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WEAK MIRROR SYMMETRY OF LIE ALGEBRAS

R. CLEYTON, J. LAURET, AND Y. S. POON

1. Introduction

It is well known that deformation theory of geometric objects such as

complex structures and symplectic structures are dictated by a differen-

tial Gerstenhaber algebra (a.k.a. DGA) and the associated cohomology

theory [27], [35]. Therefore, DGA plays a key role in mirror symme-

try [5] [21]. In developing the algebraic aspects of mirror symmetry,

Merkulov proposes the concept of weak mirror symmetry [29]. If M is a

manifold with a complex structure J and M∨ is another manifold with

a symplectic structure ω, then (M, J) and (M∨, ω) form a weak mir-

ror pair if the associated differential Gerstenhaber algebras DGA(M, J)

and DGA(M∨, ω) are quasi-isomorphic. The overall goal of this project

is to construct all mirror pairs when the manifolds M and M∨ are

solvmanifolds, i.e. homogeneous spaces of simply-connected connected

solvable Lie groups, J is an invariant complex structure and ω is an

invariant symplectic structure.

In the SYZ-conjecture, one considers the geometry of special La-

grangian fibrations in a Calabi-Yau manifold L →֒ M → B with L

being a real three-dimensional torus. The mirror image is presumably

a (new) Calabi-Yau manifold M∨ with the special Lagrangian fibra-

tions L∗ →֒ M∨ → B where L∗ is the dual torus of L [34]. One way

to adapt the structure of a Lie group H to resemble this situation is

by insisting that the Lie algebra h is a semi-direct sum of a subalgebra

g by an abelian ideal V . The group H is then a semi-direct product,

namely the product of the group G corresponding to g with V . By

restricting our attention to invariant structures on homogenous spaces
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of such groups the geometry of the fibration of H over G becomes en-

coded in the corresponding objects on the Lie algebra h of H . We shall

speak somewhat sloppily of g as the base and of V as the fiber of the

fibration.

Forgetting about the SYZ-conjecture, semi-direct products are still

natural objects to study in connection with “weak mirror symmetry”.

This is so since the direct sum of the bundle of type (1, 0) vectors

T (1,0) and bundle of (0, 1)-forms T ∗(0,1) on a complex manifold carries

a natural Lie bracket (Schouten) such that T (1,0) is a sub-algebra and

T ∗(0,1) is an abelian ideal. It is the associated exterior algebra of this

semi-direct sum and associated ∂̄ complex that eventually controls the

deformations of the complex structure.

It is well-known that a symplectic structure defines a flat torsion-free

connection on a Lie algebra g [14]. As we shall see, a flat torsion-free

connection on a Lie algebra g also defines a symplectic form ω, not on

g but on a semi-direct product h∨ of g with its dual g∗, see also [11].

This symplectic form is defined such that it is Lagrangian with respect

to both the base g and the fiber V ∗ = g∗ and so we call the pair (h∨, ω)

a Lagrangian semi-direct product. A torsion-free flat connection on

g also defines a totally real semi-direct product (h, J) where J is a

complex structure on a semi-direct sum of g with itself. Such complex

structures are particular cases of complex product structures, see [1].

The observation that complex structures and symplectic structures on

certain semi-direct products both are related to the notion torsion-free

flat connections may be found in [6]. Torsion-free flat connections are

also known as affine structures and as such already has widespread

application in the study of mirror symmetry, see for instance [2, 9, 23].

Left-invariant torsion-free flat connections on Lie groups are equivalent

to (Lie compatible) left-symmetric algebras. Much is known about

left-symmetric algebras. In particular existence problems have been

examined and it is known that no left-symmetric structure exists on

semi-simple algebras. Also, certain nilpotent algebras of dimension
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greater than nine have no left-symmetric structures, see e.g. [7, 10, 12,

13].

Therefore we confine the scope of our present paper to deal with

solvable spaces, i.e. the base g and hence the total space h are solvable

algebras. Recent advance in resolving the Benson-Gordon conjecture

means that when we insist that h should carry a Kähler structure then

h is flat and therefore of a very special solvable type [4, 8, 25, 30].

For a nilpotent algebra more is true - it is Kähler only if it is abelian

[3, 24]. Therefore an invariant symplectic form ω on a non-abelian

nilpotent algebra is of type (1, 1) with respect a complex structure J

if and only if ω and J determine a non-definite metric. We call such a

pair a pseudo-Kählerian geometry.

Invariant complex structures, their Dolbeault cohomology and pseudo-

Kählerian geometry on nilmanifolds have been a subject of much in-

vestigation in recent years, especially when the complex dimension is

equal to three, see [16, 17, 18, 19, 20, 32, 33]. In particular, with the re-

cent advance in understanding the cohomology theory on nilmanifolds

[32], our computation and results on nilpotent algebras in this paper

could be used to provide a full description of the differential Gersten-

haber algebras of any invariant complex structures on nilmanifolds in

all dimension.

We have organized ourselves as follows. In the next section, we briefly

review the construction of differential Gerstenhaber algebras for com-

plex and symplectic structures, the definition of semi-direct products

and establish notations for subsequent computation. In Section 3, we

study the complex and symplectic geometry on semi-direct products.

We first establish a correspondence between a totally real semi-direct

product and flat torsion-free connections on the base in Proposition 3.2.

The analogous result for Lagrangian semi-direct products is obtained

in Proposition 3.5.

In Section 3.3, we develop the concept of dual semi-direct product

and use it as the candidate of “mirror” space. In Section 3.4, we

demonstrate a construction of a special Lagrangian structure on the
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dual semi-direct product whenever a special Lagrangian structure on

a semi-direct product is given. This is the result of Proposition 3.10.

After a brief revisit to the subject on flat connections in Section 3.5,

we prove the first main theorem (Theorem 4.1), which states that the

differential Gerstenhaber algebra on a totally real semi-direct product

is isomorphic to the differential Gerstenhaber algebra of the Lagrangian

dual semi-direct product as constructed in Proposition 3.2.

In Section 4.1, we exhibit with some examples of Kählerian solvable

algebras and their mirror partners. In Section 5, we focus on nilpotent

algebras of dimension-four and dimension-six. The work on the four-

dimensional case is a brief review of past results [31]. Our first step

in addressing the issue of finding mirror pairs of special Lagrangian

nilpotent algebras in dimension-six begins in Section 5.2. In this sec-

tion, we determine nilpotent algebras admitting a semi-direct product

structures, and then identify their dual semi-direct product space in

Table (5.38). In Section 5.3, using results in literature we identify the

semi-direct product structures which potentially could admit totally

real complex structures or Lagrangian symplectic structures. The re-

sult is in Table (5.39). We finish this paper by giving examples of

special Lagrangian pseudo-Kähler structures on every algebras in Ta-

ble (5.39), and identifying their mirror structures. This is the content

of Theorem 5.1.

2. Preliminaries

We first recall two well known constructions of differential Gersten-

haber algebras (DGA) [15, 29, 35]. After a motivation due to weak

mirror symmetry, we recall the definition of semi-direct product of Lie

algebras.

2.1. DGA of a complex structure. Suppose J is an integrable com-

plex structure on h. i.e. J is an endomorphism of h such that J◦J = −1

and

(2.1) [x • y] + J [Jx • y] + J [x • Jy] − [Jx • Jy] = 0.
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Then the ±i eigenspaces h(1,0) and h(0,1) are complex Lie subalgebras

of the complexified algebra hC. Let f be the exterior algebra generated

by h(1,0) ⊕ h∗(0,1), i.e.

(2.2) fn := ∧n(h(1,0) ⊕ h∗(0,1)), and f = ⊕nfn.

The integrability condition in (2.1) implies that f1 is closed under the

Schouten bracket

(2.3) [x + α • y + β] := [x, y] + ιxdβ − ιydα.

Note that working on a Lie algebra, the Schouten bracket coincides

with Courant bracket in Lie algebroid theory.

A similar construction holds for the conjugate f, generated by h(0,1)⊕

h∗(1,0).

