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1. Introduction 

The symmetry group of a self-dual conformal class of Riemannian metrics [9] 
on a smooth oriented four-dimensional manifold X is the group of orientation- 
preserving conformal transformations. We denote this group by C+(X, [9]) or 
simply C +. 

There are compact self-dual manifolds with 'large' symmetry groups. For 
instance, the sphere, the complex projective plane, the Hopf manifold, and the 
4-torus, endowed with their standard metrics, are homogeneous. The author has 
recently proved that if the symmetry group of a compact self-dual manifold X is 
at least three-dimensional, then X is either the complex projective plane or one of 
a handful of conformally flat manifolds ([36]). On the other hand, due to LeBrun's 
hyperbolic Ansatz, there is a large collection of compact self-dual manifolds with 
one-dimensional symmetry groups ([22]). 

In this paper, we study the intermediate case of compact self-dual manifolds with 
two-dimensional symmetry groups. Our primary aim is to prove the following. 

THEOREM A. Suppose that ( X ,  9) is a four-dimensional compact conformally 
flat manifold. I f  C + (X ,  [9]) contains U(1) x U(1), then ( X ,  g) is eitherfinitely 
covered by a fiat torus or is conformally equivalent to either (i) the Euclidean 
sphere, or (ii) the Hopf manifold with a product metric. 
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Recall that a conformal class on a compact manifold is of positive type if and 
only if it contains a metric with positive constant scalar curvature ([37]). Negative- 
type conformal classes are similarly defined. All conformal classes described in 
Theorem A are of positive type; our theorem is in sharp contrast to the existence of 
large families of compact negative-type conformally flat manifolds with C + = U(1) 
([14], [25]). To establish Theorem A, we also prove the next theorem. 

THEOREM B. Let g be a metric and J a complex structure on a compact manifold 
X so that (X, g~ J)  is an anti-self-dualHermitian surface. I f d imC+(X ,  [g]) > 2, 
then the Hermitian structure is, up to a finite covering, conformally equivalent to 
either (i) a complex torus with a flat metric; (ii) the product o f  the Riemann sphere 
and a Riemann surface of  genus at least 2 with metrics o f  constant curvature or 
(iii) the Hopf  manifold with a Vaisman metric. 

Remark. When a Hopf manifold S 1 × S 3 is expressed as the quotient space 
C2\{O}/I  ~, where F is generated by the action (Zl, 22) -'+ (/~ZI, ,'~Z2), I'~1 ¢ o, 1, 
the Vaisman metric is 

4(dzld~'l + dz2d~2) ([38]). 

2:1 ~'1 q- Z2ff,2 

Theorem B is partly motivated by numerous examples of anti-self-dual Her- 
mitian surfaces with C + = U(1) ([20], [21]). Moreover, there are two different 
but similar methods to construct self-dual metrics on compact manifolds. One 
is an application of the Donaldson-Friedman programme [10] in an equivariant 
deformation setting to construct self-dual metrics with non-trivial group of con- 
formal transformation ([30]). Another is an application of the same programme in 
a relative deformation setting to construct anti-self-dual Hermitian metrics ([15]). 
Theorem B demonstrates that these two methods cannot be combined to generate 
new anti-self-dual Hermitian surfaces with large symmetry groups. 

We shall explain that when the symmetry of a compact self-dual manifold is 
a 2-torus, then the action is fixed-point-free if and only if the conformal class is 
conformally flat. Then Theorem A yields a topological classification. 

THEOREM C. Let (X,  9) be a compact self-dual manifold such that the metric 9 
is not conformally equivalent to a flat metric. Suppose that C + ( X ,  [9]) contains 
U( 1 ) x U(1), then the manifold X is finitely covered by a connected sum of  S 4, 

S 2 × S 2, S 1 × S 3, CP 2 or -C--~2 (i.e. CP 2 with an orientation opposite to the 
standard one). 

Theorem C is a simplified statement of a technical result, Theorem 8.1. These 
theorems are deduced from Theorem A and Orlik and Raymond's classification of 
manifolds with a toms action ([26]). Three exotic families of manifolds R, T and 
L appear in Orlik and Raymond's classification ([27]). Theorem C does not explic- 
itly exclude these manifolds from having self-dual metrics with toms symmetry. 
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But Chem-Weil theory would imply that if there were self-dual metrics on these 
manifolds, the metrics are conformally fiat, in contradiction to Theorem A. 

After reviewing basic material on self-dual manifolds in Section 2, we discuss 
topological aspects of torus actions in Section 3. Then Sections 4, 5 and 6 are 
devoted to proving Theorem B and we prove Theorem A in Section 7. Applications 
of Theorem A are discussed in Section 8 and Theorem C appears as Theorem 8.2. 

2. Self-Dual Manifolds and Twistor Spaces 

Let W+ be the self-dual Weyl tensor and W_ the anti-self-dual Weyl tensor of a 
metric g on an oriented compact four-dimensional manifold X.  (X, g) is self-dual 
if W_ - 0, conformally fiat if W_ = 0 and W+ ---- 0. The definitions of W_ 
and W+ are orientation dependent. Since conformal change of a self-dual metric is 
self-dual, the symmetry group of a self-dual manifold is the group of orientation- 
preserving conformal transformations. Compact self-dual manifolds are subjected 
to a topological constraint. Due to Chem-Weil theory ([3]), the signature T(X)  of 
the oriented manifold X is equal to 

1271-2 (IW+l 2 -IW_12)volg. 

