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Abstract

This article provides a complete description of the differential Gerstenhaber algebras of
all nilpotent complex structures on any real six-dimensional nilpotent algebra. As an applica-
tion, we classify all pseudo-Kählerian complex structures on six-dimensional nilpotent algebras
whose differential Gerstenhaber algebra is quasi-isomorphic to that of the symplectic structure.
In a weak sense of mirror symmetry, this gives a classification of pseudo-Kähler structures on
six-dimensional nilpotent algebras whose mirror images are themselves.
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1 Introduction

Nilmanifolds, i.e. compact quotients of simply connected nilpotent Lie groups, are known to
be a rich source of exotic geometry. We are particular interested in pseudo-Kähler geometry
and its deformation theory on these spaces. We initially focus on the complex structures, and
will bring symplectic structures in the picture at the end.

It is a general principle that the deformation theories of complex and symplectic structures
are dictated by their associated differential Gerstenhaber algebras [8] [11] [18]. The associated
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cohomology theories are Dolbeault’s cohomology with coefficients in the holomorphic tangent
bundle, and de Rham’s cohomology respectively. De Rham cohomology of nilmanifolds is
known to be given by invariant differential forms [14] and there are several results for Dolbeault
cohomology on nilmanifolds pointing in the same direction [2] [3]. Therefore, in this paper we
focus on invariant objects, i.e. invariant complex structures and invariant symplectic forms on
nilpotent Lie algebras.

Analysis and classification of invariant complex structures and pseudo-Kähler pairs on six-
dimensional nilpotent algebras have been in progress in the past ten years [1] [2] [4] [16] [17].
In particular, it is known that a complex structure can be part of a pseudo-Kähler pair, only
if it is nilpotent [6].

After a preliminary presentation on construction of differential Gerstenhaber algebra for
invariant complex and symplectic structures, we give two key technical results, Proposition
10 and Proposition 11, describing the restrictive nature of quasi-isomorphisms in our setting.
We recall the definition of nilpotent complex structure in Section 3. Numerical invariants
for these complex structures are identified, and used to refine older classifications. This in
particular allows to identify the real algebra underlying a set of complex structure equations
by evaluation of the invariants. The results of Section 3 including the invariants of complex
structure equations and the associated underlying real algebras are summarized in Table 1.

In Section 4, we analyze the differential Gerstenhaber algebra DGA(g, J) when a nilpotent
complex structure J on a nilpotent Lie algebra g is given. The invariants of the complex
structure equations dictate the structure of DGA(g, J). Relying on the classification provided
in Section 3 and Table 1, and in terms of the same set of invariants, we establish a relation
between the Lie algebra structure of g and that of DGA(g, J). The total output of Section
4 is provided in Theorem 24 and Table 2. These results demonstrate the phenomenon of
“jumping” of DGA(g, J) as J varies through a family of nilpotent complex structures on some
fixed algebra g. Results are given in Theorem 25 and Table 3. With the aid of Proposition 11,
Theorem 24 we also show that each differential Gerstenhaber algebra DGA(g, J) is isomorphic
to a differential Gerstenhaber algebra DGA(h, O) derived from a certain Lie algebra h and
linear isomorphism O : h → h∗. The result is stated in Theorem 26. However, the map O is
not necessarily induced by a contraction with any symplectic form. A priori, it may not even
be skew-symmetric.

Finally in Section 5, we consider the differential Gerstenhaber algebra DGA(h,Ω) associated
to an invariant symplectic structure Ω on a nilpotent algebra h. We shall explain in Section
2 that DGA(h,Ω) is essentially generated by the Lie algebra structure on h. This elementary
observation, along with the results established in Section 4 and Table 2, allows us to answer
the following question: Which six-dimensional nilpotent algebra g admits a pseudo-Kähler
structure (J,Ω) such that there is a quasi-isomorphism

DGA(g, J) −→ DGA(g,Ω) ?

The construction of DGAs for complex structures and symplectic structures is well known (e.g.
[18]). It is a key ingredient in homological mirror symmetry. Extending the concept of mirror
symmetry, Merkulov considers the notion of weak mirror symmetry [11] [12]. In this paper, we
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call a Lie algebra g with a complex structure J and a Lie algebra h with a symplectic structure
Ω a “weak mirror pair” if there is a quasi-isomorphism between DGA(g, J) and DGA(h,Ω).
The aforementioned question stems from a consideration on when “self mirror” occurs. For
four-dimensional nilpotent algebras, the answer could be derived from results in [15]. For
six-dimensional nilpotent algebras, our answer is in Theorem 29.

2 Differential Gerstenhaber Algebras

2.1 Preliminaries

Definition 1. [7] [9, Definition 7.5.1] Let R be a ring with unit and let C be an R-algebra. Let

a = ⊕n∈Za
n be a graded algebra over C. a is a Gerstenhaber algebra if there is an associative

product ∧ and a graded commutative product [− • −] satisfying the following axioms. When

a ∈ an, let |a| denote its degree n. For a ∈ a|a|, b ∈ a|b|, c ∈ a|c|,

a ∧ b ∈ a|a|+|b|, b ∧ a = (−1)|a||b|a ∧ b. (1)

[a • b] ∈ a|a|+|b|−1, [a • b] = −(−1)(|a|+1)(|b|+1)[b • a]. (2)

(−1)(|a|+1)(|c|+1)[[a • b] • c] + (−1)(|b|+1)(|a|+1)[[b • c] • a] + (−1)(|c|+1)(|b|+1)[[c • a] • b] = 0. (3)

[a • b ∧ c] = [a • b] ∧ c+ (−1)(|a|+1)|b|b ∧ [a • c]. (4)

On the other hand, we have the following construction.

Definition 2. A differential graded algebra is a graded algebra a = ⊕n∈Za
n with a graded

commutative product ∧ and a differential d of degree +1, i.e. a map d : a → a such that

d(an) ⊆ an+1, d ◦ d = 0, d(a ∧ b) = da ∧ b+ (−1)|a|a ∧ db. (5)

Definition 3. Let a = ⊕n∈Za
n be a graded algebra over C such that (a, [− • −],∧) form a

Gerstenhaber algebra and (a,∧, d) form a differential graded algebra. If in addition

d[a • b] = [da • b] + (−1)|a|+1[a • db], (6)

for all a and b in a, then (a, [− • −],∧, d) is a differential Gerstenhaber algebra (DGA).

For any Gerstenhaber algebra, a1 with the induced bracket is a Lie algebra. Conversely,
suppose a1 is a finite dimensional algebra over the complex or real numbers, equipped with a
differential compatible with the Lie bracket. Then a straightforward induction allows one to
construct a DGA structure on the exterior algebra of a1.

Lemma 4. Let a1 be a finite dimensional Lie algebra with bracket [−•−]. Let a be the exterior

algebra generated by a1. Then the Lie bracket on a1 uniquely extends to a bracket on a so that

(a, [− • −],∧) is a Gerstenhaber algebra.
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If, furthermore, an operator d : a1 → a2 is extended as in (5), then (a, [− • −],∧) is a

differential Gerstenhaber algebra if and only if

d[a • b] = [da • b] + [a • db], (7)

for all a and b in a1.

Definition 5. A homomorphism of differential graded Lie algebras is called a quasi-isomorphism

if the map induced on the associated cohomology groups is a linear isomorphism.

A quasi-isomorphism of differential Gerstenhaber algebras is a homomorphism of DGAs

that descends to an isomorphism of cohomology groups.

Note that in the latter case the isomorphism is one of Gerstenhaber algebras.

2.2 DGA of complex structures

Suppose J is an integrable complex structure on g. i.e. J is an endomorphism of g such that
J ◦ J = −1 and

[x • y] + J [Jx • y] + J [x • Jy]− [Jx • Jy] = 0. (8)

Then the ±i eigenspaces g(1,0) and g(0,1) are complex Lie subalgebras of the complexified
algebra gC. Let f be the exterior algebra generated by g(1,0) ⊕ g∗(0,1), i.e.

fn := ∧n(g(1,0) ⊕ g∗(0,1)), and f = ⊕nf
n. (9)

The integrability condition in (8) implies that f1 is closed under the Courant bracket

[x+ α • y + β] := [x, y] + ιxdβ − ιydα. (10)

A similar construction holds for the conjugate f, generated by g(0,1) ⊕ g∗(1,0).
Recall that if (g, [− • −]) is a Lie algebra, the Chevalley-Eilenberg (C-E) differential d is

defined on the dual vector space g∗ by the relation

dα(x, y) := −α([x • y]), (11)

for α ∈ g∗ and x, y ∈ g. This operator is extended to the exterior algebra ∧g∗ by derivation.
The identity d ◦ d = 0 is equivalent to the Jacobi identity for the Lie bracket [− • −] on g. It
follows that (∧g∗, d) is a differential graded algebra.

The natural pairing on (g ⊕ g∗) ⊗ C, induces a complex linear isomorphism (f1)∗ ∼= f
1
.

Therefore, the C-E differential of the Lie algebra f
1
is a map from f1 to f2. Denote this

operator by ∂. Similarly, we denote the C-E differential of f1 by ∂. It is well known that the
maps

∂ : g∗(0,1) → ∧2g∗(0,1), and ∂ : g(1,0) → g(1,0) ⊗ g∗(0,1) (12)

are respectively given by

∂ω = (dω)0,2, (∂T )W = [W • T ]1,0 (13)
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for any ω in g∗(0,1), T ∈ g1,0 and W ∈ g0,1.
If {Tℓ : 1 ≤ ℓ ≤ n} forms a basis for g1,0 and {ωℓ : 1 ≤ ℓ ≤ n} the dual basis in g∗(1,0), then

we have
∂ωℓ = (dωℓ)0,2, (∂T ) =

∑

ℓ

ωℓ ∧ [T ℓ • Tj ]1,0 (14)

Based on Lemma 4, it is an elementary computation to verify that the quadruples (f, [− •
−],∧, ∂) and (f, [− • −],∧, ∂) are differential Gerstenhaber algebras.