Let d be the Chevalley-Eilenberg (C-E) differential d for the Lie alge-

bra h, [−•−]. Then (∧h∗, d) is a differential graded algebra. Similarly,

let ∂̄ be the C-E differential for the complex Lie algebra f
1
. Note that

the natural pairing on (h ⊕ h∗) ⊗ C induces a complex linear isomor-

phism (f
1
)∗ ∼= f1. Therefore, the C-E differential of the Lie algebra f

1

is a map from f1 to f2. Denote this operator by ∂. It turns out that

(f, [− •−],∧, ∂) form a differential Gerstenhaber algebra which we de-

note by DGA(h, J). The same construction shows that (f, [−•−],∧, ∂)

is a differential Gerstenhaber algebra, conjugate linearly isomorphic to

DGA(h, J). The above construction could be carried out similarly on

a manifold with a complex structure.

2.2. DGA of a symplectic structure. Let k be a Lie algebra over R.

Suppose that ω is a symplectic form on k. Then the contraction with

ω, ω : k → k∗ is a real non-degenerate linear map. Define a bracket

[− • −]ω on k∗ by

(2.4) [α • β]ω := ω[ω−1α • ω−1β].

It is a tautology that (k∗, [− • −]ω) becomes a Lie algebra, with the

map ω understood as a Lie algebra homomorphism.

In addition, the exterior algebra of the dual h∗ with the C-E differ-

ential d for the Lie algebra k is a differential graded Lie algebra. In
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fact, (∧•k∗, [−•−]ω,∧, d) is a differential Gerstenhaber algebra over R.

After complexification we denote this by DGA(k, ω).

2.3. Quasi-isomorphisms and isomorphisms.

Definition 2.1. [29] The Lie algebra h with an integrable complex

structure J and the Lie algebra k with a symplectic structure ω form

a weak mirror pair if the differential Gerstenhaber algebras DGA(h, J)

and DGA(k, ω) are quasi-isomorphic.

Suppose that φ : DGA(k, ω) → DGA(h, J) is a quasi-isomorphism.

Since the concerned DGAs are exterior algebras generated by finite

dimensional Lie algebras, it is natural to examine the property of the

Lie algebra homomorphism on the degree-one elements.

(2.5) φ : k∗C → f1 = h(1,0) ⊕ h∗(0,1).

In particular, if the restriction of φ to k∗C is an isomorphism, it in-

duces an isomorphism from DGA(h, J) to DGA(k, ω). It turns out

that for a special class of algebras, this is the only situation when

quasi-isomorphism occurs.

Proposition 2.2. [15] Suppose that h and k are finite dimensional

nilpotent Lie algebras of the same dimension, J is an integrable complex

structure on h and ω is a symplectic form on k. Then a homomorphism

φ from DGA(h, J) to DGA(k, ω) is a quasi-isomorphism if and only if

it is an isomorphism.

This proposition provides a large class of Lie algebras to work on.

So in this paper we focus our attention on a restricted type of weak

mirror pairs. Namely, we seek a pair such that the map φ in (2.5)

is an isomorphism on the degree-one level. Since the Lie algebra k∗

is tautologically isomorphic to k via ω, we concern ourselves with the

non-degeneracy of the map

(2.6) φ ◦ ω : kC → k∗
C
→ f1 = h(1,0) ⊕ h∗(0,1).

When this is an isomorphism one immediately obtains conditions on

the structure of k. The reason for this is that with respect to the
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Schouten bracket, h(1,0) is a subalgebra of f1 and h∗(0,1) is an abelian

ideal. In addition, dim h(1,0) = dim h∗(0,1). In other words, f1 and k are

semi-direct products of a very particular form.

2.4. Semi-direct products. Let g be a Lie algebra, V a vector space

and let ρ : g → End(V ) be a representation. On the vector space g⊕V ,

define

(2.7) [x + u, y + v]ρ := [x, y] + ρ(x)v − ρ(y)u,

where x, y are in g and u, v are in V . Then this determines a Lie bracket

on g ⊕ V . This structure is a particular case of a semi-direct product.

As a Lie algebra it is denoted by h = h(g, ρ) = g⋉ρV . By construction,

V is an abelian ideal and g is a complementary subalgebra. One may

also consider the semi-direct product as an extension of the algebra g

by a vector space V .

Note that if H is a simply connected, connected Lie group of h and G

the connected subgroup of H with g 6 h as above then H/G ≃ RdimV

as a flat symmetric space.

Conversely, suppose V is an abelian ideal of a Lie algebra h and g

a complementary subalgebra. The adjoint action of g on V then gives

ρ : g → End(V ).

In this paper, we are solely interested in the situation when dim g =

dim V . In particular, when the vector space V is regarded as the under-

lying space of the real algebra g or its dual g∗, interesting geometry and

other phenomena arise through the representations of g as described

next.

3. Geometry on semi-direct products

A left-invariant connection on a Lie group G is an affine connection ∇

such that ∇Xg
Yg = (Lg)∗(∇xy), where Xg = (Lg)∗x, Yg = (Lg)∗y, i.e.

such that covariant differentiation of left-invariant vector fields give rise

to left-invariant vector fields. These are in one-to-one correspondence

with linear maps γ : g → End(g) through ∇xy = γ(x)y. The torsion of
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γ is

T γ(x, y) := [x, y] − γ(x)y + γ(y)x

and its curvature Rγ

Rγ(x, y) := γ([x, y]) − γ(x)γ(y) + γ(y)γ(x).

Since all connections considered here are left-invariant, linear maps

γ : g → End(g) are referred to as connections on g and say that γ is

flat if Rγ = 0 and torsion-free if T γ = 0.

3.1. Totally real semi-direct products. A complex structure on a

real vector space W is an endomorphism J such that J2 = −1. If V is

a subspace of W such that V ′ = JV satisfies V ⊕ V ′ = W then we say

that J is totally real with respect to V . Given a totally real J any w in

W may be written uniquely as w = x+Jy for x, y in V . So W ∼= V ⊕V

and J may be viewed as the standard complex structure J0 on V ⊕ V

given by (x, y) 7→ (−y, x). Since a basis for W always may be chosen

so that Je2i−1 = e2i any J is totally real with respect to some V .

If g = (W, [·, ·]) is a Lie algebra we say that J is integrable if the

Nijenhuis tensor

NJ (x, y) := [x, y] − [Jx, Jy] + J([x, Jy] + [Jx, y])

is zero for all x and y in W . If J is totally real with respect to V then

J is integrable if and only if NJ(x, y) = 0 for all x, y ∈ V . This follows

by the identity NJ (x, y) = JNJ(x, Jy) valid for all x, y ∈ W .

Definition 3.1. Suppose that h(g, ρ) = g⋉ρV is a semi-direct product

Lie algebra. A complex structure on g⋉ρ V is totally real if J is totally

real with respect to g and Jg = V .

Since V is an abelian ideal, [Jx, Jy] = 0 for all x, y in g and so the

Nijenhuis tensor vanishes precisely when

(3.8) [x, y] + Jρ(x)Jy − Jρ(y)Jx = 0.

for all x, y ∈ g. This has the significance that

(3.9) γ(x)y := −Jρ(x)Jy
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defines a torsion-free connection on g. This is flat since

γ([x, y]) − γ(x)γ(y) + γ(y)γ(x)

= −Jρ([x, y])J + Jρ(x)ρ(y)J − Jρ(y)ρ(x)J = 0.

On the other hand, take a flat, torsion-free connection γ on g. Then

the totally real complex structure J on h := g⋉γ g defined by J(x, y) =

(−y, x) becomes integrable with respect to [·, ·]γ by virtue of

NJ((x, 0), (y, 0)) = [(x, 0), (y, 0)]γ + J [(x, 0), (0, y)]γ − J [(y, 0), (0, x)]γ

= [(x, 0), (y, 0)]γ + J((0, γ(x)y) − (0, γ(y)x))

= ([x, y] − γ(x)y + γ(y)x, 0) = (0, 0).

This proves our first Proposition, which is at least implicitly contained

in [1].

