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Abstract

We investigate the asymptotic distributions of coordinates of regression M-estimates
in the moderate p/n regime, where the number of covariates p grows proportion-
ally with the sample size n. Under appropriate regularity conditions, we estab-
lish the coordinate-wise asymptotic normality of regression M-estimates assuming
a fixed-design matrix. Our proof is based on the second-order Poincaré inequality
(Chatterjee, 2009) and leave-one-out analysis (El Karoui et al., 2011). Some relevant
examples are indicated to show that our regularity conditions are satisfied by a broad
class of design matrices. We also show a counterexample, namely the ANOVA-type
design, to emphasize that the technical assumptions are not just artifacts of the
proof. Finally, the numerical experiments confirm and complement our theoretical
results.

1 Introduction

High-dimensional statistics has a long history (Huber, 1973; Wachter, 1976, 1978) with
considerable renewed interest over the last two decades. In many applications, the re-
searcher collects data which can be represented as a matrix, called a design matrix and
denoted by X ∈ Rn×p, as well as a response vector y ∈ Rn and aims to study the connec-
tion between X and y. The linear model is among the most popular models as a starting
point of data analysis in various fields. A linear model assumes that

y = Xβ∗ + ε, (1)

where β∗ ∈ Rp is the coefficient vector which measures the marginal contribution of each
predictor and ε is a random vector which captures the unobserved errors.

The aim of this article is to provide valid inferential results for features of β∗. For
example, a researcher might be interested in testing whether a given predictor has a
negligible effect on the response, or equivalently whether β∗j = 0 for some j. Similarly,
linear contrasts of β∗ such as β∗1 − β∗2 might be of interest in the case of the group
comparison problem in which the first two predictors represent the same feature but are
collected from two different groups.

An M-estimator, defined as

β̂(ρ) = arg min
β∈Rp

1

n

n∑
i=1

ρ(yi − xTi β) (2)
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where ρ denotes a loss function, is among the most popular estimators used in practice
(Relles, 1967; Huber, 1973). In particular, if ρ(x) = 1

2x
2, β̂(ρ) is the famous Least Square

Estimator (LSE). We intend to explore the distribution of β̂(ρ), based on which we can
achieve the inferential goals mentioned above.

The most well-studied approach is the asymptotic analysis, which assumes that the
scale of the problem grows to infinity and use the limiting result as an approximation.
In regression problems, the scale parameter of a problem is the sample size n and the
number of predictors p. The classical approach is to fix p and let n grow to infinity. It
has been shown (Relles, 1967; Yohai, 1972; Huber, 1972, 1973) that β̂(ρ) is consistent in
terms of L2 norm and asymptotically normal in this regime. The asymptotic variance
can be then approximated by the bootstrap (Bickel & Freedman, 1981). Later on, the
studies are extended to the regime in which both n and p grow to infinity but p/n
converges to 0 (Yohai & Maronna, 1979; Portnoy, 1984, 1985, 1986, 1987; Mammen,
1989). The consistency, in terms of the L2 norm, the asymptotic normality and the
validity of the bootstrap still hold in this regime. Based on these results, we can construct

a 95% confidence interval for β0j simply as β̂j(ρ)± 1.96

√
V̂ar(β̂j(ρ)) where V̂ar(β̂j(ρ)) is

calculated by bootstrap. Similarly we can calculate p-values for the hypothesis testing
procedure.

We ask whether the inferential results developed under the low-dimensional assump-
tions and the software built on top of them can be relied on for moderate and high-
dimensional analysis? Concretely, if in a study n = 50 and p = 40, can the software built
upon the assumption that p/n ' 0 be relied on when p/n = .8? Results in random matrix
theory (Marčenko & Pastur, 1967) already offer an answer in the negative side for many
PCA-related questions in multivariate statistics. The case of regression is more subtle:
For instance for least-squares, standard degrees of freedom adjustments effectively take
care of many dimensionality-related problems. But this nice property does not extend to
more general regression M-estimates.

Once these questions are raised, it becomes very natural to analyze the behavior
and performance of statistical methods in the regime where p/n is fixed. Indeed, it will
help us to keep track of the inherent statistical difficulty of the problem when assessing
the variability of our estimates. In other words, we assume in the current paper that
p/n→ κ > 0 while let n grows to infinity. Due to identifiability issues, it is impossible to
make inference on β∗ if p > n without further structural or distributional assumptions.
We discuss this point in details in Section 2.3. Thus we consider the regime where
p/n → κ ∈ (0, 1). We call it the moderate p/n regime. This regime is also the natural
regime in random matrix theory (Marčenko & Pastur, 1967; Wachter, 1978; Johnstone,
2001; Bai & Silverstein, 2010). It has been shown that the asymptotic results derived
in this regime sometimes provide an extremely accurate approximations to finite sample
distributions of estimators at least in certain cases (Johnstone, 2001) where n and p are
both small.

1.1 Qualitatively Different Behavior of Moderate p/n Regime

First, β̂(ρ) is no longer consistent in terms of L2 norm and the risk E‖β̂(ρ)−β∗‖2 tends to
a non-vanishing quantity determined by κ, the loss function ρ and the error distribution
through a complicated system of non-linear equations (El Karoui et al., 2011; El Karoui,
2013, 2015; Bean et al., 2012). This L2-inconsistency prohibits the use of standard
perturbation-analytic techniques to assess the behavior of the estimator. It also leads to
qualitatively different behaviors for the residuals in moderate dimensions; in contrast to
the low-dimensional case, they cannot be relied on to give accurate information about the
distribution of the errors. However, this seemingly negative result does not exclude the
possibility of inference since β̂(ρ) is still consistent in terms of L2+ν norms for any ν > 0
and in particular in L∞ norm. Thus, we can at least hope to perform inference on each
coordinate.

Second, classical optimality results do not hold in this regime. In the regime p/n→ 0,
the maximum likelihood estimator is shown to be optimal (Huber, 1964, 1972; Bickel &
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Doksum, 2015). In other words, if the error distribution is known then the M-estimator
associated with the loss ρ(·) = − log fε(·) is asymptotically efficient, provided the design
is of appropriate type, where fε(·) is the density of entries of ε. However, in the moderate
p/n regime, it has been shown that the optimal loss is no longer the log-likehood but
an other function with a complicated but explicit form (Bean et al., 2013), at least
for certain designs. The suboptimality of maximum likelihood estimators suggests that
classical techniques fail to provide valid intuition in the moderate p/n regime.

Third, the joint asymptotic normality of β̂(ρ), as a p-dimensional random vector, may
be violated for a fixed design matrix X. This has been proved for least-squares by Huber
(1973) in his pioneering work. For general M-estimators, this negative result is a simple
consequence of the results of El Karoui et al. (2011): They exhibit an ANOVA design
(see below) where even marginal fluctuations are not Gaussian. By contrast, for random

design, they show that β̂(ρ) is jointly asymptotically normal when the design matrix is
elliptical with general covariance by using the non-asymptotic stochastic representation
for β̂(ρ) as well as elementary properties of vectors uniformly distributed on the uniform
sphere in Rp; See section 2.2.3 of El Karoui et al. (2011) or the supplementary material
of Bean et al. (2013) for details. This does not contradict Huber (1973)’s negative result
in that it takes the randomness from both X and ε into account while Huber (1973)’s
result only takes the randomness from ε into account. Later, El Karoui (2015) shows that

each coordinate of β̂(ρ) is asymptotically normal for a broader class of random designs.
This is also an elementary consequence of the analysis in El Karoui (2013). However, to
the best of our knowledge, beyond the ANOVA situation mentioned above, there are no
distributional results for fixed design matrices. This is the topic of this article.

Last but not least, bootstrap inference fails in this moderate-dimensional regime. This
has been shown by Bickel and Freedman (1983) for least-squares and residual bootstrap
in their influential work. Recently, El Karoui and Purdom (2015) studied the results
to general M-estimators and showed that all commonly used bootstrapping schemes,
including pairs-bootstrap, residual bootstrap and jackknife, fail to provide a consistent
variance estimator and hence valid inferential statements. These latter results even apply
to the marginal distributions of the coordinates of β̂(ρ). Moreover, there is no simple,
design independent, modification to achieve consistency (El Karoui & Purdom, 2015).

1.2 Our Contributions

In summary, the behavior of the estimators we consider in this paper is completely dif-
ferent in the moderate p/n regime from its counterpart in the low-dimensional regime.
As discussed in the next section, moving one step further in the moderate p/n regime is
interesting from both the practical and theoretical perspectives. The main contribution
of this article is to establish coordinate-wise asymptotic normality of β̂(ρ) for certain fixed
design matrices X in this regime under technical assumptions. The following theorem
informally states our main result.