Therefore, v ( X )  is non-negative when X has a self-dual metric 9, and equal to 
zero if and only if the metric 9 is conformally fiat. 

The twistor space Z associated to (X, 9) is the total space of the bundle of 
unit anti-self-dual 2-forms. The projection :r: Z --+ X is called twistor fibration. 
When a 2-form ~ on X is identified to an endomorphism J of the tangent space by 
the identity f~(., .) = g(., J-),  any point z in the twistor space is considered as an 
almost complex structure on the tangent space T~(z) X such that the Riemannian 
inner product is Hermitian. From this point of view, a section J of the twistor 
fibration is an almost complex structure on X such that g is Hermitian with respect 
to J .  Moreover, the natural orientation determined by J is opposite to the given 
one. 

There is a tautologically defined almost complex structure on Z such that it is 
integrable if and only if the metric is self-dual ([1]). And one has the following 
([3]). 

PROPOSITION. If f: X --+ X is an orientation-preserving conformal map, there 
is a natural lifting f o f f  mapping the twistor space to itself such that 

(1) f is a holomorphic automorphism; 
(2) rc o f = f o lr; 
(3) f is real in the sense that f o ~r = a o f ,  where er is the real structure of the 

twistor space. 

In other words, the symmetry group of a self-dual manifold acts on the twistor 
space as a group of real holomorphic transformations. For example, when the 
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Euclidean sphere is considered as the quaternion projective space, the symmetry 
group is PGL(2, H). The twistor space of S 4 is the complex projective space CP 3. 
Then PGL(2, H) acts on CP 3 as a subgroup of PGL(4, C) given by 

a E PGL(4, c ) : a  = 
7 ~ ~ 0 I ° 

3. Topology of  Torus Actions 

In the seventies, Orlik and Raymond studied the equivariant topology of four- 
dimensional manifolds with two-dimensional group of diffeomorphisms. Their 
success is contributed in part by the following theorem ([8]). 

THEOREM 3.1. Let X be a compact four-dimensional oriented manifold. Sup- 
pose that its group of  orientation-preserving diffeomorphisms contains a two- 
dimensional torus. Let F be the set of  fixed points o f  the torus action. Then the 
Euler characteristics of  X and F are equal: x( X ) : x(  F). 

When the fixed-point-set of a torus action is non-empty, a topological classification 
was achieved by Pao after the groundwork of Orlik and Raymond. Their results 
are as follows. 

THEOREM 3.2 ([26], [27]). Let X be a compact oriented four-dimensional mani- 
fold with effective U(1) × U(1) action. I f  the action has fixed points, then X is an 

equivariantconnected sum ofs" 4, 5'2 X 5'2 Cp2, ~--fi2 2(5' 1 X 5'3)#2(5 ,2 x 5'2), 
and three families o f  manifolds R, T, and L. 

THEOREM 3.3 ([28]). The manifolds R, T, and L are determined as follows: 

(1) /~ is homeomorphic to either (5"2 x 5'2)#(5'1 x 5'3) or CP2#C---P2#(S 1 x 5"3); 

(2) T is homeomorphic to ei ther  Cp2#c---I~2#Cp2#c-p2#(5'I X 5'3) or  (5'2 X 
5'2)#(5'2 X 5'2)#(5'1 X 5'3); 

(3) the universal covering space of  L is (S 2 x $2)# .. .#(S 2 x $2). 

Such classification becomes very complicated when the fixed-point-set is empty 
([23], [29]). We shall deal with this problem when the torus is a symmetry group 
of self-dual metrics. Recall that there are two basic theorems concerned with zeros 
of Killing vector fields. 

THEOREM 3.4 ([16]). Let X be a compact Riemannian manifold and V a Killing 
vector field. Let U~ Ni be the decomposition of  the zero set of  V into its connected 
components, then x( X ) = ~ix(  Ni ). 
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THEOREM 3.5 ([4], [16]). Let X be a compact oriented Riemannian manifold of 
dimension 2m. Let V be a Killing vector field. Let Ui Ni be the decomposition of 
the zero set of  V into its connected components. Let f~ be the curvature form of the 
bundle of oriented orthonormal frames. Let f be a SO(2m)-invariant symmetric 
form of degree m on the Lie algebra o(2m). Then the characteristic number of X 
defined by f is given by f ( g t , . . .  , ~2)[X] = EiRes](Ni). 

We do not spell out the definition of the residue Res](Ni)  but observe that it 
is contributed by the evaluation of a differential form on the homology class 
represented by N~. Important to us is the following. 

THEOREM 3.6. Let (X,  9) be a compact self-dual manifold. If C + ( X , [9]) contains 
a two-dimensional torus such that its action is fixed-point-free, then x ( X )  = 
0, T(X)  ---- 0 and 9 is conformally flat. 

Proof. By the Obata theorem ([18]), except when the conformal structure is a 
Euclidean sphere, the torus is a group of isometries with respect to some metrics in 
the given conformal class. Theorem 3.4 implies that x ( X )  = 0. In Theorem 3.5, 
for an appropriate f ,  f(f~, r )  is the first Pontryagin class. Therefore, one deduces 
T(X)  = 0. Hence, the metric is conformally flat. 

