A Note on Rigidity of 3-Sasakian Manifolds
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Abstract Making use of the relations among 3-Sasakian manifolds, hypercomplex mani-
folds and quaternionic Kahler orbifolds, we prove that complete 3-Sasakian manifolds are
rigid.
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Introduction

Recent investigations of 3-Sasakian structures are tied to the investigations of quaternionic
Kéhler manifolds [5] [6]. Boyer, Galicki and Mann find that over any quaternionic Kahler
manifold, there is a principal fiber bundle with group SO(3) such that the total space is a
3-Sasakian manifold. More important, they find that every complete 3-Sasakian manifold
S fibers over a quaternionic Kahler orbifold M [5]. Using a reduction process with roots in
symplectic reduction and hyper-K&hler reduction [10], Boyer et al. produce a large discrete
family of 3-Sasakian structures [6]. The need of studying deformations of 3-Sasakian struc-
tures starts to emerge after their construction. It is further discovered that the product space
R™ xS is a hyper-Kéhler manifold [6]. It is isomorphic to the associated bundle of M as de-
fined by Swann [19]. When S is compact, the discrete quotient X = S1 xS = (RT/Z) xS is
a compact hyper-Hermitian manifold. The relations among the 3-Sasakian manifold &, the
hyper-Hermitian manifold X and the quaternionic Kdhler orbifold M allow us to apply the
theory of deformations of complex manifolds [16] to study the deformations of 3-Sasakian
structures. In this note, we shall prove the following theorem.

Theorem. Complete 3-Sasakian manifolds are rigid.

LeBrun shows that compact quaternionic Kahler manifolds with positive scalar curva-
ture are rigid [13]. Due to the correspondence between compact 3-Sasakian manifolds and

*Address: Institut for Matematik og Datalogi, Odense Universitet, Campusvej 55, Odense M, DK-5230,
Denmark. E-mail: henrik@imada.ou.dk. Partially supported by N.A.T.0. CRG-950040

tAddress: Department of Mathematics, University of California at Riverside, Riverside, CA 92521,
U.S.A.. E-mail: ypoon@math.ucr.edu. Partially supported by N.S.F. DMS-9504908



compact quaternionic Kahler orbifolds, the above theorem, in the contents of quaternionic
Kéhler geometry, is a generalization of LeBrun’s result.

Rigidity of Complete 3-Sasakian Manifolds

A 4n+3-dimensional Riemannian manifold (S, ¢g) has a Sasakian structure if there is a unit
Killing vector field V' such that for any pair of vector fields A and B on §, (V4VV)B =
g(B,V)A — g(A,B)V [20]. The manifold (S,g) has a 3-Sasakian structure if there are
three unit Killing vector fields {V}, V5, V3} such that each of these vector fields determines a
Sasakian structure, and the algebra generated by these vector fields is isomorphic to su(2).
A 3-Sasakian manifold is complete if the vector fields {Vi, V3, V3} are complete [6]. In such
case the group ¢ = SO(3) or SU(2) acts on § as a group of isometries. We sacrifice the
requirement that the group G acts on § effectively to the simplicity of presentation. We
assume that G is the group SU(2).

By [6, Theorem A], a complete 3-Sasakian manifold § is a compact Einstein manifold
with positive scalar curvature. The space of leaves M of the G-action on § is a quaternionic
Kéhler orbifold of dimension 4n with positive scalar curvature. By [6, Theorem B], the cone
metric dr? 4 r?¢ on the product manifold &/ = Rt x & is hyper-Kihler. Furthermore, the
space U is the associated bundle of the orbifold M in the sense of Swann [19]. When (X)
is the multiplicative group generated by a real number A between 0 and 1, let X be the
quotient space S x § = (RT/()\)) x §. With the induced hypercomplex structure and the
product metric %2 + ¢, X is a hyper-Hermitian manifold.