For a given Lie algebra g and a choice of invariant complex structure J , we denote the
differential Gerstenhaber algebra (f, [− • −],∧, ∂) by DGA(g, J).

The following observation relying on the nature of the ∂ and ∂ will be helpful, although
apparently obvious.

Lemma 6. Given a complex linear identification f
1 ∼= (f1)∗, the Lie algebras (f1, [− • −]),

(f
1
, [− • −]) and the graded differential algebras (f, ∂), (f, ∂) determine each other.

2.3 DGA of symplectic structures

Let h be a Lie algebra over R. The exterior algebra of the dual h∗ with the C-E differential d
is a differential graded Lie algebra.

Suppose that O : h → h∗ is a real linear map. Define a bracket [− • −]O on h∗ by

[α • β]O := O[O−1α •O−1β]. (15)

It is a tautology that (h∗, [− • −]O) becomes a Lie algebra, with the map O understood as a
Lie algebra homomorphism.

Definition 7. A linear map O : h → h∗ from a Lie algebra to its dual is said to be compatible

with the C-E differential if for any α, β in h∗,

d[α • β]O = [dα • β]O + [α • dβ]O. (16)

Due to Lemma 4, the next observation is a matter of definitions.

Lemma 8. Suppose h is a Lie algebra, and take an element O in Hom(h, h∗) compatible with

the C-E differential. Then (∧•h∗, [− • −]O,∧, d) is a differential Gerstenhaber algebra.

When the algebra h has a symplectic form Ω, the contraction with Ω defines an O as in the
above lemma. In such case, the differential Gerstenhaber algebra (∧•h∗, [− • −]Ω,∧, d) after

complexification is denoted by DGA(h,Ω).
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3 Complex Structures on Nilpotent Algebras

3.1 General Theory

Let g be a Lie algebra over R or C. The lower central series of g is the sequence of subalgebras
gp+1 ⊂ gp ⊂ g given by

g0 = g, gp = [gp−1 • g].
A Lie algebra g is s-step nilpotent if s is the smallest integer such that gs = {0}. Defining Vp
to be the annihilator of gp one has the dual sequence g∗ ⊃ Vp ⊃ Vp+1. The dual sequence may
also be defined recursively as

V0 = {0}, Vp = {α ∈ g∗ : dα ∈ Λ2Vp−1}.

We note that if the subscript C denotes complexification of vector spaces and Lie algebras,
then Vp(g)C = Vp(gC). Write np = dimVp. A Malcev basis for g∗ is a basis chosen such that
e1, . . . , en1 is a basis for V1, supplemented with en1+1, . . . , en2 to form a basis for V2, et cetera.
For such a basis one has dep ∈ Λ2〈e1, . . . , ep−1〉. The short-hand notation 12 := e12 := e1 ∧ e2
is convenient. Using this one may identify a Lie algebra by listing its structure equations with
respect to a Malcev basis as (de1, . . . , den). For instance we may write g = (0, 0, a12) to mean
the Lie algebra g generated by the relations de1 = 0 = de2, de3 = ae1 ∧ e2. This has the single
non-trivial bracket [e1 • e2] = −ae3.
Lemma 9. Suppose h and k are Lie algebras, h is nilpotent and φ : (∧h∗, d) → (∧k∗, d) is a

quasi-isomorphism of the associated differential graded algebras. Then φ is an isomorphism.

Proof: If φ : g∗ → h∗ is a homomorphism of the associated differential graded algebras then
φ(Vp(g)) ⊂ Vp(h). When φ is furthermore a quasi-isomorphism then the restriction V1(g) →
V1(h) is an isomorphism of vector spaces. Suppose that φ restricted to Vp−1(g) is an iso-
morphism onto Vp−1(h). Then clearly the induced map Λ2Vp−1(g) → Λ2Vp−1(h) is also an
isomorphism. Suppose that a ∈ Vp(g) satisfies φ(a) = 0. Then da ∈ Λ2Vp−1(g) satisfies
φ(da) = 0. But then da = 0, so a ∈ V1, and φ(a) = 0 actually implies a = 0. q. e. d.

Proposition 10. Suppose that g and h are finite dimensional nilpotent Lie algebras, J is

an integrable complex structure on g and O : h → h∗ is a linear map compatible with the

C-E differential on h. Then a homomorphism φ from DGA(g, J) to DGA(h, O) is a quasi-

isomorphism if and only if it is an isomorphism.

Proof: As a quasi-isomorphism of DGAs, φ is a quasi-isomorphism of the underlying exterior
differential algebras:

φ : (∧∗f1,∧, ∂) → (∧∗h∗C,∧, d).
The last lemma shows that it has to be an isomorphism. q. e. d.

Two special types of complex DGAs were introduced above: Those coming from an inte-
grable complex structure J on a real algebra g, denoted DGA(g, J) and those derived from
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a linear identification O : h → h∗ compatible with the differential. For the latter we write
DGA(h, O). A problem related to “weak mirror symmetry” is: given an algebra g and a
complex structure J , when does an h and O exist so that DGA(g, J) is quasi-isomorphic to
DGA(h, O)? For nilpotent algebras we shall see below that this always is the case.

Given J on g write k for the Lie algebra f̄1 consisting of degree one elements in DGA(g, J).
As h is complex we may speak of the complex conjugate algebra consisting of the conjugate
vector space h̄. Let c : h → h̄ be the canonical map such that c(ax) = āx for complex a and x
in h. Then [x, y]c := c[c(x), c(y)] equips h̄ with a Lie bracket. We say that h is self-conjugate
if a complex linear isomorphism h → h̄ exists.

Proposition 11. Let g be a Lie algebra with complex structure J . Let DGA(g, J) be its

differential Gerstenhaber algebra. Write h for the Lie algebra f1 and suppose that h is self-

conjugate. Then there exists a complex linear isomorphism O : h → h∗ compatible with the C-E

differential d on h so that DGA(h, O) is isomorphic to DGA(g, J).

Proof: We construct the map O. Let φ : h → f1 be the identification of h as the Lie algebra
given by f1. Composing on both sides with complex conjugation gives the isomorphism φ̄ :=
c ◦ φ ◦ c : h̄ → f̄1 of Lie algebras. Taking the identifications f̄1 ∼= (f1)∗ and h̄ ∼= h into account
gives the isomorphism

ψ : h ∼= h̄
φ̄→ f̄1 ∼= (f1)∗ (17)

of Lie algebras. The dual map ψ∗ is now an isomorphism of exterior differential algebras

ψ∗ : ∧∗f1 → ∧∗h∗, ψ∗ ◦ ∂ = d ◦ ψ∗. (18)

We claim that the following composition

O : h
φ→ f1

ψ∗

→ h∗ (19)

is compatible with d. By Lemma 4 this is the case if equation (7) holds for the bracket
[α • β]O =: O[O−1α •O−1β]. But

[α • β]O = ψ∗ ◦ φ[φ−1 ◦ (ψ∗)−1α • φ−1 ◦ (ψ∗)−1β] = ψ∗[(ψ∗)−1α • (ψ∗)−1β]. (20)

Hence,

d[α • β]O = d(ψ∗[(ψ∗)−1α • (ψ∗)−1β])

= ψ∗(∂[(ψ∗)−1α • (ψ∗)−1β])

= ψ∗([∂(ψ∗)−1α • (ψ∗)−1β]) + ψ∗([(ψ∗)−1α • ∂(ψ∗)−1β]))

= ψ∗([(ψ∗)−1dα • (ψ∗)−1β]) + ψ∗([(ψ∗)−1α • (ψ∗)−1dβ]))

= [dα • β]O + [α • dβ]O.

By Lemma 8, DGA(k, O) := (∧∗k∗, [− • −]O,∧, d) forms a differential Gerstenhaber algebra.
It is clear from (18) and (20) that the map ψ∗ yields an isomorphism from DGA(g, J) to
DGA(k, O). q. e. d.
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It should be noted that the map O is not necessarily skew-symmetric, nor is it automatically
closed when it is skew. In particular the DGA structure obtained above does not necessarily
arise from contraction with a symplectic structure. Also note that the condition k̄ ∼= k is
satisfied precisely when k is the complexification of some real algebra. Whilst in the context
of six-dimensional nilpotent algebras this is always the case, there exist non-isomorphic real
algebras having the same complexification.