4. Anti-self-dual Hermitian Surfaces 

A Hermitian structure on a smooth manifold X is a pair of integrable complex 
structures J and a Riemannian metric g such that g(J., d.) = 9(', "). When X is 
four-dimensional, (X,  g, J )  is an anti-self-dualHermitian surface if the metric g is 
anti-self-dual with respect to the natural orientation of J .  Throughout this paper, we 
choose an orientation on X opposite to the natural orientation of o r so that (X,  g) is 
self-dual. With this convention, a self-dual manifold (X, 9) admits an anti-self-dual 
Hermitian structure with the opposite orientation if the complex structure or defines 
an integrable section of the twistor fibration. J ( X )  is a holomorphic hypersurface 
of the twistor space of (X, g). Often, we consider or(X) as an effective divisor. It 
is denoted by D. D denotes the divisor -or(X). 

Since D is a section of the twistor fibration, it intersects every fibre of the twistor 
projection transversally at one point. Therefore, the restriction of the associated 
bundle DD of the divisor D + D on any fibre of the twistor fibration is a degree 
2 holomorphic line bundle. This holomorphic line bundle is also real with respect 
to the real structure defined by the fibrewise anti-podal map because D -- or(D) 
([1]). Therefore, there is a holomorphic line bundle F with vanishing first Chem 
class such that ([33], [34]): 

DD ~ K-1/2F, (4.1) 

where K -  1 is the anti-canonical bundle of the twistor space. 
It is known ([32]) that an anti-self-dual Hermitian structure is conformally 

equivalent to a K ~ l e r  metric if and only if the bundle F is holomorphically trivial. 
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It can be seen as follows. As D is a section of the twistor fibration, the fundle F 
is holomorphically trivial on the twistor space if and only if its restriction onto the 
divisor D is trivial. Since any compact anti-self-dual Hermitian surface is locally 
conformally K/~hler ([6]), there is a locally finite covering of X by simply-connected 
neighbourhoods {Us: a E A} and smooth function f s  on Us such that e-f'*g is a 
K~J.hler metric on Us. If ~ is the fundamental 2-form of the Hermitian metric 9, the 
locally defined 2-form aJs := e- f~w is closed. It implies that d~ = dfs  A ~. In 
particular, on any non-empty intersection Us fq U~, d fs  = df~. Then the 1-form 
0 := d f s  is globally defined. The Hermitian metric is conformally equivalent to a 
K~ihler metric if and only if the 1-form 0 is exact. 

Due to twistor correspondence ([12]), w defines a holomorphic section of DD 
and ~ s  defines a holomorphic section of K -  1/2 over the open set rr- 1 (Us). There- 
fore, e -f~ is a locally defined holomorphic section ofF. It follows that the transition 
function of the bundle F on 7r -1 (Us fq U~) is the function ~b~p := ef~ -f~ . Then on 

Us N U~, d f s  = q~s~(df~)~b2~ + dqSsp • q~2~. Therefore, 0 is a connection form 
of F. It follows that F is trivial if and only if 0 is exact. Due to discussions of the 
last paragraph, (X, 9, J )  is conformally equivalent to a K~hler metric if and only 
if the bundle F is trivial. 

LEMMA 4.2. I f  the dimension of  the complete linear system containing the divisor 
D is positive, any two elements in this system are mutually disjoint. 

Proof. Suppose on the contrary that there is a pair of elements in the linear 
system I DI intersecting at one point z. Within the pencil generated by these two 

elements, there is an e lement / )  passing through the conjugate point ~r(z). 
Let L be the real twistor line through z and cr(z). Since D • L is equal to 1 , / )  

is irreducible and non-singular ([35]). As /9  intersects L at z and cr(z), it contains 
L. Due to the adjunction formula ([2]), the self-intersection number of L on the 
sur face / )  is equal to 1. Therefore, the surface /)  is rational ([2]). In particular, 
/ )  is simply-connected. Then the flat bundle F in (4.1) is trivial. Therefore the 
Hermitian structure (X, g, J )  is conformally equivalent to a K~ihler metric. When 
the system IDI is as big as a pencil, the algebraic dimension of the twistor space 
is positive. It follows that the metric 9 is conformal to a Ricci-flat metric ([34]). 
Therefore, X is finitely covered by a 4-torus or a K3-surface ([3]). 

On the other hand, D contains the real twistor line L and intersects all the 
other real twistor lines transversally at one point. The restriction of the twistor 
fibration onto the surface/)  is a diffeomorphism f r o m / )  onto X # C P  2 ([35]). Yet 
the surface b is rational, the diffeomorphism/) ~ X # C P  2 is absurd when X is 
finitely covered by a 4-torus or a K3-surface. 

