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Potential functions of HKT spaces
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Abstract
We describe the potential functions for N = 4B supersymmetric quantum
mechanics with D(2, 1;α) symmetry.

PACS numbers: 0240K, 1260J

A brief review of HKT theory

Various geometries with torsion arise as the target spaces of two-dimensional sigma models.
In the case of N = 4B rigid supersymmetry, one gets HKT structures: the geometry
of a hyperKähler connection with totally skew symmetric torsion [2, 5]. A mathematical
background of HKT geometry was reported in [3].

The existence of symmetry under the superconformal group D(2, 1;α) as an extension to
SU(1, 1|1) theory is studied in [6]. The superalgebra of D(2, 1;α) is decribed in [6, (3.44)].
Thanks to Michelson and Strominger’s work on the local level, we only need to deal with the
geometry of a vector field on a HKT-space as given in (8) below. We limit the scope of this
paper to such a perspective.

To produce examples of HKT geometry with such symmetry, Michelson and Strominger
make use of potential functions. It leads them to ask which HKT structures with symmetry are
generated by potential functions. We answer this question in the next few pages. In the context
of black-hole moduli, this problem is already tackled by Gutowski and Papadopoulos [4].

An HKT structure consists of the following ingredients: a Riemannian metric g on a
smooth manifold M , three integrable complex structures Ir , r = 1, 2, 3 on M satisfying
the quaternion identities, and a connection ∇ preserving the metric g and all three complex
structures. Each complex structure is Hermitian with respect to the metric g. Moreover, the
torsion tensor of the connection ∇

c(X, Y,Z) := g(X, T ∇(Y, Z)) (1)

is totally skew. Here the torsion is defined as follows.

T ∇(Y, Z) = ∇YZ − ∇ZY − [Y,Z]. (2)

0264-9381/01/214711+04$30.00 © 2001 IOP Publishing Ltd Printed in the UK 4711

http://stacks.iop.org/cq/18/4711


4712 Y S Poon and A Swann

Since this connection ∇ is uniquely determined by the metric g and the complex structures
Ir , HKT geometry refers to either the geometry of the connection ∇ or the geometry of the
hyper-Hermitian space (g, Ir) [3]. The integrability of Ir implies that

T ∇(IrX, IrY ) − IrT
∇(IrX, Y ) − IrT

∇(X, IrY ) − T ∇(X, Y ) = 0 (3)

or equivalently the 3-form c is of type (2, 1) + (1, 2) with respect to all Ir :

c(X, Y,Z) = c(X, IrY, IrZ) + c(IrX, Y, IrZ) + c(IrX, IrY, Z). (4)

The theory of potential functions comes through a description of the Kähler forms [3].
The Kähler forms are defined by Fr(X, Y ) = g(IrX, Y ). Define dr on n-forms by

drE = (−1)nIrdIrE (5)

where (IrE)(X1, . . . , Xn) := E(−IrX1, . . . ,−IrXn). The above identities on the torsion
tensor implies that

c = −drFr . (6)

This is consistent with the finding in [1, 2.5.2] and corrects a factor in [3, (4)]. By definition [3],
a potential for an HKT structure is a function µ such that

F1 = 1

2
(dd1 + d2d3)µ, F2 = 1

2
(dd2 + d3d1)µ, F3 = 1

2
(dd3 + d1d2)µ. (7)

It has been proved [6] that locally a D(2, 1;α) symmetry arises if and only if there is a
vector field D obeying the following:

LDg = 2g, L(IrD)g = 0, L(IrD)Is = 2

α + 1
εrst It , dD� = 0 (8)

where D� is the dual one-form of the vector field defined by the metric g. Please note that the
sign convention here is different from the one found in [6, (3.48) and (3.50)]. Our convention
is determined by the choice that on the flat 4-space when D = Xa∂a , [I1D, I2D] = −2I3D.
In particular, the flat space has D(2, 1; −2) symmetry.

More examples of such symmetry on a HKT structure over the hypercomplex space R4N

can be generated by a potential function which turns out to be proportional to the norm-square
of the vector field D [6, section 3.4]. Conversely [6, Appendix C] shows that any HKT
structure compatible with flat Obata connection has a potential. Elementary examples show
that potential functions do not always generate a D(2, 1;α) symmetry.

