
A Note on Rigidity of 3-Sasakian ManifoldsHenrik Pedersen � Yat Sun Poon yFebruary 6, 1998Abstract Making use of the relations among 3-Sasakian manifolds, hypercomplex mani-folds and quaternionic K�ahler orbifolds, we prove that complete 3-Sasakian manifolds arerigid.Keywords: Sasakian, Hypercomplex, Deformations.Subject Classi�cation: Primary 53C25. Secondary 32G05, 53C55.IntroductionRecent investigations of 3-Sasakian structures are tied to the investigations of quaternionicK�ahler manifolds [5] [6]. Boyer, Galicki and Mann �nd that over any quaternionic K�ahlermanifold, there is a principal �ber bundle with group SO(3) such that the total space is a3-Sasakian manifold. More important, they �nd that every complete 3-Sasakian manifoldS �bers over a quaternionic K�ahler orbifold M [5]. Using a reduction process with roots insymplectic reduction and hyper-K�ahler reduction [10], Boyer et al. produce a large discretefamily of 3-Sasakian structures [6]. The need of studying deformations of 3-Sasakian struc-tures starts to emerge after their construction. It is further discovered that the product spaceR+�S is a hyper-K�ahler manifold [6]. It is isomorphic to the associated bundle ofM as de-�ned by Swann [19]. When S is compact, the discrete quotient X = S1�S = (R+=Z)�S isa compact hyper-Hermitian manifold. The relations among the 3-Sasakian manifold S, thehyper-Hermitian manifold X and the quaternionic K�ahler orbifold M allow us to apply thetheory of deformations of complex manifolds [16] to study the deformations of 3-Sasakianstructures. In this note, we shall prove the following theorem.Theorem. Complete 3-Sasakian manifolds are rigid.LeBrun shows that compact quaternionic K�ahler manifolds with positive scalar curva-ture are rigid [13]. Due to the correspondence between compact 3-Sasakian manifolds and�Address: Institut for Matematik og Datalogi, Odense Universitet, Campusvej 55, Odense M, DK-5230,Denmark. E-mail: henrik@imada.ou.dk. Partially supported by N.A.T.O. CRG-950040yAddress: Department of Mathematics, University of California at Riverside, Riverside, CA 92521,U.S.A.. E-mail: ypoon@math.ucr.edu. Partially supported by N.S.F. DMS-95049081



compact quaternionic K�ahler orbifolds, the above theorem, in the contents of quaternionicK�ahler geometry, is a generalization of LeBrun's result.Rigidity of Complete 3-Sasakian ManifoldsA 4n+3-dimensional Riemannian manifold (S; g) has a Sasakian structure if there is a unitKilling vector �eld V such that for any pair of vector �elds A and B on S, (rArV )B =g(B; V )A � g(A;B)V [20]. The manifold (S; g) has a 3-Sasakian structure if there arethree unit Killing vector �elds fV1; V2; V3g such that each of these vector �elds determines aSasakian structure, and the algebra generated by these vector �elds is isomorphic to su(2).A 3-Sasakian manifold is complete if the vector �elds fV1; V2; V3g are complete [6]. In suchcase the group G = SO(3) or SU(2) acts on S as a group of isometries. We sacri�ce therequirement that the group G acts on S e�ectively to the simplicity of presentation. Weassume that G is the group SU(2).By [6, Theorem A], a complete 3-Sasakian manifold S is a compact Einstein manifoldwith positive scalar curvature. The space of leavesM of the G-action on S is a quaternionicK�ahler orbifold of dimension 4n with positive scalar curvature. By [6, Theorem B], the conemetric dr2 + r2g on the product manifold U = R+ � S is hyper-K�ahler. Furthermore, thespace U is the associated bundle of the orbifold M in the sense of Swann [19]. When h�iis the multiplicative group generated by a real number � between 0 and 1, let X be thequotient space S1� S = (R+=h�i)�S. With the induced hypercomplex structure and theproduct metric dr2r2 + g, X is a hyper-Hermitian manifold.Let Z and W be the twistor spaces of M and X respectively. Let F be the spaceS1�G = H�=h�i. For any �nite subgroup � of G, de�ne F� = S1� (G=�). As G is a groupof quaternionic transformations on U , and R+ is a group of hypercomplex transformations[6] [19], S1 �G is lifted to a group of holomorphic transformations on the twistor space ofX [16]. As the orbits of this group on X is