Proposition 3.2. There is a one-to-one correspondence between flat

torsion-free connections on g and totally real integrable complex struc-

tures on semi-direct products g ⋉ρ V .

3.2. Lagrangian semi-direct products. Let ω be a two-form on a

vector space W , i.e. ω ∈ Λ2W ∗. We may also view ω as a linear map

ω : W → W ∗ such that ω∗ = −ω through the identification (W ∗)∗ = W .

Let 2m = dim W . Then ω is non-degenerate if ωm 6= 0. Equivalently,

ω : W → W ∗ is invertible.

A subspace V of W is isotropic if ω(V, V ) = 0. Equivalently ω(V ) ⊂

Ann(V ) ⊂ W ∗. If dim V = 1
2
W , then an isotropic V is called a La-

grangian subspace. In this case ω(V ) = Ann(V ). A splitting W =

V ⊕V ′ of a vector space W into a direct sum is called Lagrangian with

respect to ω if both V and V ′ are Lagrangian with respect to ω. Two

vector spaces W1 and W2 with non-degenerate two-form ω1 and ω2 are

said to be isomorphic if a linear isomorphism f : W1 → W2 exists such

that f ∗ω2 = ω1.

Let V be a vector space. Then V ⊕V ∗ carries a two-form ω given by

the canonical pairing ω(α, x) = α(x) for α ∈ V ∗ and x ∈ V and such

that the given splitting is Lagrangian.
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Lemma 3.3. Suppose W is a vector space and ω is a non-degenerate

two-form on W . Then W admits a Lagrangian splitting W = V ⊕ V ′

if and only if (W, ω) is isomorphic to (V ⊕ V ∗, 〈·, ·〉) (where V may be

taken to be R
1

2
dimW .

Proof: Clearly, if f : W → V ⊕V ∗ is an isomorphism then the splitting

given U := f−1(V ), U ′ := f−1(V ∗) is Lagrangian with respect to ω.

If, on the other hand U ⊕ U ′ is a Lagrangian splitting of W then

Ann(V ′) = ω(V ′). Furthermore Ann(V ′) is canonically isomorph to

V ∗. Therefore W ∼= V ⊕ V ∗ by the map f(x + x′) := x + ω(x′).

Moreover,

〈f(x + x′), f(y + y′)〉 = 〈x + ω(x′), y + ω(y′)〉

= ω(x′, y) + ω(x, y′)

= ω(x + x′, y + y′).

Suppose that g = (W, [·, ·]) is a Lie algebra. Then the derivative of

a two-form ω with respect to the Chevalley-Eilenberg differential is

(dω)(x, y, z) = − (ω([x, y], z) + ω([y, z], x) + ω([z, x], y))

= − (ω([x, y])z − ω(x)(ad(y)z) + ω(y)(ad(x)z)) .

So ω is closed if and only if for all x, y:

(3.10) ω([x, y]) = ad∗(x)(ω(y))− ad∗(y)(ω(x))

where (ad∗(x)α)(y) = −α([x, y]).

Definition 3.4. Suppose that a Lie algebra h is a semi-direct product

h = g⋉ρV . It is said to be Lagrangian with respect to a non-degenerate

2-form if the subalgebra g and the abelian ideal V are both Lagrangian

with respect to ω.

When g⋉ρV is Lagrangian, there is a canonical isomorphism ω(V ) =

Ann(V ) ∼= g∗. Similarly, ω(g) = Ann(g) ∼= V ∗. Define

(3.11) ρ∗ : g → End(V ∗) by (ρ∗(x)α)(u) = −α(ρ(x)u).
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Then

(ρ∗(x)ω(y))(u) = −ω(y, ρ(x)u) = −ω(y, [x, u]ρ) = (ad∗
ρ(x)ω(y))(u).

Comparing to equation (3.10) it is now clear that ω is closed if and

only if

(3.12) ω([x, y]) = ρ∗(x)(ω(y))− ρ∗(y)(ω(x))

for all x, y ∈ g. The story now repeats itself. Define

(3.13) γ(x)y := ω−1(ρ∗(x)ω(y)).

This defines a flat torsion-free connection on g since

Rγ(x, y)z

= ω−1(ρ∗([x, y])ω(z))

−ω−1(ρ∗(x)ω(ω−1(ρ∗(y)ω(z)))) + ω−1(ρ∗(y)ω(ω−1(ρ∗(x)ω(z))))

= ω−1(ρ∗([x, y])ω(z)) − ω−1(ρ∗(x)ρ∗(y)ω(z)) + ω−1(ρ∗(y)ρ∗(x)ω(z))

= 0.

Conversely, take a flat torsion-free connection γ on g. Let ω be the

standard skew pairing on g ⊕ g∗:

ω(x + u, y + v) = u(y) − v(x).

Define the bracket on g⊕g∗ as the semi-direct product by representation

γ∗. Then the semi-direct product is Lagrangian with respect to ω. It

follows that if x, y, z are in g and u, v, w are in g∗,

(3.14) dω(x, y, z) = dω(u, v, w) = dω(x, u, v) = 0.

Moreover,

(dω)(x, y, u) = − (ω([x, y], u) + ω(γ∗(y)u, x) − ω(γ∗(x)u, y))

= (u([x, y]) − (γ∗(y)u)(x) + (γ∗(x)u)(y))

= u([x, y]) + u(γ(y)x) − u(γ(x)y)

= u([x, y] − γ(x)y + γ(y)x) = 0.

This gives us the following result (which may also be found in [11]).
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Proposition 3.5. There is a one-to-one correspondence between flat

torsion-free connections ρ on Lie algebras g and Lagrangian semi-direct

products g ⋉ρ V .

3.3. From complex structure to two-form, and back. Proposi-

tion 3.2 and Proposition 3.5 of the preceding sections yield a one-to-one

correspondence between certain integrable complex structures and cer-

tain symplectic forms going via flat, torsion-free connections. In this

section, we construct a direct relation between two-forms and complex

structures.

Suppose W = V ⊕ JV , i.e. J is a complex structure on W so that

V and JV are totally real. On W∨ := V ⊕ (JV )∗, define

(3.15) ωJ(x + u, y + v) := v(Jx) − u(Jy),

where x, y are in V and u, v are in (JV )∗. Then ωJ is non-degenerate

on W∨ with both V and (JV )∗ being Lagrangian.

Conversely suppose ω is a non-degenerate 2-form on W = V ⊕ V ′

with both V and V ′ being Lagrangian. Write V ′ = ω−1(V ∗) and set

(3.16) Jω(x + u) = −ω−1(u) + ω(x)

for all x + u in V ⊕ V ∗. Clearly, both V and V ∗ are totally real with

respect to Jω.

When W is a semi-direct product h = g ⋉ρ V define the dual semi-

direct product h∨ by h∨ := g⋉ρ∗ V ∗ where ρ∗ is the dual representation

(ρ∗(x)a)(u) := −a(ρ(u)).

Suppose J is totally real with respect to the semi-direct product h. As

noted in (3.14), the sole obstruction for the differential of the induced

two-form ωJ on h∨ to vanish is due to (dωJ)(x, y, u) where x, y are in
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g and u is in V ∗. In the present case,

(dωJ)(x, y, u) = − (ωJ([x, y], u) + ωJ([y, u], x) + ωJ([u, x], y))

= − (u(J [x, y]) − (ρ∗(y)u)(Jx) + (ρ∗(x)u)(Jy))

= − (u(J [x, y]) + u(ρ(y)Jx) − u(ρ(x)Jy))

= −u(J [x, y] + ρ(y)Jx − ρ(x)Jy)

= −u(J([x, y] − Jρ(y)Jx + Jρ(x)Jy)).

By (3.8), we have the following.

Lemma 3.6. Suppose h is a semi-direct product g ⋉ρ V and let J be a

totally real complex structure on h. Then the dual semi-direct product

h∨ is Lagrangian with respect to the two-form ωJ . Moreover, ωJ is

symplectic if and only if J is integrable.

