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Abstract. We generalize the Kodaira Embedding Theorem and Chow's Theorem 
to the context of families of complex supermanifolds. In particular, we 
show that every family of super Riemann surfaces is a family of projective 
superalgebraic varieties. 

1. Introduction 

In the past few years there has been a great deal of mathematical activity concerning 
supermanifolds, both real and complex. While much of this work may seem 
unrelated to the physical motivations of the field, it must be remembered that the 
subject came into being when physicists realized that it is perfectly consistent to 
introduce spaces with anti-commuting coordinates [2]; their original train of 
thought was inextricably linked with the Fermi statistics of quantum field 
theory, and soon resulted in the formulation of supersymmetric field theories 
(e.g. [16, 20, 26]). It is therefore perhaps not surprising that the deformation theory 
of complex supermanifolds has now, with the growing prominence of superstring 
theory [9, 12], proved to be germane to current physics. 

The calculation of amplitudes in superstring theory [9] is supposed to involve 
integration over the moduli space [6, 15] of super Riemann surfaces. Unfortunately, 
this is a rather unruly object, and, in particular, its non-compactness tends to make 
such integrals ill-defined 1-23]. On the other hand Mumford [18] has given us a 
beautiful compactification of the moduli space of Riemann surfaces by treating 
them as algebraic curves, and Deligne [4] has announced that the same can be 
done for super Riemann surfaces. In order to carry out such a program, it is first 
necessary to show that families of complex supermanifolds of dimension 111 can 
always be thought of as families of projective superalgebraic varieties. In this paper, 
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we will explain why this is so, while at the same time deriving results of much 
greater generality. 

A famous result of Whitney [25] asserts that any smooth compact manifold 
M" can be realized as a submanifold of Euclidean space of R2"; indeed, there is a 
canonical embedding of M into the infinite dimensional vector space (C~176 * of 
distributions on M, given by 

Xl-+~x, 

where 6x is the Dirac delta measure centered at x, and this gives rise to a 
finite-dimensional embedding M ~ V *  by restricting to almost any subspace 
V c C~176 of dimension > 2n, or by restricting to a somewhat more carefully 
chosen subspace u of dimension 2n. There is even an easy extension of this to the 
setting of supermanifolds: a smooth supermanifold M"I" can be always be smoothly 
embedded in ~2,1m+,. But for complex manifolds, life is not so simple, because a 
holomorphic function on a compact complex manifold is necessarily constant 
(by the maximum principle). A way around this is to look for projective embeddings, 
for which purpose sections of a line bundle over our complex manifold may be 
used in place of holomorphic functions. In 1953, using this idea and a powerful 
cohomological vanishing theorem he had recently proved by Hodge theory and 
the Bochner method, Kodaira [13] gave an intrinsic characterization of those 
complex manifolds which can be holomorphically embedded in complex projective 
space. But several years earlier Chow [3] had proved that the only compact complex 
submanifolds of complex projective space are those defined by a finite number of 
polynomial equations; thus the image of Kodaira's embedding map is always 
perforce an algebraic variety! Thus in many contexts it can be deduced that a 
given compact complex manifold--globally defined in some transcendental terms, 
for instance by a collection of holomorphic transition functions--is actually 
something completely describable in terms of elementary algebra, and algebraic 
geometric methods can then be brought to bear on further understanding the given 
space, often with stunning consequences. One might hope that, wherever this 
remarkable reduction from analysis to algebra is echoed in physics, there will be 
a strong tendency for the corresponding theory to be both better behaved and 
more full analyzable than one would otherwise be wont to expect. 

In this paper we will discuss the projective embedding problem for complex 
supermanifolds. We begin, in Sect. 2, by giving a characterization, in terms of 
positive rank one locally free sheaves, of those complex supermanifolds admitting 
superholomorphic embeddings into complex superprojective space. In Sect. 3, 
this is translated into an obstruction theory involving classical cohomological 
invariants, which are then computed for some concrete examples. In Sect. 4, we 
give a supermanifold generalization of Chow's theorem and an analogue of the 
Segre embedding theorem. Finally, in Sect. 5, we prove a projective embedding 
theorem for families. In particular, we show that a family of complex supermanifolds 
of dimension 1 I m is necessarily a family of projective algebraic varieties. From the 
standpoint of physical applications, the last is perhaps the most important result 
proved in this article, since it applies, in particular, to families of super Riemann 
surfaces. 
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2. The Kodaira Embedding Theorem for Supermanifolds 

We shall use Manin's book 1-17] as a general reference for the theory of 
supermanifolds, and we shall summarize the most important definitions here in 
order to establish terminology and notation. A complex supermanifold is a ringed 
space (M, d ) ,  where M is a topological space, nnd d is a sheaf of supercommutative 
rings on M such that, if we let X be the ideal of nilpotents in ~r the following 
conditions are satisfied: 

1. (M, (9) is a complex manifold, where (9 := d / X ;  
2. g :=  X / J f f  2 is locally free over (9; 
3. d is locally isomorphic to the Z2-graded exterior algebra A~g. 

We denote the complex supermanifold ( M , d )  simply by M when there is no 
confusion with the underlying topological space-- just  as one does in classical 
complex manifold theory. Similarly, the sheaf d is called the structure sheaf of 
the complex supermanifold M, and will be denoted, when necessary, by ~r The 
complex manifold underlying the supermanifold M is its so-called reduction, defined 
as (M, (9), where (9 = d / X ,  and denoted by Mrd. The next classical object that 
naturally arises in the theory of complex supermanifolds is a holomorphic vector 
bundle over Mrd whose sheaf of sections is the locally free sheaf 8 :=  ~ r / X  2 of 
(9-modules. We call g the characteristic sheaf of the complex supermanifold M. A 
split complex supermanifold (M, d )  is defined by the property that d - A'g,  i.e. 
the supercommutative sheaf of rings is simply given by an exterior algebra 
(Z2-graded and supercommutative in the obvious manner) over a locally free sheaf 
on the underlying complex manifold; the latter sheaf then becomes the characteristic 
sheaf of the split supermanifold. Note that not every complex supermanifold is 
split (cf. I-5,17,22]). A family of simple but important examples of complex 
supermanifolds is given by the superprojective spaces. 

Definition 1. Complex superprojective him-space is the supermanifold 

P.l., = (P . ,A ' (C" |  1))), 

where (9(- 1) is the sheaf of sections of the tautological (c 1 = - 1) line bundle over 
complex projective space P,. 

