
Dil‘ferential Geometry and its Applications 10 (IYYY) 107-l I!, 

N~~rt~-l~(~ll~~~~~l 

U( 1 )-decomposable self-dual manifolds* 

(‘ommunicated hy S.M. Salamon 

lieccivcd 2 April 1997 

\hrt,rwt: We characterize conformally flat spxea as the only compact self-dual manifolds which xc i.i( I b 
cqulwriantly and conformally decomposable into tmo complete self-dual Einstein manifolds M ith commons 

conformal intinity. A geometric characterization 01’ such conformally llat \pacea is alw given. 

K~w~~~wrl.c: Self-duality. Einstein metrics. 

.MS t.ic/vsific.~ttrioir: 5X25: 33L.75. 5XD 19. 

1. Through a deep application of twistor theory, Hitchin discovered a large class of complete 

self-dual Einstein metrics on Il(~n-compact mal~ifolds 191. All his metrics admit the group SUi2) 

a> group of isometries. Among his examples are families of self-dual Einstein metrics on the 

unit ball in $3.‘. The conformal boundaries of these metrics are the three-dimensional spheres 
w,ith left-invariant metrics. This large class of examples prompt the following question. W/tori 

(‘(its ~,IYI con$rfc~ tm-umpmt self-dual Einsti~ift mm2~fXI.~ hr glued nlmg n cwi~mm c~~l!fitr-- 

/~trl ;~~~~?i~~ to ~?~~~~i~~~~~~ LI ~(~~~~1~~~~ .s~~-~l~~l r~~ili?~f~~l~i? To address this question, w-e recall the 

definition of conformal infnity f 14, 51. 

Definition 1.1. Suppose that (X, /z) is a real analytic oriented four-dimensional Riemannian 

manifold and (M. g) is a real analytic oriented three-dimensional Riemannion manifold. The 

c(~n~.(~rnlal rll~~~ifold (M. [g]) is a ~~~~~j~~r~~l~~ ;~?~~?~~~ of (X. 1~ 1 if there is an oriented real ana- 

1) tic conformaf manifold (2, [jj]) such that 
( 1 ) there is ;tn analytic oriented conformal diffeomorphism from X onto the interior ot‘ .k: 

(2) there is an analytic oriented conformal diffeomorphism from M onto the boundary of ,?, 

(3) via the above embedding, the metric h has a pole along M. 

In one of the earliest applic~~tions of twistor theory, Letlrun proved that for any oriented 

three-dimensional analytic conformal manifold (M. [g 1). there is an oriented four-dimenait~tlal 

Riemannian manifold (X. h) such that (M. [s]) is the conformal boundary of (X, II) Il31. 

hloreover, the metric h is a self-dual Einstein metric with negative scalar curvature. We call tht: 
manifold X with the conformal class [Al an r.\-tension of (M. [g] 1. A metric is I?n!f’/??‘1)~1.1~01i(. 

if it is self-dual Einstein with negative scalar curvature. 
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The pole of the half-hyperbolic metric h in an extension is of order two along the conformal 

infinity. And the conformal infinity is totally umbilic in the extension [ 141. In general, if (X, h) 

is an Einstein manifold with a conformal infinity (M, [g]), the metric h is complete only if the 

scalar curvature is negative [5]. A priori, an extension is only one-sided when an orientation 

on M is chosen [14]. The problem of finding sufficient conditions for A4 to have two-sided 

extensions is not yet solved. Neither is the problem of finding sufficient conditions for M to 

have complete extensions. We focus on two-sided extensions which are not only complete but 

also compact. 

Definition 1.2. ([24]) A compact self-dual manifold (X, g) is decomposable along a closed 

connected oriented hypersurface M if (X, [g]) is an extension of (M, [g,~]), X\M is a disjoint 

union of two smooth manifolds and the half-hyperbolic metric in [gl~\~] is complete. In this 

case, (X, g) is said to be a two-sided extension of (M, [g,M]). 

The symmetry group G of a self-dual manifold is the group of orientation preserving confor- 

ma1 transformations. If it acts on the decomposition of adecomposable manifold X equivariantly, 

the manifold X is said to be G-decomposable. 

Regarding Hitchin’s half-hyperbolic metrics on the disk, one may attempt gluing such disks 

equivariantly with respect to SU(2). Due to the presence of a large symmetry group, the pos- 

sibility is severely limited [23]. The topology also prohibits such operation except when the 

conformal class on the boundary is the standard one [12, lo]. In this paper, we break the 

symmetry from SU(2) to U( 1). 

Theorem 1.3. If (X, [g]) is a compact U( l)-decomposable self-dual manifold along a hyper- 

surface M, then up to ajnite covering the triple (X, [g]; M) is conformally equivalent to one 

of the following: 

(1) the sphere S4 with the standard metric; decomposes along any hyper-sphere; 

(2) theproduct of the metric with curvature 1 on the sphere S2 and the metric with curvature 

- 1 on a Riemann sur$ace C; the hypersurface M is the product of any hyper-sphere in 

S* with C; 

(3) a Hopf manifold HT; decomposes along S’ x S2; 

(4) a Fuchsian manifold; decomposes along a three-dimensional Fuchsian manifold dejned 

by the same Fuchsian group. 

