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Statistical procedures designed for analysing multivariate data sets often emphasize
different sample statistics. While some procedures emphasize the estimates of both the
mean vector m and the covariance matrix SS, others may emphasize only one of these
two sample quantities. In effect, while an unusual observation in a data set has a
deleterious impact on the results from an analysis that depends heavily on the
covariance matrix, its effect when dependence is on the mean vector may be minimal.
The aim of this paper is to develop diagnostic measures for identifying in�uential
observations of different kinds. Three diagnostic measures, based on the local in� uence
approach, are constructed to identify observations that exercise undue in� uence on the
estimate of m, of SS, and of both together. Real data sets are analysed and results are
presented to illustrate the effectiveness of the proposed measures.

1. Introduction
The multivariate normal distribution is a common distribution in analysing multivariate
data. The distribution is speci�ed by a mean vector m together with a symmetric and
positive de�nite matrix S. The estimates of these parameters are usuallyobtained by the
method of maximum likelihood, and various multivariate statistical procedures have
been developed based on one or both of these sample quantities. However, it is well
known that the accuracy of the estimates is affected by unusual observations in the data
set, so-called outliers.

Outlier identi�cation is an important task in data analysis because outlying observa-
tions can have a disproportionate in�uence on statistical analysis. When such distortion
occurs, the outliers are regarded as in�uential observations. However, an observation

177

British Journal of Mathematical and Statistical Psychology (2002), 55, 177–192
© 2002 The British Psychological Society

www.bps.org.uk

* Requests for reprints should be addressed to Wai-Yin Poon, Department of Statistics, The Chinese University of Hong Kong,
Shatin, Hong Kong (e-mail: wypoon@cuhk.edu.hk).



that substantially affects the results of one analysis may have little in�uence on another
because the statistical procedures may emphasize different sample quantities. There-
fore, in�uential observations must be identi�ed according to context.

The identi�cation of in�uential observations or outliers of different kinds is well
documented in the literature on the regression model; however, less has been achieved
for multivariate analysis. Although the detection of multivariate outliers has received
considerable attention (see Rousseeuw & van Zomeren, 1990; Hadi, 1992, 1994; Fung,
1993; Atkinson & Mulira, 1993; Atkinson, 1994; Rocke & Woodruff, 1996; Poon, Lew, &
Poon, 2000), the emphasis has been on the identi�cation of location outliers that
in�uence the estimate of m. Observations that in�uence the estimate of S are addressed
by studying their effect on the measures used to identify the location outliers. In view of
the fact that statistical procedures may depend heavily on different sample quantities,
methods for identifying in�uential observations of different kinds in multivariate data
sets are necessary, and the aim of this paper is to develop diagnostic measures for this
purpose.

There are two major paradigms in the in�uence analysis literature: the deletion
approach and the local in�uence approach. The deletion approach assesses the effect of
dropping a case on a chosen statistical quantity, and a typical diagnostic measure is
Cook’s distance (Cook, 1977). The concept of Cook’s distance was �rst introduced in
the context of linear regression and was subsequently generalized to other statistical
models (McCullagh & Nelder, 1983; Bruce &Martin, 1989). While intuitivelyconvincing
measures of this kind have become very popular in in�uence analysis, it is also well
known that they are vulnerable to masking effects that arise in the presence of several
unusual observations. Diagnostic measures derived from deleting a group of cases are
also well documented in the literature, but their practicality is in doubt because of
combinatorial and computational problems.

On the other hand, the local in�uence approach is well known for its ability to
detect joint in�uence. In this approach diagnostic measures are derived by examining
the consequence of an in�nitesimal perturbation on the relevant quantity (Belsley,
Kuh, & Welsch, 1980; Pregibon, 1981); a general method for assessing the in�uence of
local perturbation was proposed by Cook (1986). The approach starts with a carefully
chosen perturbation on the model under consideration and then uses differential
geometry techniques to assess the behaviour of the in�uence graph of the induced
likelihood displacement function. In particular, the normal curvature Cl along a
direction l, where lTl = 1, at the critical point of the in�uence graph of the displace-
ment function is used as the diagnostic quantity. Alarge value of Cl is an indication of
strong local in�uence and the corresponding direction l indicates how to perturb the
postulated model to obtain the greatest change in the likelihood displacement.
Moreover, the conformal normal curvature Bl transforms the normal curvature onto
the unit interval and has been demonstrated to be another effective in�uence measure
(Poon & Poon, 1999).