3.2 Nilpotent complex structures

An almost complex structure J on g may be given by a choice of basis ω = {ωk, 1 ≤ k ≤ m},
2m = dimR g, of the space of (1, 0)-forms in the complexified dual g∗

C
. Such a basis may

equivalently be given as a basis e = (e1, . . . , e2m) of g∗ so that e2 = Je1, or ω1 = e1 + ie2,
and so on. When e and ω are related in this way we will write e = e(ω) or ω = ω(e).
The almost complex structure is then integrable or simply a complex structure if the ideal in
Λ∗g∗

C
generated by the (1, 0)-forms is closed under exterior differentiation. For a nilpotent Lie

algebra, an almost complex structure is integrable if there exists a basis (ωj) of (1, 0)-forms so
that dω1 = 0 and for j > 1, dωj lies in the ideal generated by ω1, . . . , ωj−1. Equivalently,

0 = d(ω1 ∧ ω2 ∧ · · · ∧ ωp), p = 1, . . . ,m. (21)

Let the set of such bases be denoted Ω(g, J).
On nilpotent Lie algebras certain complex structures are distinguished. Among these are

complex structures such that [X,JY ] = J [X,Y ]. Equivalently, dωp ∈ Λ2〈ω1, . . . , ωp−1〉. These
are the complex structures for which g is the real algebra underlying a complex Lie algebra. At
the opposite end to these are the abelian complex structures which satisfy [JX, JY ] = [X,Y ]
[1]. Equivalently, the +i-eigenspace of J in gC is an abelian subalgebra of gC. In particular
abelian Js are always integrable. In terms of (1, 0)-forms a complex structure is abelian if
and only if there exists an ω in Ω(g, J) such that dωj is in the intersection of the two ideals
generated by ω1, . . . , ωj−1 and ω1, . . . , ωj−1, respectively.

The concept of abelian complex structures may be generalized to that of nilpotent complex
structures [4]. A nilpotent almost complex structure may be defined as an almost complex
structure with a basis of (1, 0)-forms such that

dωp ∈ Λ2〈ω1, . . . , ωp−1, ω1, . . . , ωp−1〉. (22)

For a given algebra g and nilpotent almost complex structure J we write P (g, J) for the set of
such bases. Nilpotent almost complex structures are not necessarily integrable. If a nilpotent
J is integrable, then P (g, J) ⊂ Ω(g, J). A nilpotent complex structure is abelian if and only if

0 = d(ω1 ∧ ω2 ∧ · · · ∧ ωp−1 ∧ ωp), p = 1, . . . ,m. (23)

It is apparent that abelian complex structures are nilpotent.
In subsequent presentation, we suppress the wedge product sign.
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3.3 Six-dimensional algebras

Some of the results of this section may be regarded as a re-organization of past results in terms
of invariants relevant to our further analysis. Our key references are [16] and [17]. To name
specific isomorphism classes of six-dimensional nilpotent Lie algebras, we use the notation hn
as given in [4].

Suppose then dimR g = 6. Let J be a nilpotent almost complex structure on g. The
structure equations for an integrable element ω in P (g, J) are [4]











dω1 = 0,

dω2 = ǫω1ω1,

dω3 = ρω1ω2 +Aω1ω1 +Bω1ω2 + Cω2ω1 +Dω2ω2.

(24)

for complex numbers ǫ, ρ,A,B,C,D. Note that ddω3 = 0 forces Dǫ = 0. Moreover, if ǫ is not
zero, ω3 may be replaced with ǫω3 − Aω2 so after re-scaling the ωj one obtains the reduced

structure equations [17]











dω1 = 0,

dω2 = ǫω1ω1,

dω3 = ρω1ω2 + (1− ǫ)Aω1ω1 +Bω1ω2 + Cω2ω1 + (1− ǫ)Dω2ω2,

(25)

where ǫ and ρ are either 0 or 1 and A,B,C,D are complex numbers.
To avoid ambiguity we rule out the case ǫ 6= 0, dω3 = 0 for any form of the structure

equations as this is equivalent to ǫ = 0, dω3 = ω1ω1.
Given structure equations (24) for a nilpotent complex structure, we will calculate DGA(g, J)

in Section 4. However, if we take (24) as a starting point, it is not obvious to recognize the
real algebra g which underlies the complex structure. We shall first provide a way to do this
that will fit the purpose of this paper.

For this task, we identify invariants of P (g, J). The most immediate invariants are the
dimensions of the vector spaces in the dual sequence V0 ⊂ V1 ⊂ . . . for gC. As the inclusions

V1 ⊃ 〈ω1, ω1, ω2 + ω2〉, V2 ⊃ 〈ω1, ω1, ω2, ω2〉 (26)

always hold, V3 = g∗
C
for any 6-dimensional nilpotent algebra with nilpotent complex structure.

Define
n = (n1, n2) = (dimV1,dimV2). (27)

We now collect several facts on these particular invariants.

Lemma 12. Given a nilpotent complex structure J on a six-dimensional nilpotent algebra g,

the following hold:

(a) 3 ≤ n1 ≤ 6, 4 ≤ n2 ≤ 6 and n1 ≤ n2.

(b) There exists ω in P (g, J) such that ǫ = 0 or ǫ = 1.

9



(c) If ǫ = 1, there exists ω in P (g, J) such that A = D = 0.

(d) If ǫ = 0, then n2 = 6.

(e) ρ = 0 if and only if J is an abelian complex structure.

(f) Let d be the dimension of the complex linear span of dω3 and dω3. Then d ≤ 1 if and

only if

ρ = 0, |B|2 = |C|2, AD̄ = ĀD, AB̄ = ĀC, DB̄ = D̄C. (28)

Based on the above information, we re-organize some of the data from [17, Theorem 2.9]
and [16, Table A.1].

Lemma 13. Suppose a complex structure on g is given with structure constants as in (24)
with ǫ ∈ {0, 1}.
(a) n = (6, 6) if and only if g ∼= h1 = (0, 0, 0, 0, 0, 0).

(b) n = (5, 6) if and only if ǫ = 0 and d = 1. In this case,

g ∼=
{

h8 = (0, 0, 0, 0, 0, 12),

h3 = (0, 0, 0, 0, 0, 12 + 34).

(c) If n = (4, 6), then ǫ = 0 and d = 2. The Lie algebra is

g ∼=























h6 = (0, 0, 0, 0, 12, 13),

h2 = (0, 0, 0, 0, 12, 34),

h4 = (0, 0, 0, 0, 12, 13 + 42),

h5 = (0, 0, 0, 0, 13 + 42, 14 + 23).

(d) If n = (3, 6), then ǫ = 1, ρ 6= 0, and there exists an element σ in P (g, J) such that

dσ3 = σ1(σ2 + σ2). Moreover, g ∼= h7 = (0, 0, 0, 12, 13, 23).

(e) If n = (4, 5), there exists σ in P (g, J) such that dσ3 = σ1σ2 + σ2σ1. The structure

equations for e(σ) are (0, 0, 0, 12, 0, 14 − 23) and so g ∼= h9 = (0, 0, 0, 0, 12, 14 + 25).

(f) If n = (3, 5), then there exists σ in P (g, J) such that dσ3 = (B−C̄)σ1σ2+Bσ1σ2+Cσ2σ1.
For all such σ, (B − C̄) is non-zero. Moreover,

g ∼=











h10 = (0, 0, 0, 12, 13, 14),

h12 = (0, 0, 0, 12, 13, 24),

h11 = (0, 0, 0, 12, 13, 14 + 23).
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(g) If n = (3, 4), then

g ∼=























h16 = (0, 0, 0, 12, 14, 24),

h13 = (0, 0, 0, 12, 13 + 14, 24),

h14 = (0, 0, 0, 12, 14, 13 + 42),

h15 = (0, 0, 0, 12, 13 + 42, 14 + 23).

Proof: The statements for n = (6, 6) and (5, 6) are elementary.
When n = (4, 6) the cases listed in (c) are the only possibilities given by the classification

of [17].
When n = (3, 6), then V1 = 〈ω1, ω1, ω2 + ω2〉 and dω3 ∈ Λ2V1. It follows that dω3 =

ρω1(ω2 + ω2) and so we have (d).
If n2 = 5, then ǫ = 1, and we may take A = D = 0 as noted in the previous lemma.

By (26), a complex number u 6= 0 exists so that udω3 + ūdω3 ∈ Λ2V1.
If in addition n1 = 3, then V1 = 〈ω1, ω1, ω2 + ω2〉. Taking dω3 = ρω1ω2 +Bω1ω2 +Cω2ω1

gives uρ = uB−ūC̄. Now setting σ1 = ω1, σ2 = ω2 and σ3 = uω3 puts the structure equations
in the form (f). Note that if B = C̄ in (f) then dσ3 and dσ3 are linearly dependent and so
n1 = 4.

If, on the other hand, n1 = 4 then V1 = 〈ω1, ω1, ω2+ω2, ω3+λω3〉 for some λ. Then ρ = 0,
B = λC and C = λB, since dω3 + λdω3 = 0. In particular, dω3 = Bω1ω2 + λBω2ω1. This
yields case (e).

The remaining case is n = (3, 4). Since this is the minimum possible combination for the
invariant n, by exclusion all remaining nilpotent complex structures found in [16] and [17] are
covered in this case. q. e. d.

Corollary 14. Let J be a nilpotent complex structure on a nilpotent Lie algebra g. Then

complex structure is abelian if n = (6, 6), (5, 6), (4, 5). It is not abelian if n1 = 3 and n2 > 4.

3.4 More invariants of nilpotent complex structures

Given ω in P (g, J). Suppose that its structure equations are (24). Let σ be another element
in P (g, J). Viewing σ and ω as row vectors, then σ = (σ1, σ2, σ3) and ω = (ω1, ω2, ω3) are
related by a matrix: σj = σjkω

k. This must be of the form

σ(ω) :=





σ11 σ21 σ31
σ12 σ22 σ32
0 0 σ33



 , (29)

with ǫσ12 = 0. So when ǫ 6= 0 the matrix σ(ω) is upper triangular. Write ∆(σ, ω) for the
determinant of the transformation σ(ω), so that σ1σ2σ3 = ∆(σ, ω)ω1ω2ω3, and ∆(σ, ω)−1 =
∆(ω, σ). Define ∆′(σ, ω) by σ1σ2 = ∆′(σ, ω)ω1ω2 so that ∆(σ, ω) = σ33∆

′(σ, ω). The space A
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of matrices as in (29) may be considered the automorphism group of the nilpotent complex
structure, and P (g, J) is the orbit of ω under the multiplication of elements in A.