Similarly, if ω is a non-degenerate two-form on h, and the semi-

direct product is Lagrangian, then the Nijenhuis tensor of the induced

complex structure Jω is determined by

NJω
(x, y) = [x, y] − [Jω(x), Jω(y)] + Jω([x, Jω(y)] − [y, Jω(x)])

= [x, y] − [ω(x), ω(y)]− ω−1([x, ω(y)]− [y, ω(x)])

= [x, y] − ω−1(ρ∗(x)ω(y) − ρ∗(y)ω(x)).

By (3.12), we have the following.

Lemma 3.7. Suppose h is a semi-direct product g ⋉ρ V with a non-

degenerate two-form ω. Suppose that the semi-direct product is La-

grangian. Then the complex structure Jω on h∨ is totally real. Further-

more, Jω is integrable if and only if ω is symplectic.

In Lemma 3.6 and Lemma 3.7 (compare [6]), we demonstrate the

passages from a totally real complex structure on a semi-direct product

to a symplectic structure on the dual semi-direct product, and from a

symplectic structure on a Lagrangian semi-direct product to a totally

real complex structure on the dual. In the next lemma, we demonstrate

that these two processes reverse each other.
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Lemma 3.8. Let h = g⋉ρV be a semi-direct product. Let φ : h → (h∨)∨

be the canonical isomorphism defined by the identification (V ∗)∗ = V .

If h is equipped with a totally real complex structure J then φ∗(JωJ
) = J .

Similarly, if h is Lagrangian with respect to a symplectic form ω then

φ∗(ωJω
) = ω.

Proof: The identification (V ∗)∗ = V is of course the map u 7→ u∗∗

given by u∗∗(v∗) := v∗(u) for all u ∈ V and v∗ ∈ V ∗. Setting φ(x +

u) := x + u∗∗ this is an isomorphism of Lie algebras as one may easily

check. Suppose J is totally real. Then JωJ
is also totally real, by

Lemmas 3.6 and 3.7. Then the second statement follows by checking

that JωJ
x = φ(Jx) ∈ (V ∗)∗. But

(JωJ
x)(u∗) = ωJ(x)(u∗) = u∗(Jx) = (Jx)∗∗(u∗) = φ(Jx)(u∗).

Similarly, if h is Lagrangian with respect to ω then it is also Lagrangian

with respect to ωJω
. Moreover,

ωJω
(x, u∗∗) = u∗∗(Jωx) = (Jωx)(u) = ω(x, u).

This completes the proof.

3.4. Special Lagrangian structures. A non-degenerate two-form ω

and a complex structure J on a vector space W are said to be compatible

if ω(Jξ, Jη) = ω(ξ, η) for all ξ, η in W . In that case g(ξ, η) := ω(ξ, Jη)

is a non-degenerate symmetric two-tensor on W , the induced metric

for which J is an orthogonal transformation: g(Jξ, Jη) = g(ξ, η). If g

is positive-definite we say (ω, J) is an almost Hermitian pair, otherwise

we say (ω, J) is almost pseudo-Hermitian.

Suppose that (ω, J) is an almost pseudo-Hermitian structure on W

and a vector subspace V is totally real with respect J . Then V is

isotropic with respect to ω if and only if JV is isotropic. If V is a

totally real subspace, then the splitting W = V ⊕ JV is orthogonal

with respect to the induced metric. In addition, it is clear that g|JV
is

determined by g|V .
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Conversely, let J be a complex structure on W and V a totally

real subspace. Any inner product g on V could be extended to W by

declaring g(Jx, Jy) = g(x, y) for x, y ∈ V and g(x, Jy) = 0. Then

(ω, J) is an almost pseudo-Hermitian structure on W .

If W is a Lie algebra h = (W, [·, ·]), we say an almost pseudo-

Hermitian pair is pseudo-Kähler if ω is symplectic and J is integrable.

Definition 3.9. Let h be a Lie algebra with a semi-direct product

structure h = g ⋉ρ V . Let (ω, J) be a pseudo-Kähler structure on h.

Then h is said to be special Lagrangian if g and V are totally real with

respect to J and Lagrangian with respect to ω. We then also call (ω, J)

a special Lagrangian structure on the semi-direct product h.

Proposition 3.10. If (ω, J) is a special Lagrangian structure on a

semi-direct product h = g ⋉ρ V , then (ωJ , Jω) is a special Lagrangian

structure on the dual semi-direct product h∨ = g ⋉ρ∗ V .

Proof: In view of Lemma 3.6 and Lemma 3.7, the only issue is to verify

that for any x + u, y + v in g ⊕ V ∗,

ωJ(Jω(x + u), Jω(y + v)) = ωJ(x + u, y + v).

Given the compatibility of ω and J , the proof is simply a matter of

definitions as given in (3.15) and (3.16).

Other than allowing the metric being pseudo-Kähler, Definition 3.9

above is an invariant version of the usual definition of special La-

grangian structures found in literature on mirror symmetry if we extend

the metric g and the complex structure J to be left-invariant tensors on

the simply connected Lie groups of h and g (see e.g. [26]). To illustrate

this point, note that if {e1, . . . , en} is an orthonormal basis of g with

respect to the (pseudo-)Riemannian metric g, set uj = ej + iJej . Then

{u1, . . . , un} is a Hermitian basis of h. Then the Kähler form ω is

ω = i

n
∑

j=1

uj ∧ uj = i
∑

j

(ej + iJej) ∧ (ej − iJej).
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The complex volume form is

Φ = u1 ∧ · · · ∧ un = (e1 + iJe1) ∧ · · · ∧ (en + iJen)

= e1 ∧ · · · ∧ en + inJe1 ∧ · · · ∧ Jen

+ terms mixed with both ej and Jek.

When n is odd the real part of Φ restricts to zero on V and the imag-

inary part restricts to a real volume form. Therefore, the fibers of the

quotient map from the Lie group H onto G are special Lagrangian

submanifolds.

3.5. Flat connections and special Lagrangian structures. Sup-

pose (ω, J) is a special Lagrangian structure on h = g ⋉ρ V and let

g be the induced metric. Define γ(x) := −Jρ(x)J . Then γ is a flat

torsion-free connection on g. Since ω is closed

(dω)(x, y, Jz) = −(ω([x, y], Jz) + ω([y, Jz], x) + ω([Jz, x], y))

= −g([x, y], z) + g(γ(y)z, x) − g(γ(x)z, y)

= −g([x, y] − γt(y)x + γt(x)y, z) = 0,

and, since γ is flat,

−γt([x, y]) − γt(x)γt(y) + γt(y)γt(x)

= −(γ([x, y] − γ(x)γ(y) + γ(y)γ(x))t = 0.

Therefore, −γt is another flat torsion-free connection.

On the other hand, suppose that g is equipped with a non-degenerate

bilinear form g. Let γ be a flat torsion-free connection such that γ′ :=

−γt is also an flat torsion-free connection. Then, as above the complex

structure on h := g ⋉γ g given by J(x, y) = (−y, x) is integrable.

We write x + Jy, x, y ∈ g for the elements in h. Define ω on h by

ω(x, y) = ω(Jx, Jy) = 0 and ω(x, Jy) = g(x, y) = −ω(y, Jx) and set

g(Jx, Jy) = g(x, y). Then essentially the same calculation as above

shows that dω = 0 by virtue of γ′ being flat and torsion-free.

Remark 3.11. Note that we may equally well choose to work with the

integrable complex structure J ′(x, y) = (−y, x) on h := g⋉γ′ g and the
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associated symplectic form ω′. This is of course precisely the “mirror

image” of (h, J, ω). This all amounts to

Proposition 3.12. Let g be a Lie algebra with a non-degenerate bilin-

ear form g. Then there is a two-to-one correspondence between special

Lagrangian structures on a semi-direct product extending the Lie al-

gebra g and flat torsion-free connections γ on g such that the dual

connection −γt is also flat and torsion-free.

4. Canonical isomorphism of DGAs

In this section, we consider the relation between DGA(h, J) and

DGA(h∨, ωJ) when h is a semi-direct product totally real with respect

to a complex structure J .