Let Z and W be the twistor spaces of M and X respectively. Let F be the space
St x G =H*/()\). For any finite subgroup I' of G, define F = S x (G/T"). As G is a group
of quaternionic transformations on #/, and R is a group of hypercomplex transformations
[6] [19], ST x @ is lifted to a group of holomorphic transformations on the twistor space of
X [16]. As the orbits of this group on X is invariant of the hypercomplex structure [6], the
induced foliations on the twistor spaces are holomorphic. Therefore, we have

Lemma 1 There exists a holomorphic foliation F on the twistor space W of the hypercom-
plex manifold X such that its leaves are I for some I'.

Lemma 2 The space of leaves of the foliation F on W 1is isomorphic, as a holomorphic
orbifold, to the twistor space Z of the quaternionic Kdhler orbifold M.

Proof: Since the leaves of the foliation are compact, W/F is a complex orbifold [15]. The
singularities of this orbifold are images of leaves with non-trivial leave holonomy [15]. Let
I' be the isotropy subgroup of the action U(1) X G at a point w on a leave with non-trivial
holonomy. Let 7 be the twistor projection from W onto X = S x §. When = (w) = (¢, s),
then for any element ¢ in G, 7(¢(w)) = (¢, ¢(s)). Therefore, if I' is an isotropic subgroup
of the G-action on W at the point w, then I' is contained in the isotropic subgroup of the
G-action on § at the point s. Conversely, when I is the isotropic subgroup of the G-action
at a point s on 8, it is the isotropic subgroup of the G-action at (¢, s) on the space X. Since



X is hypercomplex and the G-action on X preserves the underlying quaternionic structure,
the range of the isotropy representation of I' is contained in GL(n+1,H) Sp(1). The twistor
space W is an associated fiber bundle on X defined by the standard representation [18]

GL(n+ 1,H) Sp(1) = SO(3),

and the natural action of SO(3) on the 2-sphere. Composing these representations with the
isotropy representation, we obtain the induced action of I' on the twistor line over (¢, s). As
I' is Abelian [4], the induced action of I' on the twistor line over (¢, s) has a fixed point w,
and I' is contained in the isotropy subgroup of the G-action on the twistor space W. Hence,
there is a one-to-one correspondence between the singularities of Z and singular orbits of
the U(1) x G-action on W. By taking quotient with respect to the U(1) x G-action, we have
a homeomorphism between the topological spaces W/F and Z. By [16, Lemma 4.1], this
homeomorphism is an analytic isomorphism outside the singular sets of these two complex
orbifolds. By analytic continuation, the homeomorphism is an analytic isomorphism over
the entire spaces. O

When (Sy, g¢, G¢) is a deformation of the 3-Sasakian structure (S, g,G), X; = St x 8 is
a deformation of the compact hyper-Hermitian space X = S! x &, with the product metric
gx, = T8 — (dlnr)? 4 g,

To study deformations of the hypercomplex structure on X, we consider deformations of
the associated twistor space W. Due to the twistor correspondence [18] [16], the deformation
theory of the underlying quaternionic structure on X is described by the cohomology groups
of Oy . Since X is hypercomplex, there is a holomorphic projection p from W to CP?! such
that each fiber is the underlying differentiable structure on X with a choice of complex
structure [10] [16]. On the other hand, the fibers of the natural projection ® from W to
the leave space Z of the action of U(1) x GG is an elliptic Hopf surface. The intersection
of the fibers of the maps p and @ is the orbit of the holomorphic action of the subgroup
U(1) xU(1) in U(1) x G. Therefore, the fiber of the product map ® x p is an elliptic curve.
The kernel of the differential of the product map is a trivial bundle. It defines the following
exact sequence on W:

0—Ow = Ow = "0z @ p"Ocp1 — 0. (1)

We use the induced long exact sequence of this sequence to calculate the cohomology of
the tangent sheaf Oy . To calculate cohomology groups, we want to apply spectral sequences
to compute the direct images sheaves via the maps p and ® as in [16, Section 5]. Since the
twistor space Z is an orbifold, we need the following technical observations so that we can
adopt the computations in [16].

Lemma 3 On a complex orbifold Z, let © be its tangent V-bundle, and Q be the sheaf of
Kahler differential. Then Ext”(Z;Q,0) = H"(Z,0) for alln > 0.