Potential functions and special homotheties

We relax the condition for D(2, 1;α) symmetry as follows: on an HKT space, a vector field
is called a special homothety if there are distinct non-zero constants a and b such that

LDg = ag (9)

L(IrD)g = 0 (10)

L(IrD)Is = bεrst It . (11)

We shall see that the dual 1-form D� is necessarily closed so that the conditions found in (8) are
all fulfilled by a special homothety with appropriate choice of constants. More importantly,
the function

µ := 2

a(a − b)
g(D,D) (12)

is an HKT potential. In particular, any HKT space with D(2, 1;α) symmetry is locally
generated by a potential function. Although this result does not require b to be non-zero, in an
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upcoming report, we shall investigate additional geometric structures associated to D(2, 1;α)
symmetry when b �= 0. Besides, this requirement is also consistent with definitions in the
superalgebra [6, footnote 8].

To verify our claims above, note that condition (9) implies the following:

ag(Y, Z) = g(∇YD,Z) + g(Y,∇ZD) + c(Z,D, Y ) + c(Y,D,Z)

= g(∇YD,Z) + g(Y,∇ZD).

As a consequence the symmetric part of ∇D is 1
2aI0 where I0 is the identity. Let β be the

skew-symmetric part of ∇D. We have

∇D = 1
2aI0 + β. (13)

Since the connection preserves the complex structures, the above identity is equivalent to

g(∇Y (IrD), Z) = 1
2aFr(Y, Z) − β(Y, IrZ). (14)

On the other hand, condition (10) implies that

g(∇Y (I
rD), Z) + g(∇Z(I

rD), Y ) = (L(IrD)g)(Y, Z) = 0. (15)

Therefore, β(Y, IrZ) + β(Z, IrY ) = 0. Then

β(Y, I1Z) = β(I1Y,Z) = β(I2I3Y,Z) = β(I3Y, I2Z) = β(Y, I3I2Z) = −β(Y, I1Z). (16)

Therefore, β = 0. This is equivalent to

∇D = 1
2aI0 and ∇(IrD) = 1

2aIr . (17)

In particular, since ∇ is a metric connection,

d(g(D,D)) = 2g(∇D,D) = ag(·,D) = aD�. (18)

Therefore, D� is d-closed as claimed.
More generally, if λ is a constant and µ = λg(D,D), then dµ = aλD�, and hence

Irdµ = aλ(IrD)�. This gives

dIrdµ(Y,Z) = aλ(d(IrD)�)(Y, Z)

= aλ(g(∇Y (IrD), Z) − g(∇Z(IrD), Y ) + g(IrD, T ∇(Y, Z)))
= aλ(aFr(Y, Z) + c(IrD, Y,Z)).

In other words,

ddrµ = dIrdµ = a2λFr + aλι(IrD)c. (19)

Further, let Ir , Is, It be a positive permutation of I1, I2, I3.

dsdtµ(Y, Z) = −IsdIsItdµ(Y,Z) = −IsdIrdµ(Y,Z) = −(dIrdµ)(IsY, IsZ)

= −a2λFr(IsY, IsZ) − aλc(IrD, IsY, IsZ)

= −a2λg(IrIsY, IsZ) − aλc(IrD, IsY, IsZ)

= a2λg(IsIrY, IsZ) − aλc(IrD, IsY, IsZ)

= a2λFr(Y, Z) − aλc(IrD, IsY, IsZ)

Thus
1
2 (ddr + dsdt )µ = a2λFr + 1

2aλ
(
ι(IrD)c − Isι(IrD)c

)
. (20)

By (10) and (11), we have

bFr = L(IsD)Ft = dι(IsD)Ft + ι(IsD)dFt = −d(IrD)� − It ι(IrD)dtFt

= − 1

aλ
dIrdµ + It ι(IrD)c = −aFr − ι(IrD)c + Isι(IrD)c
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using Ir ι(IrD)c = ι(IrD)c from equation (19). Thus
1
2 (ddr + dsdt )µ = 1

2 (a − b)aλFr .

Taking

λ = 2

a(a − b)
(21)

gives the claimed result.
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