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Abstract
It is shown that an HKT space with closed parallel potential 1-form has

D(2, 1; −1) symmetry. Every locally conformally hyper-Kähler manifold

generates this type of geometry. The HKT spaces with closed parallel potential

1-form arising in this way are characterized by their symmetries and an

inhomogeneous cubic condition on their torsion.

PACS numbers: 02.40.Ky, 12.60.Jv

Introduction

HKT geometry is a metric geometry with multiple complex structures which arises in various

physical theories, including supersymmetric nonlinear sigma models, type IIA string theory,

and black hole moduli. Good references for the physical background are [5] and [8] and the

citations therein. For a mathematical approach, we refer the reader to [4]. Since the geometry

is typically hyper-Hermitian and non-Kählerian, it is of great interest and challenging to find

potential functions [8].

In the context of multi-particle quantum mechanics, Michelson and Strominger studied

the phenomenon of superconformal symmetry. Motivated by application to dynamics of black

holes [9], they demonstrated in [8] a relation between a D(2, 1; α) superconformal symmetry

and classical differential geometry on HKT manifolds. Given supersymmetry such as this,

potential functions are already found [12, 13].

On the other hand, a maximum principle argument shows that potential functions could

not exist on compact manifolds [4]. We therefore replace locally defined potential functions by

a globally defined closed 1-form in our consideration (see definition 4). We focus on the case
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when the potential 1-form is parallel with respect to the HKT connection in this investigation.

Combining corollary 9 and proposition 11, we obtain the following result in this direction.

If V is the dual vector field of a closed parallel potential 1-form θ of the HKT space with

metric ĝ and hypercomplex structures I1, I2, I3, then

dθ = 0, LV ĝ = 0, LIrV ĝ = 0, LIrV Is = ǫrstIt .

Conversely, if there is such a vector field on an HKT space, then the dual 1-form is a parallel

potential function.

Due to the theorem of Michelson and Strominger [8], this type of symmetry is a degenerate

version of D(2, 1; α) symmetry, namely D(2, 1; −1). Since the above symmetry makes sense

on the HKT space,we shall refer to it as D(2, 1; −1) symmetry in this paper despite an apparent

singularity that occurs in the structural equations [8, (3.44)]. Kac [7, proposition 2.5.4] shows

that for α �= −1, 0,∞, the superalgebrasD(2, 1; α) are simple. On the other hand the algebras

D(2, 1; −1),D(2, 1; 0) and D(2, 1; ∞) have a decoupled SU(2) and share many features. In

this paper, we interpret D(2, 1; −1) symmetry after Michelson and Strominger’s theorem

[8, (3.56)]. A precise description is given in definition 10. Through a construction, we shall

prove the following observation.

If (M, g, I1, I2, I3) is a locally conformally hyper-Kähler manifold whose Lee form is

parallel with respect to the Levi-Civita connection, then there exists an HKT metric ĝ such

that the Lee form of g is a potential 1-form of ĝ, and is parallel with respect to the HKT

connection of ĝ.

As a result, in potential theory, the above observation supplements what is already known

for HKT spaces with D(2, 1; α) symmetry when α �= −1, 0,∞. From a geometric perspective,

it implicitly links HKT geometry to Weyl geometry, quarternionic geometry and Sasakian

geometry through the theory of locally conformally hyper-Kähler manifolds.

We conclude with a discussion on how to distinguish the class of HKT spaces associated

with locally conformally hyper-Kähler manifolds.

Throughout this paper we adopt the conventions in [1, 3]. Here we warn casual readers

that the metrics concerned for locally conformally hyper-Kähler structure and its associated

HKT structure are in different conformal classes.

1. HKT-manifolds

A Hermitian structure on a smooth manifold M consists of a Riemannian metric ĝ and an

integrable complex structure J such that for any tangent vectors X and Y on the manifold M,

ĝ(JX, JY ) = ĝ(X, Y ).

A triple of integrable complex structure Ir , r = 1, 2, 3, forms a hypercomplex structure on the

manifold M if they satisfy the quaternion relations:

I 2
1 = I 2

2 = I 2
3 = −I, I1I2 = I3 = −I2I1.

If each complex structure Ir with the metric ĝ forms a Hermitian structure, then

(M, ĝ, I1, I2, I3) is said to be a hyper-Hermitian manifold.

We denote by F̂ r the fundamental 2-form associated with the complex structure Ir and

we observe the convention

F̂ r(X, Y ) = ĝ(IrX,Y ).

For a k-form ω let

(Irω)(X1, . . . , Xk) = (−1)kω(IrX1, . . . , IrXk). (1)
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The complex operators dr, ∂r and ∂̄r are respectively defined as

drω = (−1)kIr dIrω for a k-form ω, ∂r = 1
2
(d + idr), ∂̄r = 1

2
(d − idr).

