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Abstract: Using deformations of singular twistor spaces, a generalisation of the connected 
sum construction appropriate for quaternionic manifolds is introduced. This is used to 
construct examples of quaternionic manifolds which have no quatemionic symmetries and 
leads to examples of quaternionic manifolds whose twistor spaces have arbitrm'y algebraic 
dimension. 
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1. Introduction 

In Donaldson & Fl'iedman [5] new self-dual structures were constructed on certain 
connected sums of self-dual manifolds. In particular, they substantially generalised a 
result of Boon [17] to show that  nCP(2)  -- C P ( 2 ) # . . .  # CP(2) has a self-dual struc- 
ture derived from the self-dual structures on each CP(2),  a result which was also 
obtained by analytic methods by Floer [6] and dealt with explicitly by LeBrun [13]. 
The work of Donaldson & Friedman [5] has the appealing feature of giving a com- 
plete obstruction theory for this problem. This has recently been complemented by 
Taubes [21] who shows that  if M is any four-manifold then for sufficiently large k, 
M~CkCP(2) is self-dual. 

In higher dimensions the geometry most closely related to self-duality is quater- 
nionic geometry in the sense of Salamon [19]. Here one studies 4n-manifolds with 
s tructure group GL(n,H)GL(1,  H) which admit  a compatible torsion-free connec- 
tion. Such a manifold M is naturally the base space of a non-holomorphic fibration 
of an S2-bundle Z over M whose total space admits  a natural  complex structure.  
The total  space Z is known as the twistor space of M and its complex and real 
structures together determine the quaternionic s tructure of the base. The simplest 
example of a quaternionic manifold is quaternionic projective space HP(n)  which 
has twistor space CP(2n + 1). Donaldson & Friedman's  construction starts  with a 
singular model for the twistor space of the connected sum built from the blow-ups 
of the twistor spaces of the four-dimensional summands along a twistor line. They 
then proceed to show that  this singular model can be smoothed in the category of 
twistor spaces. To try and extend this construction to quaternionic manifolds one 

* Partially supported by the National Science Foundation grant DMS-9296168. 



80 Y.S. POON AND A. SWANN 

needs a different notion of connected sum. One reason is that  the space S in, which 
acts as the identity for connected sums, no longer admits a quaternionic structure if 
n > 1 (Gray & Green [8]). Secondly, for this construction the nature of the twistor 
space is crucial. The four sphere S 4 has twistor space CP(3), so it is more natural 
to replace S 4n by the model space IEP(n) whose twistor space is CP(2n + 1). This 
choice is also natural from the point of view of curvature, since HP(n)  is the flat 
model in the category of qnaternionic manifolds. 

The usual connected sum construction involves choosing a point in each manifold; 
a neighbourhood of each point is then removed and the boundaries of the resulting 
manifolds are identified with opposite orientations. The construction we wish to 
s tudy is as follows. Let M1 and M2 be two quaternionic manifolds of dimension 8n+4. 
Suppose each manifold contains an embedded copy of HP(n)  such that  the real 
projectivised normal bundles are isomorphic, then we may remove a disc bundle of 
each normal bundle and identify the boundaries of the resulting manifolds. This we 
will call the generalised connected s u m  MI~HpM2 of M1 and M2. Note that  this type 
of construction is well-known to topologists as a connected sum along submanifolds 
(see for example Kosinski [12]). 

The discussion in Section 2 shows that  this definition is promising, since the pro- 
jective space IHIP(2n + 1) acts as the identity for generalised connected sums. We 
then go on to discuss the analogue of Donaldson & Friedman's deformation theory. 
It turns out tha t  the twistor spaces of the embedded IEP(n)'s have normal bun- 
dle (2n + 2)O(1) -~ CP(2n + 1) and so the  embedded CP(2n + 1) behaves much 
like a twistor line in the original theory. The simplest case to deal with is when 
the group H2(Zi, Oi) (where Oi is the holomorphic tangent bundle) vanishes. Even 
when this group does not vanish the construction goes through, but  the proof is 
somewhat harder and is not discussed here, as we do not require it for our exam- 
ples. The lack of obstructions is in agreement with a result of Griffiths [9] which 
implies that  a neighbourhood of the embedded CP(2n + 1) is biholomorphic to an 
open set in CP(4n + 3). From our construction we obtain quaternionic structures on 
k-fold generalised connected sums M(k ) = M(1)~a~p...~HpM(1), where M(1) is an 
(8n + 4)-dimensional quaternionic analogue of the Hopf surface S 1 x S 3 obtainable 
as a generalised connected sum of HP(2n + 1) with itselfi These structures include 
the first explicit examples of compact quaternionic manifolds without any quater- 
nionic symmetries. Other  such examples are implicit in the work of Joyce [10, 11]. 
Modifying the basic building block M(1}, we show that  the twistor space of a com- 
pact quaternionic manifold may have arbitrary algebraic dimension. This contrasts 
strongly with a result of Pontecorvo [16] for the twistor spaces of quaternionic K£hler 
manifolds. 