Let γ be a flat torsion-free connection on a Lie algebra g. Write V

for the associated representation of g on itself and consider the usual

integrable complex structure J on h = g ⋉γ V . Then f1(h, J) = h(1,0) ⊕

h∗(0,1) where h(1,0) spanned by (1−iJ)x as x goes through g while h∗(0,1)

is generated by (1 − iJ)α where α ranges through V ∗ ⊂ h∗. Here J

acts on V ∗ by (Jv∗)(x + u) = −v∗(Jx + Ju) = −v∗(Jx). In particular,

Jv∗ ∈ Ann(V ) ⊂ h∗.

Now set h∨ := g ⋉γ∗ V ∗ and define φ : h∨
C
→ f1(h, J) as the tautolog-

ical map:

(4.17) φ(x + v∗) := (1 − iJ)x + (1 − iJ)v∗.

Recall that the restriction of the Schouten bracket on the space f1(h, J)

is a Lie bracket.

Lemma 4.1. The map φ : h∨
C
→ f1(h, J) is an isomorphism of Lie

algebras.

Proof: This is a straight-forward check. First, if u∗, v∗ are in V ∗, then

φ(u∗), φ(v∗) are in h∗(0,1). Therefore, [φ(u∗), φ(v∗)] = 0 = φ([u∗, v∗]). If

x, y ∈ g, then

[φ(x), φ(y)] = [(1 − iJ)x, (1 − iJ)y] = [x, y] − i([x, Jy] + [Jx, y])

= [x, y] − iJ [x, y] = φ([x, y])



18 R. CLEYTON, J. LAURET, AND Y. S. POON

by integrability of J . Finally, take x ∈ g and v∗ ∈ V ∗. Then [φ(x), φ(v∗)] ∈

h∗(0,1). With y ∈ g we get

[φ(x), φ(v∗)]((1 + iJ)y)

= [(1 − iJ)x, (1 − iJ)v∗]((1 + iJ)y)

= −((1 − iJ)v∗)([(1 − iJ)x, (1 + iJ)y])

= −((1 − iJ)v∗)([x, y] + i([x, Jy] − [Jx, y])).

It is apparent that v∗([x, y]) = 0. In addition, as [x, Jy] is in V and

Jv∗ is in Ann(V ), the above is equal to

= i(Jv∗)([x, y]) − iv∗([x, Jy] − [Jx, y])

= −iv∗(J [x, y] + [x, Jy] − [Jx, y]) = −2iv∗([x, Jy]).

While

φ([x, v∗])((1 + iJ)y) = ((1 − iJ)[x, v∗])((1 + iJ)y)

= −i(J [x, v∗])(y) + i[x, v∗](Jy) = 2i[x, v∗](Jy) = −2iv∗([x, Jy]).

Recall that the complex structure J on h induces a symplectic struc-

ture ωJ on h∨. Then the contraction map

ωJ : h∨ → (h∨)∗

carries the Lie bracket on h∨ to a Lie bracket [− • −]ωJ
on (h∨)∗.

Therefore, φ ◦ ω−1
J is a Lie algebra isomorphism from (h∨)∗

C
to f1. It

induces an isomorphism from the underlying Gerstenhaber algebra of

DGA(h∨, ωJ) to that of DGA(h, J). Next we demonstrate that this

map is also an isomorphism of differential graded algebra. i.e.

(4.18) φ ◦ ω−1 ◦ d = ∂̄ ◦φ ◦ ω−1.

We do have an isomorphism at hand. Composing φ with complex

conjugation on h∨
C and f1 respectively, we get a complex linear map from

h∨
C

to f
1
. But the complexified Lie algebra h∨

C
is isomorphic to h∨

C
. This

yields a Lie algebra isomorphism from h∨
C

to f
1
. The dual map induces

an isomorphism of the exterior differential algebra generated by the



WEAK MIRROR SYMMETRY 19

dual vector spaces and the corresponding pair of Chevalley-Eilenberg

differentials. This isomorphism should be the map given in (4.18). To

see that ω plays a proper role, we need more technical details.

As φ∗ : (f1)∗ → (h∨
C
)∗, the conjugated map is φ̄∗ : (f̄1)∗ → (h∨

C
)∗. In

the next calculation we implicitly identify the isomorphic Lie algebras

(f1)∗ with f̄1 and h∨
C with its conjugate h∨

C. Hence φ̄∗ is identified with

the map φ̄∗ : f1 → (h∨
C
)∗. Then φ̄∗φ is a map from h∨

C to (h∨
C
)∗. Accord-

ing to [15, Proposition 11], the map φ ◦ ω−1
J yields an isomorphism of

differential graded algebra as in (4.18) if, up to a constant, φ̄∗φ is equal

to the contract of ωJ . Therefore, we have the following computation.

(φ̄∗φ)(x + u∗)(y + v∗)

= (φ̄∗)((1 − iJ)x + (1 − iJ)u∗)(y + v∗)

= φ∗((1 + iJ)x + (1 + iJ)u∗)(y + v∗)

= φ∗((1 + iJ)x + (1 + iJ)u∗)(y + v∗)

= ((1 + iJ)x + (1 + iJ)u∗)(φ(y + v∗))

= ((1 + iJ)x + (1 + iJ)u∗)((1 − iJ)y + (1 − iJ)v∗))

= ((1 − iJ)x + (1 − iJ)u∗)((1 + iJ)y + (1 + iJ)v∗))

= 2i(u∗(Jy) − v∗(Jx)) = 2iωJ(x + u∗, y + v∗).

This shows that the isomorphism φ defines a DGA structure on the de

Rham complex of h∨
C isomorphic to the one defined by ωJ , since the

brackets differ only by multiplication by a constant. In particular, we

have

Theorem 4.1. DGA(h, J) and DGA(h∨, ωJ) are isomorphic.

A similar construction and calculation shows that for a Lagrangian

symplectic form ω on h = g ⋉ρ V the associated differential Gersten-

haber algebras DGA(h, ω) and DGA(h∨, Jω) are isomorphic.

4.1. Examples.

4.1.1. Kählerian structure on Rn ⋉Rn. Choose g = Rn with trivial Lie

bracket. Then a representation of g on V = R
n is given by a linear
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map ρ : Rn → gl(n, R). Pick a basis e1, . . . , en of g = Rn. Represent g

on V = Rn with basis v1, . . . , vn by declaring ρ(ei) to be the diagonal

matrix with a ρi in the i-th place of the diagonal and zero else. Then

h = g ⋉ρ V is the Lie algebra given by the structure equations

dvi = −ρie
i ∧ vi

where ei and vi are the dual elements. By relabeling the vi we may

suppose ρ1, . . . , ρp to be the non-zero structure constants for a certain

p ≤ n. Then

ωa =

n
∑

i=1

aie
i ∧ vi

is symplectic for any n-tuple a = (a1, . . . , an) ∈ Rn with ai 6= 0. More-

over, the complex structure J defined by

J(ei) = vi and J(vi) = −ei

is integrable, since NJ(ei, ej) = Jρ(ei)vj − Jρ(ej)vi = 0.

It is apparent that ωa is of type (1, 1) with respect to J . In fact,

ω(ei, Jei) = ω(ei, vi) = ai = ω(vi, Jvi),

so h is Kähler precisely when all ai are positive (or all negative).

To identify the “mirror image” h∨ of Rn ⋉ Rn, we first calculate

its Lie bracket [−,−]∨. Since both the base algebra and the ideal are

abelian, the only non-trivial brackets are contributed by ei ∈ Rn and

vj ∈ (Rn)∗. As

([ei, v
j]∨)(vk) = (ρ∗(ei)v

j)(vk) = −vj([ei, vk]) = (dvj)(ei, vk)

= ρj(e
j ∧ vj)(ei, vk) = ρjδ

j
i δ

j
k.

Therefore,

[ei, v
j]∨ = 0 when i 6= j, and [ei, v

i]∨ = ρiv
i for each i.

In particular, when h = Rn ⋉ Rn is given by the trivial representation,

which has ρi = 0 for all i, then its corresponding dual direct product

h∨ is again the trivial algebra.
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In all cases, the symplectic form and complex structure are

ωJ(ei, v
j) = −vj(vi), Jω(ei + vj) = −ω−1(vj) + ω(ei) = −

1

aj
ej + aiv

i.