The current study uses the local in�uence approach to develop diagnostic measures
for identifying in�uential observations that affect the estimate of the mean, of the
covariance matrix, and of both. These measures inherit the nice property of the local
in�uence approach in its abilityin detecting joint in�uence, hence multiple outliers that
share joint in�uence can be identi�ed simultaneously. It is worth noting that while a
‘masking’ effect arises in the presence of multiple outliers, there are two distinct notions
of masking effect, namely the joint in�uence and the conditional in�uence (Lawrance,
1995; Poon & Poon, 2001). The proposed diagnostic measures, like other measures
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developed by the local in�uence approach, are capable of addressing masking effects
under the category of joint in�uence but not of conditional in�uence.

Particulars about the local in�uence approach will be given in the next section
where we will also use the approach to develop measures for identifying in�uential
observations of different kinds The results of analysing real data sets using the proposed
measures are then presented as illustrations.

2. In� uential observations in the estimation of normal distribution
parameters

2.1. Case-weights perturbation
Let X be a p ´ 1 random vector distributed as N(m, S), where S = fjabg is a symmetric
and positive de�nite matrix, and let fxi , i = 1, . . . , ng be a random sample. The
maximum likelihood estimates m̂ of m and Ŝ of S are obtained by maximizing the log-
likelihood given by

L(u) =
Xn

i= 1

±
1
2

p log(2p) ±
1
2

log |S| ±
1
2

(xi ± m)TS± 1(xi ± m)

³ ´
, (1)

where u = (mT, sT)T is a q = p + p vector storing the elements in m and the lower
triangular elements of S, and p = p( p + 1)/2. It can be shown that the maximum
likelihod estimate û = (m̂T, ŝT)T of u is given by (Anderson, 1958)

m̂ = x̄ =
S

n
i= 1xi

n
, Ŝ = S =

S
n
i= 1(xi ± x̄)(xi ± x̄)T

n
. (2)

In order to assess the in�uence of individual observations on the estimate of u, we
follow Cook (1986) and introduce the case-weights perturbation to the log-likelihood.
The resulting perturbed likelihood is given by

L(u, |v) =
Xn

i= 1

v i ±
1
2

p log (2p) ±
1
2

log |S| ±
1
2

(xi ± m)TS± 1(xi ± m)

³ ´
, (3)

where qi , i = 1, . . . , n, are perturbation parameters and v = (q1, . . . , qn)T is de�ned on
a relevant perturbation space Q of f

n . For example, Q may be the space such that
0 # qi # 1 for all i. Let û and û vv be the quantities that maximize (1) and (3), respectively;
then the discrepancy between them can be measured by the likelihood displacement
function

f (v) = 2(L(û|v0) ± L(û vv |v0)). (4)

This function has its minimum value at v = v0 and we have L(u|v0) = L(u) if v0 = 1,
which is an n ´ 1 vector of 1s. When the perturbation speci�ed byv causes a substantial
deviation of ûv from û, a substantial deviation of the function f (v) from f (v0) is
induced. Therefore, examining the changes in f (v) as a function of v will enable the
identi�cation of in�uential perturbations that in turn will disclose in�uential observa-
tions. Cook (1986) proposed quantifying such changes by the normal curvature Cl of the
in�uence graph g of f (v) along a direction l at the optimal point v0, where l with lTl = 1
de�nes a direction for a straight line in Q passing through v0 . A large value of Cl is an
indication that the perturbation along the corresponding direction l induces a consider-
able change in the likelihood displacement.
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2.2. Normal curvature as an in� uential measure
Let ÈL and D be q ´ q and q ´ n matrices with elements respectively given by

L̈ij =
¶2L(u|v0)