Consider the two functions ∆1 : P (g, J) → C, ∆2 : P (g, J) → R defined respectively by

dσ3 ∧ dσ3 = 2∆1(σ)σ
1σ1σ2σ2, (30)

dσ3 ∧ dσ3 = 2∆2(σ)σ
1σ1σ2σ2. (31)

In terms of the structure constants for ω,

∆1(ω) = AD −BC, (32)

∆2(ω) =
1
2

[

|B|2 + |C|2 −AD̄ − ĀD − |ρ|2
]

. (33)

If σ = σ(ω) then

dσ3 ∧ dσ3 = (σ33)dω
3 ∧ dω3 = (σ33)∆1(ω)ω

1ω1ω2ω2

= (σ33)
2∆1(ω)|∆′(ω, σ)|2σ1σ1σ2σ2.

Therefore

∆1(σ) = ∆1(ω)|∆′(ω, σ)|2(σ33)2, (34)

and similarly

∆2(σ) = ∆2(ω)|∆′(ω, σ)|2|σ33 |
2
. (35)

By choosing σ appropriately we may assume that ∆1 is either 0 or 1. We observe that if ∆1 is
non-zero in some basis then it is non-zero in every basis. In this situation ∆2/|∆1| is invariant
under transformations of the form (29). Note that ∆2

2 − |∆1|2 is scaled by a positive constant
by an automorphism, so the sign of ∆2

2 − |∆1|2 is another invariant. The significance of this
can be seen as follows. Pick ω ∈ P and let e = e(ω) be the corresponding real basis. Then
dω3 ∧ dω3 = −8∆1e

1234 and dω3 ∧ dω3 = −8∆2e
1234, whence

de5 ∧ de5 = −4 (∆2 +Re(∆1)) e
1234,

de6 ∧ de6 = −4 (∆2 − Re(∆1)) e
1234,

de5 ∧ de6 = −4 Im(∆1)e
1234.

The numbers ∆2 ± Re(∆1) determine whether or not the two-form de5 and de6 are simple or
not. A two-form α is simple if and only if α ∧ α = 0. The equation

(sde5 − tde6) ∧ (sde5 − tde6) = 0. (36)

is equivalent to the second order homogeneous equation

(∆2 +Re(∆1))s
2 − 2 Im(∆1)st+ (∆2 − Re(∆1))t

2 = 0.

12



As the discriminant of this equation is |∆1|2 −∆2
2, it has non-trivial real solutions if and only

if |∆1|2 −∆2
2 ≥ 0.

If dω3 and dω3 are linearly independent, a solution (s, t) to (36) exists precisely when
sde5 + tde6 is simple. When |∆1|2 − ∆2

2 = 0 there is precisely one such non-trivial solution,
when |∆1|2 −∆2

2 > 0 there are two. When dω3 and dω3 are linearly dependent it is easy to
see from equations (28), (32) and (33) that |∆1|2 = ∆2

2.

3.5 Identification of underlying real algebras

Given the invariants of the last section, we now have the means filter isomorphism classes of
g for a given set of structure constants ǫ, ρ,A,B,C,D of a nilpotent complex structure. As
we determine the underlying real algebras, we also identify all the invariants in the complex
structure equations in the next few paragraphs.

Lemma 15. The following statements are equivalent.

(1) For every nilpotent complex structure J on g and every ω in P (g, J), the condition

∆2(ω) = 0 = ∆1(ω) holds.

(2) There exists a nilpotent J on g and some ω ∈ P (g, J) such that ∆2(ω) = 0 = ∆1(ω).

(3) The Lie algebra g is isomorphic to one of the following

h1 = (0, 0, 0, 0, 0, 0), h8 = (0, 0, 0, 0, 0, 12), h6 = (0, 0, 0, 0, 12, 13),

h7 = (0, 0, 0, 12, 13, 23), h10 = (0, 0, 0, 12, 13, 14), h16 = (0, 0, 0, 12, 14, 24).

Proof: It is clear that (1) implies (2). Now suppose (2) holds: pick J and ω so that ∆2(ω) =
0 = ∆1(ω). Since dω

2, dω2, dω3, dω3 span dg∗c and dω
2∧dω3 = 0 = dω2∧dω3 by the nilpotency

of J , any two elements α1, α2 in dg∗
C
satisfy α1 ∧ α2 = 0. Since this is in particular also true

for the real elements, a basis of simple two-forms for dg∗ exist so that any two basis elements
satisfy α1 ∧ α2 = 0. Now consult the classification of six dimensional nilpotent Lie algebras
with complex structures [17, Theorem 2.9]. This gives (3). If (3) holds then any ω in P (g, J)
for any complex structure J on g has dωi ∧ dωj = 0 = dωi ∧ dωj for all i, j. This completes
the proof. q. e. d.

Corollary 16. Suppose g is not one of the Lie algebras listed in Lemma 15. For any integrable

nilpotent J and any ω in P (g, J), one has ∆2(ω)
2 + |∆1(ω)|2 > 0.

Lemma 17. The following statements are equivalent.

(1) For every nilpotent complex structure J on g and every ω in P (g, J), the condition

∆2(ω)
2 < |∆1(ω)|2 holds.

(2) There exists a nilpotent J on g and some ω in P (g, J) such that the inequality ∆2(ω)
2 <

|∆1(ω)|2 is satisfied.
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(3) The Lie algebra g is isomorphic to one of the following

h2 = (0, 0, 0, 0, 12, 34), h12 = (0, 0, 0, 12, 13, 24), h13 = (0, 0, 0, 12, 13 + 14, 24).

Proof: The implication (1)⇒(2) is trivial. Suppose that J and ω are given as in (2). Solving
(36), we get two real, simple two-forms in the span of dω3, dω3. It follows that dg∗ has a
basis consisting only of simple two-forms. The classification [17, Theorem 2.9], Lemma 15 and
Corollary 16 give (3).

Now suppose that (3) holds and let J be a nilpotent complex structure on g. Pick any ω in
P (g, J). Represent h2 as (0, 0, 0, 0, 13, 24). For any of the three algebras listed, any nilpotent
complex structure and any ω in P (g, J), there are constants a, b, c, r such that dω3 = ae12 +
b(e13+re14)+ce24 where r = 0 or 1. So dω3∧dω3 = −2bce1234 and dω3∧dω3 = −(bc̄+ b̄c)e1234.
By Corollary 16, bc 6= 0 so (after re-scaling of ω1 and ω2) we have |∆1|2 = |bc̄|2 ≥ Re(bc̄)2 =
1
4

∣

∣bc̄+ b̄c
∣

∣

2
= ∆2

2. Equality occurs precisely if bc̄ is real.
To see that this does not occur, note that by nilpotency of J , dω2 ∧ dω2 = 0 = dω2 ∧ dω3,

whence dω2 = ue12 for some complex number u. If u = 0 then g = h2 and a = r = 0.
Otherwise, take u = 1 and ω3−ω2 as a ‘new’ ω3. This has a = 0. So for all three algebras and all
J , we can take an ω in P (g, J) with a = 0. Then dω3 and dω3 are linearly dependent precisely
when bc̄ is real. In this case n1 is 4 if ǫ 6= 0, and 5 otherwise. The latter value is not realized
for the given algebras. Only (0, 0, 0, 0, 13, 24) has n1 = 4 but clearly dω2∧dω2 = 0 = dω2∧dω3

shows that for this algebra ǫ = 0 for all J . Therefore bc̄ is never real and so |∆1|2 > ∆2
2 q. e. d.

Lemma 18. The following statements are equivalent.

(1) For every nilpotent complex structure J on g and every ω ∈ P (g, J), the condition

∆2(ω)
2 > |∆1(ω)|2 holds.

(2) There exists a nilpotent J on g and some ω ∈ P (g, J) such that the inequality ∆2(ω)
2 >

|∆1(ω)|2 is satisfied.

(3) The Lie algebra g is isomorphic to one of the following

h5 = (0, 0, 0, 0, 13 + 42, 14 + 23), h15 = (0, 0, 0, 12, 13 + 42, 14 + 23).

Proof: The idea is as for the preceding Lemmas. Suppose (2). There are then no simple
elements in the real span of dω3 + dω3, i(dω3 − dω3) as equation (36) has no real solutions.
This of course means that for the real basis e(ω) all linear combinations of de5 and de6 are
non-simple. This also holds for all elements in the span of de4, de5, de6. In [17, Theorem 2.9]
only two algebras have the property that all elements in the span of {dei} are non-simple.
These are listed in (3).
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Building a nilpotent J from h5 or h15 gives dω3 = ae12 + b(e13 + e42) + c(e14 + e23). Then
∆1 = b2 + c2 and ∆2

2 = |b|2 + |c|2, so ∆2
2 − |∆1|2 = 2(|bc̄|2 − Re (bc̄)2) = 2 Im(bc̄) ≥ 0, with

equality if and only if bc̄ is real. Arguing as in the proof of Lemma 17 one shows that bc̄ cannot
be real. It proves the implications (2) to (3). The implication (1) to (2) is obvious. q. e. d.

Now one case is left, namely |∆1|2 = ∆2
2 > 0. By Lemmas 15, 17 and 18 this condition

must characterize the remaining algebras in the classification of Lemma 13. In one special case
we may be more explicit.