4.1.2. An example with solvable base. Take g to be the solvable Lie

algebra with brackets

[e1, e3] = −e5, [e1, e5] = e3, [e3, e5] = 0.

Using {e2, e4, e6} as an ordered basis of a vector space V , we represent

elements in End(V ) by matrices. We choose an inner product on V by

declaring this basis orthonormal. Then γ : g → End(V ) defined by

γ(e1) =
(

0 0 0
0 0 1
0 −1 0

)

, γ(e3) = 0 = γ(e5),

is a skew-adjoint representation of g on V with respect to the standard

metric. If we consider V as the underlying vector space of g, it also

defines a torsion-free left-invariant connection on G. Now, the non-zero

brackets on h = g ⋉γ V is

[e1, e3] = −e5, [e1, e4] = −e6, [e1, e5] = e3, [e1, e6] = e4.

The reader may now verify that the two-form ω = e1∧e2+e3∧e4+e5∧e6

is symplectic and the complex structure Je2j−1 = e2j is integrable. It is

apparent that ω is a positive-definite type-(1,1) symplectic form with

respect to J . In other words, (ω, J) is a Kähler structure.

To construct h∨ explicitly, we take the basis 〈e1, e3, e5〉 ⊕ 〈e2, e4, e6〉

and identify the structure equations.

[e1, e3] = −e5, [e1, e
6] = −e4, [e1, e5] = e3, [e1, e

4] = e6.

To construction the corresponding symplectic structure ωJ and Jω, we

apply (3.15) and (3.16) to find that

ωJ = e1 ∧ e2 + e3 ∧ e4 + e5 ∧ e6,

Jω(e1) = e2, Jω(e3) = e4, Jω(e5) = e6.

We note that both h and h∨ clearly also may be represented as semi-

direct products of R with R5 where R5 is represented on R5 as a line of

transformations skew-symmetric with respect to the standard metric
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g. This precisely follows the prescriptions of [30] to make g a flat

left-invariant metric on H .

5. Nilpotent algebras of dimension at most six.

In this section, we tackle two problems when the algebra h is a nilpo-

tent algebra whose real dimension is at most six.

Problem 1. Let h be a nilpotent algebra. Suppose that it is a semi-

direct product h = g ⋉ V and totally real with respect to a complex

structure J . Identify the corresponding algebra h∨ = g ⋉ V ∗ and the

associated symplectic structure ωJ .

In view of Lemma 3.8, the above problem is equivalent to finding the

associated complex structure on the dual semi-direct product when one

is given a semi-direct product which is also Lagrangian with respect to

a symplectic structure.

The next problem raises a more restrictive issue.

Problem 2. Let h be a nilpotent algebra. Suppose that it is a semi-

direct product h = g ⋉ V and it is special Lagrangian with respect to

a pseudo-Kähler structure (J, ω). Identify the corresponding algebra

h∨ = g ⋉ V ∗ and the associated pseudo-Kähler structure (J∨, ω∨).

In view of the example in Section 4.1.1, when the algebra h is abelian,

the dual semi-direct product h∨ is again abelian. The correspondence

from (J, ω) to (Jω, ωJ) is also given. Therefore, we shall exclude this

trivial case in subsequent computation although we may include it for

the completeness of a statement in a theorem. The first even dimension

in which a non-abelian nilpotent algebra occurs is four.

5.1. Four-dimensional case. There are two four-dimensional non-

trivial nilpotent algebras [22]. Only one of them is a semi-direct prod-

uct, namely the direct sum of a trivial algebra with a three-dimensional

Heisenberg algebra. It happens to be the only one admitting integrable

invariant complex structures [33, Proposition 2.3]. Up to equivalence,
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there exists a basis {e1, e2, e3, e4} on the algebra h such that the struc-

ture equation is simply [e1, e2] = −e3. The corresponding complex

structure is

(5.19) J(e1) = e2, J(e3) = e4, J(e2) = −e1, J(e4) = −e3.

It is integrable. A symplectic form is

(5.20) ω = e1 ∧ e4 + e3 ∧ e2.

Consider the subspaces

(5.21) g := 〈e2, e4〉, V := 〈e1, e3〉.

They determines a semi-direct product h = g⋉AdV . It is apparent that

this semi-direct product is special Lagrangian the pair (ω, J) above.

One may now work through our theory to demonstrate that the mirror

image of (h, J, ω) on (h∨, Jω, ωJ) is isomorphic to (h, J, ω) itself.

5.2. Algebraic Aspects. In the next few paragraphs, we identify the

six-dimensional nilpotent algebras which is a semi-direct product of a

three-dimensional Lie subalgebra h and an abelian ideal V by identify-

ing equivalent classes of representation of h on V . Once it is done, the

construction of the semi-direct product with the dual representation

follows naturally. We postpone geometric considerations to the next

section.

Since the adjoint action of the nilpotent Lie algebra g on the abelian

ideal V is a nilpotent representation, by Engel Theorem there exists a

basis {e2, e4, e6} of V such that the matrix of any adx, x ∈ g, is strictly

lower triangular.

In our calculation below, we often express the structure equation

on h = g ⋉ad V in terms of the C-E differential on the dual basis

{e1, . . . , e6}. In particular we collect (de1, . . . , de6) in an array. We shall

also adopt the shorthand notation that when de1 = ei∧ej+eα∧eβ , then

the first entry in this array is ij + αβ [33]. To name six-dimensional

algebras, we use the convention developed in [18].
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5.2.1. Assume that g is abelian. There exists a basis {e1, e3, e5} of g

such that with respect to the ordered basis {e2, e4, e6} for V , the adjoint

representation of g on V is given as below

(5.22) ρ(e1) = −
(

0 0 0
a 0 0
c b 0

)

, ρ(e3) = −
(

0 0 0
0 0 0
d e 0

)

, ρ(e5) = −
(

0 0 0
0 0 0
f 0 0

)

.

Up to equivalence, we have the following

(5.23) h3 : ρ(e1) = −
(

0 0 0
0 0 0
0 1 0

)

, ρ(e3) = −
(

0 0 0
0 0 0
1 0 0

)

, ρ(e5) = 0.

(5.24) h8 : ρ(e1) = 0, ρ(e3) = −
(

0 0 0
0 0 0
1 0 0

)

, ρ(e5) = 0.

(5.25) h6 : ρ(e1) = −
(

0 0 0
1 0 0
0 0 0

)

, ρ(e3) = −
(

0 0 0
0 0 0
1 0 0

)

, ρ(e5) = 0.

(5.26) h17 : ρ(e1) = −
(

0 0 0
1 0 0
0 1 0

)

, ρ(e3) = 0, ρ(e5) = 0.

(5.27) h9 : ρ(e1) = −
(

0 0 0
1 0 0
0 1 0

)

, ρ(e3) = −
(

0 0 0
0 0 0
1 0 0

)

, ρ(e5) = 0.

5.2.2. Assume that g is non-abelian. In this case, g is a three-dimensional

Heisenberg algebra. Thus there exists a basis {e1, e3, e5} of g such that

[e1 • e3] = −e5, and a basis {e2, e4, e6} of V such that the adjoint

representation of g on V is as follows.

(5.28) ρ(e1) = −
(

0 0 0
a 0 0
c b 0

)

, ρ(e3) = −
(

0 0 0
d 0 0
f e 0

)

, ρ(e5) = −
(

0 0 0
0 0 0

bd−ae 0 0

)

.

If d 6= 0, by choosing {ae3−de1, e3}, we have a new set of {e1, e3, e5}

such that d = 0. If a 6= 0, we may consider the new basis {e1, e3 −
d
a
e1, e5} for g and {e2, ae4 + ce6, e6} for V and assume a = 1, d = 0 and

c = 0. Then

h = (0, 0, 0, 12, 13, b14− f23 + e34 + e25).

If e = 0, it is further reduced to

h = (0, 0, 0, a12, 13, b14− f23).

The following becomes easy to verify.