PROPOSITION 4.3. I f  G is a 1-parameter group of  orientation-preserving con- 
formal transformations of  a compact anti-self-dual Hermitian surface, then the 
group G acts holomorphically except possibly when the Hermitian structure is the 
Vaisman metric on a Hopf surface. 
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Proof. Let D be an effective divisor in the twistor space Z representing the 
complex structure of an anti-self-dual Hermitian surface. I fD  is not G-invariant, the 
system I DI is at least a pencil. Due to Lemma 4.2, I DI is a pencil of mutually disjoint 
effective divisors. Therefore, the associated map of the bundle D is a holomorphic 
fibration from Z onto CP 1 . It follows that (X,  9, J )  is a hyper-Hermitian surface. 
Among all hyper-Hermitian surfaces ([7]), only the complex tori and Hopf surfaces 
admit non-trivial 1-parameter group of conformal transformations. Since conformal 
transformations on fiat tori are holomorphic, only Hopf surfaces with the Vaisman 
metric admit non-holomorphic conformal Killing vector fields. 

Remark 4.4. The group of holomorphic transformations on a Hopf surface with 
Vaisman metric is U(2). While the identity component of the group of conformal 
transformations is U(1) × SO(4). 

5. Non-K~ihlerian Hermitian Surfaces 

In this section, we derive a geometrical classification of non-K~ihlerian Hermitian 
surfaces with toms symmetry. 

PROPOSITION 5.1. Suppose that ( X ,  9, J) is an anti-self-dual Hermitian surface. 
Suppose that g is not conformally Kdhlen When C + (X, [9]) contains U(1) x U(1), 
the Hermitian structure is conformally equivalent to the Vaisman metric on a Hopf 
surface. 

Proof. In view of Proposition 4.3, we assume that the U(1) × U(1) action 
is holomorphic. It implies that the holomorphic transformations on the twistor 
space generated by the toms leave the divisor D invariant. The restriction of the 
holomorphic transformations from the twistor space onto the hypersurface D are 
exactly the holomorphic transformations on the given anti-self-dual Hermitian 
surface. 

Let M be the minimal model of D. The toms action on D descends to act on 
M effectively and holomorphically. D is a class VII surface when (X, 9, J) is not 
conformally K~ihler ([6]). As M is minimal, bz(M) = x (M)  ([2]). 

When b2(M) = 0, Theorem 3.1 implies that the toms action on M is fixed- 
point-free. Since any exceptional divisor of blowing-up on D is contracted to a 
fixed point on M, b2(M) = 0 only if the surface D is minimal and b2(D) = 0. 
Then the toms action on D is free. Since the underlying smooth structure of D 
is the manifold X,  by Theorem 3.6, the signature of X is equal to zero. Then the 
Hermitian structure is conformally flat. Due to Pontecorvo's theorem ([31]), the 
only conformally flat Hermitian surface in class VII is the Hopf surface with the 
Vaisman metric. 

Suppose that bz(M) _> 1. Let V1, V2 be linearly independent holomorphic vector 
fields generated by the toms action on D. V1 A V2 is a section of the anti-canonical 
bundle. This section is trivial only if V1 and V2 are linearly dependent over the field 
of meromorphic functions on D. More rigorously, we consider the image sheaf $ 
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of the morphism OD ~ OD --'+ T D  defined by (f l ,  f2) --+ f l  V1 + f2V2. As S is a 
subsheaf of the tangent sheaf T D ,  it is coherent and torsion-free ([11]). The rank 
of S is not equal to zero because S is the distribution sheaf defined by an effective 
toms action. When V1 A V2 vanishes identically, the rank of S is equal to 1. Then 
the bi-dual sheaf S** is locally-free because it is a rank-1 coherent reflexive sheaf 
([11]). Via the natural monomorphism of a torsion-free sheaf into its bi-dual sheaf, 
we consider V1 and V2 as holomorphic sections of the line bundle S**. Their ratio 
is a meromorphic function. This meromorphic function is non-constant because VI 
and V2 are linearly independent over the field of complex numbers. 

A class VII surface has non-constant meromorphic functions only when it is bi- 
meromorphic to a Hopf surface ([2]). When M is minimal and b2(M) _> 1, it is not 
bi-meromorphic to a Hopf surface. Therefore, V1 A V2 is a non-trivial section of the 
anti-canonical bundle on D. This section descends to a non-trivial anti-canonical 
section on M.  As the anti-canonical divisor on M is effective, Nakamura shows 
([24]) that the manifold M is diffeomorphic to (S 1 × S3)#nC-P 2, n _> 1. Due to 

Theorems 3.2 and 3.3, (S 1 × S3)#nC--P 2 does not admit effective toms action. This 
contradiction finishes the proof of Proposition 5.1. 

6. Anti-Self-Dual K~ihler Surfaces 

A Kfihler surface is anti-self-dual with respect to its natural orientation if and only 
if the scalar curvature vanishes, i.e. when the metric is scalar-flat ([13]). In this 
section, we derive a geometrical classification of such surfaces when C + contains 
a two-dimensional torus and then finish the proof of Theorem B. 

PROPOSITION 6.1. Suppose that (X,  9, J) is an anti-self-dual Hermitian surface. 
Suppose that 9 is conformally equivalent to a Kgihler metric. When C+(X,  [9]) 
contains U(1) × U(1), the Kgihler structure is finitely covered by a flat torus. 

Proof  After a conformal change, we assume that the metric 9 is Kfihler with 
respect to the complex structure J .  Due to Proposition 4.3, C + is a group of  
holomorphic transformations. As 9 is K/ihler, C + is the group of  holomorphic 
isometries. 