¶vi¶vj |u= û

, Dij =
¶2L(u|v)

¶vi¶qj |u= û,v= v0

. (5)

Cook (1986) noted that the normal curvature of g in a direction l at the point v0 could
be computed by

Cl = ± 2lT(DT ÈL
± 1

D)l|u= û,v= v0
= ± 2lT ÈFl|u= û,v= v0

. (6)

The direction lmax along which the greatest change in the likelihood displacement is
observed identi�es the most in�uential observations. The direction lmax is that which
gives Cmax = maxl Cl, and Cmax together with lmax are the largest eigenvalue and
associated eigenvector of the symmetric matrix ± 2 ÈF in (6).

When Cl is de�ned on an unbounded interval and it may be dif�cult to judge its
magnitude, the conformal normal curvature is a one-to-one transformation of the normal
curvature onto the unit interval. Along the direction l at the critical point v0 , the
conformal normal curvature is given by

Bl = ±
lTDT ÈL

± 1
Dl��������������������������

tr (DT ÈL
± 1

D)2
q

|u= û,v= v0

= ±
lT ÈFl����������
tr ÈF

2
p

|u= û,v= v0

. (7)

Let Ej, j = 1, . . . , n, be vectors of the n-dimensional standard basis. Poon and Poon
(1999) demonstrated that BEj

= Bj, j = 1, . . . , n, are effective measures for identifying
the in�uential perturbation parameters when Cmax is suf�ciently large. Moreoever, the
computation of Bj, j = 1, . . . , n, is easy because Bj is the jth diagonal element of the
matrix

±
ÈF����������

tr ÈF
2

p
|u= û,v= v0

= ±
DT ÈL

± 1
D��������������������������

tr (DT ÈL
± 1

D)2
q

|u= û,v= v0

. (8)

Clearly, to develop diagnostic measures for uncovering observations that in�uence
the estimates of both m and S, it is necessary to compute the matrix ÈF. We discuss such
computation in the next subsection.

2.3. Observations in� uencing the estimates of m and S

There are two components in the matrix ÈF: the q ´ q matrix ÈL and the q ´ n matrix D.
Because ± ÈL is the observed information for the postulated model and the maximum
likelihood estimates m̂ of m and ŝ of s are statistically independent, ÈL

± 1 is a diagonal
block matrix given by

ÈL
± 1

=
± Cov(m̂) 0

0 ± Cov(ŝ)

³ ´
=

f ÈL
± 1
ab g 0

0 f ÈL
± 1
(ab)(gr)g

Á !
, (9)

where Cov(m̂) is a p ´ p matrix storing the covariance matrix of m̂ and Cov(ŝ) is a p ´ p
matrix storing the covariance matrix of ŝ. For the sake of clarity, we denote an element
in ± Cov(m̂) by ÈL

± 1
ab when it relates to the covariance between the ath and bth elements

m̂a and m̂b of m̂, and an element in ± Cov(ŝ) by ÈL
± 1
(ab)(gr) when it relates to the covariance
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between ĵab and ĵgr. Using such notation, we have (Anderson, 1958)

ÈL
± 1
ab = ± (Cov(m̂))ab = ± Cov(m̂a , m̂b) = ±

1
n

jab, (10)

and

ÈL
± 1
(ab)(gr) = ± (Cov(ŝ))(ab)(gr) = ± Cov(ĵab, ĵgr) = ±

1
n

(jagjbr + jarjbg). (11)

Moreover, we denote the elements in the ith column of D by

Dai =
¶2L

¶ma¶qi
or D(ab)i =

¶2L
¶jab¶qi

, (12)

depending on whether they correspond to ma in m or jab in S, respectively. Using (6)
and (9), the (i, j)th element of the matrix ÈF becomes

F̈ij =
X

1 # a ,b# p
Dai ÈL

± 1
ab Dbj +

X

1 # b# a# p
1 # r# g# p

D(ab)i
ÈL

± 1
(ab)(gr)D(gr) j . (13)

By (3),

¶L
¶qi

= ±
1
2

p log (2p) ±
1
2

log |S| ±
1
2

(xi ± m)TS± 1(xi ± m). (14)