Remark 1.4. Let I/ be any real number and T/ a real number such that 0 K y -C 1. Define a 

matrix action on C2 by Y . (WI, ~2) = (ye’@,,, yzuz). The quotient of C2\(0) by the group 

generated by Y is a Hopf manifold. It is denoted by HT. It decomposes along the copy of S’ x S* 

defined by w2 = ~2. 

Remark 1.5. SO(2, 1) is the group of isometries of the hyperbolic 2-disk x2. A Fuchsian group 
is an infinite discrete subgroup of SO(2, 1) acting on xc2 properly discontinuously [ 131. It can 

be treated as a subgroup of SO(n + 1, 1) for n 3 2 in an obvious manner. A Fuchsian manifold 

of dimension n with respect to a Fuchsian group r is a compact manifold with fundamental 
group r and developable universal covering. 

The proof of Theorem 1.3 relies on the existence of a holomorphic contact structure on the 
twistor space. The evaluation of the contact 1 -form on the holomorphic vector field induced by 



the symmetry yields effective divisors. The analysis of the algebraic structure of the divisors 

shows that the conformal structure is conformally flat. Then we apply the theory of developing 
maps to finish the classification. 

On should notice that all conformal classes found in Theorem 1.3 are conformally Nat. It 

remains to be seen if there exists any compact decomposable self-dual manifold which is not 

conforrnally flat. This issue is closefy related to the problem of finding topological constraints 

on decomposable manifolds. 

2. The twistor space Z of a self-dual manifold is the total space of the sphere bundle of anti- 

self-dual ‘t-forms. It is also the projectivization of the bundle of negative spinors. It has a natural 

integrable complex structure [ 1, 21. The horizontal distribution of the fiber bundle Z is a real 

rank 4 distribution. This is a holomorphic rank 2 distribution if the metric is Einstein 12, X}. 

Assume that X is decomposable along M. Let h be a half-hyperbolic metric on X\M and 

9 the horizontal distribution. We shall extend this distribution across the twistor space over M. 

The foll(~wing observation is essentially due to LeBrun 1141. It is also known in other con- 

tents ]S]. 

Proposition 2.1. Suppose thut (X, [g]) is a self-dual mani@d decomposable along LI hjprr- 

surface M. Then there is a unique distribution D dejned by the kennel of a twisted holomorphic 

1 -f&mm H on the twistnr space with the~~~ll~w~~lg properties: 

i 1 f %I is a h~~~~rn~~rphi~ contact d~str~but~~jn; 

i 2) ‘D,fits in the exact sequence 0 + 21 --+ TZ T-+ K _‘P -+ 0: 

(3) ‘D is real in the senzsp that a*9 = 23, where cr is the real structure; 

(4) the restriction of 2, on uny real twistor line over X\M is isomorphic to the normal hundl~ 

qj‘rhe real twistor line, i.e., (3( 1) @ (3(l); 

! 5) mw rral t~~li.~t~r fine L over M is ~gendr~a~~. 

Proof. We review the construction of the distribution 9 over X\M as presented in 121. The 

complexihed tangent bundle of X is the tensor product of bundles of positive and negative 

spinors C”‘ and C-. They are SU(2)-bundles if a metric h is chosen in the given conformal 

class. Let (Itry : cy = I, 2) and {#& : ty = 1.2) be the unitary frames for C+ and C- respectively. 
With homogeneous coordinates [hl ,A.*] on the fiber of the twistor space. then CD = xi=, j+&, 

is ;I tautological section. Let (w$) be the connection matrix of the induced connection on x _ 

with respect to the metric h. Define 

f9; = dh, - ~o&hI,, ty = I. 2. 
I’ 

(2.2, 

The horizontal distribution ‘D over X\M is defined by the kernel of 8” := h?HF - h,f$. This 

distribution satisfies conditions (l), (2), (3) and (4) in the Proposition. 

Choose a point x on M and a small neighborhood U of x in X. There is a function f such that 

the zero-set of ,f coincides with M rl U and it is non-degenerate along Ril. Moreover, iz = ,f‘ .‘g 

for some self-dual metric g defined in the neighborhood U. With respect to the metric s, we 

define the 1 -forms Hf. 0: as in (2.2). When Q, is the tautological section of the bundle of negative 
spinors, we define n; = l//w @ (9. As g = f"h. t?J = 6': + $ Cz=, (d,f/f - &. $y)oy, where 
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‘. ’ is the Clifford multiplication. Then on U\M, 

It follows that the distribution 2, on the twistor space of U\M has a smooth extension across M. 

