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Abstract: We characterize conformally flat spaces as the only compact self-dual manifolds which are U(h)-
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1. Through a deep application of twistor theory, Hitchin discovered a large class of complete
self-dual Einstein metrics on non-compact manifolds [9]. All his metrics admit the group SU(2)
as group of isometries. Among his examples are families of self-dual Einstein metrics on the
unit ball in R*. The conformal boundaries of these metrics are the three-dimensional spheres
with left-invariant metrics. This large class of examples prompt the following question. When
can hwo complete non-compact self-dual Einstein manifolds be glued along a common confor-
mal infinity to produce a compact self-dual manifold? To address this question, we recall the
definition of conformal infinity {14, 5].

Definition 1.1. Suppose that (X, &) is a real analytic oriented four-dimensional Riemannian
nanifold and (M, g) is a real analytic oriented three-dimensional Riemannian manifold. The
conformal manifold (M. [g]) is a conformal infiniry of (X. /1) if there is an oriented real ana-
vtic conformal manifold (X, {g]) such that
(1) there is an analytic oriented conformal diffeomorphism from X onto the interior of X:
(2) there is an analytic oriented conformal diffeomorphism from M onto the boundary of X
(3) via the above embeddings, the metric /4 has a pole along M.

In one of the earliest applications of twistor theory, LeBrun proved that for any oriented
three-dimensional analytic conformal manifold (M, [g]), there is an oriented four-dimensional
Riemannian manifold (X. 2) such that (M. [¢]) is the conformal boundary of (X, /) |14}
Moreover, the metric 4 is a self-dual Einstein metric with negative scalar curvature. We call the
manifold X with the conformal class [/} an extension of (M. [g]). A metric is half-hyperbolic
it it is self-dual Einstein with negative scalar curvature.
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The pole of the half-hyperbolic metric # in an extension is of order two along the conformal
infinity. And the conformal infinity is totally umbilic in the extension [14]. In general, if (X, k)
is an Einstein manifold with a conformal infinity (M, [g]), the metric k is complete only if the
scalar curvature is negative [5]. A priori, an extension is only one-sided when an orientation
on M is chosen [14]. The problem of finding sufficient conditions for M to have two-sided
extensions is not yet solved. Neither is the problem of finding sufficient conditions for M to
have complete extensions. We focus on two-sided extensions which are not only complete but
also compact.

Definition 1.2. ([24]) A compact self-dual manifold (X, g) is decomposable along a closed
connected oriented hypersurface M if (X, [g]) is an extension of (M, [gu]), X\ M is a disjoint
union of two smooth manifolds and the half-hyperbolic metric in [g x\x] is complete. In this
case, (X, g) is said to be a two-sided extension of (M, [gm]).

The symmetry group G of a self-dual manifold is the group of orientation preserving confor-
mal transformations. If it acts on the decomposition of a decomposable manifold X equivariantly,
the manifold X is said to be G-decomposable.

Regarding Hitchin’s half-hyperbolic metrics on the disk, one may attempt gluing such disks
equivariantly with respect to SU(2). Due to the presence of a large symmetry group, the pos-
sibility is severely limited [23]. The topology also prohibits such operation except when the
conformal class on the boundary is the standard one [12, 10]. In this paper, we break the
symmetry from SU(2) to U(1).

Theorem 1.3. [f (X, [g]) is a compact U(1)-decomposable self-dual manifold along a hyper-
surface M, then up to a finite covering the triple (X, [g]; M) is conformally equivalent to one
of the following:
(1) the sphere S* with the standard metric; decomposes along any hyper-sphere;
(2) the product of the metric with curvature 1 on the sphere S* and the metric with curvature
—1 on a Riemann surface X, the hypersurface M is the product of any hyper-sphere in
S2 with ¥;
(3) a Hopf manifold Hv; decomposes along S' x §%;
(4) a Fuchsian manifold; decomposes along a three-dimensional Fuchsian manifold defined
by the same Fuchsian group.

Remark 1.4. Let ¢ be any real number and y a real number such that 0 < y < 1. Define a
matrix action on C2 by Y - (wy, w2) = (ye'¥wy, yws). The quotient of C*\{0} by the group
generated by Y is a Hopf manifold. Itis denoted by Hy. It decomposes along the copy of ' x §?
defined by wy, = w».