Definition 1. A linear connection D with torsion tensor T D on M is called hyper-Kähler with

torsion if

(i) it is hyper-Hermitian: DI1 = DI2 = DI3 = 0,Dg = 0 and

(ii) the tensor field c defined by c(X, Y,Z) = ĝ(T D(X, Y ), Z) is a 3-form.

Such a connection is denoted as HKT by physicists [5, 8] and we shall preserve this name.

Among mathematicians, the HKT connection is also known as a Bismut connection for each

of the complex structures Ir [3]. Using the characterization of the Bismut connection and

the fact that it is uniquely associated with a Hermitian structure, one obtains the following

equivalent observation [4, 5]:

Proposition 2. On any hyper-Hermitian manifold (M, ĝ, I1, I2, I3), the following two

conditions are equivalent:

(i) d1F̂ 1 = d2F̂ 2 = d3F̂ 3.

(ii) ∂1(F̂ 2 + iF̂ 3) = 0.

An HKT-connection exists if and only if one of the above two conditions is satisfied. When it

exists, it is unique.

As demonstrated in [8], an efficient way for constructing examples of HKT structures is

the use of HKT potentials. These are generalizations of hyper-Kähler potentials [4].

Definition 3. Let (M, ĝ, I1, I2, I3) be an HKT manifold. A (possibly locally defined) function

µ : U ⊆ M → R is a potential function for the HKT structure if

F̂ 1 = 1
2
(dd1 + d2d3)µ, F̂ 2 = 1

2
(dd2 + d3d1)µ, F̂ 3 = 1

2
(dd3 + d1d2)µ. (2)

Alternatively, the potential function µ is characterized by

F̂ 2 + iF̂ 3 = 2∂1I2∂̄1µ. (3)

Potential functions do not always exist. When one exists, the torsion form of an HKT

structure deriving from a potential µ is

c = − 1
2
d1d2d3µ = −d1F̂ 1 = −d2F̂ 2 = −d3F̂3.

As an example, the function log
∑

i |zi|
2 is an HKT potential on C

2n\{0}. Moreover, it

descends locally to the Hopf manifold S1 × S4n−1.

This should be noted that like Kähler potentials, HKT potentials could not exist globally

on compact manifolds due to a typical maximum principle argument [4]. Moreover, a generic

HKT manifold is non-Kählerian and the ∂∂̄-lemma is not applicable. Therefore, we propose

to develop a global version of potential theory through the Poincaré lemma for 1-forms.

Definition 4. A 1-form ω is a potential 1-form for an HKT manifold (M, ĝ, I1, I2, I3) if the

fundamental 2-forms are given by

F̂ 1 = 1
2
(dω1 + d2ω3), F̂ 2 = 1

2
(dω2 + d3ω1), F̂ 3 = 1

2
(dω3 + d1ω2), (4)

where ωr := Irω. A potential 1-form is closed if dω = 0.

In such terminology, the HKT structure on Hopf manifolds has a globally defined potential

1-form. Implicitly, Poincaré lemma provides the locally defined potential functions whenever

a potential 1-form exists and is closed. Moreover, the torsion 3-form is now given by

c = − 1
2
d1d2ω3 = − 1

2
d2d3ω1 = − 1

2
d3d1ω2. (5)
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2. Parallel potential forms

In this section, we analyse the structure of HKT spaces with parallel potential 1-forms. Since

HKT connections are Riemannian connections, vector fields dual to parallel potential forms

are parallel. Therefore, briefly, we extend our investigation to parallel vector fields in general

before focusing again on potential 1-forms and their dual vector fields.

Lemma 5. Let V be a vector field on an HKT space. The following statements are equivalent:

(i) V is parallel with respect to the HKT connection D.

(ii) V, I1V, I2V, I3V are parallel with respect to the HKT connection D.

(iii) V, I1V, I2V, I3V are Killing vector fields with respect to the HKT metric.

Proof. Since the HKT connection preserves the hypercomplex structure, the equivalence

between the first two statements is obvious.

For any vector fields W,Y,Z, as D is a metric connection, we have the identity

LW ĝ(Y, Z) = ĝ(DY W,Z) + ĝ(Y,DZW) + ĝ(T D(W, Y ), Z) + ĝ(Y, T D(W,Z))

= ĝ(DY W,Z) + ĝ(Y,DZW) + c(W, Y,Z) + c(Y,W,Z).

Since c is totally skew, we have

LW ĝ(Y, Z) = ĝ(DY W,Z) + ĝ(Y,DZW). (6)

Applying this identity to the vector fields V, I1V, I2V, I3V and using the fact that the HKT

connection preserves the hypercomplex structure, we derive the implication from the second

statement to the third.