Proof: On a local uniformization neighborhood U/T" on 7 [2],
Hom (2, O)(U/T') = Hom (2, O)r(U) = O(U)r = O(U/I).



Therefore we have an isomorphism Hom (2, O) = ©. For any projective resolution of Q
= B (U)T) - By (UT) = - - = Ey(U/T) - QU/T) — 0,

the sheave Ext? (Z;Q, O) over (U/I) is the p-th cohomology of the induced resolution. When
the induced resolution is pulled back to a resolution on U, we have a complex of I'-invariant
spaces:

0 —= Hom(QU),O)r = -+ = Hom(E,(U),O)r — ---.

As U is non-singular and Q(U) is locally free, when U is small, Hom (£, (U), O)r = 0 for
all m > 1. Therefore, ExtP(Z;Q,0) = 0 for all p > 1, and Hom(Q, O) = Ext°(Z;Q, O).

There is a local-to-global spectral sequence such that EY? = H?(Z, £xt7(Q; 0)), and
EL = Fatrt1(Z;Q,0) [8] [9]. The conclusion of the previous paragraph implies that
this spectral sequence degenerates at Ey-level. It yields the isomorphism Fzt"(7;Q,0) =
H™"(Z,0z) for all n > 0. O

Lemma 4 When @ : W — Z is the quotient map defined by the leaves of the foliation F,
and L is the sheaf of germs of sections of a holomorphic V-bundle on Z, then RjQ*(q)*ﬁ) =
(Rj@*(’)w) ® L.

Proof: The proof of this lemma is similar to the above one. Let U/I" be a local uniformization
chart on Z so that U is a slice of the foliation. Let ¢ be the quotient map U — U/I', and
V¥ a map from &1 (U/T) to U so that ® = go W. Then

R (®*L)(U/T) = H (~HU/T),®*L) = H (O~ (U), V*¢*L)r.
When U is so small that (¢*£)(U) is a free, then
HI (W™ U), W " L)r = (H (01 (U), Ow) @ (¢"L) (U))r = (R'@. 0w @ L)(U/T). O

When the twistor space Z is smooth, the map @ is a locally trivial fibration. Then the
computation of the direct image of the structure sheaf of W is easy. When the twistor space
is an orbifold, the computation is not hard.

Lemma 5 For j > 2, R®.Ow = 0. Moreover, R°®,Ow = Oy @ H(F,OF) = Oy;
RO = Oy © H(F,Op) = Oy,

Proof: We continue to use the notation of the last two lemmata. By Kunneth formula and
0-Poincare Lemma,

R, 0w = H (W~YU), Ow)r = (H(U, Op) @ H (F, Op))r. (2)

The first statement of this lemma follows from the vanishing of Hj(F7 Op) for j > 2. When j
is either 0 or 1, H (F, Op)r = H/(F, Op). It is because when one considers F as a homoge-
neous complex manifold SO(2) x SU(2), H’(F, ©OF) is identified to the adjoint representation



space (s50(2)®su(2))c when j = 0, 1. The left action of SO(2) generates a nowhere vanishing
holomorphic vector field. This vector field defines a bundle map from the structure sheaf
into the tangent sheaf. Through this map, H’(F, Op) is identified to the s0(2)c summand
in H(F,0p). It follows that the action of I' on H’ (F, OF) is trivial, because I"is a subgroup
of SU(2). By (2), R'®.0Ow = H°(U, Oy)r @ H?(F, OF). The claims in the lemma follow. O

Lemma 6 Let 7 be the twistor space of a complete 3-Sasakian manifold S. Then (a)
H?(Z,0) ={0} for allp > 1; and (b) H?(Z,0z) ={0} for allp > 2.

Proof: The twistor space Z has a Kahler-Einstein orbifold metric with positive scalar cur-
vature [4] [17]. If the twistor space is smooth, the two vanishing theorems in this lemma are
consequences of the classical Kodaira Vanishing Theorem and Akizuki-Nakano Vanishing
Theorem [1] [12]. To prove these two vanishing theorems, one begins with establishing the
Dolbeault’s harmonic theory on K&hler manifolds and the Serre duality. Using harmonic
representatives for elements in cohomology classes, one proves these vanishing theorems by
a Bochner type argument.