A c k n o w l e d g e m e n t s .  We thank C. R. LeBrun and S. M. Salamon for useful con- 
versations. A. S. also wishes to thank Rice University and particularly the Max- 
Planck-Institut ffir Mathematik, Bonn, for kind hospitality. 

2. T h e  F l a t  M o d e l  

Here we consider forming the generalised connected sum of two quaternionic pro- 
jective spaces. This is the model for the generalised connected sum construction 
described in the next section. The twistor space of HP(2n + 1) is CP(4n + 3) with 
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the twistor fibration CP(4n + 3) --~ IHIP(2n + 1) given by [z0, z l , . . . ]  ~-~ [z0 + jz l , . . . ] .  
Choosing a standard copy of HP(n) in HP(2n + 1) gives a copy of CP(2n + 1) 
linearly embedded in CP(4n + 3) as the first (2n + 2)-coordinates. Let Z denote 
the blow-up of CP(4n + 3) along this CP(2n + 1). This blow-up naturally lives in 
CP(4n + 3) × CP(2n + 1) as the variety 

cibj = cjbl, 

where [ao, . . . ,  a2n+l, bo, . . . ,  b2n+l] E CP(4n + 3) and [co,... ,C2n+1] e CP(2n + 1) 
are homogeneous coordinates and i , j  take all possible values. Now CP(4n + 3) × 
CP(2n + 1) may be embedded in CP(8(n + 1) 2 - 1) via the Segr~ map s 

s([a;, [ck]) = [a.cq, brcs]. 

However under this map the defining equations for 2 become linear equations and 
s(Z) lies in a CP(6(n + 1) 2 + n). Note that the image s(Q) of the exceptional divi- 
sor Q = { bi = 0 ) ~ CP(2n + 1) × CP(2n + 1) lies in a (4(n + 1) 2 - 1)-dimensional 
linear subspace. We form the singular space with normal crossing Z = Z1 UQ Z2 
by taking two copies of this construction and identifying the exceptional divisors 
by swapping the two CP(2n + 1)-factors. The resulting space embeds in 
CP(8n 2 + 18n + 9) which is precisely the target space for the Veronese map of 
degree two on CP(4n + 3) (see below). 

P r o p o s i t i o n  2.1. I f  21 and 22 are two copies of the blow-up of CP(4n + 3) 
along a linearly embedded CP(2n + 1), then the resulting singular space with normal 
crossing Z = Z1 UQ 22 may be smoothed to CP(4n + 3). 

Proof. Choose homogeneous coordinates [uij, vpq, wrs] on CP(Sn 2 + 18n+9) ,  where 
the indices run over {0 . . . .  ,2n + 1} but  with p < q and r < s. Then the embedding 
of Z1 is given by 

Uij = a i c j ,  

and that of Z2 by 

Uij = a~c:, 

Vpq ~- bpcq, Wrs ~ 0 

Vpq "~ O, Wrs ~- btrct s. 

Thus, the singular variety Z is the union of 

UijUkl --- UilUkj ,  UijVpq ~- UiqVpj, "OpqVrs ----- VpsVrq, Wrs ~ 0 

and 

?~ijUkl ~ ~il'Ukj~ Vrs ~ 0, UijWrs  ~ UisWrj  , WpqWrs --'-- WpsWrq. 

Consider the one-parameter family of varieties VA defined by 

UijUkl = UilUkj ,  

UijVpq --~ Uiq~Jpj~ VpqVrs = VpsVrq~ 

Ui jWrs  "-~ UisWrj~ WpqWrs ~- WpsWrq, 

VpqWrs ~ ,~UprUqs. 
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When A = 0 this coincides with the singular variety Z. However, V1 is precisely the 
image of the Veronese map ¢ : CP(4n + 3) ---r CP(8n 2 + 18n + 9) defined by 

uij = diej, Vpq = dpdq, Wrs = eres, 

where [do, . . . ,  d2n+l, e0 , . . . ,  e2n+l] are homogeneous coordinates on CP(4n + 3). [] 

C o r o l l a r y  2.2. The generalised connected sum of two copies of HP(2n + 1) is 
again HP(2n + 1). 