Theorem (Informal Version of Theorem 3.1 in Section 3). Under appropriate conditions
on the design matrix X, the distribution of ε and the loss function ρ, as p/n→ κ ∈ (0, 1),
while n→∞,

max
1≤j≤p

dTV

L
 β̂j(ρ)− Eβ̂j(ρ)√

Var(β̂j(ρ))

 , N(0, 1)

 = o(1)

where dTV(·, ·) is the total variation distance and L(·) denotes the law.

It is worth mentioning that the above result can be extended to finite dimensional
linear contrasts of β̂. For instance, one might be interested in making inference on β∗1−β∗2
in the problems involving the group comparison. The above result can be extended to
give the asymptotic normality of β̂1 − β̂2.

Besides the main result, we have several other contributions. First, we use a new
approach to establish asymptotic normality. Our main technique is based on the second-
order Poincaré inequality (SOPI), developed by Chatterjee (2009) to derive, among many
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other results, the fluctuation behavior of linear spectral statistics of random matrices.
In contrast to classical approaches such as the Lindeberg-Feller central limit theorem,
the second-order Poincaré inequality is capable of dealing with nonlinear and potentially
implicit functions of independent random variables. Moreover, we use different expansions
for β̂(ρ) and residuals based on double leave-one-out ideas introduced in El Karoui et al.
(2011), in contrast to the classical perturbation-analytic expansions. See aforementioned
paper and follow-ups. An informal interpretation of the results of Chatterjee (2009) is
that if the Hessian of the nonlinear function of random variables under consideration is
sufficiently small, this function acts almost linearly and hence a standard central limit
theorem holds.

Second, to the best of our knowledge this is the first inferential result for fixed (non
ANOVA-like) design in the moderate p/n regime. Fixed designs arise naturally from an
experimental design or a conditional inference perspective. That is, inference is ideally
carried out without assuming randomness in predictors; see Section 2.2 for more details.
We clarify the regularity conditions for coordinate-wise asymptotic normality of β̂(ρ)
explicitly, which are checkable for LSE and also checkable for general M-estimators if the
error distribution is known. We also prove that these conditions are satisfied with by a
broad class of designs.

The ANOVA-like design described in Section 3.3.4 exhibits a situation where the
distribution of β̂j(ρ) is not going to be asymptotically normal. As such the results of
Theorem 3.1 below are somewhat surprising.

For complete inference, we need both the asymptotic normality and the asymptotic
bias and variance. Under suitable symmetry conditions on the loss function and the error
distribution, it can be shown that β̂(ρ) is unbiased (see Section 3.2.1 for details) and
thus it is left to derive the asymptotic variance. As discussed at the end of Section 1.1,
classical approaches, e.g. bootstrap, fail in this regime. For least-squares, classical results
continue to hold and we discuss it in section 5 for the sake of completeness. However,
for M-estimators, there is no closed-form result. We briefly touch upon the variance
estimation in Section 3.4.2. The derivation for general situations is beyond the scope of
this paper and left to the future research.

1.3 Outline of Paper

The rest of the paper is organized as follows: In Section 2, we clarify details which
are mentioned in the current section. In Section 3, we state the main result (Theorem
3.1) formally and explain the technical assumptions. Then we show several examples of
random designs which satisfy the assumptions with high probability. In Section 4, we
introduce our main technical tool, second-order Poincaré inequality (Chatterjee, 2009),
and apply it on M-estimators as the first step to prove Theorem 3.1. Since the rest of the
proof of Theorem 3.1 is complicated and lengthy, we illustrate the main ideas in Appendix
A. The rigorous proof is left to Appendix B. In Section 5, we provide reminders about the
theory of least-squares estimation for the sake of completeness, by taking advantage of its
explicit form. In Section 6, we display the numerical results. The proof of other results
are stated in Appendix C and more numerical experiments are presented in Appendix D.

2 More Details on Background

2.1 Moderate p/n Regime: a more informative type of asymp-
totics?

In Section 1, we mentioned that the ratio p/n measures the difficulty of statistical infer-
ence. The moderate p/n regime provides an approximation of finite sample properties
with the difficulties fixed at the same level as the original problem. Intuitively, this regime
should capture more variation in finite sample problems and provide a more accurate ap-
proximation. We will illustrate this via simulation.
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Consider a study involving 50 participants and 40 variables; we can either use the
asymptotics in which p is fixed to be 40, n grows to infinity or p/n is fixed to be 0.8,
and n grows to infinity to perform approximate inference. Current software rely on low-
dimensional asymptotics for inferential tasks, but there is no evidence that they yield more
accurate inferential statements than the ones we would have obtained using moderate
dimensional asymptotics. In fact, numerical evidence (Johnstone, 2001; El Karoui et al.,
2013; Bean et al., 2013) show that the reverse is true.

We exhibit a further numerical simulation showing that. Consider a case that n = 50,
ε has i.i.d. entries and X is one realization of a matrix generated with i.i.d. gaussian
(mean 0, variance 1) entries. For κ ∈ {0.1, 0.2, . . . , 0.9} and different error distributions,
we use the Kolmogorov-Smirnov (KS) statistics to quantify the distance between the
finite sample distribution and two types of asymptotic approximation of the distribution
of β̂1(ρ).

Specifically, we use the Huber loss function ρHuber,k with default parameter k = 1.345
(Huber, 2011), i.e.

ρHuber,k(x) =

{
1
2x

2 |x| ≤ k
k(|x| − 1

2k) |x| > k

Specifically, we generate three design matrices X(0), X(1) and X(2): X(0) for small sample
case with a sample size n = 50 and a dimension p = nκ; X(1) for low-dimensional
asymptotics (p fixed) with a sample size n = 1000 and a dimension p = 50κ; and X(2)

for moderate-dimensional asymptotics (p/n fixed) with a sample size n = 1000 and a
dimension p = nκ. Each of them is generated as one realization of an i.i.d. standard
gaussian design and then treated as fixed across K = 100 repetitions. For each design
matrix, vectors ε of appropriate length are generated with i.i.d. entries. The entry
has either a standard normal distribution, or a t3-distribution, or a standard Cauchy
distribution, i.e. t1. Then we use ε as the response, or equivalently assume β∗ = 0,
and obtain the M-estimators β̂(0), β̂(1), β̂(2). Repeating this procedure for K = 100 times
results in K replications in three cases. Then we extract the first coordinate of each

estimator, denoted by {β̂(0)
k,1}Kk=1, {β̂

(1)
k,1}Kk=1, {β̂

(2)
k,1}Kk=1. Then the two-sample Kolmogorov-

Smirnov statistics can be obtained by

KS1 =

√
n

2
max
x
|F̂ (0)
n (x)− F̂ (1)

n (x)|, KS2 =

√
n

2
max
x
|F̂ (0)
n (x)− F̂ (2)

n (x)|,

where F̂
(r)
n is the empirical distribution of {β̂(r)

k,1}Kk=1. We can then compare the accuracy
of two asymptotic regimes by comparing KS1 and KS2. The smaller the value of KSi, the
better the approximation.

Figure 1 displays the results for these error distributions. We see that for gaus-
sian errors and even t3 errors, the p/n-fixed/moderate-dimensional approximation is uni-
formly more accurate than the widely used p-fixed/low-dimensional approximation. For
Cauchy errors, the low-dimensional approximation performs better than the moderate-
dimensional one when p/n is small but worsens when the ratio is large especially when
p/n is close to 1. Moreover, when p/n grows, the two approximations have qualita-
tively different behaviors: the p-fixed approximation becomes less and less accurate while
the p/n-fixed approximation does not suffer much deterioration when p/n grows. The
qualitative and quantitative differences of these two approximations reveal the practical
importance of exploring the p/n-fixed asymptotic regime. (See also Johnstone (2001).)

2.2 Random vs fixed design?

As discussed in Section 1.1, assuming a fixed design or a random design could lead to
qualitatively different inferential results.

In the random design setting, X is considered as being generated from a super pop-
ulation. For example, the rows of X can be regarded as an i.i.d. sample from a dis-
tribution known, or partially known, to the researcher. In situations where one uses
techniques such as cross-validation (Stone, 1974), pairs bootstrap in regression (Efron &
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Figure 1: Axpproximation accuracy of p-fixed asymptotics and p/n-fixed asymptotics:
each column represents an error distribution; the x-axis represents the ratio κ of the di-
mension and the sample size and the y-axis represents the Kolmogorov-Smirnov statistic;
the red solid line corresponds to p-fixed approximation and the blue dashed line corre-
sponds to p/n-fixed approximation.

Efron, 1982) or sample splitting (Wasserman & Roeder, 2009), the researcher effectively
assumes exchangeability of the data (xTi , yi)

n
i=1. Naturally, this is only compatible with

an assumption of random design. Given the extremely widespread use of these techniques
in contemporary machine learning and statistics, one could argue that the random de-
sign setting is the one under which most of modern statistics is carried out, especially
for prediction problems. Furthermore, working under a random design assumption forces
the researcher to take into account two sources of randomness as opposed to only one
in the fixed design case. Hence working under a random design assumption should yield
conservative confidence intervals for β∗j .