Lemma 19. Suppose ω in P (g, J) is such that |∆1|2 = ∆2
2 > 0 and d = 1. Then there exists

σ in P (g, J) such that the real basis e(σ) has the following structure equations

• h3 = (0, 0, 0, 0, 0, 12 − Sign(∆2)34) if ǫ = 0, |∆1|2 = ∆2
2 > 0,

• h9 = (0, 0, 0, 12, 0, 14 − 23) if ǫ = 1 and |∆1|2 = ∆2
2 > 0.

Proof: Suppose that ǫ = 0 and |∆1|2 = ∆2
2 > 0. Note that ∆2 = |C|2 − ĀD by (28). Define

λ > 0 by ∆2 = Sign(∆2)λ
2. Then

Ādω3 = (Aω1 + Cω2)(Āω1 + C̄ω2)− Sign(∆2)λ
2ω2ω2,

which gives that second part if A 6= 0. If D 6= 0 we rewrite similarly.
If A = 0 = D, ∆2 = |B|2 = |C|2 > 0. We pick square roots of B and C, and set

σ1 =
1√
2

(
√

B

C
ω1 + ω2

)

, σ2 =
1√
2

(

−ω1 +

√

C

B
ω2

)

, σ3 = − 1

2
√
BC

ω3.

Then dσ3 = −(1/2)(σ1σ1 − σ2σ2), whence de6 = e12 − e34.
If ǫ = 1 then A = D = 0. If |∆1|2 = ∆2

2 > 0, we take

σ1 = 2

√

B

C
ω1, σ2 = −2ω2, σ3 =

2√
BC

ω3

to get dσ1 = 0, dσ2 = −(1/2)σ2, dσ3 = −(1/2)(σ1σ2 + σ2σ1). q. e. d.

Lemma 20. Suppose ω in P (g, J) is such that |∆1|2 = ∆2
2 > 0, dω3 and dω3 are linearly

independent. Then g is one of h4, h11, h14, with n2 being an invariant to distinguish the different

spaces.

Proof: The proof is similar to the one of the last lemma. As this is the last remaining case
in the classification of all nilpotent complex structures, one may also identify the concerned
algebras using [16] or [17]. q. e. d.

Next, we tabulate the invariants for all nilpotent complex structures according to their
underlying nilpotent algebras.
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n g |∆1|2 −∆2
2 |∆1| |∆2| ǫ |ρ| d

(6, 6) h1 = (0, 0, 0, 0, 0, 0) 0 0 0 0 0 0
(5, 6) h8 = (0, 0, 0, 0, 0, 12) 0 0 0 0 0 1
(5, 6) h3 = (0, 0, 0, 0, 0, 12 + 34) 0 + + 0 0 1
(4, 6) h6 = (0, 0, 0, 0, 12, 13) 0 0 0 0 + 2
(4, 6) h4 = (0, 0, 0, 0, 12, 14 + 23) 0 + + 0 ∗ 2
(4, 6) h2 = (0, 0, 0, 0, 12, 34) + + ∗ 0 ∗ 2
(4, 6) h5 = (0, 0, 0, 0, 13 + 42, 14 + 23) − ∗ + 0 ∗ 2
(4, 5) h9 = (0, 0, 0, 0, 12, 14 + 25) 0 + + 1 0 1
(3, 6) h7 = (0, 0, 0, 12, 13, 23) 0 0 0 1 + 2
(3, 5) h10 = (0, 0, 0, 12, 13, 14) 0 0 0 1 + 2
(3, 5) h11 = (0, 0, 0, 12, 13, 14 + 23) 0 + + 1 + 2
(3, 5) h12 = (0, 0, 0, 12, 13, 24) + + ∗ 1 + 2
(3, 4) h16 = (0, 0, 0, 12, 14, 24) 0 0 0 1 + 2
(3, 4) h13 = (0, 0, 0, 12, 13 + 14, 24) + + ∗ 1 + 2
(3, 4) h14 = (0, 0, 0, 12, 14, 13 + 24) 0 + + 1 + 2
(3, 4) h15 = (0, 0, 0, 12, 13 + 24, 14 + 23) − ∗ + 1 ∗ 2

Table 1: g and parameters in the complex structure equations. In the table, ‘ 0’, ‘+’ and ‘−’
indicates that the value of the corresponding number is zero, positive or negative, while ‘∗’ means
that the value is constrained only by the data to its left in the table. The number d of the right-most
column is the dimension of the linear span of dω3 and dω3.

Theorem 21. A nilpotent complex structure on a six-dimensional nilpotent Lie algebra g is

determined by the data of its nilpotent complex structures, and vice-versa, as indicated in Table

1 below.

Remark 1. It is known that each of the four algebras with a ‘∗’ in the |ρ| column admits
both abelian and non-abelian complex structures [17]. For h5 and h15 this is particularly easy
to see as both may be represented with either dω3 = ω1ω2 or dω3 = ω1ω2. An abelian complex
structures on h2 is given by dω3 = iω1ω1 +ω2ω2 and on h4 by dω3 = iω1ω1 +ω1ω2 +ω2ω2. A
non-abelian nilpotent complex structure on h2 and h4 may be obtained for instance by setting
dω1 = 0 = dω2 and dω3 = ρω1ω2 + Bω1ω2 + B−1ω2ω1 for some B such that |B| 6= 1 with
|ρ|2 = (|B| ±

∣

∣B−1
∣

∣)2 for h4 and (|B| −
∣

∣B−1
∣

∣)2 < |ρ|2 < (|B| +
∣

∣B−1
∣

∣)2 for h2. We note that
any other choice of ρ gives a non-abelian complex structure on h5 and one on h15 if we take
dω2 = ω1ω1 instead.

For the algebras with ∗’s in the other columns, i.e. those with different values of |∆1|2 , ∆2
2,

it is also always possible to find a complex structure such that the smaller of the two is zero.

Lemma 22. If d = 2, ∆1(ω) = 0 = ∆2(ω), then the complex structure is non-abelian.
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Furthermore, ǫ = 0 if and only if there exists σ in P (g, J) such that e(σ) has structure

equations h6 = (0, 0, 0, 0, 13, 14). When ǫ = 1, one of the following three cases occurs.

• If there exists an ω in P (g, J) such that B = 0, there exists a σ such that the equation

for appropriate e(σ) is h10 = (0, 0, 0, 12, 13, 14).

• If there exists an ω in P (g, J) such that B/ρ > 0, a σ may be chosen such that the

equation for appropriate e(σ) is h7 = (0, 0, 0, 12, 13, 23).

• Otherwise σ may be chosen such that the equation for appropriate e(σ) the structure

equations are h16 ∼= (0, 0,−t(12), s(12), 13, 23) and (s+ it)2 = B/ρ.

Proof: A simple exercise in algebra using the expressions (32) and (33), Lemma 13 and Lemma
12(f) shows that if ∆1(ω) = 0 = ∆2(ω) and ρ = 0 then dω3 and dω3 are linearly dependent.
This gives the first statement.

Suppose that ǫ = 0. If in addition A = 0, then ∆1 = −BC = 0. When B = 0 and
|C|2 = |ρ|2. Then we may rearrange to get

dω3 = (ρ(ω1 + (D̄/C̄)ω2)− C(ω1 + (D/C)ω2))ω2.

So choose r, c such that r2 = ρ and c2 = −C and set σ1 = (r/c)(ω1 + (D̄/C̄)ω2), σ2 = 2ω2

and σ3 = ω3/(cr) we get dσ3 = 1
2(σ

1 + σ1)σ2. If C = 0, we note that

dω3 = (ω1 +D/Bω2)(ρω2 +Bω2).

Take r, b such that r2 = ρ and b2 = B and set τ1 = −(r/c)ω2, τ2 = 2(ω1 + D/Bω2), τ3 =
ω3/(bc). Then dσ3 = 1

2(σ
1 + σ1)σ2, again. If D = 0 instead of A = 0, we interchange ω1 and

ω2 and proceed with an argument as above.
Finally, if AD = BC 6= 0, we may write

dω3 = ((|C|2 − ĀD)(ω1 + (D̄/C̄)ω2) + C(ω1 + (D/C)ω2))((A/C)ω1 + ω2).

Since 0 < |ρ|2 =
∣

∣

∣
|C|2 − ĀD

∣

∣

∣

2
/ |C|2 this is equivalent to dσ3 = 1

2(σ
1 + σ1)σ2.

When ǫ = 1, then A = 0 = D. As ∆1 = 0, by definition (32) BC = 0. If B = 0,
then dω3 = (ρω1 − Cω1)ω2, which we may treat precisely as above to get dσ1 = 0, dσ2 =
−1

2σ
1σ1, dσ3 = 1

2(σ
1 + σ1)σ2. If C = 0, pick square roots: r2 = ρ, b2 = B and set σ1 =

ω1, σ2 = −1
2(r/b)ω

2, σ3 = 1
2ω

3. Then dσ3 = σ1(σ2 + σ2) but dσ2 = (r/b)σ1σ1. Writing
r/b = s+ it we get

de1 = 0, de2 = 0, de3 = −te12, de4 = se12, de5 = e13, de6 = e23.

When r/b is real (which happens if and only if ρ/B > 0) this is precisely (0, 0, 0, 12, 13, 23).
When r/b is purely imaginary, we get (0, 0, 12, 0, 13, 23) ∼= h16. Otherwise, replace e4 by
se3 + te4 and divide e3, e5 and e6 with −t to get (0, 0, 12, 0, 13, 23) again. q. e. d.
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Corollary 23. There are no abelian complex structures on hp for p = 6, 7,10, 11,12, 13,14, 16.
Moreover, suppose that ω in P (g, J) has structure constants ǫ, ρ,A,B,C,D. If ǫ = 0 = ρ and

∆1 = 0, then ∆2 ≥ 0 with ∆2 = 0 if and only if dω3 and dω3 are linearly dependent. If ǫ = 1
and ρ = 0 then ∆2

2−|∆1|2 ≥ 0 with equality if and only if dω3 and dω3 are linearly dependent.