Remark 1.5. SO(2, 1) is the group of isometries of the hyperbolic 2-disk 3{*. A Fuchsian group
is an infinite discrete subgroup of SO(2, 1) acting on H?* properly discontinuously [13]. It can
be treated as a subgroup of SO(n + 1, 1) for n > 2 in an obvious manner. A Fuchsian manifold
of dimension n with respect to a Fuchsian group I' is a compact manifold with fundamental
group I' and developable universal covering.

The proof of Theorem 1.3 relies on the existence of a holomorphic contact structure on the
twistor space. The evaluation of the contact 1-form on the holomorphic vector field induced by
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the symmetry yields effective divisors. The analysis of the algebraic structure of the divisors
shows that the conformal structure is conformally flat. Then we apply the theory of developing
maps to finish the classification.

On should notice that all conformal classes found in Theorem 1.3 are conformally flat. It
remains to be seen if there exists any compact decomposable self-dual manifold which is not
conformally flat. This issue is closely related to the problem of finding topological constraints
on decomposable manifolds.

2. The twistor space Z of a self-dual manifold is the total space of the sphere bundlie of anti-
self-dual 2-forms. It is also the projectivization of the bundle of negative spinors. It has a natural
integrable complex structure {1, 2]. The horizontal distribution of the fiber bundle Z is a real
rank 4 distribution. This is a holomorphic rank 2 distribution if the metric is Einstein |2, 8].

Assume that X is decomposable along M. Let i be a half-hyperbolic metric on X\ M and
D the horizontal distribution. We shall extend this distribution across the twistor space over M.
The following observation is essentially due to LeBrun [14]. It is also known in other con-
tents {8].

Proposition 2.1. Suppose that (X, [g]) is a self-dual manifold decomposable along a hyper-
surface M. Then there is a unique distribution D defined by the kernel of a twisted holomorphic
1-form 8 on the twistor space with the following properties:

(1Y D is a holomorphic contact distribution; )

(2) D fits in the exact sequence 0 — D — TZ — K~ '2 — 0:

(3) D is real in the sense that 0*D = D, where o is the real structure;

(4) the restriction of D on any real twistor line over X\M is isomorphic to the normal bundle
of the real twistor line, i.e., G{1) @ O(1);

{5) any real twistor line L over M is Legendrian.

Proof. We review the construction of the distribution D over X\ M as presented in [2]. The
complexified tangent bundle of X is the tensor product of bundles of positive and negative
spinors £ and 7. They are SU(2)-bundles if a metric 4 is chosen in the given conformal
class. Let {, : @ = 1, 2} and {¢,, : @ = 1, 2} be the unitary frames for £+ and £~ respectively.
With homogeneous coordinates {4, A>] on the fiber of the twistor space, then ¢ = Zi:l Ao ®Po
is a tautological section. Let (wzﬁ) be the connection matrix of the induced connection on %~
with respect to the metric A. Define

I
[
-

Of =dha — Y @l by, a=12 (
)l

The horizontal distribution D over X\ M is defined by the kernel of " := Xg@{’ - k192". This
distribution satisfies conditions (1), (2), (3) and (4) in the Proposition.

Choose a point x on M and a small neighborhood U of x in X. There is a function f such that
the zero-set of f coincides with M N U and it is non-degenerate along M. Moreover, h = f g
for some self-dual metric g defined in the neighborhood /. With respect to the metric g, we
define the I-forms 67, 65 as in (2.2). When @ is the tautological section of the bundle of negative
spinors, we define 0, = ¥, @ . As g = f2h. 0! = 05 + i Zi:, df/f - po.¥y)o,. Where
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‘. is the Clifford multiplication. Then on U\ M,

2
ker(h,0{ — 116 = ker {f(xzé.g - 165) + }L > (df - Gar — M), w}/)o},}.
y=1

It follows that the distribution D on the twistor space of U\ M has a smooth extension across M.
Over M, the distribution is the kernel of the 1-form Zi:, (df - (ka1 — Aid2), ¥y )0, Since
[/ is non-degenerate along M, the kernel is complex two-dimensional. Since o} and o, are
type (1,0) forms on the twistor space, the section 6% of T*Z ® K ~!/% over the twistor space
of X\ M has a differentiable extension such that its kernel is two-dimensional. Since 6" is
holomorphic outside the closed set of twistor lines over M, its extension is holomorphic over
Z and independent of the choice of the open set U. Since #”" A d#" is a non-zero constant on
the twistor space over X\ M, it is constant everywhere. Therefore, the extended distribution is
a contact distribution. It follows that D fits in the exact sequence (2). As holomorphic tangent
vectors of twistor lines are vertical and therefore annihilated by the I-forms o) and o3, real
twistor lines over M are Legendrian. [