In other words, in settings where the researcher collects data without control over the
values of the predictors, the random design assumption is arguably the more natural one
of the two.

However, it has now been understood for almost a decade that common random design
assumptions in high-dimension (e.g. xi = Σ1/2zi where zi,j ’s are i.i.d with mean 0 and
variance 1 and a few moments and Σ “well behaved”) suffer from considerable geometric
limitations, which have substantial impacts on the performance of the estimators consid-
ered in this paper (El Karoui et al., 2011). As such, confidence statements derived from
that kind of analysis can be relied on only after performing a few graphical tests on the
data (see El Karoui (2010)). These geometric limitations are simple consequences of the
concentration of measure phenomenon (Ledoux, 2001).

On the other hand, in the fixed design setting, X is considered a fixed matrix. In this
case, the inference only takes the randomness of ε into consideration. This perspective
is popular in several situations. The first one is the experimental design. The goal is
to study the effect of a set of factors, which can be controlled by the experimenter, on
the response. In contrast to the observational study, the experimenter can design the
experimental condition ahead of time based on the inference target. For instance, a one-
way ANOVA design encodes the covariates into binary variables (see Section 3.3.4 for
details) and it is fixed prior to the experiment. Other examples include two-way ANOVA
designs, factorial designs, Latin-square designs, etc. (Scheffe, 1999).

Another situation which is concerned with fixed design is the survey sampling where
the inference is carried out conditioning on the data (Cochran, 1977). Generally, in order
to avoid unrealistic assumptions, making inference conditioning on the design matrix
X is necessary. Suppose the linear model (1) is true and identifiable (see Section 2.3 for
details), then all information of β∗ is contained in the conditional distribution L(y|X) and
hence the information in the marginal distribution L(X) is redundant. The conditional
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inference framework is more robust to the data generating procedure due to the irrelevance
of L(X).

Also, results based on fixed design assumptions may be preferable from a theoretical
point of view in the sense that they could potentially be used to establish corresponding
results for certain classes of random designs. Specifically, given a marginal distribution
L(X), one only has to prove that X satisfies the assumptions for fixed design with high
probability.

In conclusion, fixed and random design assumptions play complementary roles in
moderate-dimensional settings. We focus on the least understood of the two, the fixed
design case, in this paper.

2.3 Modeling and Identification of Parameters

The problem of identifiability is especially important in the fixed design case. Define
β∗(ρ) in the population as

β∗(ρ) = arg min
β∈Rp

1

n

n∑
i=1

Eρ(yi − xTi β). (3)

One may ask whether β∗(ρ) = β∗ regardless of ρ in the fixed design case. We provide
an affirmative answer in the following proposition by assuming that εi has a symmetric
distribution around 0 and ρ is even.

Proposition 2.1. Suppose X has a full column rank and εi
d
= −εi for all i. Further

assume ρ is an even convex function such that for any i = 1, 2, . . . and α 6= 0,

1

2
(Eρ(εi − α) + Eρ(εi + α)) > Eρ(εi). (4)

Then β∗(ρ) = β∗ regardless of the choice of ρ.

The proof is left to Appendix C. It is worth mentioning that Proposition 2.1 only
requires the marginals of ε to be symmetric but does not impose any constraint on the
dependence structure of ε. Further, if ρ is strongly convex, then for all α 6= 0,

1

2
(ρ(x− α) + ρ(x+ α)) > ρ(x).

As a consequence, the condition (4) is satisfied provided that εi is non-zero with positive
probability.

If ε is asymmetric, we may still be able to identify β∗ if εi are i.i.d. random variables.
In contrast to the last case, we should incorporate an intercept term as a shift towards
the centroid of ρ. More precisely, we define α∗(ρ) and β∗(ρ) as

(α∗(ρ), β∗(ρ)) = arg min
α∈R,β∈Rp

1

n

n∑
i=1

Eρ(yi − α− xTi β).

Proposition 2.2. Suppose (1, X) is of full column rank and εi are i.i.d. such that
Eρ(ε1 − α) as a function of α has a unique minimizer α(ρ). Then β∗(ρ) is uniquely
defined with β∗(ρ) = β∗ and α∗(ρ) = α(ρ).

The proof is left to Appendix C. For example, let ρ(z) = |z|. Then the minimizer of
Eρ(ε1−a) is a median of ε1, and is unique if ε1 has a positive density. It is worth pointing
out that incorporating an intercept term is essential for identifying β∗. For instance, in
the least-square case, β∗(ρ) no longer equals to β∗ if Eεi 6= 0. Proposition 2.2 entails that
the intercept term guarantees β∗(ρ) = β∗, although the intercept term itself depends on
the choice of ρ unless more conditions are imposed.

If εi’s are neither symmetric nor i.i.d., then β∗ cannot be identified by the previous
criteria because β∗(ρ) depends on ρ. Nonetheless, from a modeling perspective, it is
popular and reasonable to assume that εi’s are symmetric or i.i.d. in many situations.
Therefore, Proposition 2.1 and Proposition 2.2 justify the use of M-estimators in those
cases and M-estimators derived from different loss functions can be compared because
they are estimating the same parameter.
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3 Main Results

3.1 Notation and Assumptions

Let xTi ∈ R1×p denote the i-th row of X and Xj ∈ Rn×1 denote the j-th column of X.
Throughout the paper we will denote by Xij ∈ R the (i, j)-th entry of X, by X[j] ∈
Rn×(p−1) the design matrix X after removing the j-th column, and by xTi,[j] ∈ R1×(p−1)

the vector xTi after removing j-th entry. The M-estimator β̂(ρ) associated with the loss
function ρ is defined as

β̂(ρ) = arg min
β∈Rp

1

n

n∑
k=1

ρ(yk − xTk β) = arg min
β∈Rp

1

n

n∑
k=1

ρ(εk − xTk (β − β∗)) (5)

We define ψ = ρ′ to be the first derivative of ρ. We will write β̂(ρ) simply β̂ when no
confusion can arise.

When the original design matrix X does not contain an intercept term, we can simply
replace X by (1, X) and augment β into a (p+ 1)-dimensional vector (α, βT )T . Although
being a special case, we will discuss the question of intercept in Section 3.2.2 due to its
important role in practice.

Equivariance and reduction to the null case

Notice that our target quantity
β̂j−Eβ̂j√
Var(β̂j)

is invariant to the choice of β∗, provided that β∗

is identifiable as discussed in Section 2.3, we can assume β∗ = 0 without loss of generality.
In this case, we assume in particular that the design matrix X has full column rank. Then
yk = εk and

β̂ = arg min
β∈Rp

1

n

n∑
k=1

ρ(εk − xTk β).

Similarly we define the leave-j-th-predictor-out version as

β̂[j] = arg min
β∈Rp−1

1

n

n∑
k=1

ρ(εk − xTk,[j]β).

Based on these notations we define the full residuals Rk as

Rk = εk − xTk β̂, k = 1, 2, . . . , n

and the leave-j-th-predictor-out residual as

rk,[j] = εk − xTk,[j]β̂[j], k = 1, 2, . . . , n, j = 1, . . . , p.

Three n× n diagonal matrices are defined as

D = diag(ψ′(Rk))nk=1, D̃ = diag(ψ′′(Rk))nk=1, D[j] = diag(ψ′(rk,[j]))
n
k=1. (6)

We say a random variable Z is σ2-sub-gaussian if for any λ ∈ R,

EeλZ ≤ eλ
2σ2

2 .

In addition, we use Jn ⊂ {1, . . . , p} to represent the indices of parameters which are
of interest. Intuitively, more entries in Jn would require more stringent conditions for the
asymptotic normality.

Finally, we adopt Landau’s notation (O(·), o(·), Op(·), op(·)). In addition, we say an =
Ω(bn) if bn = O(an) and similarly, we say an = Ωp(bn) if bn = Op(an). To simplify the
logarithm factors, we use the symbol polyLog(n) to denote any factor that can be upper
bounded by (log n)γ for some γ > 0. Similarly, we use 1

polyLog(n) to denote any factor

that can be lower bounded by 1
(logn)γ′

for some γ′ > 0.
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3.2 Technical Assumptions and main result

Before stating the assumptions, we need to define several quantities of interest. Let

λ+ = λmax

(
XTX

n

)
, λ− = λmin

(
XTX

n

)
be the largest (resp. smallest) eigenvalue of the matrix XTX

n . Let ei ∈ Rn be the i-th
canonical basis vector and

hj,0 , (ψ(r1,[j]), . . . , ψ(rn,[j]))
T , hj,1,i , (I −D[j]X[j](X

T
[j]D[j]X[j])

−1XT
[j])ei.

Finally, let

∆C = max

{
max
j∈Jn

|hTj,0Xj |
||hj,0||2

, max
i≤n,j∈Jn

|hTj,1,iXj |
||hj,1,i||2

}
,

Qj = Cov(hj,0)

Based on the quantities defined above, we state our technical assumptions on the design
matrix X followed by the main result. A detailed explanation of the assumptions follows.