invariant of the hypercomplex structure [6], theinduced foliations on the twistor spaces are holomorphic. Therefore, we haveLemma 1 There exists a holomorphic foliation F on the twistor space W of the hypercom-plex manifold X such that its leaves are F� for some �.Lemma 2 The space of leaves of the foliation F on W is isomorphic, as a holomorphicorbifold, to the twistor space Z of the quaternionic K�ahler orbifold M .Proof: Since the leaves of the foliation are compact, W=F is a complex orbifold [15]. Thesingularities of this orbifold are images of leaves with non-trivial leave holonomy [15]. Let� be the isotropy subgroup of the action U(1)�G at a point w on a leave with non-trivialholonomy. Let � be the twistor projection from W onto X = S1 � S. When �(w) = (t; s),then for any element � in G, �(�(w)) = (t; �(s)). Therefore, if � is an isotropic subgroupof the G-action on W at the point w, then � is contained in the isotropic subgroup of theG-action on S at the point s. Conversely, when � is the isotropic subgroup of the G-actionat a point s on S, it is the isotropic subgroup of the G-action at (t; s) on the space X . Since2



X is hypercomplex and the G-action on X preserves the underlying quaternionic structure,the range of the isotropy representation of � is contained in GL(n+1;H) Sp(1). The twistorspace W is an associated �ber bundle on X de�ned by the standard representation [18]GL(n+ 1;H) Sp(1)! SO(3);and the natural action of SO(3) on the 2-sphere. Composing these representations with theisotropy representation, we obtain the induced action of � on the twistor line over (t; s). As� is Abelian [4], the induced action of � on the twistor line over (t; s) has a �xed point w,and � is contained in the isotropy subgroup of the G-action on the twistor space W . Hence,there is a one-to-one correspondence between the singularities of Z and singular orbits ofthe U(1)�G-action on W . By taking quotient with respect to the U(1)�G-action, we havea homeomorphism between the topological spaces W=F and Z. By [16, Lemma 4.1], thishomeomorphism is an analytic isomorphism outside the singular sets of these two complexorbifolds. By analytic continuation, the homeomorphism is an analytic isomorphism overthe entire spaces. �When (St; gt; Gt) is a deformation of the 3-Sasakian structure (S; g; G),Xt = S1�St isa deformation of the compact hyper-Hermitian space X = S1�S, with the product metricgXt = dr2+r2gtr2 = (d ln r)2 + gt.To study deformations of the hypercomplex structure on X , we consider deformations ofthe associated twistor spaceW . Due to the twistor correspondence [18] [16], the deformationtheory of the underlying quaternionic structure on X is described by the cohomology groupsof �W . Since X is hypercomplex, there is a holomorphic projection p from W to CP1 suchthat each �ber is the underlying di�erentiable structure on X with a choice of complexstructure [10] [16]. On the other hand, the �bers of the natural projection � from W tothe leave space Z of the action of U(1) � G is an elliptic Hopf surface. The intersectionof the �bers of the maps p and � is the orbit of the holomorphic action of the subgroupU(1)�U(1) in U(1)�G. Therefore, the �ber of the product map �� p is an elliptic curve.The kernel of the di�erential of the product map is a trivial bundle. It de�nes the followingexact sequence on W : 0! OW ! �W ! ���Z � p��CP1 ! 0: (1)We use the induced long exact sequence of this sequence to calculate the cohomology ofthe tangent sheaf �W . To calculate cohomology groups, we want to apply spectral sequencesto compute the direct images sheaves via the maps p and � as in [16, Section 5]. Since thetwistor space Z is an orbifold, we need the following technical observations so that we canadopt the computations in [16].Lemma 3 On a complex orbifold Z, let � be its tangent V-bundle, and 
 be the sheaf ofK�ahler di�erential. Then Extn(Z; 
;O) = Hn(Z;�) for all n � 0.Proof: On a local uniformization neighborhood U=� on Z [2],Hom(
;O)(U=�) = Hom(
;O)�(U) = �(U)� = �(U=�):3



Therefore we have an isomorphism Hom(
;O) �= �Z : For any projective resolution of 
� � � ! Em(U=�)! Em�1(U=�)! � � � ! E0(U=�)! 