Suppose that X is G-decomposable. As the half-hyperbolic metric is complete, G is a group
of isometries with respect to the metric s except when all connected components of X\ M are
conformally equivalent to the hyperbolic space 3{* [11]. In this case, the compact manifold X
is the 4-sphere with the Euclidean metric {12]. Therefore, we assume that G is contained in the
group of isometries with respect to the half-hyperbolic metric / in at least one of the component
of X\ M. Since the contact distribution D on the twistor space over X\ M is the horizontal
distribution with respect to the metric /4, the holomorphic transformations induced by the group
G on the twistor space are contact transformations over at least an open set. By analyticity, G
is a group of contact transformations on Z. Then it is a group of isometries on X\ M. Assume
that G = U(1). Let V be the real holomorphic vector field on the twistor space generated by G.
It is an elementary computation to prove the following observation.

Lemma 2.3. The section ¢ := 6(V) of the contact line bundle K~'/* is non-trivial, and the
divisor of zeroes of ¢ is invariant of the one-parameter group of contact transformations.

Let § be the zero-divisor of the section ¢ in the twistor space. The following is a corollary
of Lemma 2.3, and [21, Proposition 5.2].

Corollary 2.4. If X is U(1)-decomposable, then the conformal class is of non-negative type.

As the effective divisor § locally defines a complex structure J on the manifold X such that
the self-dual metric g is a Kihler metric [19], the following lemma will be very useful.

Lemma 2.5. Suppose that (g. J) is a Kdhler structure on a manifold U and f is a function on
U such that h = f~%g is an Einstein metric. Let V f be the gradient vector field of the function
f with respect to the Kihler metric g. Then JV f is a Killing vector field with respect to both
the metric g and the metric h.

Proof. Let {e¢(,...,e,} be alocal frame on U. Then

(Lyvrgie, e) = (Vo df)Je)) + (V,dfy(Je;).
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Since h = f g is an Einstein metric, Ricy f + 2(Vdf + iAfg) = 0, where Ricy is the
trace-free part of the Ricci tensor of the metric ¢ [2]. Then
(Lyvigie.e) = —% {(Rico(e;. Jej) + Rico(e;, Je)}
— YO f{gle, Jej) + gley. Jep)).

Since the metric g is Kihler, for any tangent vectors v and w,

gv, Jw)y= —g(w,Jv) and Ric(v. Jw) = — Ric(w, Jv).

It follows that L ;v ;g = 0. Therefore, JV f is a Killing vector field with respect to the Kiihler
metric g. Since df (JVf) = g(Vf. JVf)=0andh = f2g, L,vsh = 0. Therefore. JV f
is also a Killing vector field with respect to the metric £. ]

On a self-dual manifold, the above theorem has a more precise form.

Proposition 2.6. Suppose that (X, h) is a half-hyperbolic manifold with Killing vector field V .
Ler J be the complex structure defined by the twistor section 0(V). Let | be the function such
that ¢ = f2h is a Kdhler metric with respect to the complex structure of J. Then V = JV f.

Proof. P. Tod discovers that such Einstein metric /2 is determined by the SU(>0)-Toda field
equation [26]. He finds local coordinates (x, y. w, 1) such that

P R o) 2 el 1
h=—le' (dx”+dy ) +dw’ ]+ —
w- Pw~

(dr +6)°.

where v and P are functions of (x. y, w), 3/0¢ is the Killing vector field V and ¢ is a I-form
on the (x, v. w)-space satistying

Uy + Uiy + (el?)wur =0,

—2AP =2 —wu,. A is a non-zero constant,

oP ap J(Pe’
df = ——dy ANdw — —dw A dx — ¢ (‘ )
ox ay Jw

dx ~ndy.
Taking f(x.y.w,t) = w, one checks that the metric

2 ' 2 2 2 l 2
g=f"h=Ple"(dx”+dv)+dw]+ —P-(dr + ).

is a Kihler metric with Kihler form Q = (dt + 6) A dw + (Pe")dx A dy |16], and that
JVw =09/0t = V. asclaimed. U

The next collection of propositions deal with twistor interpretation of Gauss map of embedded
surfaces.

Proposition 2.7. Let (X, h) be a self-dual Einstein manifold with twistor space Z. Suppose
that C is a smooth holomorphic curve in Z such that the twistor fibration on C is a diffeomor-
phism. Suppose that U(1) is a group of isometries of (X. h) such that its induced action on the
nwistor space leaves every point of C fixed, then C is Legendrian with respect to the horizontal
distribution defined by h.