Noting that an orbifold is locally finitely covered by smooth manifolds. Baily defined
L?-norms on Riemannian orbifolds by an averaging process with respect to the local covers
of each orbifold point [2, page 866]. Thereafter, he established the harmonic theory. Using
the same averaging process, he proved the Dolbeault Theorem [3, page 405], and completed
the proof of the Kodaira Vanishing Theorem by a Bochner type argument [3, page 411].
Therefore, Part (a) follows directly from Baily’s works.

The Dolbeault Theorem for V-bundle on orbifolds remains valid. Using the L?-norm
defined by Baily, one can complete the proof of Part (b) by producing the Nakano Inequality
as presented in [12, page 69]. Then Kobayashi’s brief discussion after the Nakano Inequality
[12, page 69] is applied to verify Part (b). O

Using the projection formula given by Lemma 4, the computation in Lemma 5 and
the above vanishing theorems, we can apply various lemmata in [16, Section 5] even when
7 is an orbifold. The conclusion is that the induced long exact sequence of (1) splits on
each cohomology level. Furthermore, the cohomology of the pull-back bundles on W are
isomorphic to the cohomology of the pull-back bundles on product spaces. Therefore, the
virtual parameter space for the deformations of the complex structure on W is given as in

[16, (5.8)]:

H'(W,0w) = H(Z,0z) @ H'(F,0r) & H°(Z,07) © H'(F,OF)
&l (Z,07) @ HO(F,0F) & H" (W, p*Ocp). (3)
To take metric geometry into considerations, we recall that the orbifold twistor space Z

is a contact space. Let & be the kernel of the contact 1-form 4. It determines the following
exact sequence of V-bundles on the orbifold Z:

0= &= 0y 5 K1 o, (4)



where K is the canonical bundle on Z. When the twistor space Z is smooth, LeBrun
finds [14] that for all j, there is a splitting of cohomology groups H?(Z,0z) = H'(Z,€) &
HI(Z, K‘l/”"'l). With the aid of Lemma 4, 5 and 6, a spectral sequence argument shows
that

HY (W, &K~ = g7, K=Y/ @ HY(F,0p) & HY(Z, K=Y/ @ HY(F, OF). (5)

Moreover, the infinitesimal deformations of a contact structure on Z are described by Cech
l-cocyles with coefficients in the bundle K~/7+1 [13]. Therefore, if o is an infinitesimal
deformation of W arising from infinitesimal deformations of 3-Sasakian structures, then
d® () is contained in H'(W,®*K~1/7*+1). This computation remains valid when Z is an
orbifold. Hence, if an infinitesimal deformation « arises from infinitesimal deformations of
the 3-Sasakian structure on &, it is contained in a subspace of H1(W, Oy ). In particular,
the second and third summands in (3) are now replaced by H'(W, ®*K~1/"+1). By (5), we
find that « is contained in

HO(Z,07) @ H'(F, Op) & H*(Z, K=/"+) & H(F, Or)
GH(Z, K=Y @ HO(F,OF) & H'(W, p"Ocp: ). (6)

To complete the proof of the main theorem, we claim that no element in this space
is induced by any deformations of the 3-Sasakian structure on §. Let us analyze its four
summands, starting from the last one.

Any non-trivial deformation of the 3-Sasakian structure on S induces a non-trivial de-
formation of the hypercomplex structure on X. By a twistor correspondence, it induces
a non-trivial deformation of the map p. Due to Horikawa [11], deformation theory of the
map p is described in the cohomology groups of the kernel of the differential dp. There-
fore, the summand H'(W, p*©cp1) does not contribute to non-trivial deformations of the
hypercomplex structure on X.

Since the orbifold 7 is Kahler-Einstein with positive scalar curvature [4] [17], due to
Kodaira-Baily Vanishing Theorem [3] [4], H'(Z, K='/"*') vanishes. Therefore, the third
summand in (6) vanishes.