The motivation for this definition is as follows: a "holomorphic function" on 
P.I,, should surely be a function of total homogeneity 0 in n + 1 even variables 
(z~ z") apd m odd variables (01 . . . . .  0"). Such a function could be uniquely 
represented as 

f~,...i~(z ....  ,z )0 "..0 i~, 
k = O  l <=il.~...<ik~m 

where f~,...~ has homogeneity - k. But this is precisely what is meant by a section 
of the Grassmann bundle A'(C m | (9( - 1)). 

Notice that P, Im is a split complex supermanifold. The characteristic sheaf of 
P.l~ is, of course, C" | (9( - 1). 

Let us also recall that a (superholomorphic) mapping 

f :(M1, sr --* (M2, ~r 
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between complex supermanifold is a pair consisting of a holomorphic mapping 

f~a:(M1, (91)~ (M2, (92) 

and a pull-back morphism 

f *  : f r i l l / 2  --+dl 

of sheaves of •2-graded rings extending the pull-back morphism for holomorphic 
functions. Such a map is called an embeddin9 if, in addition: 

1. frd is an embedding, and 
2. f *  is a sheaf epimorphism. 

In the presence of i, 2 is equivalent to: 
3. the induced vector bundle morphism 

f ra.E2 --+ El, 

is surjective, where E~--+ M i is the holomorphic characteristic vector bundle of M i 
defined by 

(9(E, ) :=~#=x, /xL i=  1,2. 

This latter formulation is easier to verify in practice, and will be the one we 
will really use. 

Let us now recall the statement of the usual Kodaira embedding theorem 
[13, 24]; this states that a compact complex manifold M can be holomorphically 
embedded in some complex projective space if and only if it admits a positive 
holomorphic line bundle L--+ M. Here a holomorphic line bundle is called positive 
if and only if it has a Hermitian structure for which the curvature is a K/ihler form; 
for M a Riemann surface, this amounts to requiring that ~ c,(L) > 0. A locally free 

M 

rank one sheaf s162 is of the form (9(L), where L is a holomorphic line bundle. We 
say that such an ~a is positive if L is a positive line bundle. The correct analog of 
this notion in the 772-graded case is as follows. 

Definition 2. A locally free rank one sheaf of d-modules on a supermanifold (M, ag) 
is said to be positive if its restriction ~ a  to the underlyin9 complex manifold is a 
positive rank one sheaf. 

Here, the restriction of a sheaf o~ of d-modules  from the supermanifold (M, sO) 
to the underlying complex manifold (M, (9) means the sheaf o~rd:= ~ / y o ~  of 
(9-modules. 

Using the definition we have the following result. 

Theorem 1. A complex supermanifold M with compact reduction can be embedded 
in some superprojective space P<m if and only if it admits a positive rank one sheaf 
of riM-modules. 

Proof. One direction is trivial. If f : M  ~ Pnlm is an embedding, then 

5(' = f*((9(1) |  | (9( - 1))) 

is a positive rank one sheaf on M. The converse will be proved by showing that 
some power of any positive line bundle is precisely of this form for some fi 
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Thus, we now assume that there exists a positive rank one sheaf 500 on Mrd 
which extends as a rank one locally free sheaf 5e of d-modules.  Let L ~  Mrd be 
the positive line bundle defined by 500 = d0(L), and let E ~ M be the characteristic 
vector bundle defined by do(E) = 5 ~. For kE ~, let 50k:= 5a |  |  be the k-fold 
tensor product of 50 with itself, and let 50[t):= 50*/Jv'~ § 1 50k. Thus 

50 o) = do(L| 
50 1) = 50 o)| (do c e ) ,  
50~.) = 50k, j > rank E. 

More generally, we have the exact sequence 

O~50~o)| k k 50a) ~ 50(t- 1) ~ 0. (1) 

Lemma 1. The restriction map F(M, 50k) ~ F(M, 50~1)) is surjective ilk is sufficiently 
large. 

Proof. F r o m  1 we have exact sequences 

0 k 0 k 1 k H (M,50(0)~H (M,50a_~))~H (M,50o| 

But by Grauert's vanishing theorem [8], the positivity of L implies that 
H~(M,50ko| 0 for any fixed l, provided that k is sufficiently large. For k 
sufficiently large we therefore have 

H1(M,50ko| for l = l , 2 , . . . , r a n k E .  

It then follows by induction that F(M, 50k)~ F(M, ~ x ) )  is onto. �9 

Let J x  c (9 denote the ideal sheaf of xeM. Then J is a coherent analytic sheaf, 
and we can again conclude by the Grauert vanishing theorem that, for k sufficiently 
large, 

HI(M, J x | 1 7 4  50~) = 0 
and 

H ~ ( M , J ~ | 1 7 4  = 0 

for all x, y~M. But we also have the short exact sequences (where J1F is the vector 
bundle of 1-jets of any vector bundle F) 

so the evaluation maps 

r ( i ,  50~) ~ Li @ Lkr, (2) 

F(M, 50k)_~ (j1Lk)~, (3) 

F(M,o~ | Lk)-~ E,| L~, (4) 

are all onto. Let So, Sl , . . . , s ,  be a basis for F(M, 50k), and let t l , . . .  , t ,  be a basis 
for F(M, ~ | Lk). By Lemma 1, these may be respectively extended as even sections 
ao,(rl,...,an~F(M, k A,v,, ) and odd sections "C 1 . . . .  , zm~F(M, ~qaokdd ) of 50k. 
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To obtain our embedding, let us first define frd:M ~ P, by 

f,~(x) = [(So(X), ex), (sl(x), ex) ..... (s,(x), e~)], 

where e~ is any basis for (L~)*---C. The surjectivity (2) guarantees that at least 
one component of our expression for frd(x) is non-zero, so that frd is a well-defined 
holomorphic map. The surjectivity (3) also says that e~ and e r define linearly 
independent functionals F(M,d(mk))---rC, so that fro:M-* Pn = P(F(M, O(Lk)) *) 
is injective. Finally, the surjectivity (4) guarantees that f~d is an immersion. 

To extend this (usual Kodaira embedding) map to a map of supermanifolds, 
we simply need to specify f *  on a set of generators. We may do this by defining 

and 

() 03 ~i 
f 

where z~ and 01,...,0 m are the usual homogeneous coordinates on P,I,,, 
that is to say the standard basis for F(P , ,  (9(1)|162174 (9(- 1))). 

To conclude, we need to check that f *  is an epimorphism, or, equivalently, 
that the induced map 

f * : c m |  (9( - 1) ~ (9(E) 

is surjective. But this is precisely the surjectivity assertion (4). �9 

Corollary 2. Any split complex supermanifold M whose reduction Mrd is projective 
algebraic is superprojective. 