A minimal scalar-flat Kfihler surface is isometrically covered by a flat toms, 
a K3-surface with the Calabi-Yau metric, or a conformally flat Kfihler metric on 
a ruled surface of genus at least 2([6]). The K3-surface is excluded from our 
investigation because it does not admit non-trivial holomorphic vector fields. If 
(X,  9) is a conformally flat Kfihler metric on a ruled surface, its universal covering 
space is 5 ,2 × 7-/ with metrics of constant curvature +1 on S 2 and - 1  on the 
upper-half-plane 7-/. In this case, C + does not contain U(1) × U(1). The flat torus 
remains the last possibility when the complex structure is minimal. 

If X is not minimal, it is the blow-up of a ruled surface ([6]). Since the torus is 
a group of holomorphic transformations, it leaves exceptional divisors of blowing- 
up invariant. The torus action on X descends to act on a minimal model M and 
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leaves all points of blowing-up fixed. As the torus action on the M has fixed points, 
Theorems 3.2 and 3.3 show that the minimal model is rational. 

Let V1 and V2 be independent holomorphic vector fields generated by the torus 
action. Due to the vanishing of the scalar curvature, the canonical bundle does not 
admit non-trivial sections ([39]). Therefore, V1 A V2 vanishes identically. As in the 
proof of Proposition 5.1, we consider the distribution sheaf S of the vector fields 
V1 and V2. As 111 A V 2 vanishes identically, the rank of S is equal to 1. V 1 and V2 

are holomorphic sections of S**. Let C1 and C2 be their divisor of zeros. This is a 
pair of linearly equivalent and geometrically distinct effective divisors. 

As the minimal model is a rational surface, X is blown down to a Hirzebruch 
surface S~ with a certain degree n, where n _> 0. Let f be a blowing-down map. 
As C1 is linearly equivalent to C2, f(C1) and f(C2) are linearly equivalent. The 
torus action on X descends to acts on Sn and leaves f (C1) and f(C2) invariant. 
We consider Hirzebruch surfaces as projectivization of rank-2 vector bundles over 
CP 1. Then the invariant divisors of holomorphic torus actions on Sn are composed 
of one pair of fibres of the projection from Sn onto CP 1, the infinity section and 
a zero section. Except when n - 0, the zero section and the infinity section are 
not linearly equivalent. Therefore, f(C1) and f(C2) are linearly equivalent to a 
fibre of the projection. When n = 0, f(C1) and f(C2) are linearly equivalent to 

1 a fibre if we choose a projection from So onto CP carefully. In particular, f (C1) 
and f(C2) do not intersect. Hence, neither f (C l )  nor f(C2) passes through any 
point of blowing-up. Let q be a point of blowing-up. As the toms action has two 
fixed points on f (C1) and two fixed points on f(C2),  if X is the blow-up of S,~, 
then the toms action has at least five fixed points on S,~. As the Euler characteristic 
of a Hirzebruch surface is equal to 4, effective torus actions have exactly four 
fixed points. Therefore, no toms acts effectively and conformally on compact non- 
minimal scalar-flat Kfihler surfaces. Combining this observation with those in the 
second paragraph, the proof of Proposition 6.1 is completed. 

Remark 6.2. As an application of classification of self-dual manifolds with semi- 
free U( 1)-symmetry, LeBrun classifies compact anti-self-dual K~ihler surfaces with 
non-trivial holomorphic vector fields. Proposition 6.1 also follows from his works 
([22]). 

THEOREM B. Let 9 be a metric and J a complex structure on a compact manifold 
X so that (X, g, J) is an anti-self-dual Hermitian surface. I fd imC+(X,  [9]) -> 2, 
then the Hermitian structure is, up to a finite covering, conformally equivalent to 
either (i) a complex torus with a flat metric; (ii) the product of  the Riemann sphere 
and a Riemann surface of  genus at least 2 with metrics of  constant curvature; or 
(iii) the Hopf manifold with a Vaisman metric. 

Proof. If C+(X, [9]) contains a two-dimensional toms, we apply Propositions 
5.1 and 6.1. If the maximal toms in C+(X, [9]) is one-dimensional, then C + is 
non-abelian and hence at least three-dimensional. Then, we apply Theorems 1.2 
and 1.3 of [36]. 
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7. Conformally Flat Manifolds 

There are conformally fiat metrics on connected sums of the Hopf manifold n(S 1 × 
S 3) such that C + is equal to SO(3). These SO(3)-symmetric conformal classes 
have non-trivial deformations ([30]). There are also families of U(1)-symmetric 
conformally fiat m e ~ c s  on n(S l × S 3) such that the scalar curvature of these 

S • • metrics varies from positive to negative ([14], [25]). Such interesting examples are 
in sharp contrast to the theorem below. 

THEOREM A. Suppose that ( X~ 9) is a four-dimensional compact conformally 
fiat manifold. If  C+(X, [9]) contains U(1) × U(1), then (X,  9)isfinitely covered 
by a flat torus or is conformally equivalent to either the Euclidean sphere, or the 
Hopf manifold with a product metric. 

Proof. Let T be a two-dimensional torus contained in C +. Assume that the 
conformal structure is not a round sphere. Due to the Obata theorem ([18]), the 
torus is a group of isometries with respect to some metrics in the given conformal 
class. Let 9 be such a metric. 