Over M, the distribution is the kernel of the l-form Et=, (df s (h&q - A,&), I,!T~)c+. Since 

Jc is non-degenerate along M, the kernel is complex two-dimensional. Since ~1 and CJ~ are 

type (1,O) forms on the twistor space, the section Q” of T*Z @ 1(-l’* over the twistor space 

of X\M has a differentiable extension such that its kernel is two-dimensional. Since @ is 

holomorphic outside the closed set of twistor lines over M, its extension is holomorphic over 

Z and independent of the choice of the open set U. Since 8” A d8” is a non-zero constant on 

the twistor space over X\M, it is constant everywhere. Therefore, the extended distribution is 

a contact distribution. It follows that Zt fits in the exact sequence (2). As holomorphic tangent 

vectors of twistor lines are vertical and therefore annihilated by the l-forms ol and a;?, real 

twistor lines over M are Legendrian. 0 

Suppose that X is G-decomposable. As the half-hyperbolic metric is complete, G is a group 

of isometries with respect to the metric Iz except when all connected components of X\M are 

conformally equivalent to the hyperbolic space 3t4 [ Ii]. In this case, the compact manifold X 

is the 4-sphere with the Euclidean metric [ 121. Therefore, we assume that G is contained in the 

group of isometries with respect to the half-hyperbolic metric h in at least one of the component 

of X\M. Since the contact distribution D on the twistor space over X\M is the horizontal 

dis~ibution with respect to the metric h, the holomo~hic transformations induced by the group 
G on the twistor space are contact transfo~ations over at least an open set. By analyticity, G 

is a group of contact transformations on Z. Then it is a group of isometries on X\M. Assume 

that G = U( 1). Let V be the real holomorphic vector field on the twistor space generated by G. 

It is an elementary computation to prove the following observation. 

Lemma 2.3. The sections { := #(V) lithe contact line bundle K-‘i’ is no~-triv~~~, arzd the 

divisor of zeroes qf ( is invariant @‘the one-parameter group of contact transformations. 

Let S be the zero-divisor of the section < in the twistor space. The following is a corollary 

of Lemma 2.3, and [2 1, Proposition 5.21. 

Corollary 2.4. VX is U( 1 )-decom~o.~~~b~e~ then the co~for~zul class is ofno?z-negative type. 

As the effective divisor S locally defines a complex structure J on the manifold X such that 

the self-dual metric g is a KBhler metric [ 191, the following lemma will be very useful. 

Lemma 2.5. Su~p~~~e that (g , J) is a Kiihler str~ct~?-e opz a ma~~old U and f is a function on 

U such that h = f -2g is an Einstein mefric. Let V f be the gradient vector~e~d of the fu~tcti~~n. 

f with respect to the Ktihler metric g. Then JVf is a Killing vector$eld with respect to both 
the metric g and the metric h. 

Proof. Let {el , . . . , e,,} be a local frame on U. Then 

(LJv.fS)(e;, ej) = (V~~~d~)~Je~) + ~V~,d~)~Jej). 



Since h = ,f-‘g is an Einstein metric, Rico f’ + 2(Vnf + +Afg) = 0, where Rico is the 

trace-free part of the Ricci tensor of the metric g 121, Then 

(k./org)(e,. ej) = -if’{(Ricde,, Jcj,j) +- Rico(r,. Jc,)} 

- in.f{g(e;, Jej) + g(ej. ./e;)J. 

Since the metric g is Kshler. for any tangent vectors u and (11, 

g(v, Jw) = -g(w, Jv) and Ric(l!. Jw) = - Ric(ul, Jv) 

It follows that I;,,v~ g = 0. Therefore, JV f is a Killing vector field with respect to the K5hlel 

metric g. Since d,f’(JVf) = g(Vf, JVf) = 0 and h = .f’-‘g, icjoiA = 0. Therefore. JV,t 
is also a Killing vector field with respect to the metric h. g 

On a self-dual manifold, the above theorem has a more precise form. 

Proposition 2.6. Suppose that (X, h) is a ha&hyperbolic man@ld M’ith Killing ~~ector,fielrl V. 

Lci J be the complex .structure dejned by the hvistor section H(V). Let ,f’ be the,fim(.tion srtch 

thrit ,g = f’h is a Kiihler metric with respect to the complex structuw of J. Then 1’ = JC,/‘. 

Proof. I? Tod discovers that such Einstein metric li is determined by the SU(x)-Toda tield 

equation [261. He finds local coordinates (x. 1’. W. t 1 such that 

h = !,,I (dx’ + dx’) + du?] + &(dt + H)‘. 
11’7 

where u and P are functions of (x. .v. w), a/at is the Killing vector field V and H is a I-form 

on the (.r, .Y. ul)-space satisfying 

u,\ + U,,’ + (e“),,,, = 0, 

- 2A P = 2 - WV,,,, A is a non-zero constant. 