Proof. A split supermanifold M is of the form (M, A5 ~ where do is the characteristic 
sheaf. Since (9 injectively embeds in d M =  Ado we have a natural projection 
rc:M ~ M~d. Thus, if &a is a positive rank one locally free sheaf o n  Mrd , then rc*Lf 
is a locally free sheaf of rank one on M with the property that (re* Lf)ra = ~ ,  and 
hence is positive on M. By Theorem 1, M is superprojective. �9 

We shall see less trivial applications in later sections. 
We note at this point that the embedding provided by the proof of the theorem 

is not typically optimal, in the sense that if a complex supermanifold of dimension 
r ls admits an embedding into some P.I,,, it always embeds in P2,+ 1 It+s" One can 
do this by dropping a certain number of odd and even coordinates after a linear 
transformation. To see, for instance, that one can always eliminate an odd variable 
if m > r + s ,  notice that the pull-back map cm | (9( --1) --+ do induced by an 
embedding gives rise to a map E * ( -  1)--> C m whose image is a complex cone. The 
total space of E*( -- 1)--+ M has complex dimension r + s, so if r + s < m the image 
of E * ( -  1)--+ C m has measure 0, and consequently there exists a one-dimensional 
subspace C c C m which meets the image of E * ( -  1) only at 0; projecting to a 
complementary C "-~ then gives rise to a map (M, sg)-+P,  lm_l, which is, by 
construction, an embedding. Reducing n to 2r + 1 is similar and completely 
standard. 
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We close this section by mentioning a result of Penkov [19] which gives 
a necessary and sufficient condition that a complex super Grassmannian is 
embeddable in complex superprojective space. Following Manin [17], we let 
G(r[s;n + rim + s) denote the super Grassmannian manifold of free regular sub- 
modules of C ~+'lm+~ of rankrls.  This set can be endowed with a topology and 
with a structure sheaf to make it a complex supermanifold of dimension rn [sm. In 
general a super Grassmannian is not a split complex supermanifold [17], and more 
generally, Penkov shows that the super Grassmannian manifold G(rls; n + rim + s) 
can be embedded in superprojective space if and only if r = 0 or s = 0 or n = 0 or 
m = 0. In particular the simplest example of such a nonembeddable manifold is of 
the form G0[1; 212). As we see above (2), all split supermanifolds admit projective 
embeddings, and thus for example G(111; 212) is not split. Nonetheless, as we shall 
see in the next section, many interesting non-split supermanifolds do embed in 
super projective space. 

3. Classical Invariants and the Embedding Problem 

According to Theorem 1, a supermanifold is projective iff there is a line bundle 
on the supermanifold M such that its restriction to the reduced space is a positive 
line bundle in the classical sense, i.e. iff there is a positive invertible 0-module 
which can be extended to be an invertible riM-module on M. In this section, we 
will therefore be able to describe the obstruction to embedding M in superprojective 
space in two different, albeit equivalent, ways. 

Suppose that M is a supermanifold with projective algebraic reduced space 
Mrd and characteristic vector bundle E ~ Mrd. Thus, there is, by assumption, a 
very ample invertible sheaf L#<o) of (~-modules on Mrd. In fact, by passing to a 
tensor power of a given positive line bundle, we can take L#<o) to be sufficiently 
ample so that L#~'o)| Ak~ is generated by its global sections for all n => 1, k __ 0 
and H'(M, ~'~o)| Ak~)= 0 for all n > 1, k __> 0, and r __> 1. Let ~b o :Mrd ~ Pn be the 
embedding defined by the sections of ~r we will call such an embedding very 
ample. Then q~* (9(1) = L#(o), where we let (9(1) be the sheaf of holomorphic sections 
of the hyperplane line bundle on Pn (so that c 1 ((9(1)) = 1). As A~174 8 is generated 
by global sections, one has a surjection: 

~lM--' #--'0, 

where ~- = Gin(9(- 1), because (0(- 1)[u = ~b*d~(- 1) = Aa~]. 

Theorem 3. Let (M, ~ )  be a complex supermanifold with compact reduction Mrd , 
and let qSo:Mra ~ ~n be a very ample projective embedding. Then the obstructions to 
extendin 9 c~ o to an embeddin 9 49:M ~ P.lm are elements of H2(Mrd, A2k g), for 
k = 1, 2, . . . ,  [rank El2]. 

First Proof. Up to isomorphism, a line bundle on (M, ~r is given by an 
element of HI(M,~r . . . .  ), where d,ev~, is the multiplicative sheaf of even 
invertibles. Let 6:2k be the normal subgroup of elements of the form 1 + e, where 
~e~2k;  we define ~*2k ~--" ~ ,  . . . .  /~'a2(k+ ~). Then ~r = (9,, the sheaf of non-zero 
holomorphic functions, and ~r = a ' ,  . . . .  if 2k > q. We have exact sequences 
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O-'~A2k~--~dff,2k"+SJ,2(k_l)--~O SO an element of HI(M1,(9,)  extends to an 
element of Ht(M, ~r . . . .  ) if and only if a sequence of obstructions vanish, where 
these obstructions are elements of H2(Mrd ,  A2kr �9 

Second Proof. Let M (k) = (M, ~r :k) be the k th neighborhood of M~d in M. One 
then has a natural sequence of embeddings of ringed spaces: 

Mr d : M(O) ~ M(1) ~ ... ~ M(q- 1) ~ Mtq) = M. 

We extend the embedding 

to 

gb(0):M(O) ~o ) p~ ,__i ip~l,. 

C~(l):M (1) ~ Pnlm 

by induction. Thus, assume that we have an embedding for 1 = k - 1. Locally, there 
is no obstruction to extending this map to a map for l = k, but there are 
many ways of making such an extension, the choices being parametrized by 
((a*@ |  . . . . .  where ~ denotes the sheaf of derivations of the sheaf of algebras 
A : I M  on P.. Hence the obstruction to making a consistent global choice is an 
element of Hl(Mrd,(dp*~| . . . .  ). On the other hand, 

q~*~ ~ r 1 4 9  4,* ~-*, 

where Y is the tangent sheaf of P,. Therefore, when k is even, the obstruc- 
tion is in Hl(Mrd, fg*J-| and when k is odd, the obstruction 4s in 
n'(Mra , c~* ~ *  | Ak g). 

However, ~b*~* is a finite (direct) sum of the very ample invertible sheaf s 
By our choice of s the last cohomology group vanishes. Therefore, there is no 
obstruction when k is odd. 