Proof. The twistor space CP(4n + 3) of HP(2n + 1) has its real structure given by 

[Z0, ZX, Z2, Z3,. . .]  I-~ [--21, Z0, --Z3,Z4,.. .].  

One may now verify that,  for A real, the real structure induced on Vx via the above 
smoothing construction agrees with that induced by the Veronese map ¢. The proof 
is completed by applying the 

I n v e r s e  T w i s t o r  C o n s t r u c t i o n .  (Pedersen & Pooh [14]) Let Z be a complex man- 
ifold of complex dimension 2n + 1 > 5 with a fixed-point-free anti-holomorphic invo- 
lution or. Then the set N of a-invariant rational curves with normal bundle 2nO(l )  
is a quaternionic manifold of real dimension 4n. 

Indeed one may choose to use this as a definition of a quaternionic manifold. 

3. S t a n d a r d  D e f o r m a t i o n s  

Let M1 and M2 be two compact quaternionic (8m + 4)-manifolds, with twistor fibra- 
tions ~ri : Zi --~ M~. Suppose ]91 and P'2 are embedded copies of ~l~(m) together with 
an isomorphism between the sphere bundles of N1 and N2, the normal bundles of Pi 
in M{. Let Zi denote the blow-up of Zi along 7r~-l(Pi) and let Qi be the exceptional 
divisor. I fQi  is isomorphic to C P ( 2 m +  1) x C P ( 2 m +  1) then we say that  the embed- 
ded HP(m) ' s  are admissible, in this case, we form the singular space Z = 21 U o Z2, 
where Q = Q1 ~ Q2 with the identification swapping the C P ( 2 m +  1)-factors. RecM1 
that  a standard deformation of Z consists of (i) a smooth complex (n + 4m + 3)- 
dimensional manifold Z together with a proper holomorphic map p : Z --~ S, where 
S is a neighbourhood of the origin in C n, (ii) an isomorphism between p - l (0 )  and Z 
as complex spaces and (iii) antiholomorphic involutions a on Z and S compatible 
with p and inducing the given real structure on Z. By shrinking S if necessary, we 
may assume that  there are local coordinates ( t l , . . . ,  tn) on C n such that  the singular 
fibres of p lie over the hypersurface { tl = 0 }. 

T h e o r e m  3.1. Suppose the projectivised holomorphic normal bundles ~(vi) of 
7r~-l(Pi) in Zi are trivial and that Z ~ S is a standard deformation of the sin- 
gular space Z.  Then for su~ciently small s in the fixed-point set S a but not lying 
in i t1  = 0}, the fibre p - l ( s )  is the twistor space of a quaternionic structure on 
MI # z p  M2. 

Sketch proof. It is sufficient to consider the case when S is one-dimensional. The 
real geometry is exactly as in the four-dimensional case (see Donaldson & Fried- 
man [5])and implies that  Z is fibred by complex lines over a smooth deformation 
of G = M1 Up M2, where /~i is the real blow-up of Mi along Pi and P is the real 
projectivisation ~R(N1) = F~(N2) of the normal bundle Ni. 
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Consider a line L which is a fibre of Z --+ G. If L is not in Q then L is just  an 
ordinary twistor line, so has normal bundle (4m+2)O(1)  in Z. This implies that  the 
normal bundle of L in Z is (4m+2)0(1)~90.  I fL  lies in Q, write VL,Q for the relative 
normal bundle given by 0 --+ UL,O --+ VL ~ UQIL --~ O. Then VL,Q = 0(2)  @ 4toO(l) ,  
because a real line lies in a linear CP(1) × CP(1) in C P ( 2 m +  1) × C P ( 2 m +  1). Since 
P(vi) is trivial, we have ui ~ (2m + 2)O(k) for some k. If Li is a twistor line of Zi 
lying in P} = ~ - l (p / ) ,  then we have the exact sequence 

0 ~, VLi ,V i ~ VLi ,Z i ) l~i[Li ~ O. 