Proof: For p = 7, 10, 11 and 12 this was established by Lemma 13. For p = 6 and 16, any
complex structure on hp has ∆1 = 0 = ∆2 by Lemma 15. However, ∆1 = 0 with ρ = 0 = ǫ
implies ∆2 ≥ 0 with equality if and only if dω3 and dω3 are linearly dependent. For p = 13
and 14, ǫ = 1 and |∆1|2 ≥ ∆2

2. The first statement may then be seen to follow from the second
and third.

If ǫ = 0 = ρ = ∆1 = 0 then clearly

2∆2 =

{

|B|2 + |C|2 , if A = 0,
∣

∣ĀB −AC̄
∣

∣

2
/ |A|2 , if A 6= 0.

In either case ∆2 ≥ 0. If ∆2 = 0, dω3 = Dω2ω2 in the first case, and ĀB = AC̄ in the second.
It is now easy to see that the equations of Lemma 12(f) are satisfied in either case.

If ǫ = 1 and ρ = 0
∆2

2 − |∆1|2 = (|B|2 − |C|2) ≥ 0

so equality implies |B| = |C|. Since we may assume that A = 0 when ǫ = 1 this shows that
dω3 and dω3 are linearly dependent via Lemma 12(f). q. e. d.

4 Classification of DGA(g, J)

In this section we calculate the isomorphism class of the six-dimensional complex Lie algebras
f1 = f1(g, J) obtained from a nilpotent algebra g equipped with a complex structure J . Our
aim is to identify the complex Lie algebra structure of f1 for a given g and J . The result will
identify f1 as the complexification of one of the real nilpotent algebras hn.

When a complex structure J is given, recall that the Lie algebra structure on f
1
is defined

by ∂ : g(1,0) ⊕ g∗(0,1) → Λ2(g(1,0) ⊕ g∗(0,1)). If X ∈ g(1,0), Y ∈ g(0,1), ω ∈ g∗(0,1), then ∂ω is the
(2,0)-component of dω and (∂X)(Y ) is the (1,0)-part of the vector −[X,Y ]1,0. Let T1, T2, T3 be
dual to ω1, ω2, ω3. Given the equations (24), the differential ∂ is determined by the following
structure equations.

{

∂ω1 = 0, ∂ω2 = 0, ∂ω3 = ρω12,

∂T1 = ǫω1T2 + (Aω1 +Bω2)T3, ∂T2 = (Cω1 +Dω2)T3, ∂T3 = 0.
(37)

The Schouten bracket is an extension of the following Lie bracket on f1.
{

[T1 • T2] = −ρT3,
[T1 • ω2] = −ǫω1, [T1 • ω3] = −Aω1 − Cω2, [T2 • ω3] = −Bω1 −Dω2.

(38)
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In this section, we ignore at first the Lie algebra structure on f1 and focus on the differential
structure ∂ of f1 seen as a differential graded algebra. Inspecting the differential algebra

structure, we identify the Lie algebra structure of (f1)∗ ∼= f
1
as the complexification of hn

for some n. Taking complex conjugation, we recover the Lie algebra structure on f1 as a
complexification of the same hn. The results are presented in Table 2.

In the presentation below, the subscript C in the identification f1 ∼= (hn)C is suppressed.
Change basis by setting

(η1, η2, η3, η4, η5, η6) := (ω1, T3, ω
2, T2, ω

3, T1). (39)

This gives the following structure equations

∂η1 = ∂η2 = ∂η3 = 0, ∂η4 = Cη12+Dη32, ∂η5 = ρη13, ∂η6 = ǫη14+Aη12+Bη32, (40)

which clearly define a complex 6-dimensional nilpotent Lie algebra.
When the invariants ǫ, ρ,∆1 and ∆2 are given, we shall use the complex structure equations

(40) to identify the Lie algebra underlying f
1
and hence f1. On the other hand, we use the

invariants and the classification in Table 1 to identify the originating Lie algebra g. These are
listed in the right most column of Table 2.

4.1 The cases when ǫ = 0.

By Corollary 14, n2 = 6. Then the potentially non-zero structure equations are

∂η4 = Cη12 +Dη32, ∂η5 = ρη13, ∂η6 = Aη12 +Bη32. (41)

There are six possibilities depending on the rank of X :=
(

A B
C D

)

and ρ.

4.1.1 When ρ = 0.

(1) If rankX = 0 then ∆1 = 0 and ∆2 = 0. It follows that f1 ∼= h1 and g = h1.

(2) If the rank of X is one then ∆1 = 0, ∆2 ≥ 0 and f1 ∼= h8. By Corollary 23, dω3 and dω3

are linearly dependent if and only if ∆2 = 0. Therefore, by Table 1 g = h8 when ∆2 = 0,
and g = h5 when ∆2 6= 0.

(3) If rankX = 2 and ρ = 0 then ∆1 6= 0, ∆2 is unconstrained and f1 ∼= h6. By Table 1,
g = h2, h3, h4 or h5.

This case accounts for the first four items in Table 2.

4.1.2 When ρ 6= 0.

(1) If rankX = 0 then ∆1 = 0 and ∆2 > 0. It follows that f1 ∼= h8 and g = h5.

(2) If rankX = 1 then ∆1 = 0 and ∆2 is unconstrained. Then f1 ∼= h6. However, when the
value of ∆2 varies from zero to non-zero, the algebra g changes from h5 to h6.

(3) If rankX = 2 then ∆1 6= 0, ∆2 is unconstrained and f1 ∼= h7. The invariants |∆2| and
|∆1|2 −∆2

2 help to identify the three possibilities h2, h4, h5 for the algebra g.

19



4.2 The cases when ǫ 6= 0.

We assume that ǫ = 1, A = D = 0. Then the potentially non-zero structure equations are

∂η4 = Cη12, ∂η5 = ρη13, ∂η6 = η14 +Bη32. (42)

4.2.1 When ρ = 0.

There are three cases (discarding B = 0 = C).

(1) If C = 0 then ∆1 = 0, ∆2 > 0. It follows that f1 ∼= h3 and g = h15.

(2) If B = 0 then ∆1 = 0 and ∆2 > 0. Then f1 ∼= h17 = (0, 0, 0, 0, 12, 15) and g = h15.

(3) If BC 6= 0 then f1 ∼= h9. As ∆1 6= 0, by Corollary 23, ∆2
2− |∆1|2 ≥ 0 with equality if and

only if dω3 and dω3 are linearly dependent. It yields two algebras for g, namely h9 and
h15.

4.2.2 When ρ 6= 0.

There are four cases for f1:

(1) If B = 0 = C then f1 ∼= h6. As ∆1 = 0, ∆2 < 0, and g = h15.

(2) If C = 0, B 6= 0 then f1 ∼= h4. As ∆1 = 0 but ∆2 is unconstrained, by Table 1, g could
be one of h7, h16 or h15.

(3) If B = 0, C 6= 0, then f1 ∼= h10. As ∆1 = 0, ∆2 is unconstrained, we get g = h10 if
∆2 = 0. Otherwise, we get g = h15.

(4) If BC 6= 0 then f1 ∼= h11. ∆1 6= 0, ∆2 is unconstrained. An inspection of Table 1 yields
the five different algebras h11, h12, h13, h14 and h15.

To recap all the computations, we have used the invariants of the complex structural
equations to identity both the underlying real Lie algebra and the structure of the Lie algebra
f1. At the cost of being repetitive, we recall in the following how the invariants are defined.

Theorem 24. Suppose that g is a real six-dimensional nilpotent algebra with a nilpotent com-

plex structure J . Then there exists a basis ω1, ω2, ω3 for g∗(1,0) such that

{

dω1 = 0, dω2 = ǫω1ω1,

dω3 = ρω1ω2 +Aω1ω1 +Bω1ω2 + Cω2ω1 +Dω2ω2,
(43)

where ǫ, ρ ∈ {0, 1}. Moreover, let

△1 = AD −BC; △2 =
1

2
[|B|2 + |C|2 −AD̄ − ĀD − |ρ|2];

d = dimC〈dω3, dω̄3〉, X =
(

A B
C D

)

be the invariants associated to the structure equations. Given a real algebra g in the right-

most column, Table 2 lists constraints on the values of the invariants that can be realized by
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f1 ǫ |ρ| rankX |∆1| |∆2| |∆1|2 −∆2
2 d |B| |C| g

h1 0 0 0 0 0 0 0 0 0 h1
h8 0 0 1 0 0 0 1 ∗ ∗ h8
h8 0 0 1 0 + − 2 ∗ ∗ h5
h6 0 0 2 + ∗ − 2 ∗ ∗ h2, h3, h4, h5
h8 0 + 0 0 + − 2 0 0 h5
h6 0 + 1 0 0 0 2 ∗ ∗ h6
h6 0 + 1 0 + − 2 ∗ ∗ h5
h7 0 + 2 + + + 2 ∗ ∗ h2
h7 0 + 2 + + 0 2 ∗ ∗ h4
h7 0 + 2 + ∗ − 2 ∗ ∗ h5
h3 + 0 1 0 + − 2 + 0 h15
h17 + 0 1 0 + − 2 0 + h15
h9 + 0 1 + + 0 1 + + h9
h9 + 0 2 ∗ 0 − 2 + + h15
h6 + + 0 0 + − 2 0 0 h15
h4 + + 1 0 0 0 2 |ρ| 0 h7, h16
h4 + + 1 0 + − 2 + 0 h15
h10 + + 1 0 0 0 2 0 |ρ| h10
h10 + + 1 0 ∗ − 2 0 + h15
h11 + + 2 + ∗ + 2 + + h12, h13
h11 + + 2 + + 0 2 + + h11, h14
h11 + + 2 + + − 2 + + h15

Table 2: f1 as a function of the parameters in the complex structure equations.

a complex structure J on g, as well as the relevant isomorphism class of the Lie algebra f1 in

the left-most column. A “ ∗” indicates an un-constrained invariant.