(i) In terms of  orbit structure of a torus action, there are three different cases. 
The first is when the torus action is non-singular in the sense that every orbit of the 
torus action is two-dimensional ([23]). The second is when the action is singular 
but fixed-point-free. The last case is when the torus action has fixed points. 

(ii) Suppose that the torus action is non-singular. In terms of Conner and Ray- 
mond's Reduction Theorem ([9]), there are two possibilities according to whether 
the action is homological injective or not. When the torus action is homological 
injective, the Reduction Theorem asserts that there is a finite subgroup A in T 
such that the manifold X is equivariant to T x z~ E, where E is a two-dimensional 
manifold. Let 771 and T2 be Abelian subgroups such that T = T1 × T2. Denote 
T2 x E by Y. Then we have a T-equivariant covering map ~b: T1 × Y ~ X.  

When the torus action is not homological injective, the Reduction Theorem 
asserts that there is a splitting T = T1 × T2, where T1 and T2 are one-dimensional 
subgroups, and a finite subgroup A C T1 so that X is A-fold equivariantly covered 
by the product of T1 and a compact three-dimensional Seifert manifold Y. Again, 
we have a T-equivariant covering map ~b: T1 × Y -+ X.  

In both cases, the metric on X is pulled back to the product manifold T1 x Y. 
The action of T1 is free of any points with non-trivial isotropy. As the covering 
map ~b is T-equivariant, the group T is contained in the group of isometrics of 
the pull-back metric ~ := ~b*g. Let w be the 1-form obtained by contracting the 
metric .~ with the Killing vector field generated by the action of T1. When T1 × Y 
is considered as a principal Tl-bundle over II, ~ is a connection form. Using this 
connection, one defines a metric h on Y such that the projection ~b from T1 × Y onto 
Y is a Riemannian submersion. As the metric 9 on each fibre of this projection has 
T1 as group of isometrics, the fibres are Euclidean circles. Therefore, the metric 
on T1 × Y is .~ = r(y)d0 2 + ¢*h, where r(y) is a function of Y and d0 2 is 
the standard metric on the unit circle. As the metric 9 is comformally flat, so is 
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[1/r(y)]~. Since [1/r(y)]~] is a product metric, the Riemannian manifold (II, h) 
is a three-dimensional space form ([18]). While (Y, h) has a circle of conformal 
symmetries, it is either covered by the fiat Euclidean space or the Euclidean 3- 
sphere. Therefore, the manifold X is finitely covered by a fiat torus or the Hopf 
manifold with a product metric. 

(iii) From this paragraph to paragraph (vi), we assume that the toms action is 
fixed-point-free but it has one-dimensional orbits. 

Let X be the universal covering of X, 7r the covering map. Let 6: Jf  - +  S 4 be 
a developing map of the conformally flat metric 7r* 9. Since 6 is conformal, it is 
lifted to a holomorphic map 6 from the twistor space Z over )~ into the twistor 
space over S 4. We have a commutative diagram. 

, Cp 3 

X , S 4. 

The torus action on (X, 9) is lifted to a two-dimensional abelian group of 
symmetries 3~ on (_~, 7 "  9). Let X~ be the lifting of the Killing vector field Xi. Via 
the developing map, X1 and X2 are uniquely extended to conformal Killing vector 
fields on the sphere ([18]). Their extensions are denoted by the same symbols. This 
pair of conformal Killing vector fields is generated by a two-dimensional group of 
conformal symmetries T of the sphere. Since the toms action on X is fixed-point- 
free, so is the action on X. Therefore, 6 (~ )  is a 7~-invariant subset of S 4 and is 
disjoint from the fixed points of the 7~-action. 

The fundamental group 7rl(X) acts on )(  by deck transformations. It is a 
subgroup of isometries of ()( ,  7r* 9) and its action commutes with the 7~-action. 
The development map ~ induces a homomorphism p from 7rl (X)  into PGL(2, H). 
As 71"l(X ) commutes with T, p(Trl(X)) leaves both 6(J() and the fixed-point-set 
of 7 ~ on S 4 invariant. 

(iv) Since the toms action on X has a one-dimensional orbit, so is the 2r-action 
on X. As the developing map is a local diffeomorphism, the extended action on S 4 
also has one-dimensional orbit. Let G be a one-dimensional subgroup of T such 
that it acts trivially on a one-dimensional submanifold of X. Then the fixed-point- 
set of its counterpart G in T is at least one-dimensional. As the fixed-point-set of 
any non-compact one-dimensional group in the group of conformal symmetries of 
the Euclidean sphere is at most a set of two isolated points ([18]), G is a compact 
subgroup of SO(5). 

Let R be another one-dimensional subgroup of T such that G and R together 
generate T. Consider its counterpart/~ in 27. If /~ is compact, then 2r is compact. 
In this case, the T-action on the sphere has two fixed points. If/~ is non-compact, 
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the fixed-point-set of/~ consists of  at most two points. As the fixed points of/~ are 
isolated, they are also fixed by the action of G because G is a connected group and 
its action commutes with the action of/~. As a conclusion, the fixed-point-set of 7 ~ 
consists of at most two points. 