In our case this is 

0 - -+  2toO(l)  ---+ (4m + 2)O(1) ----+ (2m + 2)O(k) - -+ 0, 

since the inclusion of L{ in Zi is just a linear CP(1) in CP(2m + 1). Counting 
first Chern numbers shows that k = 1 and hence vl = (2m + 2)O(1). Thus, 
in the blow-up ,~i of Zi along V~, the exceptional divisor Qi is isomorphic to 
CP(2m + 1) x CP(2m + 1) and has normal bundle O ( 1 , - 1 ) .  In Z this gives 
vq = O ( 1 , - 1 ) $  O ( - 1 , 1 )  and UQI L = 20.  Thus, /]L -~ ( . 9 ( 2 ) q ~ ) 4 m O ( 1 ) @  2 0  
and L has an (8m + 5)-parameter family of deformations. 

L e m m a  3.2. There is a neighbourhood of the singular real space G in the real 
deformation space such that the lines over these points with normal bundle not equal 
to (4m + 2)69(1) $ O are those lines contained in Q. 

Sketch proof. Again the proof comes down to considering those twistor lines 
in Q. We get 7 L  : HO(pL) -'-> HI(End(uL))  ~ C 2. Note the family of lines in Q 
has dimension 3 + 8m, so it is sufficient to show that  7L is surjective. In fact 
we only need to check this in the flat model. This model is the total space of 
O ( 1 , - 1 )  ~9 O ( - 1 ,  1) and we need to show that  it contains a versal deformation 
of 20 ~ 4toO(l)~9 0(2) .  It is sufficient to consider O @ 4mO(1)~9 0(2)  in O ( 1 , - 1 ) .  
But  H i ( E n d ( O  $ 4toO(l)  ~ 0(2)))  = H 1 ( O ( - 2 ) )  and the local computation is as 
in four-dimensions. [] 

The end of the proof of the theorem is exactly as in four-dimensions. 1:3 

To apply the deformation theory of Donaldson & Friedman [5] we need the fol- 
lowing: 

L e m m a  3.3. The following cohomology groups of the exceptional divisor vanish: 
(1) HI(Q,O);  

(2) HP(QI, vi) for all p, where ui is the normal bundle of Qi in ,~i; 
(3) HP(Q, OQ) for p = 1, 2, where OQ is the holomorphic tangent bundle. 

Proof. Recall the K(inneth formula 

Hi(M1 x M2, O(lr;E1 ® ~r~E2)) = ~ Hk(M, O(Ex)) ® Ht(M2, O(E2)), 
k+l=i  

for the tensor product  of vector bundles Ei over Mi, where ~ri : M1 x M2 --+ Mi are 
the obvious projections. In our case, M1 -~ M2 ~ CP(2m + 1) and (1) follows from 
the vanishing of Hi(CP(r), (9(n)) for 0 < i < r and n E Z. For part  (2), we have 
HP(Qi, ui) = HP(CP(2m + 1) x CP(2m + 1), (9(1, - 1 ) )  which is zero by the above 
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remarks and the vanishing of H°(CP(r ) ,  O(n)) and Hr(CP(r), O ( - n  - r - 1)) for 
n < 0. Part  (3) now follows from the Euler sequence 

0 ~ 0 ----+ (r + 1)0(1) ~ OcP(r ) ~ O. 

[] 

C o r o l l a r y  3.4. (Donaldson & Friedman [5]) If the groups H2(Zi, Oi), for i = 1, 2, 
vanish then there is a complex standard deformation of the singular twistor space Z. 

As in Donaldson & Friedman [5], one now deduces: 

T h e o r e m  3.5. Suppose Mi, i = 1 . . . . .  n, are compact quaternionic (8m + 4)- 
manifolds with admissible embedded copies Pi of IEP(m) and isomorphisms between 
the sphere bundles of the normal bundles Ni of Pi in Mi. Let Zi denote the twistor 
space of Mi and Oi the holomorphic tangent bundle of Zi. If all the cohomology 
groups H2( Zi, Oi) vanish then the generalised connected sum MI~Hp "'" ~ p  Mn ad- 
mits a quaternionic structure. 