8P i3P i) ( P ev ) 
c/fj zz --dy A dw - -dul A dn- - -~ 

ax a!, 2Ul 
dx A dv. 

Taking ,f’(x. .v. ~1. t) = w, one checks that the metric 

,g = ,f’h = P[e”(dx’ + dy’) + dw’] + $(dt + H)‘. 

is a Kshler metric with K%hler form s2 = (dt + 8) A dw + (Pe”)dx A dx [ 161, and that 
JOw = a/at = V. as claimed. q 

The next collection of propositions deal with twistor interpretation of Gauss map of embedded 
surfaces. 

Proposition 2.7. Let (X. h) be a self-dual Eirtstein manifold with nvistor space Z. Suppose 

that C is a smooth holomorphic curve in Z such that the twistorjibration on C is u d[feomor- 

phism. Suppose that U( 1) is a group of isometries of (X. h) such that its induced action on the 

hlxistor space leaves eLIen’ point qf Cjixed, thei C is Legendrian bvith respect to the hori;ontal 

distribution defined by h.- 
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Proof. By assumption, n(C) is a two-dimensional sub-manifold. It consists of fixed points of 

the U( 1)-action. With respect to the induced metric, n(C) is totally geodesic. The Gauss map 

of n(C) is a non-zero section of the bundle A’ along n(C). Taking the normalization of the 

anti-self-dual part, one obtains a section of the twistor fibration along n(C). When n(C) is 

totally geodesic, this section defines a holomorphic horizontal curve C’ [4,20]. Let C’ be its 

conjugate. 

We claim that C coincides with either C’ or C’. Let x be a point in n(C). The isotropy 

representation of U( 1) at x is the direct sum of the isotropy representation of the tangent space 

of n(C) and the action on the normal plane. Since the action is effective, and n(C) consists of 

fixed points, the action on the normal plane is non-trivial. Therefore, the induced action on 

the three-dimensional space of anti-self-dual 2-forms over x is a non-trivial rotation on a two- 

dimensional subspace. Then the induced holomorphic U( 1)-action on the twistor line L over x 

has precisely two fixed points. The intersection of L with C’ and C’ are the only fixed points 

of the U( I)-action on L. Since C intersects L, and the intersection is a fixed point, then C f’ L 

is either C’ f’ L or C’ n L. Since this conclusion is true for any point in n(C), the proposition 

follows. 0 

Proposition 2.8. Let (X, [g]) b e a compact U( 1)-decomposable manifold different from S4. 

Let Z be the twistor space with induced contact distribution TJ. Suppose that C is a smooth 

holomorphic curve in Z such that the twistorfibration on C is a diffeomorphism. Suppose that 

U( 1) leaves every point of C fixed, then C is Legendrian. 

Proof. As n(C) consists of fixed points, and M is three-dimensional, n(C) n M consists of at 

most finitely many real curves. Due to the last proposition, an open subset of C is Legendrian. 

By closeness of condition, C is Legendrian. 0 

Finally let C be an oriented surface embedded in a self-dual manifold with normal bundle N. 

We treat N as a complex line bundle. Let K-’ be the anti-canonical bundle of C. The Chern class 

of the bundle K-‘N can be computed by the Gauss-Codazzi equation. One has the following 

result [4, 201. 

Proposition 2.9. If C is a compact minimal surface isometrically embedded in a self-dual 

Einstein manifold with negative scalar curvature, then its self-intersection number is subject to 

the condition that C . C > x (C). 

Remark 2.10. When one uses an orientation opposite to the one on X, then x (C) < -C . C. 

3. In this section, we assume that { = Q(V) does not vanish along any real twistor line. It 
follows that the zero divisor S is non-singular [21], and the conformal class is of type zero [ 1.51. 

When S is reducible, it is the disjoint union of a conjugate pair of irreducible nonsingular 

divisors D and 0. The restriction of the twistor fibration onto D is an orientation-reversing 

diffeomorphism [ 181. Pulling back the self-dual conformal class from X onto D by the twistor 

fibration, one has an anti-self-dual Kahler structure on D [ 191. 

If S is irreducible, the restriction of the twistor fibration onto S is an unbranched double 
covering of X. Pulling back the self-dual conformal structure from X onto S, one has an anti- 



self-dual Ktihier surface. The contact structure on the twistor space of X is pulled back to a 

contact structure on the twistor space of S. The lifting of the conformal group to the twist01 

space defines an inclusion of the symmet~ group of X in the group of conformal holom(~rphi~ 

tr~~nsf~~rlllations on S. The discussions of the last paragraph on X can now be applied on 5’. 

Hence, up to a double covering S is reducible. 