Let ea be a p ´ 1 vector with 1 as its ath element and zeros elsewhere, let yi = xi ± m be
a p ´ 1 vector with ybi as its bth coordinate, and denote the (a , b)th element of S± 1 by
j± 1

ab . From (14),

Dai =
¶2L

¶ma¶qi
= yT

i S± 1ea =
X

b
ybij

± 1
ba =

X

b
j± 1

ab ybi . (15)

Therefore, the �rst summand on the right-hand side of (13) becomes
X

a,b,c,d
j± 1

ac yci ±
1
n

jab

³ ´
j± 1

bd ydj = ±
1
n

X

c,d
ycij

± 1
cd ydj = ±

1
n

yT
i S± 1 yj . (16)

The second summand on the right-hand side of (13) can be obtained numerically by
the expression in (11) and the following expression derived from (14):

D(ab)i =
¶2L

¶jab¶qi
= ±

1
2

¶ log |S|
¶jab

±
1
2

yT
i

¶S± 1

¶jab

yi = ± j± 1
ab ±

X

a,b
jaa yaij

± 1
bb ybi

Á !

. (17)

It is also possible to compute the second summand as follows:
X

b# a,r# g

D(ab)i
ÈL

± 1
(ab)(gr)D(gr) j =

X

a,g

D(aa)i
ÈL

± 1
(aa)(gg)D(gg) j +

X

b<a,r<g

D(ab)i
ÈL

± 1
(ab)(gr)D(gr) j

+
X

a,r<g

D(aa)i
ÈL

± 1
(aa)(gr)D(gr) j +

X

b<a,g

D(ab)i
ÈL

± 1
(ab)(gg)D(gg) j

=
1
4

X

a,g

D(aa)i
ÈL

± 1
(aa)(gg)D(gg) j +

X

a,g,r

D(aa)i
ÈL

± 1
(aa)(gr)D(gr) j

(

+
X

a,b,g

D(ab)i
ÈL

± 1
(ab)(gg)D(gg) j +

X

a,b,g,r

D(ab)i
ÈL

± 1
(ab)(gr)D(gr) j

)
. (18)
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Using (11) as well as (17), we obtain the following expressions for the summands of
(18):
X

a,g

D(aa)i
ÈL

± 1
(aa)(gg)D(gg) j = ±

2
n

X

a

X

g

j± 1
aaj2

agj± 1
gg ± j± 1

aa j2
ag

X

a
j± 1

ga yaj

Á !2"(

+
X

a
j± 1

ga yai

Á !2#
+ j2

ag

X

a
j± 1

aa yai

Á !2 X

a
j± 1

ga yaj

Á !2)

;

(19)

X

a,g,r

D(aa)i
ÈL

± 1
(aa)(gr)D(gr) j = ±

2
n

X

a

[j± 1
aa ± y2

aj] j± 1
aa ±

X

a
j± 1

aa yai

Á !2" #( )

; (20)

X

a,b,g

D(ab)i
ÈL

± 1
(ab)(gg)D(gg) j = ±

2
n

X

g

[j± 1
gg ± y2

gi] j± 1
gg ±

X

a
j± 1

ga yaj

Á !2" #( )

; (21)

X

a,b,g,r

D(ab)i
ÈL

± 1
(ab)(gr)D(gr) j = ±

2
n

f p ± yT
j S± 1yj ± yT

i S± 1yi + (yT
i
S± 1yj)

2g . (22)

Using (13), (16), and (19) to (22), it is possible to compute ÈF and hence the
diagnostic measures. Speci�cally, observations that unduly in�uence the estimates of
the mean and the covariance matrix can be isolated byexamining lmax or Bj, j = 1, . . . , n.
That is, the elements with large Bj values or large magnitudes in lmax are the group of
in�uential observations.

Note that observations so identi�ed are in�uential on the estimates of both m and S.
However, as there may be observations in the data set that in�uence the estimate of m
but not the estimate of S, or vice versa, it is also of interest to develop diagnostic
measures for identifying these.

