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ABSTRACT

An inequality relating the Euler characteristic, the signature and the L2-norm of the curvature of the
bundle of densities is proved for a four-dimensional compact Einstein-Weyl manifold. This generalises the
Hitchin-Thorpe inequality for Einstein manifolds. The case where equality occurs is discussed and related
to Hitchin's classification of Ricci-flat self-dual four-manifolds and to the recent work of Gauduchon on
closed non-exact Einstein-Weyl geometries.

1. Introduction

The Hitchin-Thorpe inequality [1, 4]

X(M) > l|r(M)|

is a relation between the signature t and the Euler characteristic ^ of a four-
dimensional compact Einstein manifold. (Recall that a Riemannian manifold is called
Einstein if the trace-free part of the Ricci curvature vanishes.) The idea behind the
inequality is that in four dimensions the topological invariants x and x are given in
terms of curvature, and therefore a Riemannian manifold with special curvature, such
as an Einstein manifold, ought to satisfy some topological obstructions.

In this paper we shall prove a similar inequality for a class of conformal manifolds.
A manifold M with conformal structure [g] and torsion-free affine connection D
compatible with the conformal structure is called a Weyl manifold. If we choose a
metric g in the conformal structure, the compatibility is equivalent to the existence of
a 1-form a> such that Dg = co®g- The connection D is called the Weyl connection.
The Weyl manifold (M, [g], D) is said to be Einstein-Weyl if the trace-free part of the
symmetric part of the Ricci curvature of the Weyl connection vanishes [5]. Thus, if
S(rD) denotes the symmetric part of the Ricci curvature rD of D, then the
Einstein-Weyl equations in dimension four are

S(rD) = \sDg,

where sD is the trace of rD with respect to g and is called the conformal scalar curvature.

REMARKS. (1) If we consider a conformal change of metric efg, then the
corresponding 1-form is co + df the new volume is e2f\o\g and the new norm on 2-
forms is e~f\ • | . It follows that the L2-norm

is a conformal invariant. The new conformal scalar curvature is e fsD, so the
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vanishing of the conformal scalar curvature is also a conformally invariant property.
Indeed, in dimension four, the sign of the conformal scalar curvature is constant [6].

(2) If either the self-dual part W+ or the anti-self-dual part W_ of the Weyl
curvature vanishes, then the conformal manifold is said to be conformally half-flat.

(3) Note that 4dco is the curvature of the bundle of densities (see [3]).

THEOREM 1.1. Let (M,\g],D) be a compact oriented Einstein-Weyl manifold of
dimension four, let g be a metric in the conformal structure, and let co be the \-form such
that Dg = co®g. Then the Euler characteristic x(M) and the signature r(M) satisfy the
inequality

with equality if and only if the manifold M is conformally half-flat and has vanishing
conformal scalar curvature.

After the proof of the theorem, we shall discuss the classification of geometries
where we have equality and give new examples of manifolds which do not carry
Einstein-Weyl structures.
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2. Proof of Theorem 1.1

On an oriented four-manifold (M,g), the curvature tensor decomposes into the
following SO(4)-irreducible components [1]: the scalar curvature sg, the trace-free
part of the Ricci tensor 2B, the self-dual Weyl tensor W+ and the anti-self-dual Weyl
tensor W_. Using the Chern-Weil formula and the Hirzebruch signature formula, we
can express the signature and the Euler characteristic by

(see [1, p. 371]).
In proving the theorem we shall make use of the conformal invariance by choosing

the following metric which we call the Gauduchon gauge.

PROPOSITION 2.1 ([2]). Up to a constant, there is a unique metric in the conformal
class of a compact Weyl space such that the corresponding \-form is co-closed.

In the Gauduchon gauge, the vector field co* dual to the 1-form is Killing [8], and
it follows that the Ricci curvature rg of the metric is given by

rg = S{rD) -\{co®co- \co\2
g g)

(see [5]). Contracting this equation with co and using the Einstein-Weyl equations, we
obtain rg(co) = \sD co. Then the Bochner formula rg(cc) + V*» Va = Ag a gives the
following.
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LEMMA 2.2. In the Gauduchon gauge one has

Agco = \sDco,

where Ag is the Laplacian of g.

Thus, working in the Gauduchon gauge we obtain

Sg = (•*/) +2Mff)
and

"" '" = \r—\s»2\l -

Substituting into the formulae for the Euler characteristic and the signature, and
using Lemma 2.2, gives

\dco\*gvo\g,

with equality if and only if sD = 0 and W_ = 0. If M is given the opposite orientation,
it is still an Einstein-Weyl manifold, so we also have

with equality if and only if sD = 0 and W+ = 0. This completes the proof of
Theorem 1.1.

3. Remarks and examples

If the 1-form is closed, then M is at least locally conformal to Einstein. This
follows since co is replaced by co + ^ w h e n the metric g is rescaled to efg. Thus, if the
manifold is Einstein-Weyl but not locally conformal to Einstein, then x > fM-

From Lemma 2.2 we see that if the conformal scalar curvature vanishes, then co
is closed. If co is also exact, co = df, we have A ? / = d*<>co = 0, so co vanishes
identically. Therefore, if the conformal scalar curvature vanishes, then either the
Gauduchon gauge is Ricci-flat or bx(M) ^ 1. (We have, in fact, bx(M) = 1; see [6].)
Thus, we have equality in Theorem 1.1 if and only if either M is Ricci-flat and
conformally half-flat (in which case M is flat, a K2 surface, an Enriques surface or the
quotient of an Enriques surface by a free antiholomorphic involution [4]) or M is a
conformally half-flat Einstein-Weyl manifold with closed non-exact 1-form. This
type of Einstein-Weyl manifold has been studied intensively by Gauduchon [3]: for
an Einstein-Weyl manifold with closed non-exact 1-form, the Gauduchon metric is
isometric to the standard metric on S1 x S3, co* is equal to d/dt and D is flat.
Gauduchon calls these spaces manifolds of type S1 xSz. Globally, they are of the form
(IRxS3)/r , where T is the fundamental group. The map U x S* -> R4\{0},
{t,p)\-^elp, is an isometry when U x S3 is given the product metric and IR4\{0} is given
the metric gjr2, where g0 is the canonical flat metric on IR4. The fundamental group
is mapped into the conformal group of U4, the Weyl connection is mapped to the flat
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connection of IR4, and co# is given by r(d/dr). If F is isomorphic to Z, the manifold is
said to be primitive, and such spaces are related to Hopf manifolds: they are
isomorphic to the quotients of (C2\{0}, gj r2,a>* = rd/dr) by the transformations
generated by (zvz^)^((xz1,fiz2), <xJeC, |a| = \0[ > 1.

Let M = «CP(2) (the connected sum of n copies of CP(2)). Then M is simply
connected, and r = n, x = n + 2; so applying Theorem 1.1 and the remark above, we
obtain that if M is Einstein-Weyl then n ^ 3. Hence «CP(2) (for n ^ 4) is a simply
connected compact manifold which does not carry an Einstein-Weyl structure
(partial results in this direction were proved in [5, 6]).

Let M be a A3 surface. Then M can carry only Einstein-Weyl structures which are
Einstein, and M#M carries no Einstein-Weyl structure. For other simply connected
spin manifolds which do not admit Einstein-Weyl structures, see [5].

If the conformal scalar curvature is negative (recall that the sign is constant [6]),
then any Einstein-Weyl manifold is necessarily Einstein [3, 7]. In [6], Einstein-Weyl
structures which are not locally conformal to Einstein and have positive conformal
scalar curvature were constructed on S2 x S2 and on CP(2) # CP(2).
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