Ignoring that the same algebra f1 occurs for distinct complex structures or different alge-
bras, we get

Theorem 25. Given a six-dimensional nilpotent algebra g, the associated Lie algebra f1(g, J)
for all possible nilpotent complex structure J are given in the rows of Table 3.

One observes for instance that for g = h15 no less than seven different isomorphism classes
are realized for f1(g, J) as J runs through the space of complex structures on g. This is a
yet another manifestation of the “jumping phenomenon” frequently seen in complex structure
deformation theory.

Note that the classification of nilpotent Lie algebras in dimension 6 (see [10, 13]) over
C (or R) has as a consequence that structure constant may be taken to always be integers,
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and in particular real. Thus any six-dimensional complex nilpotent algebra is self-conjugate.
Then Proposition 11 implies that the complex isomorphism of Lie algebras between f1 and
hn generates a C-E compatible linear isomorphism O : hh → h∗n such that DGA(g, J) and
DGA(hn, O) are isomorphic as differential Gerstenhaber algebras. In other words

Theorem 26. Given a six-dimensional nilpotent algebra g with a nilpotent complex structure

J , there exists a differential Gerstenhaber algebra DGA(h, O) quasi-isomorphic to DGA(g, J)
if and only if the pair (g, h) is checked in Table 3.

g\f1(g, J) h1 h3 h4 h6 h7 h8 h9 h10 h11 h17
h1 X

h2 X X

h3 X

h4 X X

h5 X X X

h6 X

h7 X

h8 X

h9 X

h10 X

h11 X

h12 X

h13 X

h14 X

h15 X X X X X X X

h16 X

Table 3: Isomorphism class of f1 against underlying real algebra g.

The algebra h17 appears as a candidate for f1 in the case g = h15. However h17 admits no
symplectic structure. This demonstrates that the differential Gerstenhaber algebra DGA(h, O)
does not necessarily arise from a symplectic structure, as remarked at the end of the proof of
Proposition 11. The issue of whether DGA(h, O) is or not coming from a symplectic structure
will be deferred to future analysis.

5 Application

Once we identify the Lie algebra structure for f1(g, J), we have in effect identified the structure
of DGA(g, J). Inspired by the concept of weak mirror symmetry [12], one could well look for
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seek nilpotent algebras h with symplectic structure Ω whose induced differential Gerstenhaber
algebra DGA(h,Ω) is quasi-isomorphic to DGA(g, J). We shall deal with such a general
question in the future. At present, we take advantage of the results in the preceding sections
to address a more focused question.

Supposing that (J,Ω) is a pseudo-Kähler structure on a six-dimensional real nilpotent
algebra g, when will there be a quasi-isomorphism

DGA(g, J) ⇋ DGA(g,Ω) ? (44)

Such pseudo-Kähler structures can be interpreted as weak self-mirrors, a manifestation of
which - in dimension 4 - was studied in [15].

In view of Lemma 9, a quasi-isomorphism is in the present situation equivalent to an
isomorphism on the degree-one level:

(f1(g, J), [− • −]) ∼= (g∗C, [− • −]Ω) ∼= (gC, [− • −]).

Recall that a complex structure can be part of a pseudo-Kähler structure on a nilpotent algebra
only if it is a nilpotent complex structure [4]. In view of Table 2, a solution (g, J,Ω) for the
question (44) could possibly exist only if g is one of the following:

h1, h6, h8, h9, h10, h11. (45)

Below we extract from Table 2 the invariants for the candidate complex structures J for these
algebras.

f1 ǫ |ρ| rankX |∆1| |∆2| |∆1|2 −∆2
2 d |B| |C| g

h1 0 0 0 0 0 0 0 0 0 h1
h6 0 + 1 0 0 0 2 ∗ ∗ h6
h8 0 0 1 0 0 0 1 ∗ ∗ h8
h9 + 0 1 + + 0 1 + + h9
h10 + + 1 0 0 0 2 0 |ρ| h10
h11 + + 2 + + 0 2 + + h11

In the next few sections, we shall take the above complex structures, and seek symplectic
structures that realize the quasi-isomorphism (44). We shall analyze pseudo-Kähler structures
on h6, h8, and h11 in details, merely outline the discussion for h9 and h10, and skip the trivial
case h1 completely.

5.1 h6

Given the invariants, the reduced structure equations (25) are

dω1 = 0, dω2 = 0, dω3 = ω1ω2 +Aω1ω1 +Bω1ω2 +Cω2ω1 +Dω2ω2. (46)
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Since ∆1 = 0 there exists a constant λ such that either

dω3 = ω1ω2 + (ω1 + λω2)(Aω1 +Bω2) or dω3 = ω1ω2 + (λω1 + ω2)(Cω1 +Dω2).

The condition ∆2 = 0 implies that in either case, there exists a change of complex basis so
that the structure equations transform to

dω1 = 0, dω2 = 0, dω3 = ω1ω2 + ω1ω2. (47)

It follows that the structure equations for (f1, [− • −], ∂) are

[T1, T2] = −T3, [T2, ω
3] = −ω1, ∂T1 = ω2 ∧ T3, ∂ω3 = ω1 ∧ ω2. (48)

Due to [6, Lemma 3.4], given the complex structure equations, any (1, 1)-form of a com-
patible symplectic structure is given by

Ω = a1ω
1ω1 + b2ω

2ω2 + a2ω
1ω2 + a2ω

1ω2 + a3(ω
1ω3 + ω1ω3),

where a1 and b2 are imaginary numbers and a3 is a real number. This 2-form is non-degenerate
if and only if b2 6= 0 and a3 6= 0.

Setting ω1 = e2 + ie3, ω2 = −1
2(e

1 + ie4) and ω3 = e5 + ie6, reduces the complex structure
equation to

de5 = e12, de6 = e13. (49)

Set a1 = i
2a, b2 = 2ib, a2 = c + ik and a3 = ℓ/2 with b 6= 0 and ℓ 6= 0. Then the symplectic

structure is
Ω = ae23 + be14 + c(e12 − e34)− k(e13 + e24) + ℓ(e25 + e36).

Using the contraction with Ω as an isomorphism from h6 and h∗6, we obtain a Lie bracket on
h∗6 such that

b[e4, e5]Ω = e2, b[e4, e6]Ω = e3, bl[e5, e6]Ω = (ce2 − ke3). (50)

It is now apparent that the linear map

T1 7→ e5 +
k

ℓ
e4, T2 7→ be4, T3 7→ e2, ω1 7→ −e3, ω2 7→ e1, ω3 7→ e6 +

c

ℓ
e4. (51)

yields an isomorphism of differential Gerstenhaber algebras.
Note that the isomorphism exists so long as the symplectic form Ω and the designated

complex structure J together form a pseudo-Kähler structure.

Proposition 27. Let J be any integrable complex structure on h6. Let Ω be any symplec-

tic form on h6 of type (1, 1) with respect to J . Then the differential Gerstenhaber algebras

DGA(h6, J) and DGA(h6,Ω) are isomorphic.

24



5.2 h8

In this case, the invariants yield the following structure equations.

dω1 = 0, dω2 = 0, dω3 = Aω1ω1 +Bω1ω2 + Cω2ω1 +Dω2ω2, (52)

where the arrays (A,B) and (C,D) are linearly dependent but are not identically zero. After
a change of complex coordinates, they could be reduced to

dω1 = 0, dω2 = 0, dω3 = ω1ω1. (53)

The induced structure equations for f1 are

[T1, ω
3] = −ω1, ∂T1 = ω1 ∧ T3. (54)

By choosing
ω1 = e1 + ie2, ω2 = e3 + ie4, ω3 = −2(e5 + ie6), (55)

then the real structure equation is indeed the standard one for h8:

de6 = e1 ∧ e2. (56)

Again, due to [6, Lemma 3.4] given the complex structure equations, any symplectic (1, 1)-
form is given by

Ω = ae12 + be34 + x(e13 + e24)− y(e23 − e14)− u(e15 + e26) + v(e25 − e16),

where a, b, x, y, u, v are real numbers. Ω is non-degenerate when b 6= 0 and u2 + v2 6= 0. Then
the induced Lie bracket on h∗8 is given by

[−ue5 − ve6 • ve5 − ue6]Ω = −(ue2 + ve1).

Since u2 + v2 6= 0, it is an elementary exercise to find isomorphism from DGA(h8, J) to
DGA(h8,Ω). For instance, when v 6= 0, one could construct an isomorphism so that

T1 7→ −ue5 − ve6, ω3 7→ ve5 − ue6, ω1 7→ ue2 + ve1. (57)

As in the last section, the computation demonstrates more than simply the existence of a
self-mirror pair of complex and symplectic structure.