2.4. Observations in� uencing the estimate of m or S

The diagnostic measures developed in Section 2.3 are developed based on the in�uence
graph given in (4) and hence the effects of the perturbation on estimates of all
parameters in u are taken into account. When the effects on only a subset of the
parameters is of interest, Cook (1986) demonstrated that the effects could be assessed
by examining the normal curvature of the in�uence graph of an objective function
deduced from (4). Speci�cally, if one is only interested in the effects on the estimate of
m, one can examine the normal curvature given by

Cm
l = ± 2lT(DT ÈL

m
)± 1D)l|u= û,v= v0

= ± 2lT ÈF
m

l|u= û,v= v0
, (23)

where

( ÈL
m
)± 1 =

± Cov(m̂) 0

0 0

³ ´
=

f ÈL
± 1
ab g 0

0 0

Á !
(24)

and D is as in Section 2.3 (see (12)). Using (10), (12), (15) and (16), the (i, j)th element of
ÈF

m is found to be

ÈF
m
i j =

X

1 # a ,b# p
Dai ÈL

± 1
ab Dbj = ±

1
n

yT
i S± 1yj. (25)
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By similar arguments to those given in Section 2.2, observations that exert a dispropor-
tionate in�uence to the estimate of m can be located by examining the eigenvector lmmax
associated with the largest eigenvalue of ± 2 ÈF

m or by examining the diagonal elements
Bm

j , j = 1, . . . , n, of the matrix ± ÈF
m

/
����������������
tr ( ÈF

m
)2

p
, where the unknowns in ÈF

m are evaluated
at u = û and v = v0 .

Similarly, let

( ÈL
ss
)± 1 =

0 0
0 ± Cov(ŝ)

³ ´
=

0 0
0 f ÈL

± 1
(ab)(gr)g

Á !
. (26)

The normal curvature that re�ects the in�uences of the perturbation on the estimates of
S is given by

Cs
l = ± 2lT(DT( ÈL

s
)± 1D)l|u= û,v= v0

, = ± 2lT ÈF
s

l|u= û,v= v0
, (27)

where

ÈF
s
i j =

X

1 # b# a# p
1 # r# g# p

D(ab)i
ÈL

± 1
(ab)(gr)D(gr) j ,

which can be computed using (18) to (22). Let lsmax be the eigenvector associated with
the largest eigenvalue of ± 2 ÈF

s
|u= û,v= v0

and Bs
j be the jth diagonal element of

± ÈF
s

/
���������������
tr( ÈF

s
)2

p
|u= û,v= v0

; observations that in�uence the estimates of S can be detected
by lsmax or Bs

j , j = 1, . . . , n.

3. Examples
Example 1: Brain and body weight data set
As an illustration, we �rst consider the brain and body weight data set (in logarithms to
base 10) which is available in Rousseeuw and Leroy (1987, p. 58). The data set consists
of observations for 28 species on two variables: body weight and brain weight. From a
scatter plot of the data (Fig. 1) it can be seen that the two variables exhibit a positively
correlated pattern. Many analyses of this data set have been carried out in the context of
outlier identi�cation. For example, Rousseeuw and van Zomeren (1990) used a robust
version of the Mahalanobis distance to conclude that cases 25, 6, 16, 14 and 17, in this
order, are outlying observations and that the effect of case 17 is marginal. Atkinson and
Mulira (1993), on the other hand, reached a similar conclusion using the Mahalanobis
distance in a forward identi�cation technique with results summarized visually in a
stalactite plot. Poon et al. (2000) used the local in�uence approach to identify location
outliers under various metrics. Different cases were identi�ed as outliers under different
metrics, but cases 25, 6 and 16 were always �agged as outliers when the metric used had
taken into account the shape of the data set.