(5.29) h6 : ρ(e1) = −
(

0 0 0
1 0 0
0 0 0

)

, ρ(e3) = 0, ρ(e5) = 0.
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(5.30) h7 : ρ(e1) = −
(

0 0 0
1 0 0
0 0 0

)

, ρ(e3) = −
(

0 0 0
0 0 0
1 0 0

)

, ρ(e5) = 0.

(5.31) h10 : ρ(e1) = −
(

0 0 0
1 0 0
0 1 0

)

, ρ(e3) = 0, ρ(e5) = 0.

(5.32) h11 : ρ(e1) = −
(

0 0 0
1 0 0
0 1 0

)

ρ(e3) = −
(

0 0 0
0 0 0
1 0 0

)

ρ(e5) = 0.

If e 6= 0, consider the new basis

{ℓ1, . . . , ℓ6} = {e2e1 − bee3 − bfe5, e2, ee3 + fe5, e
2e4, e

3e5, e
4e6}.

Then the structure equations become (0, 0, 0, 12, 13, 34 + 25). Taking

the new dual basis {e2 − e3, e1, e2 + e3,−e4 + e5, e4 + e5, 2e6}, we find

this algebra isomorphic to h19+. Note that the algebras h19+ and h19−

are isomorphic over C because one has the map

(e1, e2, e3, e4, e5, e6) 7→ (e1, e2, ie3, e4, ie5, e6).

For future reference, we note that the representation of g on V is given

as below.

(5.33)

h19 : ρ(e1) = −
(

0 0 0
1 0 0
0 b 0

)

ρ(e3) = −
(

0 0 0
0 0 0
f e 0

)

ρ(e5) = −
(

0 0 0
0 0 0
−e 0 0

)

.

The last cases are due to a = d = 0. If it is not already equivalent to

a previous case, they are equivalent to one of the following.

(5.34) h4 : ρ(e1) = −
(

0 0 0
0 0 0
0 1 0

)

, ρ(e3) = −
(

0 0 0
0 0 0
1 0 0

)

, ρ(e5) = 0.

(5.35) h8 : ρ(e1) = 0, ρ(e3) = 0, ρ(e5) = 0.

5.2.3. The dual semi-direct products. Next, we go on to identify the

Lie algebra structure for g ⋉ V ∗ for each representation above. Recall

that ad = ρ has matrix presentations as given in (5.22) and (5.28)

depending on whether the algebra g is abelian or not. The ordered

base for V is given by {e2, e4, e6}. To express the dual representation

ρ∗, we shall do it in terms of the ordered base {e6, e4, e2}. It amounts

to taking the negative of the “transpose with respect to the opposite
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diagonal”. Explicitly, the representation corresponding to (5.22) and

(5.28) are respectively,

(5.36)

ρ∗(e1) = −
(

0 0 0
b 0 0
c a 0

)

, ρ∗(e3) = −
(

0 0 0
e 0 0
d 0 0

)

, ρ∗(e5) = −
(

0 0 0
0 0 0
f 0 0

)

.

(5.37)

ρ∗(e1) = −
(

0 0 0
b 0 0
c a 0

)

, ρ∗(e3) = −
(

0 0 0
e 0 0
f d 0

)

, ρ∗(e5) = −
(

0 0 0
0 0 0

bd−ae 0 0

)

.

It is now a straight-forward exercise to find the next proposition. For

instance, to find h∨ when h is h3 as the semi-direct product of an

abelian algebra with an abelian ideal, we consider the representation

(5.23). By (5.36), the corresponding dual representation is

ρ∗(e1) = −
(

0 0 0
1 0 0
0 0 0

)

, ρ∗(e3) = −
(

0 0 0
0 0 0
1 0 0

)

, ρ∗(e5) = 0.

By (5.25) we find that h∨
3 is isomorphic to h6 as a semi-direct product

of an abelian algebra with an abelian ideal. However, if we consider

h6 as the semi-direct product of a Heisenberg algebra and an abelian

ideal, we consider the dual representation of (5.29). Using (5.37) and

re-ordering basis on V ∗, we find that the algebra h∨
6 is isomorphic to

h6. This example reminds us that semi-direct product structure on a

given Lie algebra is not unique, and hence its dual semi-direct product

structure would change accordingly. Otherwise, elementary considera-

tion such as above provides all necessary information to complete the

next proposition.

Proposition 5.1. Suppose that h is a six-dimensional nilpotent Lie

algebra given as a semi-direct product g ⋉ρ V . Then it is one of the
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algebras given in the left-most column of Table (5.38). Its dual semi-

direct product h∨ := g ⋉ρ∗ V ∗ is given in the same table as checked.

(5.38)

h\ h∨ h3 h6 h8 h9 h17 h4 h6 h7 h8 h10 h11 h19

h3 X

h6 X

h8 X

h9 X

h17 X

h4 X

h6 X

h7 X

h8 X

h10 X

h11 X

h19 X

In Table (5.38), the upper left corner is due to the correspondence

between semi-direct products of a three-dimensional abelian algebra

with an abelian ideal. The lower right corner is due to semi-direct

products of a three-dimensional Heisenberg algebra with an abelian

ideal.

5.3. Geometric Aspects. Recall that if h = g ⋉ V admits a totally

real integrable complex structure, then h∨ is Lagrangian with respect

to a symplectic structure ωJ . As h∨
6 = h3 when the base is abelian

and h3 does not admit invariant symplectic structure, h6 as the semi-

direct product of an abelian ideal with an abelian subalgebra would not

admit totally real integrable complex structure. For the same reason,

h19 does not admit compatible complex structure. On the other hand,

h17 simply would not admit any complex structure [33].

When h8 is the semi-direct product of the Heisenberg algebra with

an abelian ideal as given in (5.35), the integrability of a compatible

integrable complex structure as given in (3.8) implies that the algebra
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g is abelian. This contradiction implies that when h8 admits a semi-

direct product structure with a compatible complex structure, then it is

the semi-direct product of an abelian subalgebra and an abelian ideal.

Therefore, the potential identification from (h, J) to (h∨, ω) is re-

duced to the next table.

(5.39)

(h, J) \ (h∨, ω) h6 h8 h9 h4 h6 h7 h10 h11

h3 X

h8 X

h9 X

h4 X

h6 X

h7 X

h10 X

h11 X

5.3.1. Totally real semi-direct products. Among all the algebras identi-

fied in Table (5.39) above, the representation of g on V has the form

(5.40) ρ(e1) = −
(

0 0 0
A 0 0
0 B 0

)

, ρ(e3) = −
(

0 0 0
0 0 0
C 0 0

)

, ρ(e5) = 0.

where A, B, C are respectively zero or one. In addition, [e1, e3] = −De5

where D is equal to zero or one, depending on whether g is abelian or

not. In particular, the potentially non-trivial structure equations are

[e1, e2] = −Ae4, [e1, e4] = −Be6, [e3, e2] = −Ce6, [e1, e3] = −De5.

If J is a complex structure such that the semi-direct product is totally

real, then there is a 3 × 3-matrix (aij) such that Je2i−1 =
∑

j aije2j .

In addition, it is integrable if and only if NJ(e1, e3) = NJ(e1, e5) =

Nj(e3, e5) = 0. Given these constraints, one could apply elementary

method to identify the set of complex structures for each set of param-

eters (A, B, C, D) corresponding to an algebra in the left-most column

of Table (5.39). We leave it as exercise. Instead we focus on special

phenomena.
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The first special case is when the algebra is h3 as it does not admit

invariant symplectic structure. However, due to a classification of com-

plex structure [33, Proposition 3.4], up to equivalence, there is a unique

complex structure on h3. With respect to our notations here, it is given

by A = 0, B = 1, C = 1, D = 0. Making use of the dual representation

ordered as in (5.36), and with respect to the bases {e1, e3, e5} on g and

{e6, e4, e2} on V ∗, the structure equation on h∨
3 = h6 is

[e1, e
6] = −e4, [e3, e

6] = −e2.

Then the 2-form on ωJ = e1 ∧ e2 + e3 ∧ e4 + e5 ∧ e6 is a symplectic form

on h6.