(U=�)! 0;the sheave Extp(Z; 
;O) over (U=�) is the p-th cohomology of the induced resolution. Whenthe induced resolution is pulled back to a resolution on U , we have a complex of �-invariantspaces: 0! Hom(
(U);O)� ! � � � ! Hom(Em(U);O)� ! � � � :As U is non-singular and 
(U) is locally free, when U is small, Hom(Em(U);O)� = 0 forall m � 1. Therefore, Extp(Z; 
;O) = 0 for all p � 1, and Hom(
;O) �= Ext0(Z; 
;O).There is a local-to-global spectral sequence such that Ep;q2 = Hp(Z; Extq(
;O)), andEp:q1 = Extp+q(Z; 
;O) [8] [9]. The conclusion of the previous paragraph implies thatthis spectral sequence degenerates at E2-level. It yields the isomorphism Extn(Z; 
;O) =Hn(Z;�Z) for all n � 0. �Lemma 4 When � :W ! Z is the quotient map de�ned by the leaves of the foliation F ,and L is the sheaf of germs of sections of a holomorphic V-bundle on Z, then Rj��(��L) =(Rj��OW )
 L.Proof: The proof of this lemma is similar to the above one. Let U=� be a local uniformizationchart on Z so that U is a slice of the foliation. Let q be the quotient map U ! U=�, and	 a map from ��1(U=�) to U so that � = q �	. ThenRj��(��L)(U=�) = Hj(��1(U=�);��L) = Hj(	�1(U);	�q�L)�:When U is so small that (q�L)(U) is a free, thenHj(	�1(U);	�q�L)� = (Hj(	�1(U);OW )
 (q�L)(U))� = (Rj��OW 
L)(U=�): �When the twistor space Z is smooth, the map � is a locally trivial �bration. Then thecomputation of the direct image of the structure sheaf ofW is easy. When the twistor spaceis an orbifold, the computation is not hard.Lemma 5 For j � 2, Rj��OW = 0. Moreover, R0��OW = OZ 
 H0(F;OF ) �= OZ;R1��OW = OZ 
H1(F;OF ) �= OZ.Proof: We continue to use the notation of the last two lemmata. By Kunneth formula and@-Poincare Lemma,Rj��OW = Hj(	�1(U);OW )� = (H0(U;OU)
Hj(F;OF ))�: (2)The �rst statement of this lemma follows from the vanishing ofHj(F;OF ) for j � 2. When jis either 0 or 1, Hj(F;OF )� = Hj(F;OF ). It is because when one considers F as a homoge-neous complex manifold SO(2)�SU(2),Hj(F;�F ) is identi�ed to the adjoint representation4



space (so(2)�su(2))C when j = 0; 1. The left action of SO(2) generates a nowhere vanishingholomorphic vector �eld. This vector �eld de�nes a bundle map from the structure sheafinto the tangent sheaf. Through this map, Hj(F;OF ) is identi�ed to the so(2)C summandin Hj(F;�F ). It follows that the action of � onHj(F;OF ) is trivial, because � is a subgroupof SU(2). By (2), Rj��OW = H0(U;OU)�
Hj(F;OF ). The claims in the lemma follow. �Lemma 6 Let Z be the twistor space of a complete 3-Sasakian manifold S. Then (a)Hp(Z;O) = f0g for all p � 1; and (b) Hp(Z;�Z) = f0g for all p � 2.Proof: The twistor space Z has a K�ahler-Einstein orbifold metric with positive scalar cur-vature [4] [17]. If the twistor space is smooth, the two vanishing theorems in this lemma areconsequences of the classical Kodaira Vanishing Theorem and Akizuki-Nakano VanishingTheorem [1] [12]. To prove these two vanishing theorems, one begins with establishing theDolbeault's harmonic theory on K�ahler manifolds and the Serre duality. Using harmonicrepresentatives for elements in cohomology classes, one proves these vanishing theorems bya Bochner type argument.Noting that an orbifold is locally �nitely covered by smooth manifolds. Baily de�nedL2-norms on Riemannian orbifolds by an averaging process with respect to the local coversof each orbifold point [2, page 866]. Thereafter, he established the harmonic theory. Usingthe same averaging process, he proved the Dolbeault Theorem [3, page 405], and completedthe proof of the Kodaira Vanishing Theorem by a Bochner type argument [3, page 411].Therefore, Part (a) follows directly from