As D is invariant of the U( 1 )-action on the twistor space, and the action on the twistor space 

is holamorphic. the action on D is holomorphic and conformal. With respect to the KBhler 

metric on D. the vector field V is a holomorphic Killing vector field on D. It was proved that 

the surface D is either the flat torus, the conformalty-flat Kghler surface S’ x C with SO(3)- 

symmetry or blow-ups of ruled surfaces of genus at least 2 1171. The flat torus is a quotient ot 

IF:’ by a lattice group generated by translations in four linearly independent directions. If the 

torus were decomposable, the contact 1 -form on the twistor space is lifted to a contact I-form H 
on the twistor space of the Euclidean space I@. The sphere is a ~(~nf~)rl~~al c~~mpa~ti~~ati~~n ot 

8.’ by adding one point c)(3. Then the l-form 8 is lmiquely extended to a section of T”CP3 @ ctl( 2) 
b> Hartog’s Theorem. The kernel of 8 is two-dimensional except possibly over the twistor tine 

of‘ C>D. Away from this line, the space of lines over which the splitting type of the kernel of H 

differs from c3( I ) ~33 Cl( 1) is an analytic subspace in the space of all lines. By compactness. this 

analytic subspace has only finitely many components. As the lattice group is generated by foul 

linearly independent vectors, the space of jumping lines cannot be invariant. Then the space ot 

jumping lines consists of infinitely many components. This confradiction shows that X cannot 
he the Aat torus. 

When the surface D is the blow-up of a ruled surface over a Riemann surface C with genus 

at least 3. we use h to denote the blowing-dowI map from D to its minimal model Y. and 

I’ Ihe projection from Y onto C. Y is the projecti~ization of a rank 2 vector bundle over C, 

arid the U( I)-action on D is the lifting of rotations on each fiber [I 71. Each irreducible fiber 

b’ of the map I’ L’ h is invariant of the U( I)-action. As the action on F is non-trivial, the vector 

tictd 1’ is tangential to F. Since Q(V) = 0 along D, F is Legendrian. The proper transforms ot 

the zero-section CO and the infinity section C,, of the ruling I’ are both fixed point sets of the 

1’1 I )-action. By Proposition 2.8, CO and C, are Legendrian. It follows that the twistor lines 

through the intersection 17 = F f’ C’~~ and s = F‘ f’ C, are not Legendrian. Therefore, when D is 

identified to X by twistor fibration, n and s are not in F f? M. It follows that F f> M is a finite union 

ot’one-dimensional orbits of the U( I)-action. This intersection is non-empty for otherwise I-’ is 

h(~loil~~)rphic horizontal with respect to the Einstein dist~bution of the half-hyperbolic metric. 

It is a ~~~ntradi~tion to Remark 2.10 because the self-interse~ti~~1~ number of F is equal to zero. 

and the complex orientation on D is opposite to the given one on X. 

Proof. Consider the restriction of the function ,f on an irreducible fiber F. Since ,f’ is invariant 

ot’ the U( I )-action, it descends to the orbit space of the action on F\{rz. s}. The orbit space is 
an open interval 1. If F n M consists of at least two circles. then ,f has two distinct zeroes 

on the open interval I. Between these two zeroes, there is a point where the derivative of ,f 

is equal to zero. Since the vector field V is in the direction of JV,f. the gradient field V.f’ i, 
pel~endi~ular to the orbits of the U( I)-action and is tangent to the fiber F. Therefore. there is a. 



non-degenerate orbit on F along which .&ff = 0. It is equivalent to g( V, V) = 0. This is a 

contradiction because the fixed point set of the U( I )-action on F is (n, s}. Therefore, when F 
is an irreducible fiber, F fl M consists of only one circle. 

Reducible fibers are isolated in the family of all fibers. Let F be a reducible fiber. Let p be 

a point in F n 44. Let Fe be an irreducible component of F containing p. Since the singular 

points of F cannot be in M, the U(l)-orbit of p is a circle. Since A4 is a compact space and 

FO is a 2-sphere, the intersection M f~ FO is a finite union of circles. Then the intersection of 

M and FO along the orbit of p is transversal. Via the exponential map at p, one sees that the 

intersection between M and any irreducible fiber near F is non-empty. And the intersection is 

along an orbit topologic~lly near the orbit of p. This observation applies to all intersection of M 

and F. As A4 intersects any i~educible fiber along exactly one circle, M n F consists of exactly 

one circle even when I;’ is reducible. q 

Lemma 3.1 and Remark 2.10 together imply that when F is reducible, it contains at most 

one (-1)-curve and no (-2)-curves as its components. It is possible only if F is irreducible. 

Therefore, X is a minimal surface. Up to a finite covering, D is a product surface. Since every 

fiber is irreducible, every fiber intersects M along one circle, M is diffeomorphic to S’ x C. 

We claim that M is isometric to E x C where E is a circle perpendicular to the axis of the 
U( I)-action on S2. Let 3t? be the universal covering of Z. We use the following coordinates. 