The second special case is concerned with h6. This algebra as a semi-

direct product is given by A = D = 1 and B = C = 0. In dual form,

the structure equations in the present coordinates are

de4 = e12 and de5 = e13.

It follows that the constraints for J to be integrable are

(5.41) a31 = 0, a32 = a21, a33 = 0.

Therefore,

(5.42) Je5 = a32e4, or a32Je4 = −e5.

In particular, a21 = a32 6= 0.

Let ω be a symplectic structure on h6 such that g and V are both

Lagrangian. If bij := ω(ei, ej), then by using that ω is closed we obtain

that b54 = b56 = 0 (recall that e5 ∈ [h6, h6] and e4, e6 belong to the

center) and b52 = b43. Let us now assume that ω and J are compatible.

Then ω(Je4, Je3) = ω(e4, e3). It is equivalent to

ω(a32Je3, Je3) = a32ω(e4, e3) = a32b43.

By (5.42) above,

a32b43 = −ω(e5, Je3)

= −ω(e5, a21e2 + a22e4 + a23e6) = −a21b52 − a22b54 − a23b56

= −a21b52 = −a21b43 = −a32b43.



30 R. CLEYTON, J. LAURET, AND Y. S. POON

Since a32 6= 0, it is possible only when b43 = 0. As b52 = b43 = 0

and b54 = b56 = 0, ω would have been degenerate. It should that h6

does not admit any special Lagrangian structure with respect to any

semi-direct product decomposition.

5.3.2. Family of special Lagrangian algebras. In this paragraph, we es-

tablish the existence of special Lagrangian structures on the algebras

h4, h7, h9, h10 and h11. As it turns out, they could be considered as a

family of special Lagrangian structures with “jumping” algebraic Lie

structures, and hence jumping complex and symplectic structures.

We fix a basis {e1, e2, e3, e4, e5, e6} of a real vector space h and con-

sider also fixed structures J and ω defined by

(5.43) Je2j−1 = e2j , Je2j = −e2j−1, ω = e16 − e25 + e34.

The 2-form ω is type (1,1) with respect to J , and the non-degenerate

symmetric bilinear form g(−,−) := ω(−, J−) has signature (4, 2). If

g = 〈e1, e3, e5〉 and V = 〈e2, e4, e6〉 then g and V are totally real with

respect to J and maximally isotropic with respect to ω.

Let (a, b, c, d) be real numbers. For each member of the family of Lie

brackets

(0, 0, 0, a12, b13, c14 + d23),

the corresponding Lie algebra h is the semi-direct product h = g ⋉ V ,

and the ideal V is abelian. The constraint on ha,b so that ω is closed is

equivalent to a + b + d = 0. To find the constraints on ha,b so that J is

integral, we choose a basis for the (1, 0)-forms with ωj = e2j−1 + ie2j ,

1 ≤ j ≤ 3. As dω1 = 0 and dω2 is type (1, 1), the sole constraint is due

to ω1 ∧ ω2 ∧ dω3 = 0. Given the structure equations, the integrability

of J is equivalent to b− c−d = 0. It then follows that for any a, b ∈ R,

(5.44)
(

ha,b = (0, 0, 0, a12, b13, (a + 2b)14 − (a + b)23), J, ω
)

,

is a family of special Lagrangian pseudo-Kähler structures on nilpotent

Lie algebras. Since a non-zero scalar multiple of a Lie bracket gives rise

to just a homothetic change in the metric, we will restrict ourselves to
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the curve {ha,b : a2 + b2 = 1, b ≥ 0}. The following isomorphisms can

be checked by using the new basis on the right:

h±1,0 ≃ h9, {e2, e1, e5, e3,−e4,−e6};

h0,1 ≃ h4, {e1, e3, e2,
1
2
e4, e5, e6};

h− 1√
2
, 1√

2

≃ h10, {e1, e2, e3,−
1√
2
e4,

1√
2
e5,−

1√
2
e6};

h− 2√
5
, 1√

5

≃ h7, {e1, e2, e3,−
2√
5
e4,

1√
5
e5,

1√
5
e6};

ha,b ≃ h11 if a, b, a + 2b, a + b 6= 0,

{re1,
1
r
e2,

1
r
e3, ae4, be5, ra(a + 2b)e6},

where r = −
(

a+b
a(a+2b)

)1/3

.

Isomorphism classes of such structures translate themselves in this

context as the orbits of the natural action of the group

U(2, 1) = {ϕ ∈ GL6(R) : ϕJϕ−1 = J, ω(ϕ·, ϕ·) = ω},

on the space of Lie brackets [28]. Let ha,b, ha′,b′ be two points in the

curve isomorphic as Lie algebras to h11, and assume there exists ϕ ∈

U(2, 1) such that

ϕ.[·, ·]a,b := ϕ[ϕ−1·, ϕ−1·]a,b = [·, ·]a′,b′.

By using that ϕ must leave invariant the subspaces (which coincide for

both Lie algebras)

[h, h] = 〈e4, e5, e6〉R, [h, [h, h]] = 〈e6〉R,

z = 〈e5, e6〉R (center), {x ∈ h : [x, h] ⊂ z} = 〈e3, e4〉R

as well as their orthogonal complements relative to both ω and the

metric g = ω(·, J ·), one can easily show that the matrix of ϕ with

respect to the basis {e1, e2, ..., e6} is necessarily diagonal, and so it has
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the form

ϕ =





s
s
±1

±1
1/s

1/s



 , s 6= 0.

It follows that a′ = ± 1
s2 a, b′ = ± 1

s2 b and hence (a′, b′) = ±(a, b).

We summarize the results obtained above in the following proposi-

tion.

Proposition 5.2. With complex structure J and symplectic structure

ω given in (5.43), with t ∈ [0, π] the function
(

(0, 0, 0, (cos t)12, (sin t)13, (cos t + 2 sin t)14 − (cos t + sin t)23), J, ω
)

determines a closed curve in the moduli space of isomorphism classes

of special Lagrangian pseudo-Kähler structures on the space of six-

dimensional nilpotent Lie algebras. It contains exactly one structure

on each one of h4 (t = π/2), h7 (t = arctan (−1
2
)), h9 (t = 0, π) h10

(t = 3π/4), and the remaining is a continuous family on h11.

Theorem 5.1. Suppose that a six-dimensional nilpotent algebra admits

a special Lagrangian semi-direct product structure, then the algebra is

isomorphic to one of the following: h1, h4, h7, h8, h9, h10, h11. Their weak

mirror images are respectively given below.

(h, J, ω) h1 h4 h7 h8 h9 h10 h11

(h∨, ωJ , Jω) h1 h7 h4 h8 h9 h10 h11

In addition,

• All special Lagrangian semi-direct product structure (J, ω) on

h1, h8, h9 and h10 are self-mirror. It means that there is an

isomorphism hℓ
∼= h∨

ℓ and there are quasi-isomorphisms.

DGA(h∨
ℓ , ωJ) ≈ DGA(hℓ, ω) ≈ DGA(h∨

ℓ , Jω) ≈ DGA(hℓ, J).

• The algebras h7 and h4 form a mirror pair of special Lagrangian

semi-direct products.

• The mirror of a special Lagrangian semi-direct structure on h11

is again a special Lagrangian semi-direct structure on h11, but

the two pseudo-Kähler structures are not equivalent.



WEAK MIRROR SYMMETRY 33

Proof: The statements on h1 are trivial.

As noted in Section 5.3.1, the only algebras admitting special La-

grangian structures are given in Table (5.39). h3 is eliminated because

it does not admit invariant symplectic structure.

The construction in this section and the paragraph concerned with

a construction on h6 at the end of Section 5.3.1 demonstrate the “ex-

istence” of special Lagrangian structures on the named algebras.

The isomorphisms between DGA(h, J) and DGA(h∨, ωJ) are given

by Theorem 4.1 and the identification of algebraic mirrors h∨ as given

in Table (5.39). The validity of the claim on h11 is due to an analysis

in [15, Section 5.5].
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