112 Y.S. Poon

Proof. By assumption, 7(C) is a two-dimensional sub-manifold. It consists of fixed points of
the U(1)-action. With respect to the induced metric, 7 (C) is totally geodesic. The Gauss map
of (C) is a non-zero section of the bundle A? along 7 (C). Taking the normalization of the
anti-self-dual part, one obtains a section of the twistor fibration along 7 (C). When 7 (C) is
totally geodesic, this section defines a holomorphic horizontal curve C’ [4,20]. Let C' be its
conjugate.

We claim that C coincides with either C’ or C'. Let x be a point in 7(C). The isotropy
representation of U(1) at x is the direct sum of the isotropy representation of the tangent space
of m(C) and the action on the normal plane. Since the action is effective, and 7 (C) consists of
fixed points, the action on the normal plane is non-trivial. Therefore, the induced action on
the three-dimensional space of anti-self-dual 2-forms over x is a non-trivial rotation on a two-
dimensional subspace. Then the induced holomorphic U(1)-action on the twistor line L over x
has precisely two fixed points. The intersection of L with C’ and C " are the only fixed points
of the U(1)-action on L. Since C intersects L, and the intersection is a fixed point, then C N L
is either C’ N L or C' N L. Since this conclusion is true for any point in 77(C), the proposition
follows. O

Proposition 2.8. Let (X, [g]) be a compact U(1)-decomposable manifold different from S*.
Let Z be the twistor space with induced contact distribution D. Suppose that C is a smooth
holomorphic curve in Z such that the twistor fibration on C is a diffeomorphism. Suppose that
U(1) leaves every point of C fixed, then C is Legendrian.

Proof. As 7 (C) consists of fixed points, and M is three-dimensional, 7 (C) N M consists of at
most finitely many real curves. Due to the last proposition, an open subset of C is Legendrian.
By closeness of condition, C is Legendrian. [

Finally let C be an oriented surface embedded in a self-dual manifold with normal bundle N.
We treat N as a complex line bundle. Let K~! be the anti-canonical bundle of C. The Chern class
of the bundle K~'N can be computed by the Gauss—Codazzi equation. One has the following
result [4, 20].

Proposition 2.9. If C is a compact minimal surface isometrically embedded in a self-dual
Einstein manifold with negative scalar curvature, then its self-intersection number is subject to
the condition that C - C > x(C).

Remark 2.10. When one uses an orientation opposite to the one on X, then x(C) < —C - C.

3. In this section, we assume that { = 6(V) does not vanish along any real twistor line. It
follows that the zero divisor S is non-singular [21], and the conformal class is of type zero [15].

When S is reducible, it is the disjoint union of a conjugate pair of irreducible nonsingular
divisors D and D. The restriction of the twistor fibration onto D is an orientation-reversing
diffeomorphism [18]. Pulling back the self-dual conformal class from X onto D by the twistor
fibration, one has an anti-self-dual Kihler structure on D [19].

If S is irreducible, the restriction of the twistor fibration onto S is an unbranched double
covering of X. Pulling back the self-dual conformal structure from X onto S, one has an anti-
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self-dual Kiahler surface. The contact structure on the twistor space of X is pulled back to a
contact structure on the twistor space of S. The lifting of the conformal group to the twistor
space defines an inclusion of the symmetry group of X in the group of conformal holomorphic
transformations on §. The discussions of the last paragraph on X can now be applied on §.
Hence, up to a double covering § is reducible.

As D is invariant of the U(1)-action on the twistor space, and the action on the twistor space
is holomorphic, the action on D is holomorphic and conformal. With respect to the Kiihler
metric on D, the vector field V' is a holomorphic Killing vector field on D. It was proved that
the surface D is either the flat torus, the conformally-flat Kéhler surface §2 x ¥ with SO(3)-
syvmmetry or blow-ups of ruled surfaces of genus at least 2 [17]. The flat torus is a quotient of
E* by a lattice group generated by translations in four linearly independent directions. If the
torus were decomposable, the contact I-form on the twistor space is lifted to a contact {-form ¢
on the twistor space of the Euclidean space R*. The sphere is a conformal compactification of
[ by adding one point oc. Then the 1-form @ is uniquely extended to a section of T*CP*® 0(2)
by Hartog’s Theorem. The kernel of € is two-dimensional except possibly over the twistor line
of co. Away from this line, the space of lines over which the splitting type of the kernel of 6
differs from O(1) @ O(1) is an analytic subspace in the space of all lines. By compactness. this
analytic subspace has only finitely many components. As the lattice group is generated by four
linearly independent vectors, the space of jumping lines cannot be invariant. Then the space of
jumping lines consists of infinitely many components. This contradiction shows that X cannot
be the flat torus.