When V is the rotational field (~2 a/ay3 - ye 8/;3yz), then V f = -.I V = -Vy,. Therefore 
f = -y1 + c for some constant c. We conclude that 

Proposition 3.2. ff(X, [g]) is a type zero U( I)-decomposable manifold, up to ajinite covering 

it is a product S2 x C; the conformak class contains the product of the metric with curvature 1 

on S2 and the metric with curvature - 1 on C; and the hypersur$ace M is the product ojTany 

hyper-sphere in S2 with C. 

4. When the divisor S contains a real twistor line, the conformal class is of positive type [ 151. 

If the divisor S is a sum I) + ti, the divisors D and b intersect along a real twistor line L with 

multiplicity 1. The self-intersection number of L on the surface D is equal to 1. Therefore, D is 

a blow-up of CP2 [ 1 S]. Restricting the twistor fibration r to D, we see that X is diffeomorphic 

to n@P2. Due to the exact sequence of Proposition 2.1, cl (9) = $1 and ~(2)) = c-2 - 4~:. Let 

x and r be the Euler number and signature of the manifold X respectively, then CT = 16(2x -3t) 

and c1c2 = 12(x - t) [7]. By reality of 9, c&II) . D = c2(Zl) - 0. It follows that 

c~(t!l)[D] = ecu). (D + 0) = $c~cz - -$I$ = x = 2 +n. 

By the definition of D, the restriction of V is a section of the bundle ‘II on the surface D. While 

D is invariant of the U(l)-action, V is a section of the tangent bundle of D. Since x(D) = 

x (CP2#ne2) = 3 + n, and it is not equal to c2(9)[ D], the zero set of V on D contains one- 

dimensional component. Therefore, when D is blown down to @P2, in appropriate homogeneous 



coordinates, the U(l)-action on CP’ is 

Ii03 ZI , ~21 + [eiPbzO, 21,221 (4.1) 

for some real number p. Since L is the intersection of two invariant divisors, it is invariant ot 

the action. Let x = n(L), then x is a fixed point on X. 

Lemma 4.2. The U( I )-ncfion on the twistor line L is tri\$nl. 

Proof. As L is invariant, it is the zero set of one of the three coordinate functions. Assume that 

L_ is defined by z.2 = 0. Let Lo be the line defined by za = 0, and L1 the line defined by :I = 0. 

Let p be the intersection point of L and L,, and q the intersection point of L and LO. As all 

points of blowing-up are away from the real twistor line L, we ignore blowing-ups when we 

study geometry in a neighborhood of the twistor line L. Since the action on L is non-trivial. 

and the vector field V is contact to 2, along S, L is Legendrian. It follows that the fixed point .I 

is contained in M. As &I is invariant, the connected component of fixed point set cont~~ining 

.Y in M is a one-dimensional space F. As the action on Lo is trivial, n(Lo) is a component ot 

the fixed point set of the U( I)-action on X. This is a two-dimensional sphere containing .v. The 

set r ( LO) must contain an open subset of F. For otherwise, the isotropy representation of U ( I ) 
at .r is trivial, and then the induced U(l)-action on the twistor line would have been trivial. Let 

J be a fixed point contained in F, and near x such that the real twistor line L,. over y intersects 

15, at a point z near q. As y is contained in M, Ly is Legendrian. Let L,?, be the line on D 
joining p and p. As the U(l)-action leaves L,,, invariant, and the action on it is non-trivial. 
L,,, is Legendrian. Finally, n( Lo) is a set of fixed points. By Proposition 2.8, Lo is Legendrian. 
Then the three curves Lo. L,. and L,, are all Legendrian. But these curves intersect at q such that 

their tangents at 4 span the tangent space of the twjstor space at 4. This is impossible because 

the contact distribution is two-dimensional. Therefore the U(1 )-action on the real twistor line 

1. is trivial. 0 

Proposition 4.3. Suppose fhnf the zero divisor of’S(V) is reducible, fhen the ~~e-l.ornl)[),vrrhlr’ 

~ll~ln~f~id is the round sphere. 

Proof. If X is not the sphere, the surface B is the blow-up of CP’ at least once. In the coordinate?, 

given in (4.1). let 17 = [ 1, 0, O]. The fixed point set of the U( I )-action on CP” consists of thr: 

point p and the line L defined by zo = 0. Since the line L is a real twistor line, none (11‘ 
the points of blowing-up is on L. Since the blowing-ups preserve the I-!( 1)-action, the first point 

of bl(~wing-up is the point p. Let Da be the blow-up of CP2 at l-7. Let bo be the blow-ing-down 

map from DO onto CP*. Let _E be the exceptional divisor of p on &. Let F be the divisor class 

on DO representing the lines on CP* through the point p. Any subsequent blow-ups are on the 

curve E’. Let b be the blowing-down map from D onto DO. One considers Do as a ruled surfact- 

with f= as fiber class, and E the infinity section. 