Conversely, if the vector fields V, I1V, I2V, I3V are Killing, we apply the above identity

to V to conclude that the symmetric part of DV is equal to zero. Let β be the skew-symmetric

part of DV , i.e., DV = β. Since the connection preserves the complex structures, the above

identity is equivalent to

ĝ(DY (IrV ),Z) = ĝ(IrDY V,Z) = −β(Y, IrZ). (7)

On the other hand, as the vector fields are Killing,

ĝ(DY (IrV ),Z) + ĝ(DZ(IrV ), Y ) =
(

L(IrV )ĝ
)

(Y,Z) = 0. (8)

Therefore, β(Y, IrZ) + β(Z, IrY ) = 0. Then

β(Y, I1Z) = −β(Z, I1Y ) = β(I1Y,Z) = β(I2I3Y,Z)

= β(I3Y, I2Z) = β(Y, I3I2Z) = −β(Y, I1Z).

Therefore, β = 0. This implies that DV = 0. �

Lemma 6. Suppose that V is a parallel vector field with respect to the HKT connection D.

Let θ̂ be its dual 1-form with respect to ĝ. Then

dθ̂ = ιV c, dθ̂r = ιIrV c. (9)

Proof. Let 0 � m � 3. Let I0 denote the identity endomorphism on tangent space. For any

vector fields X and Y,

dθ̂m(X, Y ) = X(θ̂m(Y )) − Y (θ̂m(X)) − θ̂m([X,Y ])

= X(ĝ(ImV, Y )) − Y (ĝ(ImV,X)) − g(ImV, [X,Y ])

= ĝ(ImV,DXY ) − ĝ(ImV,DY X) − ĝ(ImV, [X,Y ])

= ĝ(ImV, T D(X, Y )) = c(ImV,X, Y ). �
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Lemma 7. Suppose that V is a parallel vector field with respect to the HKT connection D. It

is parallel with respect to the Levi-Civita connection ∇̂ of the metric ĝ if and only if ιV c = 0.

Proof. This is due to the identity ĝ(∇̂XV, Y ) = ĝ(DXV, Y ) + c(X, V, Y ) = c(X, V, Y ). �

Next we investigate the behaviour of the vector fields V, I1V, I2V, I3V with respect to

the hypercomplex structure {I1, I2, I3}.

Lemma 8. If −2θ̂ is a closed potential 1-form and is parallel with respect to the HKT

connection, then LV Ir = 0 and LIrV Is = ǫrstIt .

Proof. Since the vector fields V, I1V, I2V, I3V are Killing vector fields, it suffices to show

that LV F̂ r = 0, and LIrV F̂ s = ǫrstF̂ t .

In the following computation, we use the results in lemma 6 extensively. For any tangent

vectors X and Y,

ιV dF̂ r (X, Y ) = (ιV Irc)(X, Y ) = −c(IrV, IrX, IrY ) = −dθ̂r(IrX, IrY ) = −Irdθ̂r(X, Y ).

On the other hand, ιV F̂ r (X) = ĝ(IrV,X) = θ̂r(X). Therefore,

LV F̂ r = ιV dF̂ r + dιV F̂ r = −Irdθ̂r + dθ̂r .

As the torsion form is of type (1, 2) + (2, 1) with respect to all Ir ,

c(Z,X, Y ) = c(Z, IrX, IrY ) + c(IrZ,X, IrY ) + c(IrZ, IrX,Y ). (10)

Substituting Z by IrV and applying lemma 6, we have

dθ̂r(X, Y ) = Irdθ̂r(X, Y ) − dθ̂(X, IrY ) − dθ̂(IrX,Y ).

Therefore, LV F̂ r (X, Y ) = −dθ̂(X, IrY ) − dθ̂(IrX,Y ). As θ̂ is closed, LV F̂ r = 0. Next,

ιIrV F̂ r(X) = F̂ r (IrV,X) = ĝ
(

I 2
r V,X

)

= −θ̂ (X). (11)

With lemma 6, we have

ιIrV dF̂ r(X, Y ) = ιIrV Irc(X, Y ) = −c
(

I 2
r V, IrX, IrY

)

= c(V, IrX, IrY ) = Ir dθ̂(X, Y ).

(12)

Therefore,

LIrV F̂ r = ιIrV dF̂ r + dιIrV F̂ r = Ir dθ̂ − dθ̂ . (13)

Since dθ̂ = 0,LIrV F̂ r = 0. Finally,

ιI1V F̂ 2(X) = F̂ 2(I1V,X) = ĝ(I2I1V,X) = −θ̂3(X). (14)

By lemma 6 and (10),

ιI1V dF̂ 2(X, Y ) = ιI1V I2c(X, Y ) = I2c(I1V,X, Y ) = c(I3V, I2X, I2Y )

= c(I3V, I3I2X, I3I2Y ) + c
(

I 2
3 V, I2X, I3I2Y

)

+ c
(

I 2
3 V, I3I2X, I2Y

)

= c(I3V, I1X, I1Y ) + c(V, I2X, I1Y ) + c(V, I1X, I2Y )

= I1dθ̂3(X, Y ) + dθ̂(I2X, I1Y ) + dθ̂(I1X, I2Y ). (15)

Therefore,

LI1V F̂ 2(X, Y ) = −dθ̂3(X, Y ) + I1dθ̂3(X, Y ) + dθ̂(I2X, I1Y ) + dθ̂(I1X, I2Y ). (16)

On the other hand, if −2θ̂ is a potential 1-form, then dθ̂ = 0. It follows that

LI1V F̂ 2 = −dθ̂3 + I1 dθ̂3.