Baily's works.The Dolbeault Theorem for V-bundle on orbifolds remains valid. Using the L2-normde�ned by Baily, one can complete the proof of Part (b) by producing the Nakano Inequalityas presented in [12, page 69]. Then Kobayashi's brief discussion after the Nakano Inequality[12, page 69] is applied to verify Part (b). �Using the projection formula given by Lemma 4, the computation in Lemma 5 andthe above vanishing theorems, we can apply various lemmata in [16, Section 5] even whenZ is an orbifold. The conclusion is that the induced long exact sequence of (1) splits oneach cohomology level. Furthermore, the cohomology of the pull-back bundles on W areisomorphic to the cohomology of the pull-back bundles on product spaces. Therefore, thevirtual parameter space for the deformations of the complex structure on W is given as in[16, (5.8)]:H1(W;�W ) = H0(Z;OZ)
H1(F;OF )�H0(Z;�Z)
H1(F;OF )�H1(Z;�Z)
H0(F;OF )�H1(W; p��CP1): (3)To take metric geometry into considerations, we recall that the orbifold twistor space Zis a contact space. Let E be the kernel of the contact 1-form �. It determines the followingexact sequence of V-bundles on the orbifold Z:0! E ! �Z �! K�1=n+1 ! 0; (4)5



where K is the canonical bundle on Z. When the twistor space Z is smooth, LeBrun�nds [14] that for all j, there is a splitting of cohomology groups Hj(Z;�Z) = Hj(Z; E)�Hj(Z;K�1=n+1). With the aid of Lemma 4, 5 and 6, a spectral sequence argument showsthatH1(W;��K�1=n+1) = H0(Z;K�1=n+1)
H1(F;OF )�H1(Z;K�1=n+1)
H0(F;OF ): (5)Moreover, the in�nitesimal deformations of a contact structure on Z are described by �Cech1-cocyles with coe�cients in the bundle K�1=n+1 [13]. Therefore, if � is an in�nitesimaldeformation of W arising from in�nitesimal deformations of 3-Sasakian structures, thend�(�) is contained in H1(W;��K�1=n+1). This computation remains valid when Z is anorbifold. Hence, if an in�nitesimal deformation � arises from in�nitesimal deformations ofthe 3-Sasakian structure on S, it is contained in a subspace of H1(W;�W ). In particular,the second and third summands in (3) are now replaced by H1(W;��K�1=n+1). By (5), we�nd that � is contained inH0(Z;OZ)
H1(F;OF )�H0(Z;K�1=n+1)
H1(F;OF )�H1(Z;K�1=n+1)
H0(F;OF )�H1(W; p��CP1): (6)To complete the proof of the main theorem, we claim that no element in this spaceis induced by any deformations of the 3-Sasakian structure on S. Let us analyze its foursummands, starting from the last one.Any non-trivial deformation of the 3-Sasakian structure on S induces a non-trivial de-formation of the hypercomplex structure on X . By a twistor correspondence, it inducesa non-trivial deformation of the map p. Due to Horikawa [11], deformation theory of themap p is described in the cohomology groups of the kernel of the di�erential dp. There-fore, the summand H1(W; p��CP1) does not contribute to non-trivial deformations of thehypercomplex structure on X .Since the orbifold Z is K�ahler-Einstein with positive scalar curvature [4] [17], due toKodaira-Baily Vanishing Theorem [3] [4], H1(Z;K�1=n+1) vanishes. Therefore, the thirdsummand in (6) vanishes.Recall that the group G of isometries on S acts on X = S1�S as a group of quaternionictransformations, and the rotation group U(1) of the S1-factor is a group of hypercomplextransformations [6]. By a twistor correspondence [16], the product U(1)� G is a group ofholomorphic transformations on the twistor space W . As these observations are appliedto any complete 3-Sasakian manifold, the deformations of W induced from deformationsof the 3-Sasakian structure on S are U(1) � G-equivariant. By Cathelineau's theory [7],equivariant deformations are parameterized by invariant elements of the virtual parameterspace. We claim that the second summand in (6) does not contain invariant elements.When a complex structure on X is chosen, it can be recognized as follows. Let L� be theprincipal C�-bundle of K1=(n+1) over Z. Then X is the discrete quotient of L� by theinteger subgroup of C� generated by the multiplication of a real number � in the openinterval (0; 1). The group U(1)�G contains a subgroup U(1)�U(1) which is the quotient6