By (4. I), TT( L) = x is an isolated fixed point of the U( I)-action on X. Since M is three- 

dimensional, its fixed point set consists of one-dimensional components. Therefore, .\- is not 
contained in M. Hence, L is not Legendrian. After an orientation change, X\(x) is the blow-up 

ot‘C’. The conformal class of [g] contains a Ktihler metric ,e on X\(x). There exists a function 



f on X\(x) such that h = fp2g is an Einstein metric on X\(x UM}. By Lemma 2.6, V = JVf 

is a Killing vector field with respect to g on X\(x). 

By the proof of Lemma 3.1, every element in the complete linear system of the proper 

transform of j FI is irreducible. It follows that I) = Da. Therefore, the self-dual manifold is 

diffeomorphic to CP2 with positive scalar curvature. Due to [21], the conformal class contains 

the Fubini-Study metric. Since the Fubini-Study metric is an Einstein metric with positive 

scalar curvature, and it is not conformally flat. Brinkman’s result [3] implies that it is not 

decomposable. The proof of Proposition 4.3 is completed. 171 

When S is irreducible, it is the blow-up of a ruled surface Q at conjugate pair of points 

[ 181. Let b be the blowing down map, and r the fibration of Q over a Riemann surface C. 

We use F to denote the class of fibers of the map r o b. The twistor lines contained in S 

are i~educible non-singular fibers of this map 1181. As ci(S) = &i and cz(S) = c2 - $c:, 

8(1 - g) - k = cf(S)[S] = 2(2x - 3t), and 4(1 - g) + k = cz(S)[S] = 2x, where g is the 
genus of C, and k is the number of blowing-ups. Since the conformal class is of positive type, 

there are no non-trivial anti-self-dual harmonic 2-forms [6]. Therefore, b2(X) = z and 

k = 2t = 2bz(X), g = b{(X). (4.4) 

Let Xs be the collection of real twistor lines contained in S. This is a real analytic subspace 

of X. Let SO be S with all the twistor lines in it removed. Since any real twistor line contained 
in S is an irreducible non-singular fiber of the map r o b, SO contains all the reducible fibers. 

The twistor fibration is an unbranched double covering from SO to X0 := X\Xs. Let MO be the 

intersection M i7 SO. The restriction of the self-dual conformal class on Xc is pulled back to $0 

to define an anti-self-dual Kghler structure. Let g be a Kahler metric on SO and f a function 

such that h = f -2g is a half-hyperbolic metric. By Proposition 2.6, V = JV f. We apply the 

proof of Lemma 3.1 on SO to conclude that when F is a fiber of the map r o b, F fl M consists 

of only one circle, and that S is a minimal surface. By (4.4), the conformal structure on X is 

confo~ally flat. 

When g = 0, the conformal class is the the round sphere 1211. Any totally umbiiic hyper- 

surface is a hyper-sphere. When g 3 1, let F be the fundamental group of X. Let X be the 
universal covering of X. Denote the twistor space of the induced conformal class on X by Z. Z 

is the universal covering of Z. Note that F acts on X as a group of conformal transformations. 

Since X is orientable, the action of F preserves o~entation on X. 

Since the conformal structure is of positive type, the development map is a conformal 

embedding from X into S4 [25]. The U( I)-action is lifted to a one-dimensional group G of 

conformal transformations on X. Via the development map, it is uniquely extended to a sub- 

group of SO(5, 1). Similarly, F is a subgroup of SO(5, 1). We consider S4 as the space of 
projective quaternions HP' with homogeneous coordinates 190~ 411. Its twistor space is the 

complex projective space CP". With homogeneous coordinates, the twistor projection is 

120, ZI, 22,zd -+ Lzo + Zlj, 22 + z3jl. 
When G is non-compact, the flow of X is either the entire sphere, Iw4 or lR4\{O} [ 131. The 

first case is possible only if X = X = S4. If X = Iw4, the group G has at most one fixed 
point on X. The fixed point set of the G-action on X covers the fixed point set of the U(l)- 

action on X. As l? is not finite, the fixed point set in R” is empty. Since the U(l)-action is 



U( I )-decomposablr .se(f-dual manifhlds 117 

fixed-point-free, then R = 1 and 6, = 1. Up to a finite covering, the fundamental group r‘ is an 

infinite discrete Abelian group with one generator. In particular, it is contained in a non-compact 
one-dimensional Abelian group e. As e acts on IwJ without fixed points, it is a group generated 

by Euclidean motions on Iw” [ 131. Then the quotient space X = I[R”/ r would have been a 

compact space with flat metric. This is a contradiction as X is of positive type. 