We reanalysed the data set using the proposed procedure and plotted in Fig. 2 the
values of Bj, Bm

j and Bs
j , j = 1, . . . , n, computed from ÈF, ÈF

m and ÈF
s s respectively. The

results show that cases 25, 6 and 16, in this order, are most in�uential on the estimates of
m and S. From Figs. 2b and 2c, we conclude that case 20 affects the estimate of m
substantially but its effect on the estimate of S is less pronounced. Note from Fig. 1 that
as case 20 lies at the lower left-hand corner with smallest values in both variables, it
therefore affects the location of the data set substantiallybut its effect on the dispersions
or correlation of the variables is not conspicuous. A similar phenomenon can also be
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observed for cases 15, 19 and 7. On the other hand, the three extreme cases, 25, 6 and
16, are located outside the ellipse formed by the majority of the data; while they are
in�uential on the estimates of both m and S, their effects on S are more pronounced
than those on m. These results, therefore, indicate that the proposed measures have
identi�ed what they are supposed to identify.

Example 2: Head data set
The second data set, originally from Frets (1921), is also contained in Seber (1984, p.
263). It consists of measurements of head lengths and breadths of the �rst and second
adult sons in 25 families. Pairwise scatter plots among the four variables are given in Fig.
3, and several cases are marked for further discussion. The computed values of Bj, Bm

j
and Bs s

j , j = 1, . . . , n, from ÈF, ÈF
m and ÈF

s s
are presented in the form of index plots in Fig. 4.

Three cases, 2, 17 and 6, are classi�ed as in�uential on the estimates of both m and S.
From Fig. 3, we see that these three observations are usually located at the boundaries of
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the data point clouds formed by different pairs of variables, hence they are in�uential on
both the estimates of m and S. On the other hand, Figs. 4b and 4c show that Bm

16 is
relatively large but Bs

16 is not, which leads to the conclusion that the in�uence of case 16
on the estimate of m is substantial but on S is not noticeable. This �nding makes sense
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j .



because it can be seen from Fig. 3 that case 16, which has the smallest observed values
on all four variables, always lies in the lower left-hand corner of the scatter plots; its
in�uence on the location of the data set is therefore considerable.

Following the suggestion of a reviewer, we reduced the dimensionality to p = 2 by
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de�ning the measure of the ‘�rst son’ as the average of the �rst two variables and that of
the ‘second son’ as the average of the last two variables. The scatter plot of the reduced
data is presented in Fig. 5 and the index plots of the diagnostic measures are given in
Fig. 6. Cases 9, 6, 1, 16, in this order, are identi�ed as the observations that in�uence the
estimates of m and S simultaneously. Case 20, which is the second extreme observation
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in the lower left-hand corner of Fig. 5, is an in�uential observation in estimating m but its
effect on the estimate of S is less pronounced. Case 9, which is also marked in the plots
of Fig. 3 and is not a noticeable in�uential point when all four variables are used in the
analysis, is now located at the boundary of the data point cloud as depicted in Fig. 5 and
becomes a very in�uential point, especially with respect to the estimate of the
covariance matrix. On the other hand, cases 2 and 17, which are extreme in the plots
in Fig. 4, are no longer in�uential.

Example 3: Open–closed book data set
The open–closed book data set, taken from Mardia, Kent, and Bibby (1979, p. 3),
consists of �ve measurements on 88 students. In�uence analyses in the context of factor
analysis have been performed by several authors (Tanaka, Watadani, & Moon, 1991; Lee
& Wang, 1996). Case 81 has been identi�ed by all analyses as an extreme in�uential
point, and cases 3, 28 and 56 have been identi�ed by Tanaka et al. (1991) and case 87 by
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Lee and Wang (1996) as other observations worth special attention. Poon et al. (2000)
used different metrics to identify location outliers in the data set, and cases 28, 54, 56,
61, 81, 87 and 88 were �agged. Our proposed diagnostic statistics are presented as
index plots in Fig. 7. Cases 81 and 87 are seen to be the most in�uential observations in
estimating both m and S, and cases 54, 28 and 56 are other in�uential observations.
These cases are also in�uential in estimating m or S, but case 88, which has substantial
effect on estimating m, does not have a similar effect in estimating S. Examining the
original data shows that case 88 possesses the smallest scores in variables 1 and 4 and
the second smallest scores in variables 3 and 5, and therefore affects the estimate of the
mean vector substantially.
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4. Discussion
Although our development relies on the multivariate normal distribution and the
likelihood function in (1), the procedure can in fact be generalized to other multivariate
distributions. The normal distribution is chosen in the current study because of its
popularity and because many multivariate techniques make use of the sample mean
and/or the sample covariance matrix which are in effect the maximum likelihood
estimates of the normal model parameters. When a data set does not follow the normal
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Figure 7. Index plots of the in� uential measures for the open–closed book data set: (a) Bj; (b) Bm
j ; (c)