In addition,

F̂ 3 = 1
2
(d(−2θ̂3) + d1(−2θ̂2)) = −dθ̂3 + I1 dI1I2θ̂ = −dθ̂3 + I1 dθ̂3.

Therefore, LI1V F̂ 2 = F̂ 3. �
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Summarizing the results in lemmas 5 and 8 in the context of parallel potential 1-forms,

we have the next result.

Corollary 9. Suppose that −2θ̂ is a closed potential 1-form and parallel with respect to the

HKT connection. If V is the dual of θ̂ with respect to the HKT metric ĝ, then

LV ĝ = 0, LIrV ĝ = 0, LIrV Is = ǫrstIt . (17)

Comparing with [8, (3.56)] and keeping in mind that the dual 1-form θ̂ is closed, we

conclude that the HKT space in question is induced by the D(2, 1; −1) supersymmetry.

Although such supersymmetry is singular as seen in [8, (3.44)], we retain the notion of

D(2, 1; −1) symmetry. To be precise, we make a definition.

Definition 10. A D(2, 1; −1) symmetry on an HKT space is a vector field V satisfying the

conditions in (17) and whose dual 1-form θ̂ is closed.

In a previous investigation on potential functions [12, 13], such symmetry was not

extensively studied due to the degeneracy of supersymmetry. Below is a remedy.

Proposition 11. Suppose that a vector field V generates a D(2, 1; −1) symmetry on an HKT

space. Let θ̂ be the dual vector field. Then −2θ̂ is a parallel potential 1-form. In particular,

local potential function exists.

Proof. By definition, V, I1V, I2V, I3V are Killing vector fields. By lemma 5, V is parallel with

respect to the HKT connection. In particular, lemma 6 is applicable. With it, we obtain equation

(15). With identity (14), we obtain equation (16). Since θ̂ is closed, LI1V F̂ 2 = −dθ̂3 + I1dθ̂3.

On the other hand,as I1V is a Killing vector field andLI1V I2 = I3, it follows thatLI1V F̂ 2 = F̂ 3.

Therefore,

F̂ 3 = −dθ̂3 + I1 dθ̂3 = 1
2
(d(−2θ̂3) + d1(−2θ̂2)).

The above calculation is repeated with the indices permuted to conclude that −2θ̂ is a potential

1-form. �

Remark. By lemmas 6 and 7, the closedness of θ̂ along with the parallelism of the dual

vector field V together implies that the vector field of symmetry is parallel with respect to the

Levi-Civita connection of the HKT metric ĝ. In view of lemma 8, it implies that LV Ir = 0.

3. Locally conformally hyper-Kähler manifolds

Locally conformally hyper-Kähler manifolds have been studied in relation to Weyl geometry,

quaternionic geometry as well as Sasakian geometry [10, 11]. In this section, we demonstrate

a way to generate HKT structures with D(2, 1; −1) symmetry and parallel potential 1-form

from a locally conformally hyper-Kähler structure. We begin our investigation with a review

of definitions.

Definition 12. (i) A hyper-Hermitian manifold (M, g, I1, I2, I3) is called hyper-Kähler if the

Levi-Civita connection of g parallelizes each complex structure Ir : ∇Ir = 0.

(ii) A hyper-Hermitian manifold (M, g, I1, I2, I3) is called locally conformally hyper-

Kähler if there exists an open cover {Ui} such that the restriction of the metric to each Ui is

conformal to a local hyper-Kähler metric gi:

g|Ui
= efigi, fi ∈ C

∞Ui . (18)
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We shall focus on the second notion. Taking θ |Ui
= dfi , condition (18) is equivalent to

the existence of a globally defined 1-form θ satisfying the integrability conditions:

dFr = θ ∧ Fr , r = 1, 2, 3. (19)

The standard example of locally conformally hyper-Kähler manifold is the Hopf manifold

H n
H

= (H\{0})/Ŵ2, where Ŵ2 is the cyclic group generated by the quaternionic automorphism

(q1, . . . , qn) �→ (2q1, . . . , 2qn). The hypercomplex structure of H
n is easily seen to descend

to H n
H

. Moreover, the globally conformal hyper-Kähler metric
(
∑

i qi q̄i

)−1 ∑

i dqi ⊗ dq̄i on

H
n\{0} is invariant to the action of Ŵ2, hence induces a locally conformally hyper-Kähler

metric on the Hopf manifold with Lee form

θ = −

∑

i(qidq̄i + q̄idqi)
∑

i qi q̄i

.

Note that, as in the complex case, H n
H

is diffeomorphic with a product of spheres S1 × S4n−1.