A1 ρ(0) = ψ(0) = 0 and there exists positive numbers K0 = Ω
(

1
polyLog(n)

)
, K1,K2 =

O (polyLog(n)), such that for any x ∈ R,

K0 ≤ ψ′(x) ≤ K1,

∣∣∣∣ ddx (
√
ψ′(x))

∣∣∣∣ =
|ψ′′(x)|√
ψ′(x)

≤ K2;

A2 εi = ui(Wi) where (W1, . . . ,Wn) ∼ N(0, In×n) and ui are smooth functions with
‖u′i‖∞ ≤ c1 and ‖u′′i ‖∞ ≤ c2 for some c1, c2 = O(polyLog(n)). Moreover, assume

mini Var(εi) = Ω
(

1
polyLog(n)

)
.

A3 λ+ = O(polyLog(n)) and λ− = Ω
(

1
polyLog(n)

)
;

A4 minj∈Jn
XTj QjXj
tr(Qj)

= Ω
(

1
polyLog(n)

)
;

A5 E∆8
C = O (polyLog(n)).

Theorem 3.1. Under assumptions A1 − A5, as p/n → κ for some κ ∈ (0, 1), while
n→∞,

max
j∈Jn

dTV

L
 β̂j − Eβ̂j√

Var(β̂j)

 , N(0, 1)

 = o(1),

where dTV(P,Q) = supA |P (A)−Q(A)| is the total variation distance.

We provide several examples where our assumptions hold in Section 3.3. We also
provide an example where the asymptotic normality does not hold in Section 3.3.4. This
shows that our assumptions are not just artifacts of the proof technique we developed,
but that there are (probably many) situations where asymptotic normality will not hold,
even coordinate-wise.

3.2.1 Discussion of Assumptions

Now we discuss assumptions A1 - A5. Assumption A1 implies the boundedness of the
first-order and the second-order derivatives of ψ. The upper bounds are satisfied by most
loss functions including the L2 loss, the smoothed L1 loss, the smoothed Huber loss,
etc. The non-zero lower bound K0 implies the strong convexity of ρ and is required for
technical reasons. It can be removed by considering first a ridge-penalized M-estimator
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and taking appropriate limits as in El Karoui (2013, 2015). In addition, in this paper we
consider the smooth loss functions and the results can be extended to non-smooth case
via approximation.

Assumption A2 was proposed in Chatterjee (2009) when deriving the second-order
Poincaré inequality discussed in Section 4.1. It means that the results apply to non-
Gaussian distributions, such as the uniform distribution on [0, 1] by taking ui = Φ, the
cumulative distribution function of standard normal distribution. Through the gaussian
concentration (Ledoux, 2001), we see that A2 implies that εi are c21-sub-gaussian. Thus
A2 controls the tail behavior of εi. The boundedness of u′i and u′′i are required only for the
direct application of Chatterjee’s results. In fact, a look at his proof suggests that one can
obtain a similar result to his Second-Order Poincaré inequality involving moment bounds
on u′i(Wi) and u′′i (Wi). This would be a way to weaken our assumptions to permit to have
the heavy-tailed distributions expected in robustness studies. Since we are considering
strongly convex loss-functions, it is not completely unnatural to restrict our attention to
light-tailed errors. Furthermore, efficiency - and not only robustness - questions are one
of the main reasons to consider these estimators in the moderate-dimensional context.
The potential gains in efficiency obtained by considering regression M-estimates (Bean
et al., 2013) apply in the light-tailed context, which further justify our interest in this
theoretical setup.

Assumption A3 is completely checkable since it only depends on X. It controls the
singularity of the design matrix. Under A1 and A3, it can be shown that the objective
function is strongly convex with curvature (the smallest eigenvalue of the Hessian matrix)

lower bounded by Ω
(

1
polyLog(n)

)
everywhere.

Assumption A4 is controlling the left tail of quadratic forms. It is fundamentally
connected to aspects of the concentration of measure phenomenon (Ledoux, 2001). This
condition is proposed and emphasized under the random design setting by El Karoui et
al. (2013). Essentially, it means that for a matrix Qj ,which does not depend on Xj , the
quadratic form XT

j QjXj should have the same order as tr(Qj).
Assumption A5 is proposed by El Karoui (2013) under the random design settings. It

is motivated by leave-one-predictor-out analysis. Note that ∆C is the maximum of linear
contrasts of Xj , whose coefficients do not depend on Xj . It is easily checked for design
matrix X which is a realization of a random matrix with i.i.d sub-gaussian entries for
instance.

Remark 3.2. In certain applications, it is reasonable to make the following additional
assumption:

A6 ρ is an even function and εi’s have symmetric distributions.

Although assumption A6 is not necessary to Theorem 3.1, it can simplify the result. Under

assumption A6, when X is full rank, we have, if
d
= denotes equality in distribution,

β̂ − β∗ = arg min
η∈Rp

1

n

n∑
i=1

ρ(εi − xTi η) = arg min
η∈Rp

1

n

n∑
i=1

ρ(−εi + xTi η)

d
= arg min

η∈Rp

1

n

n∑
i=1

ρ(εi + xTi η) = β∗ − β̂.

This implies that β̂ is an unbiased estimator, provided it has a mean, which is the case
here. Unbiasedness is useful in practice, since then Theorem 3.1 reads

max
j∈Jn

dTV

L
 β̂j − β∗j√

Var(β̂j)

 , N(0, 1)

 = o(1) .

For inference, we only need to estimate the asymptotic variance.
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3.2.2 An important remark concerning Theorem 3.1

When Jn is a subset of {1, . . . , p}, the coefficients in Jcn become nuisance parameters.
Heuristically, in order for identifying β∗Jn , one only needs the subspaces span(XJn) and
span(XJcn

) to be distinguished and XJn has a full column rank. Here XJn denotes the
sub-matrix of X with columns in Jn. Formally, let

Σ̂Jn =
1

n
XT
Jn(I −XJcn

(XT
Jcn
XJcn

)−XT
Jcn

)XJn

where A− denotes the generalized inverse of A, and

λ̃+ = λmax

(
Σ̂Jn

)
, λ̃− = λmin

(
Σ̂Jn

)
.

Then Σ̂Jn characterizes the behavior of XJn after removing the effect of XJcn
. In partic-

ular, we can modify the assumption A3 by

A3* λ̃+ = O(polyLog(n)) and λ̃− = Ω
(

1
polyLog(n)

)
.

Then we are able to derive a stronger result in the case where |Jn| < p than Theorem 3.1
as follows.

Corollary 3.3. Under assumptions A1-2, A4-5 and A3*, as p/n → κ for some κ ∈
(0, 1),

max
j∈Jn

dTV

L
 β̂j − Eβ̂j√

Var(β̂j)

 , N(0, 1)

 = o(1).

It can be shown that λ̃+ ≤ λ+ and λ̃− ≥ λ− and hence the assumption A3* is weaker
than A3. It is worth pointing out that the assumption A3* even holds when Xc

Jn
does not

have full column rank, in which case β∗Jn is still identifiable and β̂Jn is still well-defined,

although β∗Jcn and β̂Jcn are not; see Appendix C-2 for details.

3.3 Examples

Throughout this subsection (except subsubsection 3.3.4), we consider the case where
X is a realization of a random matrix, denoted by Z (to be distinguished from X).
We will verify that the assumptions A3-A5 are satisfied with high probability under
different regularity conditions on the distribution of Z. This is a standard way to justify
the conditions for fixed design (Portnoy, 1984, 1985) in the literature on regression M-
estimates.

3.3.1 Random Design with Independent Entries

First we consider a random matrix Z with i.i.d. sub-gaussian entries.

Proposition 3.4. Suppose Z has i.i.d. mean-zero σ2-sub-gaussian entries with Var(Zij) =

τ2 > 0 for some σ = O(polyLog(n)) and τ = Ω
(

1
polyLog(n)

)
, then, when X is a re-

alization of Z, assumptions A3-A5 for X are satisfied with high probability over Z for
Jn = {1, . . . , p}.

In practice, the assumption of identical distribution might be invalid. In fact the
assumptions A4, A5 and the first part of A3 (λ+ = O (polyLog(n))) are still satisfied with
high probability if we only assume the independence between entries and boundedness of
certain moments. To control λ−, we rely on Litvak et al. (2005) which assumes symmetry
of each entry. We obtain the following result based on it.
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Proposition 3.5. Suppose Z has independent σ2-sub-gaussian entries with

Zij
d
= −Zij , Var(Zij) > τ2

for some σ = O (polyLog(n)) and τ = Ω
(

1
polyLog(n)

)
, then, when X is a realization of Z,

assumptions A3-A5 for X are satisfied with high probability over Z for Jn = {1, . . . , p}.