When the surface D is the blow-up of a ruled surface over a Riemann surface T with genus
at least 2, we use b to denote the blowing-down map from D to its minimal model Y. and
r the projection from Y onto . Y is the projectivization of a rank 2 vector bundle over X,
and the U(l)-action on D is the lifting of rotations on each fiber [17]. Each irreducible fiber
F of the map r o b is invariant of the U(1)-action. As the action on F is non-trivial, the vector
ficld V is tangential to F. Since (V) = O along D, F is Legendrian. The proper transforms of
the zero-section Cy and the infinity section C. of the ruling » are both fixed point sets of the
Ui 1)-action. By Proposition 2.8, Cy and C, are Legendrian. It follows that the twistor lines
through the intersectionn = FNCyand s = F N C. are not Legendrian. Therefore, when D is
identified to X by twistor fibration, n and s are not in F N M . It follows that £ N M is a finite union
ol one-dimensional orbits of the U(1)-action. This intersection is non-empty for otherwise £ is
heolomorphic horizontal with respect to the Einstein distribution of the half-hyperbolic metric.
It is a contradiction to Remark 2.10 because the self-intersection number of F is equal to zero.
and the complex orientation on D is opposite to the given one on X.

Lemma 3.1. The manifold M intersects every fiber of the ruling along one circle.

Proof. Consider the restriction of the function f on an irreducible fiber F. Since f is invariant
of the U(!)-action, it descends to the orbit space of the action on F\{#x. s}. The orbit space is
an open interval 7. If F N M consists of at least two circles, then f has two distinct zeroes
on the open interval /. Between these two zeroes, there is a point where the derivative of [
is equal to zero. Since the vector field V is in the direction of JV [, the gradient field V 1 is
perpendicular to the orbits of the U(1)-action and is tangent to the fiber F. Therefore. thereis a
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non-degenerate orbit on F along which Ly, f = 0. It is equivalent to g(V, V) = 0. This is a
contradiction because the fixed point set of the U(1)-action on F is {n, s}. Therefore, when F
is an irreducible fiber, F N M consists of only one circle.

Reducible fibers are isolated in the family of all fibers. Let F be a reducible fiber. Let p be
a point in F N M. Let Fy be an irreducible component of £ containing p. Since the singular
points of F cannot be in M, the U(1)-orbit of p is a circle. Since M is a compact space and
Fp is a 2-sphere, the intersection M M Fy is a finite union of circles. Then the intersection of
M and F; along the orbit of p is transversal. Via the exponential map at p, one sees that the
intersection between M and any irreducible fiber near F is non-empty. And the intersection is
along an orbit topologically near the orbit of p. This observation applies to all intersection of M
and F. As M intersects any irreducible fiber along exactly one circle, M M F consists of exactly
one circle even when F is reducible. U

Lemma 3.1 and Remark 2.10 together imply that when F is reducible, it contains at most
one (—1)-curve and no (—2)-curves as its components. It is possible only if F is irreducible.
Therefore, X is a minimal surface. Up to a finite covering, D is a product surface. Since every
fiber is irreducible, every fiber intersects M along one circle, M is diffeomorphic to S' x X.

We claim that M is isometric to £ x X where E is a circle perpendicular to the axis of the
U(1)-action on §2. Let 7{? be the universal covering of . We use the following coordinates.

2 x H? = {(yi.y, vy x {x,r): }13 + y‘z)‘ + }33‘2 =1l,xeR. r >0}

When V is the rotational field (y,3/0y; — y33/0w), then Vf = —JV = —Vy;. Therefore
f = —y1 + ¢ for some constant c. We conclude that

Proposition 3.2. If(X, [g]) is a type zero U(1)-decomposable manifold, up to a finite covering
it is a product §* x I; the conformal class contains the product of the metric with curvature 1
on S* and the metric with curvature —1 on ¥; and the hypersurface M is the product of any
hyper-sphere in S* with X.