Consequently, its first Betti number is 1 and it cannot admit any hyper-Kähler metric. Other

examples are presented in [10] where also a complete classification of compact homogeneous

locally conformally hyper-Kähler manifolds is given.

One should note that locally conformally hyper-Kähler manifolds are hyper-Hermitian

Weyl and as such, Einstein–Weyl Ricci-flat (here, the conformal class is that of g and the

Weyl connection is constructed out of the Levi-Civita connection of g and the Lee form).

Hence, if compact, one applies a well-known result of Gauduchon [2] to obtain the existence

of a metric g0, conformal with g and having the Lee form parallel with respect to the

Levi-Civita connection of g0. The metric we just wrote on the Hopf manifold has this property.

Therefore, when working with compact locally conformally hyper-Kähler manifolds, one can

always assume the metric with parallel Lee form. We shall need the following computational

result [10]:

Lemma 13. Let (M, g, I1, I2, I3) be a locally conformally hyper-Kähler manifold with parallel

Lee form θ . Let θr = Irθ . Assume that θ has unit length. Then

dθr = θ ∧ θr − Fr . (20)

It should be noted that the unit length condition may be achieved by rescaling g by a

homothety and that

Ir dθr = Irθ ∧ Irθr − IrFr = −θr ∧ θ − Fr = dθr . (21)

Also,

Ir dFr = Irθ ∧ IrFr = θr ∧ Fr . (22)

That the Hopf manifolds admit HKT structures is not by chance. We can state

Theorem 14. Let (M, g, I1, I2, I3) be a locally conformally hyper-Kähler manifold with

parallel Lee form θ . Assume that θ has unit length. Then the metric

ĝ = g − 1
2
{θ ⊗ θ + θ1 ⊗ θ1 + θ2 ⊗ θ2 + θ3 ⊗ θ3} (23)

is HKT. Moreover, θ is a closed potential 1-form for ĝ.

Proof. Let g2 = θ ⊗ θ + θ1 ⊗ θ1 + θ2 ⊗ θ2 + θ3 ⊗ θ3 be the restriction of the metric g on

the quaternionic span of the vector field V . Let g1 be the restriction of the metric g on the

orthogonal complement of the quaternionic span of V . Then the metric g pointwisely and

smoothly splits into two parts g = g1 + g2. Since the norm of θ and its dual vector field V
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have unit length with respect to g, the bilinear form ĝ is equal to g1 + 1
2
g2. In particular, this

is a Riemannian metric.

Note first that, due to (1) we have

IrFr = Fr , IrFs = −Fs for r �= s, Irθs = ǫrstθt . (24)

As a matter of convention, for exterior products we use that

α1 ∧ · · · ∧ αn(X1, . . . , Xn) := det(αi(Xj )). (25)

In particular, θ ∧ θ1 = θ ⊗ θ1 − θ1 ⊗ θ. From the definitions and (23),

F̂ 1 = F1 − 1
2
{θ ∧ θ1 + θ2 ∧ θ3}. (26)

Now we have successively, using dθ = 0, dFr = θ ∧ Fr and formula (20),

dF̂ 1 = dF1 − 1
2
{dθ ∧ θ1 − θ ∧ dθ1 + dθ2 ∧ θ3 − θ2 ∧ dθ3}

= dF1 − 1
2
{−θ ∧ (θ ∧ θ1 − F1) + (θ ∧ θ2 − F2) ∧ θ3 − θ2 ∧ (θ ∧ θ3 − F3)}

= 1
2
{θ ∧ F1 − 2θ ∧ θ2 ∧ θ3 + θ3 ∧ F2 − θ2 ∧ F3}. (27)

I1 dF̂ 1 = 1
2
{θ1 ∧ I1F1 − 2θ1 ∧ I1θ2 ∧ I1θ3 + I1θ3 ∧ I1F2 − I1θ2 ∧ I1F3}

= 1
2
{θ1 ∧ F1 + θ2 ∧ F2 + θ3 ∧ F3 − 2θ1 ∧ θ2 ∧ θ3}. (28)

The above formula is symmetric in the indices 1, 2, 3. Due to proposition 2, ĝ is an HKT

metric.

We prove the assertion on the potential 1-form by demonstrating that any locally defined

function f with df = θ is a potential function:

∂̄1f = 1
2
(df − iI1 df ) = 1

2
(θ − iI1θ) = 1

2
(θ − iθ1),

I2∂̄1f = 1
2
(I2θ − iI2θ1) = 1

2
(θ2 + iθ3),

∂1I2∂̄1f = 1
4
(dθ2 + idθ3 − iI1 d(I1θ2 + iI1θ3)) = 1

4
(dθ2 + idθ3 − iI1 d(θ3 − iθ2))

= 1
4
(θ ∧ θ2 − F2 + i(θ ∧ θ3 − F3) − iI1(θ ∧ θ3 − F3) − I1(θ ∧ θ2 − F2))

= − 1
2
(F2 + iF3) + 1

4
(θ + iθ1) ∧ (θ2 + iθ3).