Under the conditions of Proposition 3.5, we can add an intercept term into the design
matrix. Adding an intercept allows us to remove the mean-zero assumption for Zij ’s. In
fact, suppose Zij is symmetric with respect to µj , which is potentially non-zero, for all i,
then according to section 3.2.2, we can replace Zij by Zij − µj and Proposition 3.6 can
be then applied.

Proposition 3.6. Suppose Z = (1, Z̃) and Z̃ ∈ Rn×(p−1) has independent σ2-sub-
gaussian entries with

Z̃ij − µj
d
= µj − Z̃ij , Var(Z̃ij) > τ2

for some σ = O (polyLog(n)), τ = Ω
(

1
polyLog(n)

)
and arbitrary µj. Then, when X is a

realization of Z, assumptions A3*, A4 and A5 for X are satisfied with high probability
over Z for Jn = {2, . . . , p}.

3.3.2 Dependent Gaussian Design

To show that our assumptions handle a variety of situations, we now assume that the
observations, namely the rows of Z, are i.i.d. random vectors with a covariance matrix

Σ. In particular we show that the Gaussian design, i.e. zi
i.i.d.∼ N(0,Σ), satisfies the

assumptions with high probability.

Proposition 3.7. Suppose zi
i.i.d.∼ N(0,Σ) with λmax(Σ) = O (polyLog(n)) and λmin(Σ) =

Ω
(

1
polyLog(n)

)
, then, when X is a realization of Z, assumptions A3-A5 for X are satisfied

with high probability over Z for Jn = {1, . . . , p}.

This result extends to the matrix-normal design (Muirhead, 1982)[Chapter 3], i.e.
(Zij)i≤n,j≤p is one realization of a np-dimensional random variable Z with multivariate
gaussian distribution

vec(Z) , (zT1 , z
T
2 , . . . , z

T
n ) ∼ N(0,Λ⊗ Σ),

and ⊗ is the Kronecker product. It turns out that assumptions A3−A5 are satisfied if
both Λ and Σ are well-behaved.

Proposition 3.8. Suppose Z is matrix-normal with vec(Z) ∼ N(0,Λ⊗ Σ) and

λmax(Λ), λmax(Σ) = O (polyLog(n)) , λmin(Λ), λmin(Σ) = Ω

(
1

polyLog(n)

)
.

Then, when X is a realization of Z,assumptions A3-A5 for X are satisfied with high
probability over Z for Jn = {1, . . . , p}.

In order to incorporate an intercept term, we need slightly more stringent condition
on Λ. Instead of assumption A3, we prove that assumption A3* - see subsubsection 3.2.2
- holds with high probability.

Proposition 3.9. Suppose Z contains an intercept term, i.e. Z = (1, Z̃) and Z̃ satisfies
the conditions of Proposition 3.8. Further assume that

maxi |(Λ−
1
21)i|

mini |(Λ−
1
21)i|

= O (polyLog(n)) . (7)

Then, when X is a realization of Z, assumptions A3*, A4 and A5 for X are satisfied
with high probability over Z for Jn = {2, . . . , p}.
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When Λ = I, the condition (7) is satisfied. Another non-trivial example is the ex-
changeable case where Λij are all equal for i 6= j. In this case, 1 is an eigenvector of Λ and

hence it is also an eigenvector of Λ−
1
2 . Thus Λ−

1
2 1 is a multiple of 1 and the condition

(7) is satisfied.

3.3.3 Elliptical Design

Furthermore, we can move from Gaussian-like structure to generalized elliptical models
where zi = ζiΣ

1/2Zi where {ζi,Zij : i = 1, . . . , n; j = 1, . . . , p} are independent random
variables, Zij having for instance mean 0 and variance 1. The elliptical family is quite
flexible in modeling data. It represents a type of data formed by a common driven factor
and independent individual effects. It is widely used in multivariate statistics (Anderson
(1962); Tyler (1987)) and various fields, including finance (Cizek et al., 2005) and biology
(Posekany et al., 2011). In the context of high-dimensional statistics, this class of model
was used to refute universality claims in random matrix theory (El Karoui, 2009). In
robust regression, El Karoui et al. (2011) used elliptical models to show that the limit

of ‖β̂‖22 depends on the distribution of ζi and hence the geometry of the predictors. As
such, studies limited to Gaussian-like design were shown to be of very limited statistical
interest. See also the deep classical inadmissibility results (Baranchik, 1973; Jurečkovà &
Klebanov, 1997). However, as we will show in the next proposition, the common factors ζi
do not distort the shape of the asymptotic distribution. A similar phenomenon happens
in the random design case - see El Karoui et al. (2013); Bean et al. (2013).

Proposition 3.10. Suppose Z is generated from an elliptical model, i.e.

Zij = ζiZij ,

where ζi are independent random variables taking values in [a, b] for some 0 < a < b <∞
and Zij are independent random variables satisfying the conditions of Proposition 3.4 or
Proposition 3.5. Further assume that {ζi : i = 1, . . . , n} and {Zij : i = 1, . . . , n; j =
1, . . . , p} are independent. Then, when X is a realization of Z, assumptions A3-A5 for
X are satisfied with high probability over Z for Jn = {1, . . . , p}.

Thanks to the fact that ζi is bounded away from 0 and ∞, the proof of Proposition
3.10 is straightforward, as shown in Appendix C. However, by a more refined argument
and assuming identical distributions ζi, we can relax this condition.

Proposition 3.11. Under the conditions of Proposition 3.10 (except the boundedness of
ζi) and assume ζi are i.i.d. samples generated from some distribution F , independent of
n, with

P (ζ1 ≥ t) ≤ c1e−c2t
α

,

for some fixed c1, c2, α > 0 and F−1(q) > 0 for any q ∈ (0, 1) where F−1 is the quantile
function of F and is continuous. Then, when X is a realization of Z, assumptions A3-A5
for X are satisfied with high probability over Z for Jn = {1, . . . , p}.

3.3.4 A counterexample

Consider a one-way ANOVA situation. In other words, let the design matrix have exactly
1 non-zero entry per row, whose value is 1. Let {ki}ni=1 be integers in {1, . . . , p}. And
let Xi,j = 1(j = ki). Furthermore, let us constrain nj = |{i : ki = j}| to be such that
1 ≤ nj ≤ 2bp/nc. Taking for instance ki = (i mod p) is an easy way to produce such a
matrix. The associated statistical model is just yi = εi + β∗ki .

It is easy to see that

β̂j = arg min
β∈R

∑
i:ki=j

ρ(yi − βj) = arg min
β∈R

∑
i:ki=j

ρ(εi − (βj − β∗j )) .

This is of course a standard location problem. In the moderate-dimensional setting we
consider, nj remains finite as n → ∞. So β̂j is a non-linear function of finitely many
random variables and will in general not be normally distributed.
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For concreteness, one can take ρ(x) = |x|, in which case β̂j is a median of {yi}{i:ki=j}.
The cdf of β̂j is known exactly by elementary order statistics computations (see David
and Nagaraja (1981)) and is not that of a Gaussian random variable in general. In fact,
the ANOVA design considered here violates the assumption A3 since λ− = minj nj/n =
O (1/n). Further, we can show that the assumption A5 is also violated, at least in the
least-square case; see Section 5.1 for details.

3.4 Comments and discussions

3.4.1 Asymptotic Normality in High Dimensions

In the p-fixed regime, the asymptotic distribution is easily defined as the limit of L(β̂) in
terms of weak topology (Van der Vaart, 1998). However, in regimes where the dimension
p grows, the notion of asymptotic distribution is more delicate. a conceptual question
arises from the fact that the dimension of the estimator β̂ changes with n and thus there
is no well-defined distribution which can serve as the limit of L(β̂), where L(·) denotes
the law. One remedy is proposed by Mallows (1972). Under this framework, a triangular
array {Wn,j , j = 1, 2, . . . , pn}, with EWn,j = 0,EW 2

n,j = 1, is called jointly asymptotically
normal if for any deterministic sequence an ∈ Rpn with ‖an‖2 = 1,

L

 pn∑
j=1

an,jWn,j

→ N(0, 1).

When the zero mean and unit variance are not satisfied, it is easy to modify the definition
by normalizing random variables.

Definition 3.12 (joint asymptotic normality).

{Wn : Wn ∈ Rpn} is jointly asymptotically normal if and only if for any sequence
{an : an ∈ Rpn},

L

(
aTn (Wn − EWn)√
aTn Cov(Wn)an

)
→ N(0, 1).

The above definition of asymptotic normality is strong and appealing but was shown
not to hold for least-squares in the moderate p/n regime (Huber, 1973). In fact, Huber

(1973) shows that β̂LS is jointly asymtotically normal only if

max
i

(X(XTX)−1XT )i,i → 0.

When p/n→ κ ∈ (0, 1), provided X is full rank,

max
i

(X(XTX)−1XT )i,i ≥
1

n
tr(X(XTX)−1XT ) =

p

n
→ κ > 0.