4. When the divisor § contains a real twistor line, the conformal class is of positive type [15].

If the divisor S is a sum D+ D, the divisors D and D intersect along a real twistor line L with
multiplicity 1. The self-intersection number of L on the surface D is equal to 1. Therefore, D is
a blow-up of CP? [18]. Restricting the twistor fibration 7 to D, we see that X is diffeomorphic
to nCP?. Due to the exact sequence of Proposition 2.1, ¢ (D) = %cl and ¢2(D) = ¢ — Zli‘% Let
x and 7 be the Euler number and signature of the manifold X respectively, then ¢} = 16(2x —37)

and cjc; = 12(x — 1) [7]. By reality of D, c2(D) - D = c»(D) - D. It follows that
(D)D) = $c2(D) - (D+ D) = Lejey — kel = x =2+4n.

By the definition of D, the restriction of V is a section of the bundle D on the surface D. While
D is invariant of the U(1)-action, V is a section of the tangent bundle of D. Since x(D) =
x (CP*#rCP?) = 3 + n, and it is not equal to c>(D)[ D], the zero set of V on D contains one-
dimensional component. Therefore, when D is blown down to CP?, in appropriate homogeneous



I

U{D)-decomposable self-dual manifolds

coordinates, the U(1)-action on CP? is

[z0. 21, 22] = [€7%z0. 21, 22] (4.1)

for some real number p. Since L is the intersection of two invariant divisors, it is invariant of
the action. Let x = m (L), then x is a fixed point on X.

Lemma 4.2. The U(1)-action on the twistor line L is trivial.

Proof. As L is invariant, it is the zero set of one of the three coordinate functions. Assume that
L is defined by z; = 0. Let L be the line defined by zp = 0, and L the line defined by 7, = 0.
Let p be the intersection point of L and Ly, and ¢ the intersection point of L and L. As all
points of blowing-up are away from the real twistor line L, we ignore blowing-ups when we
study geometry in a neighborhood of the twistor line L. Since the action on L is non-trivial.
and the vector field V is contact to D along S, L is Legendrian. It follows that the fixed point x
is contained in M. As M is invariant, the connected component of fixed point set containing
x in M is a one-dimensional space F. As the action on Ly is trivial, 7w (Ly) is a component of
the fixed point set of the U(1)-action on X. This is a two-dimensional sphere containing x. The
set 7w (L) must contain an open subset of F'. For otherwise, the isotropy representation of U(1)
at x is trivial, and then the induced U(1)-action on the twistor line would have been trivial. Let
v be a fixed point contained in F, and near x such that the real twistor line L, over y intersects
L, at a point z near g. As y is contained in M, L, is Legendrian. Let L, be the line on D
joining z and p. As the U(l)-action leaves L ,. invariant, and the action on it is non-trivial.
L - is Legendrian. Finally, (Lo) is a set of fixed points. By Proposition 2.8, L is Legendrian.
Then the three curves Ly, L, and L, are all Legendrian. But these curves intersect at ¢ such that
their tangents at ¢ span the tangent space of the twistor space at ¢. This is impossible because
the contact distribution is two-dimensional. Therefore the U(1)-action on the real twistor line
L istrivial. [

Proposition 4.3. Suppose that the zero divisor of 0(V) is reducible, then the decomposable
manifold is the round sphere.

Proof. If X is not the sphere, the surface D is the blow-up of CP? at least once. In the coordinates
given in (4.1), let p = [1, 0, 0]. The fixed point set of the U(1)-action on CP? consists of the
point p and the line L defined by zo = 0. Since the line L is a real twistor line, none of
the points of blowing-up is on L. Since the blowing-ups preserve the U(1)-action, the first point
of blowing-up is the point p. Let Dg be the blow-up of CP? at p. Let b, be the blowing-down
map from Dy onto CP2. Let E be the exceptional divisor of p on Dy. Let F be the divisor class
on Dy representing the lines on CP? through the point p. Any subsequent blow-ups are on the
curve E. Let b be the blowing-down map from D onto Dy. One considers Dy as a ruled surface
with F as fiber class, and F the infinity section.

By (4.1), m{(L) = x is an isolated fixed point of the U(1)-action on X. Since M is three-
dimensional, its fixed point set consists of one-dimensional components. Therefore, x is not
contained in M. Hence, L is not Legendrian. After an orientation change, X \{x} is the blow-up
of C”. The conformal class of [g] contains a Kihler metric g on X\ {x}. There exists a function
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f on X\{x} suchthath = f~2g is an Einstein metricon X\{x UM}. By Lemma 2.6,V = JV f
is a Killing vector field with respect to g on X\{x}.