If X = Iw”\{O}, h is a totally umbilic hypersurface in Iw’\{O). It is either a hyper-sphere or 

hyper-plane. Since i is invariant of the flow of G, it is contained in a hyper-plane through the 

origin. Up to coordinate changes, fi is defined by x.~ = 0. As G leaves the origin of K’ fixed. 

it is contained in CO+(4). To leave fi invariant, G is a subgroup of R+ x SO(2). Since the 

G-action on B?\(O) is fixed-point-free, g = bi = 1. Up to a finite covering, the fundamental 

group 1‘ is freely generated by one element p. As p leaves (0. 00) on Iw’ invariant. p’ leave{ 

the origin of I@ fixed. Therefore, it is contained in CO+(4). Since p’ leaves $f invariant and 

commutes with C, I”’ is contained in the same subgroup &!- x SO(2). It is represented by 

cos $ sin + 0 0 
sin i/~ 

y-0 
i 

cos I// 0 0 

0 1 0 

0 0 0 1 i 

for some real numbers y and r,!r. Take p? if necessary, we assume that 0 < 1/ < 1. Therefore, 
up to a finite covering. X is the Hopf manifold HT. The decomposition is along a copy of S’ x S’ 

defined by XJ = 0. 

When G is compact. it is a copy of SO(2) in PGL(2, W). The G-action on S’ has at least two 
fixed points. Taking isotropy representation at one of the fixed points o, we embed G in SO(4). 

In PGL(2, W). it is represented by the matrix 

diag(e’/‘Id’. p’P20”). (4.5) 

The corresponding action on S4 is [ 1, q] H [ 1, e-‘J’l@ qe”Q@], and the fixed point o is [ 1. O]. 

The fixed point set of the U( 1)-action is two-dimensional if and only if pI = *pz. In such 

cases. we assume that p1 = ~2. Then the fixed point set is the two-dimensional sphere E defined 

by _yj = _Q = 0 in I@ when q = x1 + xzi + xjj + x.lk. As I commutes with G, it is contained 

in PGL(2. c) = SO(3, 1) the group of conformal transformations of the 2-sphere E. 

Consider the conformal model of the 4-sphere as a real quadric in Iwp5 defined by tf + 

tz + t: + ti = 2t& [ 111. Let SO(2) be the group of rotations on the (tj. t4)-coordinates. Then 

the I-action is trivial on tj and t4 coordinates. When X is decomposable, there is an invariant 

totally umbilic hypersurface. Via the development map, one finds a hyper-sphere invariant of 

the S0(2)-action and the I-action. As it is invariant of the rotation group, the linear equation 
delining the hyper-sphere is in (to, tl, t2. ts)-coordinates. Up to a Mobius transformation. we 

as\ume that the hyper-plane is defined t2 = 0. As F preserves this hyper-plane, it is contained 

in SO(2. I), acting on the (to, tl, ts)-coordinates. In other words, X is a Fuchsian manifold. 

Consider the surface S in the twistor space again. If g 3 2. the zero and infinity sections 
arc contained in the fixed point set of the holomorphic U( I)-action on the twistor space. Via 

the twistor projection, the fixed point set of the U( I)-action on X is at least two-dimensional. 
Results in the last paragraph shows that such X is a Fuchsian manifold. Therefore, the last case 

to be investigated is when s = 1 with pl # fp?. Since F commutes with G, r is a subgroup of 
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PGL( 1, W) = Sp( 1) when p1 = 0 or p2 = 0. As Sp( I) is compact, r is finite. This is impossible 

when g = bl = 1. Hence p1 # 0 and p2 # 0. It follows that elements in r are represented by 
diagonal matrices of non-zero complex numbers 

diag(rl&’ , r2eir2). (4.6) 

Since any holomorphic vector field on an open set of @P3 is uniquely extended to a global 

holomorphic vector field, one deduces from the Euler sequence that the l-form 8 on the twistor 

space _?! extends to a section 6 of 7’*CP” @ D(2). The space of global sections of this bundle is 
six-dimensional. It is spanned by 

81 = zodz1 - Zl dzo, 02 = 22 dzj - 23 da, 03 = zo dzz - zz dzo, 

B4=~3dz1 -zjdzg, 6 = zo dz3 - zs dzo, Q, = ZI dz2 - 22 dzr . 

With respect to the usual real structure [Z], {@I, i&, 193 - 04, i(& + f&>, 6$ - @& i(& + &j)} 

is a real basis. When p1 # kpz, the induced actions of (4.5) are non-trivial rotations of 

the planes spanned by 03 - 04 , i(& + 64) and 05 - 06, i(t+ + 0~) respectively. As i is an 
eigenvector of all these rotations, 6 = a,& + a282 for some real numbers al and Q. Then 

e A dG = 2a,nz(& A dz2 A dz3 + 01 A dzo A dzt). On the other hand, the induced action of 

(4.6) with respect to this basis is the identity on 81 and multiplication by (Q/Y~)~ on 82. As 5 is 

an eigenvector of this action, and (rs/r~)~ # 1 when the group lY is non-compact, ala2 = 0. It * 
means that 0 cannot be the extension of a contact form. Therefore, this case cannot occur. 

We conclude that when the divisor S is irreducible, the decomposable manifold X is described 

by (l), (2) and (4) of Theorem 1.3. Together with Proposition 3.2 and Proposition 4.3, the proof 

of Theorem 1.3 is now completed. 
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