B ss
j .



distribution but its location or dispersion is estimated using (2), the proposed diagnostic
measures can still be applied to identify those observations that exert undue in�uence
on the estimates.

In the examples, we used Bj, Bm
j and Bs s

j as diagnostic measures to identify
observations which are in�uential on the estimates of m and S, the estimate of m, and
the estimate of S, respectively. The results of our illustrative examples indicate that the
proposed measures work well and can successfully identify the observations that they
are supposed to identify. We chose to use Bj, Bm

j and Bs s
j rather than lmax , lmmax and lsmax as

diagnostic measures because it is easier to compute the Bj. Moreover, letting Y and Ŷ be
the p ´ n matrices with jth column given by yj = xj ± m and ŷj = xj ± m̂ = xj ± x̄

respectively, we have (see (25)) ÈF
m

= ± 1
n YTS± 1Y. When the matrix is evaluated at

u = û and v = v0, it becomes (see (2)) ± (1/n)ŶTS± 1Ŷ = ± ŶT(ŶŶT)± 1Ŷ. Therefore,
the matrix is a constant multiple of a projection matrix. It has a single non-zero
eigenvalue and geometric multiplicity equal to p. Choosing eigenvectors with maximum
eigenvalues amounts to �nding an (orthonormal) basis for the eigenspace for the
curvature matrix. We then have to analyse contributions to the basis. Therefore, we
choose to use the measure Bm

j , j = 1, . . . , n, which aggregates the coef�cients in the
eigenvectors corresponding to non-zero eigenvalues to detect in�uential observations.

In determining when a measure is large enough to be worthy of further notice, we
simply employ the natural gap approach and use an index plot to help detect large
values. In most cases, such a simple method can ef�ciently reveal observations that
require special attention. When we consider the identi�cation of in�uential observa-
tions to be an exploratory rather than con�rmatory goal, and ensure that any observa-
tions so identi�ed are followed by thorough analysis of the facts underlying the
observations, strict adherence to a critical value for identi�cation does not seem
necessary. If objectivity is desired, for example in automating the implementation of
the proposed measures, the reference constant proposed by Poon and Poon (1999),
which is rationalized by the geometric concept of mean curvature, can be used to
establish a benchmark for judging the largeness of a measure.

When the matrix ± ÈF
m is evaluated at u = û and v = v0 , it becomes (1/n)ŶTS± 1Ŷ,

and its jth diagonal element is equivalent to the Mahalanobis distance

MDj(m̂, Ŝ) = MDj(x̄, S) =

����������������������������������������
(xj ± x̄)TS± 1(xj ± x̄)

q
(28)

for case j. Since the Mahalanobis distance measures the distance between an individual
observation and the location of the data set, its value can be used to �ag outlying
observations. However, when there are many outliers, a simple one-step outlier
identi�cation procedure based on MDj is not satisfactory and various procedures
have been developed to improve the use of the Mahalanobis distance for identi�cation
purposes. There are two main directions for improvement: the �rst is the use of robust
distance which is obtained by replacing x̄ and S in (28) by other robust estimates
(Rousseeuw & van Zomeren, 1990); and the second is to employ stepping techniques.
Stepping techniques usually start with a subset of the data set, which is updated step by
step in order to exclude outliers; the observations in the outlier-free subset are then
used to construct distance measures for outlier identi�cation (Atkinson & Mulira, 1993;
Atkinson, 1994; Hadi, 1994). In this paper, we have proposed three measures to identify
observations that affect respectively the estimates of m and S, the estimate of m and the
estimate of S; the possible improvement of these measures along the lines mentioned
above is an interesting topic for further study.
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