On the other hand, one has the Euler sequence on P,: 

Pulled back by ~b onto M and then tensored by Akr this yields 

O -.} Ako~ ~ Ak ~ Q ~p* (~(1)~(n + l ) --> Ako~ | r * J- --> O, 

or, in other words, 

~'~ ( 0 )  

By our choice of A:(o ), this exact sequence induces an isomorphism: 

HI(M.d, A~ ~ | (~* J )  ~ H~(M, A~ ~). 

Therefore, the only obstruction of extension is in this second cohomology when 
k is even. �9 

Remarks. 

�9 Classical analogues of the above proofs arise when one attempts to extend 
analytic objects off a complex submanifold Mrd~M by power series. For  example, 
the standard obstruction theory of Griffiths [10] then tells us that the obstructions 
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to the extension of a map are in the first cohomology with values in the tensor 
product of the tangent sheaf and the symmetric powers of the conormal bundle 
g*, while the obstructions to extending a line bundle are in the second cohomology 
with values in the symmetric powers of the conormal bundle. In the category of 
supermanifolds, we have simply remarked that these principles still work, with the 
proviso that symmetric products are to be replaced with alternating ones. On the 
other hand, since the resulting obstructions now terminate after a finite number 
of steps, one is not confronted with the delicate convergence problems arising in 
the classical case. 
�9 Notice that the first proof actually gives a criterion for extending any line bundle, 
not just a poisitive one. 
�9 The obstruction theory of the second argument is sufficiently general to also, 
for example, show that one can always embed a supermanifold with Stein reduction 
in C "1" as a closed submanifold; the generality of the method stems from the fact 
that it is more closely tied to the idea of a map. As another example of this same 
method in another setting, consider what happens if one replaces the superprojective 
space P,k,, by the space Mrd and the map ~b 0 by the identity map; one rediscovers 
in this the obstructions to splitting the supermanifold M, which are elements in 
Hl(Mrd, Jra| The classical analogues are the obstructions to finding a 
holomorphic foliation transverse to a complex submanifold 1-10]. 
�9 These arguments also work in the ~g~ category, as all vanishing theorems can 
be replaced by the more elementary fact that cg~ sheaves are fine. Of course, all 
smooth supermanifolds admit not only superprojective embeddings, but as 
previously noted, affine embeddings as well. 

Corollary 4. Any supermanifold of dimension lira is superprojective. 
This follows from the fact that H2(M, ~ )  = 0 for any coherent analytic sheaf 

on any Riemann surface M simply because 2 > dim c M.; cf. [11]. By contrast, for 
the super Grassmannian G(II1; 212) the obstructions are not trivial. 

We close this section by giving some higher dimensional examples of complex 
supermanifolds which do not split, but which admit a superprojective embedding. 

Example. Suppose that g is a rank 2 locally free sheaf of O-modules with 
determinant bundle ~(o)- Let (M,A'g) be a split supermanifold. A theorem of 
Rothstein [22] states that, for any k > 2, ifHZ(M, Der (zk) A'g) = {0}, then there is an 
analytic family of supermanifolds parametrized by H 1 (M, Der (k) A" g/Der (zk) A'8), 
where 

DerU)A'8= ~ Der2kA'E 
j<_2k<_n 

and Y is an element in Derz A 'g  if locally with coordinates (z 1 . . . .  , z", 01,..., 0"), 

Y = ~fJOzj + gkOok , 

where f J  and gk are 0-sections of A 'g  with degree l and 1 + 1 respectively. 
Now, since g has rank 2 and the highest degree of A 'g  is 2, 

Der (4) A ' g  = 0, 
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and 

De{  2) A" go = A2 go ~ ff~-, 

where Y- is the tangent sheaf of the manifold (M, (9). 
Therefore, every class in HX(M, &a(o ) | ~') determines an isomorphism class of 

supermanifolds with characteristic sheaf go. An isomorphism class consists of split 
manifolds iff its orbit under the action of 

H ~  A2 go | '~-) 

Thus, for example, there certainly would exist non-split contains the origin: 
deformations if, 

and 
ha(M~d, AZ go |  '-) ~ 0  

h~ A2~ | ~'-) = 0. 

Yet all such deformations would be superprojectivity embeddable if, at the same 
time, 

h2(Mrd, ~to)) = 0. 

To find such example, let's take Mrd = Pl  x Pl- Let LPto ) = (9(p, q) be the line 
bundle of bidegree (p, q), and assume that p __> q. Since J g (9(2, 0) O) (9(0, 2), the 
Kiinneth formula yields 

hi(Mr,t, ~- | Ze(o)) 

= hl(g~d, (9(2 + p, q)) + hi (Mrd, (9(p, 2 + q)) 

= h~ (9(2 + p))h i (Pl ,  (9(q)) + ht(P~, (.0(2 + p))h~ (9(q)) 

+ h~ (9(p))hl(P1, (9(2 + q)) + hi(P1, (9(p))h~ (9(2 + q)) 

= h~ (9(2 + p))h~ ( 9 ( -  2 - q)) + h~  4 - p))h~ (9(q)) 

+ h~ (9(p))h~ (9( -  4 - q)) + h~ (9(-  2 - p))h~ (9(2 + q)) 

5 0  if p > - - 2 > q .  

Meanwhile, if p > - 2 > q, Serre duality then implies that 

h2(Mrd, ~(o)) = h~ x P1, (9( - 2 - p, - 2 - q)) = O. 

Therefore, given the above constraint on the bidegree, one can deform the split 
manifold to a projective non-split manifold. 

Example. In this paragraph, we shall study the borderline case of the last example. 
M is again the Pl x Pl,go is the sheaf (9( -  1, - 1)@(9(-  1, - 1). The space M has 
a covering { Uj: j  = 1, 2, 3, 4} given by the product of the standard affine coordinates 
on the projective line. Let (X j, Yj) be such coordinates on Uj; then 

(XI, YI) = (X2, Y2 i) = (X~ i, Y3) = (X4 i, y~- ~). 