In other words, in moderate p/n regime, the asymptotic normality cannot hold for all
linear contrasts, even in the case of least-squares.

In applications, however, it is usually not necessary to consider all linear contrasts but
instead a small subset of them, e.g. all coordinates or low dimensional linear contrasts
such as β∗1 − β∗2 . We can naturally modify Definition 3.12 and adapt to our needs by
imposing constraints on an. A popular concept, which we use in Section 1 informally,
is called coordinate-wise asymptotic normality and defined by restricting an to be the
canonical basis vectors, which have only one non-zero element. An equivalent definition
is stated as follows.

Definition 3.13 (coordinate-wise asymptotic normal).
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{Wn : Wn ∈ Rpn} is coordinate-wise asymptotically normal if and only if for any
sequence {jn : jn ∈ {1, . . . , pn}},

L

(
Wn,jn − EWn,jn√

Var(Wn,jn)

)
→ N(0, 1).

A more convenient way to define the coordinate-wise asymptotic normality is to intro-
duce a metric d(·, ·), e.g. Kolmogorov distance and total variation distance, which induces
the weak convergence topology. Then Wn is coordinate-wise asymptotically normal if and
only if

max
j
d

(
L

(
Wn,j − EWn,j√

Var(Wn,j)

)
, N(0, 1)

)
= o(1).

3.4.2 Discussion about inference and technical assumptions

Variance and bias estimation

To complete the inference, we need to compute the bias and variance. As discussed in
Remark 3.2, the M-estimator is unbiased if the loss function and the error distribution are
symmetric. For the variance, it is easy to get a conservative estimate via resampling meth-
ods such as Jackknife as a consequence of Efron-Stein’s inequality; see El Karoui (2013)
and El Karoui and Purdom (2015) for details. Moreover, by the variance decomposition
formula,

Var(β̂j) = E
[
Var(β̂j |X)

]
+ Var

[
E(β̂j |X)

]
≥ E

[
Var(β̂j |X)

]
,

the unconditional variance, when X is a random design matrix, is a conservative estimate.
The unconditional variance can be calculated by solving a non-linear system; see El Karoui
(2013) and Donoho and Montanari (2016).

However, estimating the exact variance is known to be hard. El Karoui and Purdom
(2015) show that the existing resampling schemes, including jacknife, pairs-bootstrap,
residual bootstrap, etc., are either too conservative or too anti-conservative when p/n is
large. The challenge, as mentioned in El Karoui (2013); El Karoui and Purdom (2015),
is due to the fact that the residuals {Ri} do not mimic the behavior of {εi} and that
the resampling methods effectively modifies the geometry of the dataset from the point
of view of the statistics of interest. We believe that variance estimation in moderate
p/n regime should rely on different methodologies from the ones used in low-dimensional
estimation.

Technical assumptions

On the other hand, we assume that ρ is strongly convex. One remedy would be adding
a ridge regularized term as in El Karoui (2013) and the new problem is amenable to anal-
ysis with the method we used in this article. However, the regularization term introduces
a non-vanishing bias, which is as hard to be derived as the variance. For unregularized M-
estimators, the strong convexity is also assumed by other works (El Karoui, 2013; Donoho
& Montanari, 2016). However, we believe that this assumption is unnecessary and can
be removed at least for well-behaved design matrices. Another possibility, for errors that
have more than 2 moments is to just add a small quadratic term to the loss function, e.g.
λx2/2 with a small λ. Finally, we recall that in many situations, least-squares is actually
more efficient than `1-regression (see numerical work in Bean et al. (2013)) in moderate
dimensions. This is for instance the case for double-exponential errors if p/n is greater
than .3 or so. As such working with strongly convex loss functions is as problematic
for moderate-dimensional regression M-estimates as it would be in the low-dimensional
setting.

To explore traditional robustness questions, we will need to weaken the requirements
of Assumption A2. This requires substantial work and an extension of the main results
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of Chatterjee (2009). Because the technical part of the paper is already long, we leave
this interesting statistical question to future works.

4 Proof Sketch

Since the proof of Theorem 3.1 is somewhat technical, we illustrate the main idea in this
section.

First notice that the M-estimator β̂ is an implicit function of independent random
variables ε1, . . . , εn, which is determined by

1

n

n∑
i=1

xiψ(εi − xiβ̂) = 0. (8)

The Hessian matrix of the loss function in (5) is 1
nX

TDX � D0λ−Ip under the notation
introduced in section 3.1. The assumption A3 then implies that the loss function is
strongly convex, in which case β̂ is unique. Then β̂ can be seen as a non-linear function
of εi’s. A powerful central limit theorem for this type of statistics is the second-order
Poincaré inequality (SOPI), developed in Chatterjee (2009) and used there to re-prove
central limit theorems for linear spectral statistics of large random matrices. We recall
one of the main results for the convenience of the reader.

Proposition 4.1 (SOPI; Chatterjee, 2009). Let W = (W1, . . . ,Wn) = (u1(W1), . . . , un(Wn))

where Wi
i.i.d.∼ N(0, 1) and ‖u′i‖∞ ≤ c1, ‖u′′i ‖∞ ≤ c2. Take any g ∈ C2(Rn) and let ∇ig,

∇g and ∇2g denote the i-th partial derivative, gradient and Hessian of g. Let

κ0 =

(
E

n∑
i=1

∣∣∇ig(W )
∣∣4) 1

2

, κ1 = (E‖∇g(W )‖42)
1
4 , κ2 = (E‖∇2g(W )‖4op)

1
4 ,

and U = g(W ). If U has finite fourth moment, then

dTV

(
L

(
U − EU√

Var(U)

)
, N(0, 1)

)
≤ 2
√

5(c1c2κ0 + c31κ1κ2)

Var(U)
.

From (8), it is not hard to compute the gradient and Hessian of β̂j with respect to ε.
Recalling the definitions in Equation (6) on p. 8, we have

Lemma 4.2. Suppose ψ ∈ C2(Rn), then

∂β̂j
∂εT

= eTj (XTDX)−1XTD (9)

∂β̂j
∂ε∂εT

= GT diag(eTj (XTDX)−1XT D̃)G (10)

where ej is the j-th cononical basis vectors in Rp and

G = I −X(XTDX)−1XTD.

Recalling the definitions of Ki’s in Assumption A1 on p. 9, we can bound κ0, κ1 and
κ2 as follows.

Lemma 4.3. Let κ0j , κ1j , κ2j defined as in Proposition 4.1 by setting W = ε and g(W ) =

β̂j. Let

Mj = E‖eTj (XTDX)−1XTD
1
2 ‖∞, (11)

then

κ20j ≤
K2

1

(nK0λ−)
3
2

·Mj , κ41j ≤
K2

1

(nK0λ−)2
, κ42j ≤

K4
2

(nK0λ−)
3
2

·
(
K1

K0

)4

·Mj .
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As a consequence of the second-order Poincaré inequality , we can bound the to-
tal variation distance between β̂j and a normal distribution by Mj and Var(β̂j). More
precisely, we prove the following Lemma.

Lemma 4.4. Under assumptions A1-A3,

max
j
dTV

L
 β̂j − Eβ̂j√

Var(β̂j)

 , N(0, 1)

 = Op

(
maxj(nM

2
j )

1
8

n ·minj Var(β̂j)
· polyLog(n)

)
.

Lemma 4.4 is the key to prove Theorem 3.1. To obtain the coordinate-wise asymptotic
normality, it is left to establish an upper bound for Mj and a lower bound for Var(β̂j).
In fact, we can prove that

Lemma 4.5. Under assumptions A1 - A5,

max
j
Mj = O

(
polyLog(n)

n

)
, min

j
Var(β̂j) = Ω

(
1

n · polyLog(n)

)
.

Then Lemma 4.4 and Lemma 4.5 together imply that

max
j
dTV

L
 β̂j − Eβ̂j√

Var(β̂j)

 , N(0, 1)

 = O

(
polyLog(n)

n
1
8

)
= o(1).

Appendix A, provides a roadmap of the proof of Lemma 4.5 under a special case where
the design matrix X is one realization of a random matrix with i.i.d. sub-gaussian entries.
It also serves as an outline of the rigorous proof in Appendix B.

4.1 Comment on the Second-Order Poincaré inequality

Notice that when g is a linear function such that g(z) =
∑n
i=1 aizi, then the Berry-Esseen

inequality (Esseen, 1945) implies that

dK

(
L

(
W − EW√

Var(W )

)
, N(0, 1)

)
�
∑n
i=1 |ai|3

(
∑n
i=1 a

2
i )

3
2

,

where
dK(F,G) = sup

x
|F (x)−G(x)|.

On the other hand, the second-order Poincaré inequality implies that

dK

(
L

(
W − EW√

Var(W )

)
, N(0, 1)

)
≤ dTV

(
L

(
W − EW√

Var(W )

)
, N(0, 1)

)
�
(∑n

i=1 a
4
i

) 1
2∑n

i=1 a
2
i

.