(v) Suppose that the fixed-point-set of 7 ~ consists of only one point, c~. Then 
/~ is non-compact. The vector field generated by /~ is essential as defined by 
Obata ([18]). Taking stereographical projection from c~, we obtain/~ as a group 
of Euclidean isometries. Let U be any small open subset in S 4 on which/~-1 
is defined. The flow of U under R is either S 4 or S 4 with one point removed. 
As 5(X) is 7~-invariant, ~(X) = $4\oc.  As in the proof of the Obata theorem 
in [18], one can show that ~ is an embedding. To be precise, we use the orbit 
structure of the group/~ to construct a conformal map ¢ from 5(X) into X as 

follows. Given ~ in 5(X), there is a point 0 in ~(U) and an element/~t in the 
-1 group R such that/~t(Y) = ~. Then ¢(~) := R t o  ~l~(U) o/~-t(:c), q5 is surjective. 

Otherwise, taking the developing map in a small neighbourhood of a boundary 
point q of ¢(5(X)) ,  we can extend ¢ across q.This is a contradiction. Since the 
map 5 o ¢ is an everywhere defined conformal map of R 4, it is a diffeomorphism. 
As ¢ is surjective, ~ is injective. Therefore, ~ is an embedding and the universal 
covering of X is the Euclidean flat space R 4. Moreover, the homomorphism p is 
an isomorphism and the conformal structure on X is Kleinian. In particular, 7rl (X)  
acts on R 4 freely and properly discontinuously. It is possible only when ;rl (X)  is a 
subgroup of Euclidean isometries. Then R4/Trl (X)  is a flat Riemannian manifold. 
Without finite torsion, it must be a fiat torus. 

(vi) Suppose that the fixed-point-set of T consists of two points, oc and 0. Taking 
the stereographic projection from c~, we obtain ~(X) as a 7~-invariant subset of 
R4\0. 

As G is a compact subgroup of SO(5) leaving c~ and 0 fixed, it is a subgroup 
of SO(4). As the fixed-point-set of G is at least one-dimensional, G consists of 
rotations on a two-dimensional plane, leaving^the orthogonal plane fixed. Consid- 
ering PGL(2, H) as a subgroup of PGL(4, C), G is generated by the diagonal matrix 
diag(e ip° , e -ip°, e ~p°, e-iPO), where p is a non-zero real number. 

As p( 7rl ( X ) ) commutes with 7 ~ , elements in p(Trl ( X ) ) either leave both oo and 
0 invariant or send these two points to each other. Hence, elements in p(Trl(X)) 
are represented by the following two types of matrices in PGL(4, C): /0o 0//oo o 

0 6 0 0 0 0 0 

0 0 3 0  ¢ o o o 

0 0 0 

It follows that the divisor S := {z: zoz2 = 0} in CP 3 is invariant of the 
action of p(Trl(S)).  Let D be the component {z: z0 = 0}. If every element in 
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p(Trl (X) )  is a diagonal matrix, ~ - I (D)  is invariant of the deck transformations 
and descends into the twistor space over X. Denote this divisor by J.  If some of 
the elements in p(Trl(X)) is not a diagonal matrix, ~ - l ( s )  is invariant of the deck 
transformations and descends onto the twistor space over X. Since some of the 
deck transformations are bi-holomorphisms between the divisor D and the divisor 
{z: zz = 0}, J is isomorphic to 7r(6 -1 (S)). In both cases, we obtain the divisor J 
in the twistor space. 

The only real twistor line contained in D is the line {z: Zo = 0, Zl = 0}. As 
this line is over oe and oo is not contained in 6(J(), ~-1 (D) intersects every real 
twistor line in Z transversally at one point. Therefore, J defines an integrable 
complex structure such that (X, 9, J )  is a conformally flat Hermitian surface. Due 
to Theorem B, (X, 9) is finitely covered by either a flat torus or a Hopf manifold 
with a product metric. 

(vii) Finally, we assume that the torus symmetry has a fixed point. Denote one 
of the fixed points by ~. Denote one of the preimages of z in the universal covering 
space J( by oo. Then we define the developing map by starting from a small 
neighbourhood U of oo. The image of oo in S 4 is denoted by the same symbol. 

Suppose that 2? is non-compact. Let /~ be a non-compact one-dimensional 
subgroup. The flow of U under the group/~ is either the sphere S 4 or the sphere 
with one point removed $ 4 \ 0  ([18]). As ~(5() is 2b-invariant, it is either S 4 or $4\0. 

In both cases, we use the orbit structure of the group/~ to construct backwards 
a conformal map q~ of ~(J() into J( as in paragraph (v). If ~(X) = S 4, qS(S 4) 
is an open and closed set of )(.  Therefore, ) (  = q~(S 4) is compact, and ~ is a 
diffeomorphism. If 6(J() = S4\0, q~ is still surjective and ~ is injective as seen in 
(v). Therefore, X is conformally covered by S 4 or $4\0. 

Since the action of 2b on S 4 or $4\0  has at most two fixed points, and these 
fixed points are the preimages of the fixed point z on X,  the degree of the covering 
map is at most 2. By the compactness of X,  the universal covering is compact. 
Therefore, ) (  = S 4. It follows that ) (  = X. Due to Kuiper's theorem ([17]), the 
conformal structure of (X, 9) is equivalent to a Euclidean sphere. 