4. E x a m p l e s  

We start  by forming the self-sum of IEP(2n+ 1). Let IEP(n)0 -- {[a0, • • •, an, 0 , . . . ,  0]} 
and ]EP(n)I --- {[0, . . .  ,0, b0, . . . ,  bn]} be the two embedded HP(n) 's .  The  subgroup 
of Sp(2n + 2) preserving these two sets is Sp(n + 1) x Sp(n + 1) which we will refer to 
as Sp(n+ 1)0 × Sp(n+ 1)1 in order to distinguish the factors. The sphere bundle Sv~ 
of the real normal bundle of IEP(n)0 in IEP(2n + 1) may be identified with 

= { [ a o , . . . , a ~ ,  ~ 0 , . . . , b ~ ]  : la012 + . . - +  la,  I ~ = 1, .Ib012 + . . - +  Ib~l -~ = r ~ } ,  S~ 

for any r > 0. Fixing a point x of HP(n)0, we see that  the action of Sp(n + 1)1 on 
the fibre S~r~ is just  the standard action of Sp(n+ 1) on the unit sphere in IE n+l. In 
particular this action is transitive. Calculating the stabiliser of a point and noting 
that  [.J Sr = HP(2n + 1) \ (HP(n)0 U IEP(n)I) gives 

r>0 

Proposition 4.1. The self-sum of HP(2n + 1) over iEP(n) is topologically 

MO) = S~ x S 1 = Sp(n  q- 1) Sp(n  -b 1) 
Sp(n)A Sp(1) Sp(n) x S 1, 

where A Sp(1) denotes the subgroup of Sp(n + 1) x Sp(n + 1) consisting of 
d iag(1 , . . . , 1 ,q )  x diag(q, 1 , . . . ,  1), for q e Sp(1). 

This construction leaves many embedded IEP (n)'s unchanged, for example HP (n)'s 
given by equations Aai + #bi = O, where A# ¢ O. So we may use the generalised 
connected sum construction to obtain a series of manifolds 

M(k) = M(1)#IEP • " "#HPM(1) = k~HpM(1). 

T h e o r e m  4.2. The manifolds M(k) are compact manifolds with bl(M(k)) = k and 
admit flat quaternionic structures. 

If k is greater than or equal to 3 and the connected sums are performed with respect 
to generic totally geodesic disjoint copies of IHIP(n), then the resulting manifolds have 
no connected group of quaternionic symmetries. 
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On the other hand the maximal group of effective quaternionic symmetries of M(k) 
for the quaternionic structures arising from this construction has dimension 

8 ( n + 1 )  2 - 1 ,  if k = l ,  

4 ( n + 1 )  2 - 1 ,  if k > l ,  

and these dimensions may be realised. 

Proof. To show M(k) is quaternionic it is sufficient to show that  MO) admits a 
flat quaternionic structure whose twistor space Z(1) satisfies H2(Oz(D) = 0. Let 
[c,d] be homogeneous coordinates on CP(4n + 3) such that  CP0 -- {d =- 0} -- 
CP(2n + 1) and CP1 -- {c = 0} ~ CP(2n + 1) are the twistor spaces of HP(n)0 
and HP(nh ,  respectively. Then Z(1) may be described as the quotient of 
CP(4n + 3) \ (CPoUCP]) by the action [c,d] ~-~ [c, 2d]. This map preserves the 
twistor fibration [co, cl . . . .  , do, d l , . . . ]  ~-~ [co + j c l , . . . ,  do + jd l , . . . ]  and induces an 
action on HP(2n + 1) \ (HP(n)0 U IEP(n)I) such that  the quotient by this action is 
diffeomorphic to M(1). The action on CP(4n + 3) is holomorphic and preserves the 
real structure, so Z(1) is the twistor space of a quaternionic manifold. It is flat as it is 
covered by the standard twistor space structure on an open subset of CP(4n+3)  (see 
Salamon [19], for the definition of flat), Clearly Z(1) has a holomorphic projection p 
to CP0 × CP1 and we have an exact sequence 

0 ---+ (-.OZ(1) ~ OZ(1) ) P*OCPoxCP1 ~, O. 

When n = O, this is precisely the situation described by Pontecorvo [15] and his 
calculations are easily adapted to show 

{ 8 ( n + 1 ) 2 - 1 ,  f o r i = 0 , 1 ,  
hi(ez(D)  = 0, for i _> 2. 

In particular, H2(Oz(])) = 0, as required. The calculation also gives 

H°(Oz(1)) = { (A ,B)  e M2n+2(C) x M2n+2(C): TrA = - T r B } .  