Rothstein's deformation theory (cf. also [5]) then tells us that the deformation space 
of the split supermanifold (Pl x Pl, A'go) is a two dimensional linear space. In fact, 
if one uses super coordinate (xj, YJ, ~i, tli) over Uj such that xj.~o = X i, Yi,~ = Yi, 
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then a supermanifold can be defined by the following coordinate change: 

(xl, yl ,  (~, ~ )  = (x: - s y ;  1 (~q2, y ;  i, _ y ;  1 (2, y ;  1 t12) 

= (Xa1, ya d- tXa lCaq3 ,Xa iC3 ,  --  x 3  lq3)  

: (X 4 1 .~ SX 4 2 Y4 1 (4~]4. ' Y4 1 _ _  tx  4 1 Y4 2 (474, - -  X4 1 Y4 1 (4, - -  X41 y~- 1/~4), 

for (s,t)eC z. We shall denote by M(s,t) the supermanifold defined by the 
deformation with parameter value (s, t). Thus M(O, O) is the split model, and M(1, 1) 
is the supergrassmannian G(I[ 1,212). 

Proposition 5. The locally free sheaf (_9(p, q) on Pl x Pi  can be extended to be a 
locally free sheaf on M(s, t) if and only if  sp + tq = O. 

Note that this proposition gives us a complete picture of the Picard group of 
the supermanifold M(s, t). As a consequence, one can easily find supermanifolds 
that are not split but embeddable, e.g. when (s, t) = (1, - 1), or that are not split and 
not embeddable, e.g. when (s, t) = (1, 1). 

The proof of this proposition is simply a standard computation of (~ech 
cohomology; el. [17]. For example, one may begin with the extension defined by 

gl2(Xi ,  Yi) = Y],gi3(X1, Y1) = x~, 

g,4(X1, Y1)= x~Yqx, g23(X2, Y2) = x2Y2,P q 
g24(X2, I12) = xt~, ga4(X3, Ya) = Y~. 

The obstruction to extension as a locally free sheaf is an element of 
H Z ( M ~ d , Y |  C and is represented by the number sp+ tq. In fact, when 
this obstruction is equal to zero, there is a unique way to write down the extension, 
namely, 

q X gl2(Xl ,  Y i ) = y l , g l 3 (  t, Yi) = x~, 

gl4(X1, Y1)-  p q tqx~- - x i y l  + lye-  1(it/i, 
- P q tqx~- g23(X2, Y2)--  x2Y2 4: lye-  a(2r/2 ' 

g2,(X2, Y2) = x~, g34(X3, Y3) = Y~. 

4. Chow's Theorem and the Segre Embedding Theorem 

The complement to the classical Kodaira embedding theorem is the celebrated 
result of Chow which asserts that any embedded submanifold of projective space 
is defined by algebraic equations [3]. We now want to show that the image of a 
super projective embedding is a superalgebraic variety. 

Let us begin by recalling that a homogeneous polynomial of degree d in n + 1 
even variables z~ and in m odd variables 0~, . . . ,0" is, by definition, an 
element of 

@ [(OPC"+ 1) | (AqCm)]. 
p+q=d 

Thus, such a polynomial has a unique representation as 
d 

P ( z O ' ' ' " Z n ' O l ' ' ' " o m ) =  E E P{i ...... iq)( z~ . . . .  ,zn) Oi . . . .  0 iq, (5) 
q=0 l<il<..-<iq<m 
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where P~i~ ..... i,}(z~ -.. , z") is a homogeneous polynomial of degree d - q (in the usual 
sense); the polynomial p;~(z~ corresponding to q = 0 is, in particular, a 
homogeneous polynomial of degree d, and we will henceforth refer to it as the 
reduction Prd of p. 

Such a polynomial has another incarnation, which is central for our purposes. 
Consider the line bundle 

d (d ) :=  (9(d) | m | (9( - 1)) 

over P,Im" Then every global section of d(d) is given by a unique homogeneous 
polynomial p(z~ z", 01,.. . ,  0 m) of degree d, and every such polynomial conversely 
defines a global section of d(d).  The importance of this result stems from the fact 
that every line bundle over P, Im, n > 2, is necessarily isomorphic to d(d) for some d. 

Remark. By contrast, here are non-trivial continuous deformations of any  line 
bundle over Pll , , ,m >2.  Indeed, as noted in the first proof of Theorem 3, rank 
one locally free sheaves of any supermanifold are classified by H t ( d ,  . . . .  ). As 
before, this may be analyzed via the exact sequences 

O___~A2k ~ exp ) ~ r  _..~ ~r  1) ...~ 1, 

where d , 2 k  = d.ev~./exp y2(k+ ~) and g is the characteristic sheaf of M:= j f f /~2 .  
The claim follows from the fact that 

H ~ ( P l , A k ( C ' |  if m>k>_2. 

In a similar vein, using standard obstruction theory (cf. [5]), one may easily 
see that P,I,, is rigid for n > 2, while PlI,, has nontrivial deformations for m > 3. 
These examples should serve as a warning to those who naively expect every result 
to remain true whenever the word "super" is inserted in all appropriate places. 
Nonetheless, enough does continue to be true so that this naive faith needn't be 
considered imbecilic. 

Now suppose that we have a collection pl . . . . .  pN, depending on n + 1 even 
variables z~ z" and in odd variables 01,.. . ,  0". Assume, moreover, that each of 
the given polynomials is of definite parity, meaning that, when represented as in 
(5), nonzero coefficients occur either only for q even or only for q odd. We can 
then produce an ideal d = (p l , . . .  ,p")  c d = d(0)  by taking d to be generated, 
for z j ~ 0, by pk/(zJ 7 .  Such an ideal will be called a superalgebraic ideal. Associated 
to this ideal is the graded ringed space (X, (d/S)lx), where X = P, is the algebraic 
variety on which d / J  is supported. Such a graded ringed space will be called a 
complex superalgebraic variety. 

Theorem 6. Let (M, d )  be a complex supermanifold such that the underlying complex 
manifold M,d is compact. Suppose that f:(M, d ) ~  ~,1,, is an embedding. Then the 
image o f f  is a complex superalgebraic variety. More precisely, the kernel of 
f * a : f - l d p . i r ~ r  is of the form f - l  j ,  where d~d%l~ ,  is a superalgebraic 
ideal, and f therefore induces an isomorphism between (M,d )  and the complex 
superaloebraic variety defined by d.  

Proof. Suppose that we are given an embedding f:(M, d u )  ~ P, Im" In particular, 
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we have an embedding frd:M ~ Pn, and the classical Chow Theorem [3] says that 
there are a finite number of homogeneous polynomials 1 N Prd . . . . .  Prd of (Z ~ . . . .  , Zn), 
whose common zeros locus is frd(M) and which generate the ideal J of frd(M) c P.. 
Notice, moreover, that we may choose the degrees of these polynomials to be 
larger than any given integer l by replacing pk a with (zJ)tpk d as necessary. 