This is slightly worse than the Berry-Esseen bound and requires stronger conditions on
the distributions of variates but provides bounds for TV metric instead of Kolmogorov
metric. This comparison shows that second-order Poincaré inequality can be regarded as
a generalization of the Berry-Esseen bound for non-linear transformations of independent
random variables.

5 Least-Squares Estimator

The Least-Squares Estimator is a special case of an M-estimator with ρ(x) = 1
2x

2. Because
the estimator can then be written explicitly, the analysis of its properties is extremely
simple and it has been understood for several decades (see arguments in e.g. Huber
(1973)[Lemma 2.1] and Huber (1981)[Proposition 2.2]). In this case, the hat matrix
H = X(XTX)−1XT captures all the problems associated with dimensionality in the
problem. In particular, proving the asymptotic normality simply requires an application
of the Lindeberg-Feller theorem.

It is however somewhat helpful to compare the conditions required for asymptotic
normality in this simple case and the ones we required in the more general setup of
Theorem 3.1. We do so briefly in this section.
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5.1 Coordinate-Wise Asymptotic Normality of LSE

Under the linear model (1), when X is full rank,

β̂LS = β∗ + (XTX)−1XT ε,

thus each coordinate of β̂LS is a linear contrast of ε with zero mean. Instead of assumption
A2, which requires εi to be sub-gaussian, we only need to assume maxi E|εi|3 <∞, under
which the Berry-Essen bound for non-i.i.d. data (Esseen, 1945) implies that

dK

L
 β̂j − β∗j√

Var(β̂j)

 , N(0, 1)

 � ‖ej(XTX)−1XT ‖33
‖eTj (XTX)−1XT ‖32

≤ ‖ej(X
TX)−1XT ‖∞

‖ej(XTX)−1XT ‖2
.

This motivates us to define a matrix specific quantity Sj(X) such that

Sj(X) =
‖eTj (XTX)−1XT ‖∞
‖eTj (XTX)−1XT ‖2

(12)

then the Berry-Esseen bound implies that maxj∈Jn Sj(X) determines the coordinate-wise

asymptotic normality of β̂LS .

Theorem 5.1. If Emaxi |εi|3 <∞, then

max
j∈Jn

dK

 β̂LS,j − β0,j√
Var(β̂LS,j)

, N(0, 1)

 ≤ A · E|εi|3

(Eε2i )
3
2

·max
j∈Jn

Sj(X),

where A is an absolute constant and dK(·, ·) is the Kolmogorov distance, defined as

dK(F,G) = sup
x
|F (x)−G(x)|.

It turns out that maxj∈Jn Sj(X) plays in the least-squares setting the role of ∆C in
assumption A5. Since it has been known that a condition like Sj(X) → 0 is necessary
for asymptotic normality of least-square estimators (Huber (1973)[Proposition 2.2]), this
shows in particular that our Assumption A5, or a variant, is also needed in the general
case. See Appendix C-4.1 for details.

5.2 Discussion

Naturally, checking the conditions for asymptotic normality is much easier in the least-
squares case than in the general case under consideration in this paper. In particular:

1. Asymptotic normality conditions can be checked for a broader class of random
design matrices. See Appendix C-4.2 for details.

2. For orthogonal design matrices, i.e XTX = cId for some c > 0, Sj(X) =
‖Xj‖∞
‖Xj‖2 .

Hence, the condition Sj(X) = o(1) is true if and only if no entry dominates the
j − th row of X.

3. The ANOVA-type counterexample we gave in Section 3.3.4 still provides a counter-
example. The reason now is different: namely the sum of finitely many independent
random variables is evidently in general non-Gaussian. In fact, in this case, Sj(X) =
1√
nj

is bounded away from 0.

Inferential questions are also extremely simple in this context and essentially again dimension-
independent for the reasons highlighted above. Theorem 5.1 naturally reads,

β̂j − β∗j
σ
√
eTj (XTX)−1ej

d→ N(0, 1). (13)
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Estimating σ is still simple under minimal conditions provided n − p → ∞: see Bickel
and Freedman (1983)[Theorem 1.3] or standard computations concerning the normalized
residual sum-of-squares (using variance computations for the latter may require up to 4
moments for εi’s). Then we can replace σ in (13) by σ̂ with

σ̂2 =
1

n− p

n∑
k=1

R2
k

where Rk = yk − xTk β̂ and construct confidence intervals for β∗j based on σ̂. If n− p does
not tend to ∞, the normalized residual sum of squares is evidently not consistent even in
the case of Gaussian errors, so this requirement may not be dispensed of.

6 Numerical Results

As seen in the previous sections and related papers, there are five important factors that
affect the distribution of β̂: the design matrix X, the error distribution L(ε), the sample
size n, the ratio κ, and the loss function ρ. The aim of this section is to assess the
quality of the agreement between the asymptotic theoretical results of Theorem 3.1 and
the empirical, finite-dimensional properties of β̂(ρ). We also perform a few simulations
where some of the assumptions of Theorem 3.1 are violated to get an intuitive sense of
whether those assumptions appear necessary or whether they are simply technical artifacts
associated with the method of proof we developed. As such, the numerical experiments
we report on in this section can be seen as a complement to Theorem 3.1 rather than
only a simple check of its practical relevance.

The design matrices we consider are one realization of random design matrices of the
following three types:

(i.i.d. design) : Xij
i.i.d.∼ F ;

(elliptical design) : Xij = ζiX̃ij , where X̃ij
i.i.d.∼ N(0, 1) and ζi

i.i.d.∼ F . In addition,

{ζi} is independent of {X̃ij};

(partial Hadamard design) : a matrix formed by a random set of p columns of a n×n
Hadamard matrix, i.e. a n × n matrix whose columns are orthogonal with entries
restricted to ±1.

Here we consider two candidates for F in i.i.d. design and elliptical design: standard
normal distribution N(0, 1) and t-distribution with two degrees of freedom (denoted t2).
For the error distribution, we assume that ε has i.i.d. entries with one of the above two
distributions, namely N(0, 1) and t2. The t-distribution violates our assumption A2.

To evaluate the finite sample performance, we consider the sample sizes n ∈ {100, 200, 400, 800}
and κ ∈ {0.5, 0.8}. In this section we will consider a Huber loss with k = 1.345 (Huber,
1981), i.e.

ρ(x) =

{ 1
2x

2 |x| ≤ k
kx− k2

2 |x| > k

k = 1.345 is the default in R and yields 95% relative efficiency for Gaussian errors in
low-dimensional problems. We also carried out the numerical work for L1-regression, i.e.
ρ(x) = |x|. See Appendix D for details.

6.1 Asymptotic Normality of A Single Coordinate

First we simulate the finite sample distribution of β̂1, the first coordinate of β̂. For each
combination of sample size n (100, 200, 400 and 800), type of design (i.i.d, elliptical and
Hadamard), entry distribution F (normal and t2) and error distribution L(ε) (normal
and t2), we run 50 simulations with each consisting of the following steps:

(Step 1) Generate one design matrix X;
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(Step 2) Generate the 300 error vectors ε;

(Step 3) Regress each Y = ε on the design matrix X and end up with 300 random samples

of β̂1, denoted by β̂
(1)
1 , . . . , β̂

(300)
1 ;

(Step 4) Estimate the standard deviation of β̂1 by the sample standard error ŝd;

(Step 5) Construct a confidence interval I(k) =
[
β̂
(k)
1 − 1.96 · ŝd, β̂(k)

1 + 1.96 · ŝd
]

for each

k = 1, . . . , 300;

(Step 6) Calculate the empirical 95% coverage by the proportion of confidence intervals
which cover the true β1 = 0.

Finally, we display the boxplots of the empirical 95% coverages of β̂1 for each case in
Figure 2. It is worth mentioning that our theories cover two cases: 1) i.i.d design with
normal entries and normal errors (orange bars in the first row and the first column), see
Proposition 3.4; 2) elliptical design with normal factors ζi and normal errors (orange bars
in the second row and the first column), see Proposition 3.10.

We first discuss the case κ = 0.5. In this case, there are only two samples per
parameter. Nonetheless, we observe that the coverage is quite close to 0.95, even with a
sample size as small as 100, in both cases that are covered by our theories. For other cases,
it is interesting to see that the coverage is valid and most stable in the partial hadamard
design case and is not sensitive to the distribution of multiplicative factor in elliptical
design case even when the error has a t2 distribution. For i.i.d. designs, the coverage
is still valid and stable when the entry is normal. By contrast, when the entry has a t2
distribution, the coverage has a large variation in small samples. The average coverage
is still close to 0.95 in the i.i.d. normal design case but is slightly lower than 0.95 in the
i.i.d. t2 design case. In summary, the finite sample distribution of β̂1 is more sensitive
to the entry distribution than the error distribution. This indicates that the assumptions
on the design matrix are not just artifacts of the proof but are quite essential.