On the other hand, F̂ r = Fr − 1
2
{θ ∧ θr + θs ∧ θt} implies that

F̂ 2 + iF̂ 3 = F2 + iF3 − 1
2
(θ + iθ1) ∧ (θ2 + iθ3). (29)

It shows that the function fi satisfies the condition in (3). �

Next, we investigate the geometry of the Lee field with respect to the geometry of the

HKT metric ĝ and its associated HKT connection D. The following result can be found in

[11].

Proposition 15. Let V be the vector field dual to the parallel Lee form with respect to

the locally conformally hyper-Kähler metric g, then the algebra {V } ⊕ {I1V, I2V, I3V } is

isomorphic to u(1) ⊕ su(2). Moreover,

LV Ir = 0, LV g = 0, LIrV g = 0, LIrV Is = ǫrstIt . (30)

To understand the relation between HKT geometry and the Lee field V , we need to

describe the behaviour of the Lee field with respect to the forms θ and θr .

Lemma 16. Let V be the Lee field, θr = Irθ for 1 � r � 3. Then

LV θ = 0, LV θr = 0, LIrV θ = 0, LIrV θs = ǫrstθt . (31)
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Proof. The Lee form θ is invariant along its dual vector field because it is parallel with respect

to the Levi-Civita connection of the locally conformally hyper-Kähler metric g. The forms θr

are invariant with respect to the Lee field because the Lee form is invariant and the Lee field

is hypercomplex.

Next, for any vector field Y,
(

LIrV θ
)

Y = IrV (θ(V )) − θ
(

LIrV Y
)

= IrVg(V, Y ) − g(V, [IrV, Y ])

= g
(

∇IrV V, Y
)

+ g
(

V,∇Ir V Y
)

− g(V, [IrV, Y ]) = g
(

V,∇IrV Y − [IrV, Y ]
)

= g(V,∇Y (IrV )) = Yg(V, IrV ) − g(∇Y V, IrV ) = 0.

It follows that LIrV θ = 0. This equality is combined with LIrV Is = ǫrstIt to yield the last one

in this lemma. �

Due to lemma 5, we learn the following.

Theorem 17. The potential 1-form for the HKT metric ĝ is parallel.

Proof. The tensor θ2 + θ2
1 + θ2

2 + θ2
3 is invariant with respect to the given vector fields due to

the last lemma. As LV g = 0 and LIrV g = 0, the vector fields V, I1V, I2V, I3V are Killing

vector fields of the HKT metric ĝ. By lemma 5, the vector field V is parallel with respect to

the HKT connection D. Since D is a Riemannian connection, the dual 1-form θ̂ is parallel.

�

3.1. Additional examples of HKT spaces with parallel potential 1-form

Once we construct HKT spaces with D(2, 1; −1) symmetry, we can generate new examples

through direct products. Indeed let
(

M1, g1, I
(1)
r

)

,
(

M2, g2, I
(2)
r

)

be two locally conformally

hyper-Kähler manifolds with parallel Lee forms. Then ĝi are HKT metrics with special

homotheties Vi, i = 1, 2. On M = M1 × M2 consider the product metric

ĝ = 1
2
(π∗

1 ĝ1 + π∗
2 ĝ2) (32)

and complex structures Ir =
(

I (1)
r , I (2)

r

)

. This geometry on M is HKT, since

Fr = 1
2

(

π∗
1 F (1)

r + π∗
2 F (2)

r

)

and c = −drFr = −Ir dFr = 1
2
(π∗

1 c1 + π∗
2 c2) is independent of r = 1, 2, 3. Let

V = (V1, V2), θ̂ = 1
2
(π∗

1 θ̂ (1) + π∗
2 θ̂ (2)). (33)

Then V generates a D(2, 1; −1) symmetry, since this is true of V1 and V2. Moreover, θ̂ is a

potential 1-form. Note that the normalization of ĝ has been chosen to fit with conventions of

the following section.

4. Relating torsion 3-forms and potential 1-forms

The previous section demonstrates that locally conformally hyper-Kähler manifolds with

parallel Lee form generate HKT spaces with D(2, 1; −1) symmetry. In this section, we

demonstrate that the latter type of geometry is more general than the former. This is achieved

through an analysis of the torsion 3-form.