Now each of these polynomials defines a section of (9(d j ) c  d(d; )  so that 
f*(p~d)eF(M, 5r where ~ is the pull-back of d (1)  to M. As was observed above, 
we may take dk = d for all k, where d is as large as we like. Now we are faced with 
the problem of modifying prka by terms involving 01 . . . .  ,0" so that the modified 
homogeneous polynomials pk satisfy f , (pk) = 0 for all k. We do this by using the 
following result: 

Lemma 2. Let ueF(M, dV'~P~k)) , where JV c a l m  is the subsheaf of nilpotent 
elements, and where ~fk):=s Then there is some 9-6F(Pn,(_9(d)| 
@ Aq(c" | (9(- 1))) whose restriction is u, at least for sufficiently large d. I fu  has 
q>0 

definite parity, 9. may also be chosen to have definite parity. 

Proof. We do this by induction on k. Ifk = 1, then u is an element o fF(M,  (9(Ld| 
and we may consider the pair of exact sequences, 

O~ (gM(L~ Q F1)-} (9.(Ld |174 L- I) )-} (gM(U | E)-}O, 
0 ~ f Q (gp.(d) | C r" | (gp,,( - 1) --,. (gu,,,(d) | C r" | (9( - 1) 

-~ 0M(L" | (C~ | L-'))-~ 0, 

concluding that, if d is large enough so that, as predicted by Grauert's vanishing 
theorem, Ha(M,(9(Ld|174174 , then there is an 
element 

a ~ r ( p . ,  (9(d) | C m | (9( - 1)) = F (P . ,  (9(d) | A'(C" | (9( - 1))) 

whose restriction is u. 
Now suppose that the statement holds for k = 1, and that we are given an element 

u e F ( M , Y ~ k ) ) .  By restricting u, we obtain an element u k_,eF(M,X6r ) 
which, by hypothesis, extends as a "nilpotent" section 9-k-1 of ~r on P,. 
The restriction of 9-t-1 to F(M, JVL~k)) differs from u by an element v of 
F(M, O(L a | AkE)). We have exact sequences 

0 -+ (gM(L a | Fk) ~ (gu(L a | A*(C m | L- ~)) ~ (gM(L a | AkE) ~ 0 

and, 

O-- f | (9..(d) @ Ak(C " | (9~.( - 1)) ---, (gp. (d) @ Ak(C " @ (9~,,( - t)) 

--(gM(La| Ak(Cm| L- ~)) .O 

and, taking d large enough so that 

Hi(M, (9(L~ | F,)) = 0, 

and 

HI(Pn, J | (9(d- k) Q AkC m) = O, 
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we conclude that v extends as an element 

~ H ~  t0(d) O Ak(C m O (9( -- 1))) = F(P , ,  ~r 

Then fi = fig- 1 + ~ is the desired extension. 
To maintain the parity of u when extending as a, just consider either the odd 

or the even projection of a, as appropriate. �9 

To finish our proof of Theorem 6, we will need to apply Lemma 2 twice. The 
first application is to modify each Pr~ so as to produce a new homogeneous 
polynomial with identical reduction but whose restriction to the embedded 
supermanifold (M, riM) vanish. We may do this by letting 

rk~F( P"' to(d)O (~  Aq[Cm O 1)]) 

be the constructed extension of f*(P~d), and letting pk:= pk d _ r k. Notice that we 
may take the polynomials pk to all be even. 

As our second application, let us first consider the exact sequence 

O ~ Y x( E O La) ---, toM( E O Ld) --. Ex O L~ --. O 

of sheaves on M, where x e M  is any point, and where J c (9 is the ideal sheaf of 
the point x. For d sufficiently large, we have that 

B I ( M , ~ ( E  O Ld)) = O, 

so that elements of F(M, to(E 0 U))= F(M, YSf~I)) extend as odd homogeneous 
polynomials if d is large. Thus we may find odd polynomials pN+ ~ . . . ,  pN" in the 
ideal which generate the fibers of E OL  ~. In conjunction with pl,. . . ,pN, these 
polynomials constitute generators of the ideal, showing that J is superalgebraic. 
This then concludes the proof of Theorem 6. 

Example (Segre Embedding). Consider the super projective spaces Prnln=(Pm, A~) 
and Pkll = (Pk, Aft) ,  where ~ = (9"(9( - 1) and o~ = @1(9(_ 1). Their product space 
is the split manifold 

~2Dmj n X ~k[l = ( ~ m  X Pk, A((~n(9( - 1,0) Ol(9(0, -- 1)), 

where the bundle (9(- 1, 0) or (9(0, - 1) is the pullback of a bundle from the first 
and second factor respectively. As it is a split manifold, according to Corollary 2, 
this supermanifold is superprojective and according to Theorem 6, it is super- 
algebraic. To find an embedding, let's follow the procedure in the proof of Theorem 
3 and choose the (9-module (9(1,0)O(9(0, 1) on the reduced space. This is a very 
ample invertible sheaf. Its associated map is exactly the Segre embedding from 
P~ x Pk into ~:Drak+ra+k+l. Since 

((9(1,0) 0 to(O, 1))O(@"(9(-- 1,0) @zto(0, - 1)) = (G"(9(0, 1)) G(Ot(9(1,0)), 

this locally free sheaf is generated by global sections. In fact, one has 

@,r 1)+ 1~,,+ 1)((9( _ 1, 0) O to(0, -- 1)) ~ @"to( -- 1, 0) @ l(9(0, -- 1) --* 0. 

Let @ be the Segr6 embedding and (9(1) the hyperplane bundle on p~k+m+k+ ~, the 
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above exactly sequence can be expressed as 

@"(k+l)+~("+ x)(9(- 1)-* q~,((~"(9(- 1,O)@t~(O, - 1))-*0. 

In terms of supermanifolds, we have an embedding 

~rnln X Pkll---)" ~'~mk +m+k + l ln(k + l)+ l(m+ l). 