When 2b is compact, it has two fixed points on the sphere. As these points are 
account for all preimages of a fixed point of the toms action on X,  the degree of 
the covering map from )(  onto X is at most 2. Therefore, S 4 = Jf = X. Due to 
Kuiper's theorem, the conformal structure is the one of the Euclidean sphere. 

The proof of Theorem A is completed. 

8. Corollaries 

An immediate corollary to Theorem A is a topological classification of compact 
self-dual manifolds with torus symmetry. 

THEOREM 8.1. Let ( X ,  g) be a compact self-dual manifold such that C + ( X ,  [g]) 
contains U(1) x U(1). Then X is either (i) finitely covered by the 4-torus, (ii) the 



62 Y.s. PooN 

H o p f  man i fo ld  S 1 x S 3, or (iii) an equivariant connected sum o f  S 4, S 2 x S 2 , 

Cp2, ~-~2 2($1 x $3)#2(S 2 x $2), and the three families of manifolds R, T, and 
L. 

Proof If the signature of X is equal to zero, the metric is conforrnally flat. Then 
we apply Theorem A. If the signature of X is not equal to zero, the toms action 
has fixed points. Then we apply Theorem 3.2. 

A simplified version of Theorem 8.1 can be stated as follows. 

THEOREM 8.2. Let (X, 9) be a compact self-dual manifold such that the metric 
9 is not conformally equivalent to aflat metric. Suppose that C+(X, [9]) contains 
U(1) x U(1), then the manifold X is finitely covered by a connected sum of 
S 4, S 2 X S 2, CP 2, ~--~2, and S 1 x S 3. ". 

Proof After Theorem A, we only need inveStigate the case when the toms action 
has fixed points. The manifold L appears in an equivariant decomposition of the 
manifold X only when one excises a neighbourhood of a point with non-trivial finite 
isotropy from X ([27]). After taking a finite covering, we avoid this procedure. 
Then the proof of this theorem is concluded by observing that the manifolds R and 

T are connected sums of S 2 X S 2, CP 2, ~--~2, and S 1 x E 3. 

We are also interested in knowing if the type of self-dual conformal classes is related 
to the existence of toms symmetry. The next theorem shows that non-negative type 
self-dual conformal classes are relatively rare. 

THEOREM 8.3. Let (X,  9) be a compact self-dual manifold with non-negative 
scalar curvature. Suppose that C + ( X ,  [9]) contains U(1) x u(a).  Then the manifold 
X is either (i) the sphere, (ii) a connected sum of the complex projective plane, 
(iii) finitely covered by the 4-torus or (iv) the Hopf manifold. 

Proof Assuming that the manifold is not described by Theorem A, then the 
topology of X is determined by Theorems 3.2 and 3.3. When the scalar curvature 
is non-negative, a Bochner type argument shows that either (X, 9) is finitely 
covered by a scalar-flat Kfihler surface with opposite natural orientation or the 
intersection form of X is positive-definite ([5], [19]). 

When (X, 9) is finitely covered by a compact scalar-flat Kfihler surface, Propo- 
sition 6.1 shows that (X, 9) is finitely covered by the 4-toms. To conclude the 
proof of this theorem, observe that on the list of Theorem 8.2, only connected sums 
of the complex projective plane have positive-definite intersection form. 

When we apply an equivariant version of the Donaldson-Friedman programme to 
construct self-dual metrics with symmetry on connected sums of compact self-dual 
manifolds ([30]), we need building blocks. They are compact self-dual manifolds 
admitting symmetries with fixed points. For this reason, it is useful to know which 
manifolds on the lists of Theorems 3.2 and 3.3 admit self-dual metrics. After Orlik 
and Raymond, manifolds on these lists are called elementary. 
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T H E O R E M  8.4. Suppose that (X, g) is a compact self-dual manifold and 
C+(X,  [g]) contains U(1) x U(1).  I f  the manifold is elementary with respect to a 
given torus action, then ( X ,  g) is conformally equivalent to either the Euclidean 
sphere or the complex projective plane with a Fubini-Study metric. 

Proof. Among all elementary manifolds, only C P  2 has positive signature. Due 
to Theorem A and Theorem 8.1, the sphere is the only elementary manifold with 
vanishing signature admitting a conformally fiat structure. However,  the only con- 
formally fiat structure on a sphere is the standard one ([17]). 

To determine self-dual structures on C P  2, observe that any toms action on 
C P  2 contains a semi-free U(1)-action. To be precise, any effective toms action 
on C P  2 is equivariant to the following toms action. Parametrize the torus by 
0 < 0 < 27r, 0 < ¢ < 27r. The action is given by 

(0, ¢ ) .  [z0, Zl, z2] ---> [eimO zo, z1, e in¢ z2], 

where [z0, Zl, Z2] is a homogeneous coordinate on the complex projective plane, 
and (m, n) is a pair of  coprime integers. Then the action of  the subgroup {t 
(t, kt), 0 < t < 27r}, where k ~ 0, 1 is a rea l  number, is semi-free. 

It is proved in [22] that when a compact  self-dual manifold with strictly positive 
definite intersection form has semi-free U(1)-symmetry,  then it is obtained by 
a hyperbolic Ansatz over the hyperbolic 3-space. This construction on complex 
projective plane yields the conformal class containing the Fubini -Study metric. 
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