Recall that the group G of isometries on S acts on X = S! xS as a group of quaternionic
transformations, and the rotation group U(1) of the S!-factor is a group of hypercomplex
transformations [6]. By a twistor correspondence [16], the product U(1) x GG is a group of
holomorphic transformations on the twistor space W. As these observations are applied
to any complete 3-Sasakian manifold, the deformations of W induced from deformations
of the 3-Sasakian structure on § are U(1) x G-equivariant. By Cathelineau’s theory [7],
equivariant deformations are parameterized by invariant elements of the virtual parameter
space. We claim that the second summand in (6) does not contain invariant elements.
When a complex structure on X is chosen, it can be recognized as follows. Let L* be the
principal C*-bundle of KY("*+1) over Z. Then X is the discrete quotient of L* by the
integer subgroup of C* generated by the multiplication of a real number A in the open
interval (0,1). The group U(1) X G contains a subgroup U(1) x U(1) which is the quotient



of the principal group C* by (A). Therefore, the action of U(1) x U(1) on X is through
the fiberwise multiplication of C* on L*. Its induced action on K~1/"*1 is the fiberwise
inverse multiplication of C*. It follows that no section of the bundle K~1/7*! is invariant
of the group U(1) x U(1). We claim that the U(1) x G-action on the factor H'(F,OF)
in the second summand of (6) is trivial. This claim together with the above observation
on HO(Z, K="/} implies that the second summand does not contain invariant elements.
Recall that I is a homogeneous complex manifold with respect to the group U(1) x G.
The cohomology H'(F,OF) is identified to the adjoint representation of the complexified
Lie algebra (u(1) & g)c. The nowhere vanishing holomorphic vector field generated by
U(1) defines the cohomology H'(F,OF) as a subspace of H'(F,0F). As a subalgebra, it is
precisely u(1)c. Therefore, the action of U(1) x G on H(F, OF) is trivial.

To examine the first summand, note that when (Sy, g¢, G¢) is a deformation of (S, g, &),
U; = RT x S; is a deformation of /. When ) is a real number between 0 and 1, we construct
the quotient space X¢(\) = RY/(\) x S; with the product metric g \y = (dInr)? 4 g;. As
the length of the circle R*/(\) with respect to g(t,») is a non-trivial function of A, A is a
non-trivial parameter for the deformation of hyper-Hermitian structures of X. However,
the leave space of the U(1)-action on X;(A) for various A defines one 3-Sasakian structure
S;. Therefore, the length of the holomorphic vector field generated by the U(1) action is
a redundant parameter for the deformations of the 3-Sasakian structures on §. As this
parameter spans the first summand [16], the first summand does not parameterize non-
trivial deformations of the 3-Sasakian structure on §.

Since no element in the space given in (6) represents infinitesimal deformations of any
non-trivial deformations of 3-Sasakian structures, complete 3-Sasakian structures are rigid
as claimed.

Remark: The quotient of a 3-Sasakian manifold & by a circle subgroup in SU(2) is the
twistor space Z of the quaternionic Kahler orbifold M [4]. Based on LeBrun’s works, we
observed in the last few paragraphs that the contact structure on 7 is rigid. To prove the
main theorem given in the introduction, it suffices to prove that the quotient map from §
to Z is smoothly rigid. By considering the twistor space W of the hypercomplex manifold
S x S', we proved that the holomorphic map from W to Z is complex analytically and
equivariantly rigid. Therefore, our approach to verify the rigidity of compact 3-Sasakian
manifolds may not be the most effective one. However, our computation contains informa-
tion relevant to quaternionic geometry. The isomorphism (3) provides a virtual parameter
count for the deformations of quaternionic structures on the hypercomplex manifold S x S*.
The virtual parameter count for the deformations of hypercomplex structures, as explained
in [16], is given by

H°(Z,07) @ H'(F,OF) & H%(Z2,07) @ H'(F,Op) & H'(Z,07) @ H*(F,0F). (7)

Therefore, we have improved some results in [16] by including orbifolds in our considerations
here.
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