To express the above map in coordinates, we take homogeneous coordinates 
(Zo, Zl . . . .  ,Zm;Ol,02, . . . ,On)  on P,,I, and (Wo, Wl,...,Wk;ql,r/Z,.. ",ql) on Pklv Then 
the "image" of the product in homogeneous coordinates, will be (ziwj, wjO~,, qazi) 
where i = 0, 1,. . . ,  m; j = 0, 1 . . . . .  k; c~ = 1, 2 . . . . .  n; fl = l, 2 . . . . .  1. Obviously, this is 
an embedding. However, this is not the Segre embedding which can be described 
algebraically as in the classical Segre embedding by the tensor product of 
submodules. In fact, given the "homogeneous" coordinates as above, they represent 
rank (110) regular, i.e. nonnilpotent, submodules in C" § 1 I, and C k § 1 I~ respectively. 
Their tensor product is a regular rank (110) submodule in C ("+ 1)(k+ 1)+nlln(k+ 1)+/(m+ 1). 
In coordinates, the Segr6 embedding sends the product to (z~wj, - OJlp; wjO,, rlpz~), 
Note that, at this level we are writing down the sheaf morphism and this is not a 
point set mapping. Let us study the products of Pll 1 with itself. We have 

~ : P l l l  X PlI1---~P414 

given by coordinates as 

(Zo,Zl ; O) x (Wo, Wl ; rl)~(ZoWo,ZoW~,Z~ Wo,Zl Wl, - Orl; Zo~l,z~ ~l, Owo, Ow ~). 

From this map one sees that the reduced map is from 

Pl x PI-~P4 
given by 

(Zo, zl) x (Wo, w 1) --' (ZoWo, ZoW l, z~ Wo, z~ w~, 0), 

and when (Xo, Xl,X:,X3,X4; 41, 42,43,4,0 represent coordinates on P*I*, the 
sheaf morphism ~b* is defined by 

~*Xo~-ZOWO, (p'X1 =ZoW1, ~)*X2=ZIWo,  ~*X3~--ZIW1, ~ * X 4 =  --0~;  

and 

~*4~=Zo't, 4~ '42=z~,  ck*43=Owo, q~*r 

As a superalgebraic variety, this product of superprojective spaces can be defined 
by the equations 

X o X 3 - - X I x 2 = O  , X0 X4 -- 41~3 ~-"r- 0, XIX4--  ~144 = 0, X2X4 -- ~243 ~--"r'-- 0, 

X3X4 -- 4244 = 0, 

and 

X042--X2~l = 0 ,  X O ~ 4 - - X 1 4 3 = O ,  X142--X2~l'--:---O , X 2 4 4 - - X 3 r  

Finally, the algebraic definition of Segre embedding can be generalized to show 
that the product of any super Grassmannians can be embedded into a super 
Grassmannian. As any flag manifold is submanifold of the product of Grassmannians, 
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any flag manifold can be embedded into a grassmannian. In view of the fact that 
some super Grassmannian manifolds are not superprojective, one can raise the 
issue of embedding into super Grassmannians. In the category of manifolds and 
supermanifolds, one can simply say that a supermanifold can be embedded into 
a supergrassmannian if and only if there is a locally free sheaf of d -modu le  which 
is generated by global regular sections. Such a sheaf is certainly an extension of a 
locally free sheaf of 0-module which is generated by global sections. However, 
when we go through the same argument of the proof of Theorem 3, we find that 
the obstruction to the extension for an appropriately chosen sheaf of 0-modules 
from the reduced space to the ambient supermanifold consists also of elements in 
cohomology analogous to those described as in Theorem 3. 

5. A Superprojeetive Family Embedding Theorem 

We have seen that, for dimensional reasons, a supermanifold with dimension 1 tm 
is always superprojective. However, it is more important to find out whether a 
family of such supermanifolds is necessarily projective in a suitable sense, since it 
is only in the context of families that the theory of super Riemann surfaces [6] 
becomes interesting. 

Remark. A family of super Riemann surfaces is defined as a proper regular projection 
from a supermanifold (X, d x )  onto another supermanifold (Y, d r )  such that the 
relative dimension is equal to 111 and equipped with a rank 0[ 1 locally free 
subsheaf @ of the vertical tangent sheaf ~-x/r with the property that the map 
[,] + :~  | ~ ~ J - / ~  is an isomorphism 

9 2 ~ ~--X/y/~. 

As a result, the reduced sheaf of ~ restricted to any fiber is simply a choice of the 
square root of the anticanonical bundle of the underlying Riemann surface. Let 

be ~ - n  for some positive even integer, then ~ is a locally free rank one sheaf 
such that its restriction onto every fiber is positive. 

This motivates the following definition: 

Definition 3. Let (X, d x ) - ~ ( Y ,  d r )  be family of complex supermanifolds with 
compact reductions--i.e, we assume that 7rrd is proper and that ~ is submersive. A 
relatively positive line bundle ~f on (X, ~ x )  is a locally free rank one sheaf of 
dx-modules whose restriction to each fiber Xy:= lr~ 1 (y), ye Y is a positive line bundle. 

We now establish a version of the direct image sheaf theorem of Grauert 
([-17]; cf. [14]). 

Lemma 3. Let ~ be a relatively positive line bundle for the family (X, d x )  ~-'  (Y, dr). 
For sufficiently large I, H~ ~q~) is locally independent of y. 

More precisely, for any y, there is a neighborhood U of y and an integer N such 
that for l > N the natural restriction 

R o :HO (z~- I(U), ~ l )  ~ HO(xr, ~ )  

is surjective for all ye U. 
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If, for such a neighborhood U, ( is an element of H ~ (r~- 1 (U), ~t)  such that R ~ ( = 0 
for all yeU then ~ = O. 

Proof. We have the exact sequence of sheaves of ~r 

0 --~ ../~ k+ l  --~fk---~Ak~--~O. 

Tensoring with L~ a, one has 

O ---~ .fl/'k + l ..(~ -..~ ~/'k ~ ---~ A k ~ @ ..~ --~ O. 

Note that the dx-module  Agr | ~ is just the (gx-module Ak~ @ ~rd and when 
k = n, the odd dimension of (X, d x ) ,  then jffn+ 1~r = 0. Therefore, we have 

O--~ Jf fk+l~ ~ Yk~--~AS|  0 < k < n -  1, (6) 

0 ~ y n ~ r  ~ A"~ | ~rd ~ 0. (7) 

For any given y, choose an l so large that for j => 1 and for all k, 

W(Xy, A~ ~ | ~rd) = O. 
For each k, as the set 

A j, ~ = (y ~ Y: dim H~(Xr, Ak~r | (~d)y) => 1) 

is an analytic subset ([17, 14]), one can choose a neighborhood U of y such that 
for all y~ U, and for all k, 

Hg(xy, Ak r | (Z,e'rd)r) = 0. 