of the principal group C� by h�i. Therefore, the action of U(1) � U(1) on X is throughthe �berwise multiplication of C� on L�. Its induced action on K�1=n+1 is the �berwiseinverse multiplication of C�. It follows that no section of the bundle K�1=n+1 is invariantof the group U(1) � U(1). We claim that the U(1) � G-action on the factor H1(F;OF )in the second summand of (6) is trivial. This claim together with the above observationon H0(Z;K�1=n+1) implies that the second summand does not contain invariant elements.Recall that F is a homogeneous complex manifold with respect to the group U(1) � G.The cohomology H1(F;�F ) is identi�ed to the adjoint representation of the complexi�edLie algebra (u(1) � g)C. The nowhere vanishing holomorphic vector �eld generated byU(1) de�nes the cohomology H1(F;OF ) as a subspace of H1(F;�F ). As a subalgebra, it isprecisely u(1)C. Therefore, the action of U(1)� G on H1(F;OF ) is trivial.To examine the �rst summand, note that when (St; gt; Gt) is a deformation of (S; g; G),Ut = R+�St is a deformation of U . When � is a real number between 0 and 1, we constructthe quotient space Xt(�) = R+=h�i � St with the product metric g(t;�) = (d ln r)2 + gt. Asthe length of the circle R+=h�i with respect to g(t;�) is a non-trivial function of �, � is anon-trivial parameter for the deformation of hyper-Hermitian structures of X . However,the leave space of the U(1)-action on Xt(�) for various � de�nes one 3-Sasakian structureSt. Therefore, the length of the holomorphic vector �eld generated by the U(1) action isa redundant parameter for the deformations of the 3-Sasakian structures on S. As thisparameter spans the �rst summand [16], the �rst summand does not parameterize non-trivial deformations of the 3-Sasakian structure on S.Since no element in the space given in (6) represents in�nitesimal deformations of anynon-trivial deformations of 3-Sasakian structures, complete 3-Sasakian structures are rigidas claimed.Remark: The quotient of a 3-Sasakian manifold S by a circle subgroup in SU(2) is thetwistor space Z of the quaternionic K�ahler orbifold M [4]. Based on LeBrun's works, weobserved in the last few paragraphs that the contact structure on Z is rigid. To prove themain theorem given in the introduction, it su�ces to prove that the quotient map from Sto Z is smoothly rigid. By considering the twistor space W of the hypercomplex manifoldS � S1, we proved that the holomorphic map from W to Z is complex analytically andequivariantly rigid. Therefore, our approach to verify the rigidity of compact 3-Sasakianmanifolds may not be the most e�ective one. However, our computation contains informa-tion relevant to quaternionic geometry. The isomorphism (3) provides a virtual parametercount for the deformations of quaternionic structures on the hypercomplex manifold S�S1.The virtual parameter count for the deformations of hypercomplex structures, as explainedin [16], is given byH0(Z;OZ)
H1(F;OF )�H0(Z;�Z)
H1(F;OF )�H1(Z;�Z)
H0(F;OF ): (7)Therefore, we have improved some results in [16] by including orbifolds in our considerationshere. 7
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