Since HP(n) and S 4n+3 have no homology in dimensions 1 and 2, the assertion 
on bl is clear. 

By the Inverse Twistor Construction (Pedersen & Pooh [14]), the complexification 
of the group of diffeomorphisms preserving the quaternionic structure is isomorphic 
to the group of holomorphic transformations of the twistor space. In the connected 
sum construction, we have a singular space Z = Zl  I.JQ z~ 2. Let r ° be the sheaf of 
holomorphic automorphisms of Z. By semi-continuity, hO(T O) is an upper-bound for 
the dimension of the space of holomorphic automorphisms of any small deformation 
of Z. From the short exact sequence 

0 ; r ° ", q.(021,c21 @ 022,Q~) ) 0 0 > O, 

where the normalisation q : (Z1, Q1) H (Z2, Q2) -+ (Z, Q) is just the obvious map, 
we have an exact sequence 

0 ---~ H°( r  °) > H°(Oz1,v1 ) ~ H°(Oz2,v2) - -o  H°(OQ) - -~  HI(T °) ~ . . . ,  

since H°(O2i,Oi) =~ H° (~)zi,Yl). 
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We consider the group H°(Ozi,¼) in the case that  Zi = Z(1). The space CP I C 
CP(4n + 3) over Pi is a CP(2n + 1) given by equations C'c + D'd = O, for some 
matrices C' and D' in Mn+I(H) C M2n+2(C). The condition that  CP' does not meet 
CP0 and CP1 is that  C' and D' be invertible. Write D = C ' - I D  ' and CPD = CP' = 
{c 4 -Dd  = 0}. The group H0(Oz(1),CpD) consists of elements of H°(Oz(D) which 
preserve CPD, thus 

HO(Oz(1),CPD ) = { ( D B D - 1 , B )  6 M2n+2(C) X M2~+2(C): T r B  = 0} 

~- ~/(2n + 2, C). 

This also happens to describe the induced action on the exceptional divisor QD = 
P(v) x CPD of the blow-up of Z(1) at CPD. Note that two such subspaces CPD and 
CPD, do not intersect if and only if det(D - D') ~= 0. 

We first investigate the possible symmetries of M(2). Let Z be the singular space 
2(1) UQ Z(1), where the first Z(1) is blown-up along CPD and the second Z(1) is 
blown-up along CPD,. The space H°(~ -0) consists of elements of H°(O2(1),QD) @ 

H°(O2(1),QD ,) which agree on Q, that  is 

(DAD-1,  A) ~ ( D ' B D ' - I , B )  : D A D  -1 = B, A = D ' B D  '-1, Tr A = Tr B = 0} 

~_ { A 6 s [ ( 2 n + 2 , C ) : A = ( D ' D ) A ( D ' D ) - I } .  

Prom Steinberg's results on the adjoint action (see Carter [4]), one sees that  this 
last set has dimension between 4(n + 1) 2 - 1 and 2n + 1. The upper-bound is 
achieved when D'D is a multiple of the identity; the lower-bound occurs when 
D'D 6 GL(n + 1,NI) C GL(2n + 2, C) is a regular element, for example when 
D'D is diagonalisable with all eigenvalues distinct. Using the explicit smoothing 
arising from Section 2, one may check that  the condition TrB  = 0 ensures that  for 
small deformations h°(Oz(2)) = h°('r°). Taking D and D' to be diagonal matrices 
our assertions about the maximal group of symmetries are now immediate. 

We now show that  there is a configuration for which Z(3) has no holomorphic 
symmetries. Write Z = 2(1) UQ 2(1) UQ, Z(1), where the first and last Z(1)'s are 
blown-up along CPId and the middle Z(1) is blown-up along CPD and CPD,. Let D be 
a diagonal matrix diag(iA0,... ,iA,,,-iA0 . . . .  , - /An)  with A0 > A1 > . . .  > An > 0. 