Then one can also deduce that H~ AkSr | (L.Ce~rd)r) is also independent of y for 
all y in U. By the Riemann-Roch formula on Xy, we know that, for sufficiently 
large l, such cohomology groups are independent of y and that any higher 
cohomology are actually equal to zero. Restricting (6) and (7) onto any fiber X r, 
we see from the induced cohomology exact seqence that the dimension of 

j t H (Xr, Lf'r) is independent of y. 
�9 From now on, we shall simplify our notation by using ~ to denote our 

suitable positive line bundle ~ .  
As a consequence of the classical result of Kodaira and Grauert, the restriction 

map 

R~:Hj(z- 1 (U), Ak ~ | ~rd) ~ HJ(xy, Ak gr | ('~rd)y) 
is surjective and if ( is an element in HJ(rc - I(U),Ak6 | ~,~) such that R~(()= 0 
for all y ~ U, then ( = 0. In particular, Hi(re- I(U), Akr | ~rd) = 0 for all k and j => 1. 
It follows that HJ(~ - 1 (U), Ako ~ | .W)----0. Then from (7), one can deduce that 

nJ(~-x(u),difn~,~)-=O for all j >  1. 

Taking the induced exact sequence of (6), we have 

H@c-~(U),~V*~)=0 for all n>k>O.  

Then the induced long exact sequences of (6) and (7) over n-I (U)  and over a fiber 
X r will yield the following exact sequences of cohomology: 

O--~ H ~  l U, jffk + l ~)--~ HO(~z- l U, j f fk ~)__~ HO(rc-l U, Ak ~ | ~)__rO 
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and 

0 ~ H ~ (Xy, (JV "k + *,Lf)y) -~ H~ (.#'k~e)r) -~ H~ (Ako v | .Lf)y) ~ O. 

Moreover, the natural restrictions 

Rk:n~174176174  for all k 
and 

R~:H ~ (~r- 1 (U), ,#'" ~ )  --* H ~ (Xr, (JV" ~)y) 

are surjective. 
Again, induction will show that R ~ is surjective and that if ~ is an element 

in H~ such that o _ R y e - 0  for all yeU, then ~=0 .  The proof of the 
lemma is completed. �9 

As a consequence, we have the following1: 

Theorem 7. I f  (X, six)-*(Y, Sir) is a family of supermanifolds such that the space 
(X, SIX) has relatively positive line bundle, then for any point yeY, there is a 
neighborhood U of y such that the family over the patch U can be embedded into 
P, lm• (U, SIr(U)) such that the following diagram is commutative: 

XIu ~ U x P,  lm 

id 
U ) U 

Proof. The lemma guarantees that, for a sufficiently positive power of the given 
line bundle, the embedding map from a fiber to P,  Im can be extended to a 
neighborhood in X. Taking the product with the projection to U gives a map 
which is an embedding on some neighborhood. �9 

Remark. If the base manifold is superprojective, it is now not difficult to use our 
generalization of Segre embedding to conclude that the total space of the family 
is also superprojective. 

We now outline a version of the Chow theorem which is applicable in the 
present context of families. Suppose that we have a family 

(X, s ix)  -* (Y, SIr) 

which is embedded in (Y, s i r )  x P,l,. in a manner consistent with the projections 

(X, d x )  i ,(Y, d r )  • IP<,. 

(Y, d O  id , 

so that the diagram 

is commutative. We may then ask whether the image of f may be defined by a 
finite number of homogeneous polynomials with coefficients which are elements 

1 In the case of super Riemann surfaces, Rabin and Topiwala [21], have independently formulated a 
similar result in a recent preprint 
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of d r ,  i.e., by functions of the form 

p(y,z,O)= f.(y)z10 J, 
IZl+lsl =k 

where (z, 0) are homogeneous coordinates on P,I,,, and k is a positive integer. We 
shall see that this is locally true in Y. 

Definition 4. Let (X, d x )  be a complex supersubmanifold of (Y, d r )  x P,lm such 
that the projection (X, d x ) ~ ( Y ,  d r )  is a family of complex supermanifolds with 
compact reduction. We say that (X, d x )  is projective superalgebraic over d r  if Y 
has an open covering {U~} such that on each U~, there is a finite collection of 
superfunetions {guz~} such that the ideal of (X, d x )  c (Y, ~r x Pnlm is generated 
by the functions 

p~ = ~ giJz~ zl 0 J, 
I J  

where III+ IJ[ = constant for each (I, e). 

Theorem 8 (Relative Chow Theorem). Let (X, Ax)~(Y,  d r )  be a proper family of 
complex supermanifolds, and let f :(X, d x ) ~ ( Y ,  d r )  x P, lm be an embedding of this 
family so that the diagram 

(X, d x )  f ,(Y, d r )  x P.tm 

commutes. Then (X, Sr is projective superalgebraic over d r. 

Proof. Let us first notice that this is true if (X, d x )  and (I1, d r )  are just complex 
manifolds. For  instance, if X c Y x P,l,, has codimension one and Y is Stein and 
contractible, the fact that H I ( y  x Pn, (9) = 0 implies that the divisor line bundle of 
X is a power of the hyperplane bundle; the case of higher codimension then follows 
over a sufficiently small subset of Y by projecting to generic hyperplanes, and the 
general case follows by covering Y with small Stein sets. 

Let us now consider the general case. Let us remark that any section of (9(d) 
on Y x P.  is a homogeneous polynomial with coefficients depending on Y, and 
the analogous statement is true for sO(d) on (Y, d r ) x  P, lm- By shrinking Y as 
necessary we may assume that X c Y x P,  is defined by a finite number of global 
sections of (9(d), and we may also assume that Y is Stein. We now may consider 
our sections as sections of d(d) ,  and seek corrections terms so that these sections 
vanish on (X, ~r As in the proof of Lemma 2, the obstructions to doing this are 
in H 1 (X, 6ek | (9(d)) for a finite number of coherent analytic sheaves 50 k. Thus the 
cohomology of such sheaves will vanish on a fiber Xy for d large by the Grauert  
vanishing theorem, and by semicontinuity, we may take this vanishing to occur 
for every fiber Xy by shrinking Y as necessary. This being done, it follows that 
HI(X, 5" k | (9(d)) = 0, as needed. We can thus extend our defining sections of g0(d) 
to even global sections of d(d) over (Y, d r )  x P,  lm which vanish on (X, dx) .  
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We now ask for odd polynomials to adjoin to the above generators so as to 
generate the entire ideal of (X, ~r We do this in the same manner  as before. 
First we need some sections of g |  (9(d), where g is the characteristic sheaf of 
(Y,~Cr) x P,  Jm, which define (X, dx)  to first order, and then we wish to extend 
this to all orders. Again, the obstructions are in HI(X,6ek| for a finite 
number  of coherent analytic sheaves 5P k. Taking d to be large and Y to be small, 
these cohomology groups vanish, and we are done. �9 
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