torus in (53, gean) (see also [2]).

The case M = S§% x S"~! corresponds to the boundary conditions (7.2) at both
endpoints, so the same argument as above gives the existence of a minimal S x §™~!

in §? x S»1.

In [15, 14] it was proved that it is possible to find f,h, A satisfying the Einstein-
Weyl equations. It easily follows from Chapter 3 that the scalar curvature s? of
the Gauduchon metric is positive and that in addition, for dim M = 4, the Ricci
curvature 79 is positive. In particular, the explicit metrics on S* from Chapter 4
have 79 > 0 and each contains a minimal S* x S? as the principal orbit at y = o,

where
yo(3cot yo —tanye) + 1 = 4Acot A,

if A < 7/2. If we rescale the metric g by a homothety, so that its volume agrees with
that of the canonical metric, then for this minimal principal orbit, the length of the

second fundamental form is

(yo cotyo — Acot A)
6v/3 (1 — Acot A)1/2

As A — 0, and hence § — gcan, this value approaches 3 in agreement with the results

sin A cot? yo. (7.3)

of Chern et al. [2]. For (5%, gean), any hypersurface with |a|? non-zero and constant

has |a| > 3. However, for A small but non-zero, (7.3) is strictly less than 3. In
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fact, numerical calculations show that (7.3) is monotone decreasing and tends to 0
as A tends to .

Next, let M be one of the following manifolds: $?™, CP(m) or the total space of the
CP(1)-bundle P(O(k)®O) — CP(m—1). In each case we consider a U(m)-symmetric

Einstein-Weyl structure (g, @) where
g = dt* + f(t)>0® + h(t)?ges, @ = At)o.

Here t € [0,4], f,h,A € C*[0,£], o is the principal connection one-form of the Hopf
fibration §?™~ ' — CP(m — 1) and gy is the Fubini-Study metric on CP(m —1). The
principal orbits are: M = §?™~1 for M = $?™ and CP(m); and M = S*™/Z, for
M = P(O(k) ® O). The arguments in the S! x SO(n)-symmetric case give, mutatis
mutandis, Einstein-Weyl solutions (g, @) with particular principal orbits M as mini-
mal submanifolds in the Gauduchon metric. In the case of M = S*™, the reflection
around ¢ = £/2 is actually an isometry and the corresponding S*™~! is therefore
totally geodesic. For instance, S* has a one-parameter family of U(2)-symmetric
Einstein-Weyl structures different from the S' x SO(3)-symmetric structures. Each
of the U(2)-symmetric Gauduchon metrics therefore has 74 > 0 and contains a to-
tally geodesic equator. A similar totally geodesic example is obtained by embedding
S x S§™ in the Einstein-Weyl manifold S* x S™*+1,

Finally, we want to remark that even if all the principal orbits above are Einstein-
Weyl, the induced structure on the orbits from the Einstein-Weyl geometry on M is
rarely Einstein-Weyl. For example, no principal orbit S* x 2 or S? in the S* x SO(3)
and U(2)-invariant Einstein-Weyl structures on S* are Einstein-Weyl. On the other
hand, for the standard Einstein-Weyl structure on S* x S, the embedded S™ =
{x} x 8™ is (Weyl) totally umbilic and Einstein.
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