W r i t e D , =  ( O  c~)0 , w h e r e o ~ 6 G L ( n + l : R )  C G L ( n 4 - 1 , C ) i s a d i a g o n a l i s a b l e  

matrix with distinct eigenvalues such that  none of the eigenvectors coincide with 
any of the standard basis vectors. Then D and D' are regulm" elements and D - D' 
is invertible. Thus CPD N CPD, = 0. Also, the set of Ad D-invariant elements 
in ~[(2n + 2, C) is precisely the set of diagonal matrices. However, the condition 
on a ensures that  none of these are Ad D'-invariant, so the singular space Z has no 
holomorphic symmetries. Semi-continuity now implies that  small deformations also 
have no symmetries, so this applies to some of the Z(3)'s as required. [] 

R e m a r k s .  (1) Note that M(k) always admits an effective topological action of 
PSL(n  + 1, H). 
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(2) The symmetry group of Z(1) is SL(2n + 2, C) x SL(2n + 2, C) x C* and the 
corresponding connected group of quaternionic symmetries of M(1) is (finitely covered 
by) SL(n + 1, H) x SL(n + 1, H) x S 1. 

(3) If M is a quaternionic Kiihler manifold of positive scalar curvature, then an 
easy application of the Akizuki-Nakano vanishing theorem (Akizuki & Nakano [1]) 
shows that  the twistor space Z of M automatically satisfies H2(Z, {3) = 0 (cf. Sala- 
mon [18]). There are two natural examples of quaternionic K~hler manifolds with an 
embedded projective space of the right dimension. The first is the complex Grass- 
m a n n i a n  Gr2(C 2n+3) of two planes in C2n+3; the embedded ~-lIP(n) is the set of 
quaternionic planes in H u+l C 1E n+l ~ C C C 2nq'3. The .second is the Grassman- 
nian Gr4(lt~ 7) of oriented four-planes in 1~7; here HP(1) is embedded by identifying it 
with Gr4(II~5). However, in neither case is the nolznal bundle of the twistor space of 
the embedded HP(n) of the correct type to apply our construction. It may well be 
that  our constraint that  HP(n) be admissible implies that  M = HP(2n-b 1). Indeed, 
if HP(n) is admissible a result of Griffiths [9] implies that  the embedded CP(2n-b 1) 
has an open neighbourhood equivalent to the usual linear embedding of CP(2n + 1) 
in CP(4n -4- 3). However, this result says nothing about the real structure and there 
is a result of Burstall [3] which states that  even as complex contact manifolds the 
twistor spaces of the known (that is symmetric) compact quaternionic K~ihler man- 
ifolds in any fixed dimension are birationally equivalent. 

5. A l g e b r a i c  D i m e n s i o n  

The algebraic dimension of a compact complex manifold X is defined to be the 
transcendence degree over C of the space of meromorphic functions on X (see for 
example Ueno [22]). In this section we calculate the algebraic dimension of various 
twistor spaces generalising Z(1). First note that  in the construction of M(1 ) it was 
not necessary to take the embedded quaternionic projective spaces to be of the same 
dimension. In fact our earlier analysis goes through for disjoint totally geodesic 
copies of HP(a) and HP(b) in IEP(a + b + 1). Blowing-up the embedded twistor 
spaces results in isomorphic exceptional divisors and the resulting normal crossing 
may be deformed as before. We thus obtain quaternionic structures on 

Sp(a + 1) Sp(b + 1) S1" 
g(a,b) = Sp(a)A Sp(1) Sp(b) x 

Note that  M(a,b ) may be realised as a discrete quotient of the quaternionic join 
(Swann [201) of HP(a) and IHIP(b). 

A twistor space Z(a, b) for a quaternionic structure on M(a,b ) nlay be obtained 
exactly in the same way that  Z(1) was constructed above, that  is as a discrete 
quotient of CP(2a+2b+3)\(CP(2a+I)UCP(2b+I)) by the action [c, d] ~-~ [c, 2d]. In 
particular, the next result covers the twistor space Z(1) as the special case a = b = n. 

P r o p o s i t i o n  5.1. The twistor space Z(a, b) has algebraic dimension 2a+2b+2.  In 
particular, it is not Moishezon and is not the twistor space of a quaternionic Kiihler 
structure. 

Proof. We have a holomorphic projection Z(a, b) --~ CP(2a + 1) x CP (2b+ 1), so the 
algebraic dimension a(Z(a,  b)) of Z(a, b) is at least that  of CP(2a + 1) × CP(2b+ 1), 
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that  is a(Z(a,  b)) > 2a -4- 2b + 2. On the other hand Z(a, b) is easily seen to contain 
a three-dimensional holomorphic submanifold isomorphic to the twistor space Z of 
a Hopf surface S 1 × S 3 considered by Pontecorvo [15]. Pontecorvo shows that  Z has 
algebraic dimension 2, and since this has co-dimension 2a + 2b, Ueno [22] implies 
2 > a(Z(a ,  b)) - (2a + 2b). Thus a(Z(a,  b)) = 2a + 25 + 2. 