By the proof of Lemma 3.1, every element in the complete linear system of the proper
transform of | F| is irreducible. It follows that D = Dy. Therefore, the self-dual manifold is
diffeomorphic to CP? with positive scalar curvature. Due to [21], the conformal c¢lass contains
the Fubini—Study metric. Since the Fubini—Study metric is an Einstein metric with positive
scalar curvature, and it is not conformally flat. Brinkman’s result [3] implies that it is not
decomposable. The proof of Proposition 4.3 is completed. U

When S is irreducible, it is the blow-up of a ruled surface @ at conjugate pair of points
[18]. Let b be the blowing down map, and r the fibration of Q over a Riemann surface X.
We use F to denote the class of fibers of the map r o b. The twistor lines contained in §
are irreducible non-singular fibers of this map [18]. As ¢;(§) = %c; and ¢2(S) = ¢ — %C%,
8(l—g)—k = c%(S)[S] =202y —31),and 4(1 — g) + k = »(SH[S] = 2x, where g is the
genus of X, and & is the number of blowing-ups. Since the conformal class is of positive type,
there are no non-trivial anti-self-dual harmonic 2-forms [6]. Therefore, b,(X) = 7 and

k=2t =2b(X), g=>bi{(X). 4.4)

Let X be the collection of real twistor lines contained in §. This is a real analytic subspace
of X. Let Sy be § with all the twistor lines in it removed. Since any real twistor line contained
in S is an irreducible non-singular fiber of the map r o b, Sy contains all the reducible fibers.
The twistor fibration is an unbranched double covering from Sy to X 1= X\ X. Let Mg be the
intersection M N Sp. The restriction of the self-dual conformal class on Xy is pulled back to Sy
to define an anti-self-dual Kahler structure. Let g be a Kéhler metric on Sy and f a function
such that 7 = f~2g is a half-hyperbolic metric. By Proposition 2.6, V = JV f. We apply the
proof of Lemma 3.1 on Sy to conclude that when F is a fiber of the map r o b, F N M consists
of only one circle, and that S is a minimal surface. By (4.4), the conformal structure on X is
conformally flat.

When g = 0, the conformal class is the the round sphere [21]. Any totally umbilic hyper-
surface is a hyper-sphere. When g > 1, let " be the fundamental group of X. Let X be the
universal covering of X. Denote the twistor space of the induced conformal class on X by Z. Z
is the universal covering of Z. Note that I' acts on X as a group of conformal transformations.
Since X is orientable, the action of I' preserves orientation on X.

Since the conformal structure is of positive type, the development map is a conformal
embedding from X into $* [25]. The U(1)-action is lifted to a one-dimensional group G of
conformal transformations on X. Via the development map, it is uniquely extended to a sub-
group of SO(5, 1). Similarly, I" is a subgroup of SO(5, 1). We consider S* as the space of
projective quaternions HP' with homogeneous coordinates [go, ¢1]. Its twistor space is the
complex projective space CP?. With homogeneous coordinates, the twistor projection is
[0, 215 22, 23] = [z0 + 21/, 22 + 2371

When G is non-compact, the flow of X is either the entire sphere, R* or R*\{0} [13]. The
first case is possible only if X = X = $* If X = R*, the group G has at most one fixed
point on X. The fixed point set of the G-action on X covers the fixed point set of the U(1)-
action on X. As I is not finite, the fixed point set in R* is empty. Since the U(1)-action is
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fixed-point-free, then g = 1 and »; = 1. Up to a finite covering, the fundamental group I" is an
infinite discrete Abelian group with one > generator. In particular, it is contained in a non-compact
one-dimensional Abelian group [". As T acts on R* without fixed points, it is a group generated
by Euclidean motions on R* [13]. Then the quotient space X = R*/T" would have been a
compact space with flat metric. This is a contradiction as X is of positive type.

If X = R*\{0}, M is a totally umbilic hypersurface in R*\ {0}. It is either a hyper-sphere or
hyper-plane. Since M is invariant of the flow of G, it is contained in a hyper-plane through the
origin. Up to coordinate changes, M is defined by x; = 0. As G leaves the origin of R? fixed.
it is contained in CO*(4). To leave M invariant, G is a subgroup of Bt x SO(2). Since the
G -action on R*\{0} is fixed-point-free, g = b; = 1. Up to a finite covering, the funddmentdl
group I' is freely generated by one element p. As p leaves {0, oo} on R* invariant, p° leaves
the origin of R* ﬁxed Therefore, it is contained in CO* (4). Since p? leaves M invariant and
commutes with G, p* is contained in the same subgroup R™ x SO(2). It is represented by

cosyy sinyy 0 O
—siny cosy O O
0 0 1 0

0 0 0 1

for some real numbers y and . Take p~* if necessary, we assume that 0 < y < 1. Therefore,
up to a finite covering, X is the Hopf manifold H+ . The decomposition is along a copy of S! x S~
detined by x4 = 0.