Consider now an HKT structure obtained from a locally conformally hyper-Kähler metric

with parallel Lee form. The torsion 3-form is given by the following lemma.
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Lemma 18. The torsion 3-form is determined by θ̂ as

c = −(θ̂1 ∧ F̂ 1 + θ̂2 ∧ F̂ 2 + θ̂3 ∧ F̂ 3 − 2θ̂1 ∧ θ̂2 ∧ θ̂3). (34)

Proof. To calculate the torsion 3-form when the HKT structure is generated by a locally

conformally hyper-Kähler structure, we recall θ̂ = 1
2
θ . Next, we write equation (26) as

F1 = F̂ 1 + 2(θ̂ ∧ θ̂1 + θ̂2 ∧ θ̂3). (35)

Then from equation (28), we have

c = −I1 dF̂ 1 = − 1
2
(θ1 ∧ F1 + θ2 ∧ F2 + θ3 ∧ F3 − 2θ1 ∧ θ2 ∧ θ3)

= −(θ̂1 ∧ F̂ 1 + θ̂2 ∧ F̂ 2 + θ̂3 ∧ F̂ 3 − 2θ̂1 ∧ θ̂2 ∧ θ̂3),

as claimed. Thus the torsion is an inhomogeneous cubic function of the 1-form θ̂ . �

The torsion 3-form c determines a torsion 1-form τ by

τ (X) =
1

2

4m
∑

i=1

c(IrX, ei, Irei), (36)

where {ei, 1 � i � 4m} is an orthogonal frame. The HKT condition ensures that τ is

independent of the choice of Ir , r = 1, 2, 3 [6]. Under the current constraints,

τ (X) = (2m − 1 + ‖θ̂‖2)θ̂ (X). (37)

Thus θ̂ = λτ , where λ is the unique real (and positive) solution to the cubic equation

λ(2m − 1 + λ2) = 1. (38)

On an arbitrary HKT manifold, whose torsion 1-form is non-zero, one may always find a

1-form θ̂ satisfying (37). By rescaling ĝ by a homothety, we may ensure that ‖θ̂‖2 = 1/2 at

some base point. With these conventions we call θ̂ a normalized torsion 1-form of M . We say

that an HKT manifold M is of cubic type if its torsion 3-form c is related to the normalized

torsion 1-form θ̂ by equation (34).

Let V be the vector field dual to θ̂ via ĝ in this normalization. Then θ̂ = ĝ(V , ·) and

ĝ(V , V ) = 1
2
, or equivalently θ̂ (V ) = 1

2
. (39)

Theorem 19. Suppose (M, ĝ, I1, I2, I3) is an HKT manifold with a normalized torsion 1-form

θ̂ . If the torsion c is given by

c = −{θ̂1 ∧ F̂ 1 + θ̂2 ∧ F̂ 2 + θ̂3 ∧ F̂ 3 − 2θ̂1 ∧ θ̂2 ∧ θ̂3} (40)

and the dual vector field of the torsion 1-form generates a D(2, 1; −1) symmetry, then

g = ĝ + 2{θ̂ ⊗ θ̂ + θ̂1 ⊗ θ̂1 + θ̂2 ⊗ θ̂2 + θ̂3 ⊗ θ̂3} (41)

is locally conformally hyper-Kähler with parallel Lee form.

Proof. We first compute the derivatives of θ̂ and θ̂r . Let V be the dual vector field of the

1-form θ̂ . By definition of symmetry and lemma 5, V is parallel. By lemma 6, we have

dθ̂(X, Y ) = c(V,X, Y ), dθ̂1(X, Y ) = c(I1V,X, Y ). (42)

The form of c now gives

dθ̂1 = −
(

1
2
F̂ 1 − θ̂1 ∧ F1(I1V, ·) − θ̂2 ∧ F2(I1V, ·) − θ̂3 ∧ F3(I1V, ·) − θ̂2 ∧ θ̂3

)

= − 1
2
F̂ 1 + θ̂ ∧ θ̂1 − θ̂2 ∧ θ̂3 = − 1

2
F1 + 1

4
{θ ∧ θ1 + θ2 ∧ θ3} − 1

4
θ ∧ θ1 + 1

4
θ2 ∧ θ3

= − 1
2
F1 + 1

2
θ ∧ θ1,
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where θ = 2θ̂ and F1 = g(I1·, ·) is given by (26). Thus F1 = θ ∧ θ1 − dθ1 and this has

derivative

dF1 = d(θ ∧ θ1 − dθ1) = −θ ∧ dθ1 = θ ∧ F1. (43)

As similar equations hold for F2 and F3, we conclude that g is locally conformally hyper-

Kähler. The Lee form is a constant multiple of θ , which is closed and hence parallel. �

The condition on the structure of the torsion 3-form is rather strong. However, this is a

necessary condition. The example in section 3.1demonstrates that the existence of D(2, 1; −1)

symmetry itself does not necessarily come from a locally conformally hyper-Kähler manifold.