The Moishezon condition says that  a (X)  = d imX,  so this is clearly not satisfied 
here. The assertion about quaternionic K/£hler metrics follows from Pontecorvo [16], 
where it is shown that  the twistor space of a quaternionic K/ihler manifold is either 
Moishezon or has algebraic dimension 0 or 1. 17 

More generally one may construct compact quaternionic manifolds as quotients of 
open sets in HP(n)  by free, properly-discontinuous, co-compact actions of discrete 
subgroups of GL(n + 1,H). For example, consider the action on HP(n)  given by 

! ! [q0, q l , . . . ]  ~-+ [)t0q0, ) t lql , . . . ] .  If we assume, for simplicity, that  the )t~ are non-zero 
complex numbers, then the induced action on the twistor space CP(2n + 1) is given 
by [z0, zl,  z2, z3, . . . ]  ~-~ [)t~z0, ~ Z l ,  )t~z2, ~ z 3 , . . . ] .  

L e m m a  5.2. Consider the action of Z on CP(n) ,  n > 2, generated by 

[Z0, Z l , . - . ]  ~ [)t0Z0,)tlZl . . . .  ], 

where )to,. . .  ,)tn are non-zero complex numbers satisfying 

1 _< IAol . . . . .  lAil < lAi+ll . . . . .  l)tnl, (5.1) 

for some i, 0 < i < n. This action is free, properly-discontinuous and co-compact on 
an open set of CP(n) and has a fundamental domain U lying between the boundaries 

Izol 2 + . . .  + Iz~l 2 = lZi+ll 2 + . . - +  Iz~l 2, 

Izol____2 2 Izil 2 Izi+xl_____~ 2 Iznl 2 
i)tol 2 + + ~ = i)ti+ll 2 + + i)t.i----~. 

(As usual, only include one boundary component in the fundamental domain.) Let 
X be the quotient manifold. Then the field of meromorphic functions on X is gen- 
erated by (the push-forwards of) the functions 

ao a l  a n  
Z 0 Z 1 • . .  Z n , 

where a = ( a0 , . . . ,  an) runs over n-tuples satisfying 

n 

ao a, .)t~" = 1. (5.2) y ~ a i  = 0 and )to )tl - 
i=0 

Proof. First note that  the definition of the fundamental domain is consistent with 
restriction to a coordinate linear subspace of CP(n) for which the restricted action 
still satisfies (5.1). 

Let S C { 0 , . . . ,  n } be a maximal subset such that  the { )t~ : i E S } are indepen- 
dent in the sense that  they satisfy no non-trivial relation (5.2). Reorder the indices 
so that  S = { 0 , . . . ,  r }. Then X has algebraic dimension at least n - r and contains 
a copy of the corresponding quotient Xr from CP(r) .  The lemma will follow by 
showing that  the algebraic dimension of X is precisely n - r. 
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If r = 1, then by the proof of the previous proposition the corresponding quotient 
from CP(2) has algebraic dimension 1 and hence X has algebraic dimension n -  1 = 

If r > 1, let ir denote the integer i appearing in (5.1) for the induced action 
on CP(r) .  By the Levi Extension Theorem (see Barth et al. [2]), the lift of any 
meromorphic function on Xr to C P ( r ) \  ( C P ( i r ) U C P ( r -  it)) extends to an invariant 
meromorphic function on C r = {z0 # 0}. Examining the Laurent expansion of such 
a function about  the origin shows that  it must be identically zero if no non-trivial 
relation (5.2) is satisfied. Thus X~ has algebraic dimension zero and again X has 
algebraic dimension n - r. [] 

Now taking appropriate actions induced from quaternionic space as above and 
combining the above lemma with the result of Pontecorvo [16] for the algebraic 
dimension of the twistor space of a quaternionic K£hler manifold quoted above gives: 

P r o p o s i t i o n  5.3. Given n >_ 0 and a such that 0 < a < 2n-b 1, there exists a real 
4n-dimensional compact quaternionic manifold whose complex (2n ÷ 1)-dimensional 
twistor space has algebraic dimension a. 

Note that  in the case n -- 1 this result is already known and the special case of 
the twistor space of a Hopf surface is dealt with by Gauduchon [7]. 
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