When G is compact, it is a copy of SO(2) in PGL(2, H). The G-action on S* has at least two
fixed points. Taking isotropy representation at one of the fixed points o, we embed G in SO(4).
In PGL(2, H), it is represented by the matrix

diag(e”'?. ¢'79). (4.5)

The corresponding action on $*is [1, g] > [1,e™""19ge'P?], and the fixed point o is [ 1. 0].

The fixed point set of the U(1)-action is two-dimensional if and only if p; = £ p>. In such
cases, we assume that p; = p,. Then the fixed point set is the two-dimensional sphere E defined
by x; =1y = 0in R* when ¢ = x| + x»2i + x3j + x4k, As I commutes with G, it is contained
in PGL(2, C) = SO(3, 1) the group of conformal transformations of the 2-sphere E.

Consider the conformal model of the 4-sphere as a real quadric in RP® defined by 77 +
t22 + 1‘73 + tf = 2fpt5 [ 11]. Let SO(2) be the group of rotations on the (z3. t4)-coordinates. Then
the ["-action is trivial on 13 and t4 coordinates. When X is decomposable, there is an invariant
totally umbilic hypersurface. Via the development map, one finds a hyper-sphere invariant of
the SO(2)-action and the I"-action. As it is invariant of the rotation group, the linear equation
deflining the hyper-sphere is in (g, t1, 1, #5)-coordinates. Up to a Mobius transformation, we
assume that the hyper-plane is defined 1, = 0. As I" preserves this hyper-plane, it is contained
in SO(2. 1), acting on the (1, . f5)-coordinates. In other words, X is a Fuchsian manifold.

Consider the surface § in the twistor space again. If ¢ > 2, the zero and infinity sections
are contained in the fixed point set of the holomorphic U(1)-action on the twistor space. Via
the twistor projection, the fixed point set of the U(1)-action on X is at least two-dimensional.
Results in the last paragraph shows that such X is a Fuchsian manifold. Therefore, the last case
to be investigated is when g = | with p; % %+ p». Since I' commutes with G, T is a subgroup of
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PGL(1, H) = Sp(1) when p; = Oor p, = 0. As Sp(1) is compact, I is finite. This is impossible
when g = b; = 1. Hence py # 0 and pp # 0. It follows that elements in I are represented by
diagonal matrices of non-zero complex numbers

diag(rie'", rye'™). (4.6)

Since any holomorphic vector field on an open set of CP? is uniquely extended to a global
holomorphic vector field, one deduces from the Euler sequence that the 1-form ¢ on the twistor
space Z extends to a section 6 of T*CP® ® O(2). The space of global sections of this bundle is
six-dimensional. It is spanned by

01 = zodz, — z1 dz0, 6y = z0dzy — 23dza, 6y = zodzy — 72 dzg,
04 = z3dz1 — 2, dz3, 05 = zodz3 — z3dzo, Os = z1dzo — 22dz;.

With respect to the usual real structure {2}, {8y, 8,83 — 04, (03 + 84), 05 — O, ({05 + )}
is a real basis. When p; # =p,, the induced actions of (4.5) are non-trivial rotations of
the planes spanned by 63 — 6, , (63 + 64) and 685 — B¢, (05 + Hg) respectively. As 0 is an
eigenvector of all these rotations, 6 = a0, + a;6, for some real numbers ¢; and a>. Then
6 AdO = 2a1a,(6, Adzy Adzs+ 65 Adzg Adzy). On the other hand, the induced action of
(4.6) with respect to this basis is the identity on §; and multiplication by (r2/r; )2 on ;. As 9 is
an eigenvector of this action, and (r,/r1)? # 1 when the group I is non-compact, a;a, = 0. It
means that & cannot be the extension of a contact form. Therefore, this case cannot occur.

We conclude that when the divisor S is irreducible, the decomposable manifold X is described
by (1), (2) and (4) of Theorem 1.3. Together with Proposition 3.2 and Proposition 4.3, the proof
of Theorem 1.3 is now completed.
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