This is consistent with the fact that in general the product of locally conformally Kähler

manifolds is not necessarily locally conformally Kähler. In fact, the torsion of the example

given in section 3.1 is not of cubic type. If we consider the case where each factor is locally

conformally hyper-Kähler, put g = ĝ + 2{θ̂ ⊗ θ̂ + θ̂1 ⊗ θ̂1 + θ̂2 ⊗ θ̂2 + θ̂3 ⊗ θ̂3} and θ = 2θ̂ , the

Kähler form F1 is equal to

1
2

(

π∗
1 F

(1)

1 + π∗
2 F

(2)

2 + π∗
1 θ (1) ∧ π∗

2 θ
(2)

1 + π∗
1 θ

(1)

2 ∧ π∗
2 θ

(2)

3 + π∗
2 θ (2) ∧ π∗

1 θ
(1)

1 + π∗
2 θ

(2)

2 ∧ π∗
1 θ

(1)

3

)

,

so

2 dF1 = π∗
1 θ (1) ∧ F

(1)

1 + π∗
2 θ (2) ∧ F

(2)

1

− π∗
1 θ (1) ∧ π∗

2

(

θ (2) ∧ θ
(2)
1 − F

(2)
1

)

+ π∗
1

(

θ (1) ∧ θ
(1)
2 − F

(1)
2

)

∧ π∗
2 θ

(2)
3

− π∗
1 θ

(1)
2 ∧ π∗

2

(

θ (2) ∧ θ
(2)
3 − F

(2)
3

)

− π∗
2 θ (2) ∧ π∗

1

(

θ (1) ∧ θ
(1)
1 − F

(1)
1

)

+ π∗
2

(

θ (2) ∧ θ
(2)
2 − F

(2)
2

)

∧ π∗
1 θ

(1)
3 − π∗

2 θ
(2)
2 ∧ π∗

1

(

θ (1) ∧ θ
(1)
3 − F

(1)
3

)

�= 2θ ∧ F1,

since the expression contains non-zero terms involving for example π∗
1 F

(1)

2 and terms such as

θ (1) ∧F
(2)

1 occur with the wrong coefficients . Thus g is not locally conformally hyper-Kähler.

Remark. There is an alternative way to see when an HKT space with D(2, 1; −1) symmetry

will generate a locally conformally hyper-Kähler metric using the transformation of the last

theorem. Suppose that the dual vector field of a closed 1-form θ̂ is a D(2, 1, ; −1) symmetry

on an HKT space. Now we do not assume that the torsion of the HKT space is of cubic type.

Define θ = 2θ̂ . By proposition 11, −θ is a potential 1-form for the HKT metric ĝ. Again,

consider the Riemannian metric (41). Due to the choice of V, θ is the dual of the vector field

V with respect to the metric g. Define g0 = θ ⊗ θ + θ1 ⊗ θ1 + θ2 ⊗ θ2 + θ3 ⊗ θ3. Then for any

vector fields X and Y, when rst is a cyclic permutation of 123,

g0(IrX,Y ) = (θ ∧ θr + θs ∧ θt)(X, Y ).

Therefore, Fr = F̂ r + 1
2
(θ ∧ θr + θs ∧ θt ) = F̂ r + 2(θ̂ ∧ θ̂r + θ̂s ∧ θ̂t). Since −θ is a potential

1-form,

F̂ r = − 1
2
(dθr + dsθt) = − 1

2
(dθr − Is dθr) = − 1

2
(dθr − It dθr). (44)

It follows that

Fr = − 1
2
(dθr − Is dθr) + 1

2
(θ ∧ θr + θs ∧ θt ) = − 1

2
{(dθr − θ ∧ θr) − Is(dθr − θ ∧ θr)}

= − 1
2
{(dθr − θ ∧ θr) − It (dθr − θ ∧ θr)}.

Therefore, Fr = −(dθr − θ ∧ θr) if and only if for s �= r, Is(dθr − θ ∧ θr) = −(dθr − θ ∧ θr).

On the other hand, we check that Ia(dθa − θ ∧ θa) = dθa − θ ∧ θa . The conclusion is the

following observation.
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Proposition 20. The metric g is a locally conformal hyper-Kähler metric with parallel Lee

form θ if and only if for all s �= r, Is(dθr − θ ∧ θr) = −(dθr − θ ∧ θr).

Remark. An HKT structure is said to be strong if the torsion 3-form c is closed [5, 8]. We

calculate the exterior differential of the torsion 3-form when the HKT structure is generated

by a locally conformally hyper-Kähler structure. We continue to use the notation in lemma 18.

With the aid of (19) and (20),

dc = − 1
2
(dθ1 ∧ F1 + dθ2 ∧ F2 + dθ3 ∧ F3 − θ1 ∧ dF1 − θ2 ∧ dF2 − θ3 ∧ dF3

− 2 dθ1 ∧ θ2 ∧ θ3 + 2θ1 ∧ dθ2 ∧ θ3 − 2θ1 ∧ θ2 ∧ dθ3) = 1
2
((F1 − θ ∧ θ1

− θ2 ∧ θ3)
2 + (F2 − θ ∧ θ2 − θ3 ∧ θ1)

2 + (F3 − θ ∧ θ3 − θ1 ∧ θ2)
2).

This formula demonstrates that the restriction of dc on the quaternionic span of V is equal

to zero. On the quaternionic complement it is equal to

1
2
(F1 ∧ F1 + F2 ∧ F2 + F3 ∧ F3). (45)

In particular, it shows the following observation.

Proposition 21. If M is a locally conformally hyper-Kähler space with real dimension at least

8, then the associated HKT structure ĝ is never strong.
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