Proposition 28. Let J be any integrable complex structure on h8. Let Ω be any symplec-

tic form on h8 of type (1, 1) with respect to J . Then the differential Gerstenhaber algebras

DGA(h8, J) and DGA(h8,Ω) are isomorphic.
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5.3 h9

The complex structure equations are given by

dω1 = 0, dω2 = ω1ω1, dω3 = Bω1ω2 + Cω2ω1,

where B 6= 0 and C 6= 0. Therefore, we can normalize to

dω1 = 0, dω2 = −1

2
ω1ω1, dω3 =

1

2
ω1ω2 +

1

2
ω2ω1, (58)

Choose
ω1 = e1 + ie2, ω2 = e4 + ie5, ω3 = e6 + ie3, (59)

to the effect that Ω = e13 − e26 − e45 is a pseudo-Kähler form so that f1(h9, J) is isomorphic
to (h∗9, [− • −]Ω).

5.4 h10

The complex structure equation is given by

dω1 = 0, dω2 = ω1ω1, dω3 = ω1ω2 + ω2ω1, (60)

In this case, when we choose

ω1 = e1 + ie2, ω2 = e3 + ie4, ω3 = e5 + ie6,

then Ω = i(e16 − e25 − e34) is a pseudo-Kähler form such that f1(h10, J) is isomorphic to
(h∗10, [− • −]Ω).

5.5 h11

This case requires a careful analysis. We show that for every pseudo-Kähler pair (J,Ω) on

h11 the differential Gerstenhaber algebras DGA(h11, J) and DGA(h11,Ω) are non-isomorphic.
To this end we shall suppose that Φ: DGA(h11, J) → DGA(h11,Ω) is a quasi-isomorphism of
differential Gerstenhaber algebras obtained from a pseudo-Kähler pair (J,Ω) and establish a
contradiction.

Note that h11 is distinguished by the data: n = (3, 5) and |∆1|2 = ∆2
2 > 0 for any J , see

Lemma 13 and Lemma 19. Furthermore, for any complex structure on h11 we may always
choose a basis of (1, 0)-forms such that

dω1 = 0, dω2 = ω1ω1, dω3 = ω1ω2 +Bω1ω2 + Cω2ω1. (61)

Choosing ω this way, the constraints n2 = 5 and |∆1|2 = ∆2
2 > 0 on the invariants are

equivalent to B being real, |C|2 = (B − 1)2 and BC 6= 0. We shall use this extensively below.
Precisely these conditions on B and C give

d((B − 1)ω3 + Cω3) = ((B − 1)ω1 + Cω1)(ω2 + ω2), (62)
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whence

V1(h11) = 〈ω1, ω1, ω2 + ω2〉, V2(h11) = 〈ω1, ω1, ω2, ω2, (B − 1)ω3 +Cω3〉. (63)

Solving the equations dΩ = 0 and Ω = Ω̄ in the space of (1, 1)-forms gives

Ω = a1ω
1ω1 + a3(B + 1)ω2ω2 + a2ω

1ω2 − ā2ω
2ω1 + a3(ω

1ω3 + ω3ω1), (64)

where a1+ ā1 = 0 = a3+ ā3 and a1a3(B+1) 6= 0 if and only if Ω is non-degenerate1. Therefore
Ω(T1) = a1ω

1 + a2ω
2 + a3ω

3, Ω(T2) = −ā2ω1 + a3(B + 1)ω2, Ω(T3) = a3ω
1 and

ω1 = − 1

a3
Ω(T̄3), ω2 = − 1

(B + 1)a3
Ω

(

T̄2 −
a2
a3
T̄3

)

,

ω3 = − 1

a3
Ω

(

T̄1 +
ā2

(B + 1)a3
T̄2 −

(B + 1)a1a3 + |a2|2
(B + 1)a23

T̄3

)

.

Now the brackets are easily computed

[ω2 • ω3]Ω = − 1

(B + 1)a3
ω1, [ω2 • ω3]Ω = − 1

(B + 1)a3

(

C̄ω1 +Bω1
)

,

[ω3 • ω3]Ω = − 1

(B + 1)a23

(

(a2 + ā2C̄)ω
1 − (ā2 + a2C)ω1

)

− B + 1

a3
(ω2 + ω2),

and the lower central series for (h∗11, [· • ·]Ω) is

(h∗11)1 = 〈ω1, ω1, ω2 + ω2〉, (h∗11)2 = 〈(B − 1)ω1 + Cω1〉, (h∗11)3 = {0},

while the ascending series is

D1(h∗11) = 〈ω1, ω1〉, D2(h∗11) = 〈ω1, ω1, ω2, ω2〉, D3(h∗11) = h∗11.

On the other hand, the structure equations for DGA(h11, J) given by (61) are

∂T1 = ω1 ∧ T2 +Bω2 ∧ T3, ∂T2 = Cω1 ∧ T3, ∂ω3 = ω1 ∧ ω2,

[T1 • T2] = −T3, [T1 • ω2] = −ω1, [T1 • ω3] = −C̄ω2, [T2 • ω3] = −Bω1.

Writing f1 for the space of degree one elements in DGA(h11, J) we have

V1(f
1) = 〈T3, ω1, ω2〉, V2(f

1) = 〈T2, T3, ω1, ω2, ω3〉,
(f1)1 = 〈T3, ω1, ω2〉, (f1)2 = 〈ω1〉, (f1)3 = {0},

D1(f1) = 〈ω1, T3〉, D2(f1) = 〈ω1, T3, ω
2, T2〉, D3(f1) = f1.

1This also means: nilpotent complex structures on h11 with B = −1 have no compatible symplectic forms.
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By Proposition 10, any quasi-isomorphism Φ: DGA(h11, J) → DGA(h11,Ω) must be an
isomorphism of DGAs and therefore maps Vk(f

1) isomorphically onto Vk(h11), (f
1)j isomorphi-

cally onto (h∗11)j and similarly for the ascending sequences. It follows that complex constants
φmn exist such that

Φ(ω1) = φ11((B − 1)ω1 + Cω1),

Φ(T3) = φ21ω
1 + φ22ω

1,

Φ(ω2) = φ31ω
1 + φ32ω

1 + φ33(ω
2 + ω2),

Φ(T2) = φ41ω
1 + φ42ω

1 + φ43ω
2 + φ44ω

2,

Φ(ω3) = φ51ω
1 + φ52ω

1 + φ53ω
2 + φ54ω

2 + φ55((B − 1)ω3 + Cω3),

Φ(T1) = φ61ω
1 + φ62ω

1 + φ63ω
2 + φ64ω

2 + φ65ω
3 + φ66ω

3.

More detailed information is now obtained by applying Φ to the structure equations. From
d(Φ(T2)) = CΦ(ω1) ∧ Φ(T3) we get

(φ43 − φ44) = Cφ11((B − 1)φ22 − Cφ21). (65)

The ((B − 1)ω1 + Cω1)(ω2 + ω2)-component of d(Φ(ω3)) = Φ(ω1) ∧ Φ(ω3) gives

φ55 = φ11φ
3
3. (66)

Eliminating φ65 and φ
6
6 in the equations derived from d(Φ(T1)) = Φ(ω1)∧Φ(T2)+BΦ(ω2)∧Φ(T3)

leads to Cφ11(φ
4
3 − φ44) + φ33((B − 1)φ22 − Cφ21) = 0. The result of inserting (65) in this is

((Cφ11)
2 + φ33)((B − 1)φ22 − Cφ21) = 0. Since Φ is a linear isomorphism Φ(ω1) and Φ(T3) are

linearly independent, and so
φ33 = −(Cφ11)

2. (67)

The equation [Φ(T1) • Φ(ω2)]Ω = −Φ(ω1) is equivalent to

C(B + 1)a3φ
1
1 = φ33(Cφ

6
5 − (B − 1)φ66) (68)

while the ω2 + ω2-component of [Φ(T1) • Φ(ω3)]Ω = −C̄Φ(ω2) gives

a3C̄φ
3
3 = (B + 1)φ55(Cφ

6
5 − (B − 1)φ66). (69)

Substituting first (66), and then equations (68) and (67) in (69) yields

a3 |C|2 C(φ11)
2 = −a3(B + 1)2C(φ11)

2.

Since |C|2 = (B − 1)2, this implies a3Cφ
1
1 = 0 and so establishes our contradiction: if a3 = 0

then Ω is degenerate, C = 0 cannot be realized on h11, and if φ11 = 0 then Φ is no isomorphism.
q. e. d.
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5.6 Conclusion

The computation in the past few paragraphs is summarized in the following observation.

Theorem 29. A six-dimensional nilpotent algebra g admits a pseudo-Kähler structure (J,Ω)
such that DGA(g, J) is quasi-isomorphic to DGA(g,Ω) if and only if g is one of h1, h6, h8, h9
and h10.

Remark 2. In this paper, we have dealt exclusively with Lie algebras. However, it is possible
to extend the whole discussion to nilmanifolds M = G/Γ, i.e. quotients of simply connected
nilpotent Lie groupsG with respect to co-compact lattices Γ. Indeed, the de Rham cohomology
of M is given by invariant forms on G [14]. Therefore, when M has an invariant symplectic
structure, the invariant differential Gerstenhaber algebra DGA(g,Ω) provides a minimal model
for the differential Gerstenhaber algebra over the space of sections of the exterior differential
forms on the nilmanifold M .

Similarly, for nilpotent complex structures on nilmanifolds there are partial results proving
that the space of invariant sections is a minimal model of the Dolbeault cohomology with
coefficients in the holomorphic tangent sheaf [2] [3] [4]. Given such a result for particular class
of complex structures (e.g. abelian complex structure [3]), Theorem 29 can be paraphrased as a
statement about quasi-isomorphisms of DGAs over nilmanifolds with pseudo-Kähler structures.

Acknowledgments. We are grateful to S. Chiossi for reading the manuscript and for his
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