The same conclusion can be drawn from the case where κ = 0.8 except that the
variation becomes larger in most cases when the sample size is small. However, it is
worth pointing out that even in this case where there is 1.25 samples per parameter, the
sample distribution of β̂1 is well approximated by a normal distribution with a moderate
sample size (n ≥ 400). This is in contrast to the classical rule of thumb which suggests
that 5-10 samples are needed per parameter.

6.2 Asymptotic Normality for Multiple Marginals

Since our theory holds for general Jn, it is worth checking the approximation for multiple
coordinates in finite samples. For illustration, we consider 10 coordinates, namely β̂1 ∼
β̂10, simultaneously and calculate the minimum empirical 95% coverage. To avoid the
finite sample dependence between coordinates involved in the simulation, we estimate the
empirical coverage independently for each coordinate. Specifically, we run 50 simulations
with each consisting of the following steps:

(Step 1) Generate one design matrix X;

(Step 2) Generate the 3000 error vectors ε;

(Step 3) Regress each Y = ε on the design matrix X and end up with 300 random samples

of β̂j for each j = 1, . . . , 10 by using the (300(j − 1) + 1)-th to 300j-th response
vector Y ;

(Step 4) Estimate the standard deviation of β̂j by the sample standard error ŝdj for
j = 1, . . . , 10;

(Step 5) Construct a confidence interval I(k)j =
[
β̂
(k)
j − 1.96 · ŝdj , β̂(k)

j + 1.96 · ŝdj
]

for

each j = 1, . . . , 10 and k = 1, . . . , 300;
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Figure 2: Empirical 95% coverage of β̂1 with κ = 0.5 (left) and κ = 0.8 (right) using
Huber1.345 loss. The x-axis corresponds to the sample size, ranging from 100 to 800;
the y-axis corresponds to the empirical 95% coverage. Each column represents an error
distribution and each row represents a type of design. The orange solid bar corresponds
to the case F = Normal; the blue dotted bar corresponds to the case F = t2; the red
dashed bar represents the Hadamard design.

(Step 6) Calculate the empirical 95% coverage by the proportion of confidence intervals
which cover the true βj = 0, denoted by Cj , for each j = 1, . . . , 10,

(Step 7) Report the minimum coverage min1≤j≤10 Cj .

If the assumptions A1 - A5 are satisfied, min1≤j≤10 Cj should also be close to 0.95 as
a result of Theorem 3.1. Thus, min1≤j≤10 Cj is a measure for the approximation accuracy
for multiple marginals. Figure 3 displays the boxplots of this quantity under the same
scenarios as the last subsection. In two cases that our theories cover, the minimum
coverage is increasingly closer to the true level 0.95. Similar to the last subsection,
the approximation is accurate in the partial hadamard design case and is insensitive
to the distribution of multiplicative factors in the elliptical design case. However, the
approximation is very inaccurate in the i.i.d. t2 design case. Again, this shows the
evidence that our technical assumptions are not artifacts of the proof.

On the other hand, the figure 3 suggests using a conservative variance estimator, e.g.
the Jackknife estimator, or corrections on the confidence level in order to make simulta-
neous inference on multiple coordinates. Here we investigate the validity of Bonferroni
correction by modifying the step 5 and step 6. The confidence interval after Bonferroni
correction is obtained by

I(k)j =
[
β̂
(k)
j − z1−α/20 · ŝdj , β̂

(k)
j + z1−α/20 · ŝdj

]
(14)

where α = 0.05 and zγ is the γ-th quantile of a standard normal distribution. The

proportion of k such that 0 ∈ I(k)j for all j ≤ 10 should be at least 0.95 if the marginals
are all close to a normal distribution. We modify the confidence intervals in step 5 by

(14) and calculate the proportion of k such that 0 ∈ I(k)j for all j in step 6. Figure 4
displays the boxplots of this coverage. It is clear that the Bonferroni correction gives the
valid coverage except when n = 100, κ = 0.8 and the error has a t2 distribution.
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Figure 3: Mininum empirical 95% coverage of β̂1 ∼ β̂10 with κ = 0.5 (left) and κ = 0.8
(right) using Huber1.345 loss. The x-axis corresponds to the sample size, ranging from
100 to 800; the y-axis corresponds to the minimum empirical 95% coverage. Each column
represents an error distribution and each row represents a type of design. The orange
solid bar corresponds to the case F = Normal; the blue dotted bar corresponds to the
case F = t2; the red dashed bar represents the Hadamard design.

7 Conclusion

We have proved coordinate-wise asymptotic normality for regression M-estimates in the
moderate-dimensional asymptotic regime p/n → κ ∈ (0, 1), for fixed design matrices
under appropriate technical assumptions. Our design assumptions are satisfied with high
probability for a broad class of random designs. The main novel ingredient of the proof
is the use of the second-order Poincaré inequality. Numerical experiments confirm and
complement our theoretical results.
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Figure 4: Empirical 95% coverage of β̂1 ∼ β̂10 after Bonferroni correction with κ = 0.5
(left) and κ = 0.8 (right) using Huber1.345 loss. The x-axis corresponds to the sample size,
ranging from 100 to 800; the y-axis corresponds to the empirical uniform 95% coverage
after Bonferroni correction. Each column represents an error distribution and each row
represents a type of design. The orange solid bar corresponds to the case F = Normal;
the blue dotted bar corresponds to the case F = t2; the red dashed bar represents the
Hadamard design.
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APPENDIX

A Proof Sketch of Lemma 4.5

In this Appendix, we provide a roadmap for proving Lemma 4.5 by considering a special
case where X is one realization of a random matrix Z with i.i.d. mean-zero σ2-sub-
gaussian entries. Random matrix theory (Geman, 1980; Silverstein, 1985; Bai & Yin,
1993) implies that λ+ = (1 +

√
κ)2 + op(1) = Op(1) and λ− = (1−

√
κ)2 + op(1) = Ωp(1).

Thus, the assumption A3 is satisfied with high probability. Thus, the Lemma 4.4 in p. 16
holds with high probability. It remains to prove the following lemma to obtain Theorem
3.1.

Lemma A.1. Let Z be a random matrix with i.i.d. mean-zero σ2-sub-gaussian entries
and X be one realization of Z. Then under assumptions A1 and A2,

max
1≤j≤p

Mj = Op

(
polyLog(n)

n

)
, min

1≤j≤p
Var(β̂j) = Ωp

(
1

n · polyLog(n)

)
,

where Mj is defined in (11) in p.16 and the randomness in op(·) and Op(·) comes from
Z.

A-1 Upper Bound of Mj

First by Proposition E.3,
λ+ = Op(1), λ− = Ωp(1).

In the rest of the proof, the symbol E and Var denotes the expectation and the variance
conditional on Z. Let Z̃ = D

1
2Z, then Mj = E‖eTj (Z̃T Z̃)−1Z̃T ‖∞. Let H̃j = I −

Z̃[j](Z̃
T
[j]Z̃[j])

−1Z̃T[j], then by block matrix inversion formula (see Proposition E.1), which
we state as Proposition E.1 in Appendix E.

(Z̃T Z̃)−1Z̃T =

(
Z̃T1 Z̃1 Z̃T1 Z̃[1]

Z̃T[1]Z̃1 Z̃T[1]Z̃[1]

)−1(
Z̃1

Z̃[1]

)
=

1

Z̃T1 (I − H̃1)Z̃1

(
1 −Z̃T1 Z̃[1](Z̃

T
[1]Z̃[1])

−1

∗ ∗

)(
Z̃1

Z̃[1]

)
=

1

Z̃T1 (I − H̃1)Z̃1

(
Z̃T1 (I − H̃1)

∗

)
.

This implies that

M1 = E
‖Z̃T1 (I − H̃1)‖∞
Z̃T1 (I − H̃1)Z̃1

. (A-1)

Since ZTDZ/n � K0λ−I, we have

1

Z̃T1 (I − H̃1)Z̃1

= eT1 (Z̃T Z̃)−1e1 = eT1 (ZTDZ)−1e1 =
1

n
eT1

(
ZTDZ

n

)−1
e1 ≤

1

nK0λ−

and we obtain a bound for M1 as

M1 ≤
E‖Z̃T1 (I − H̃1)‖∞

nK0λ−
=

E‖ZT1 D
1
2 (I − H̃1)‖∞
nK0λ−

.

Similarly,

Mj ≤
E‖ZTj D

1
2 (I − H̃j)‖∞
nK0λ−

=
E‖ZTj D

1
2 (I −D 1

2ZT[j](Z
T
[j]DZ[j])

−1Z[j]D
1
2 )‖∞

nK0λ−
. (A-2)
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The vector in the numerator is a linear contrast of Zj and Zj has mean-zero i.i.d. sub-
gaussian entries. For any fixed matrix A ∈ Rn×n, denote Ak by its k-th column, then
ATk Zj is σ2‖Ak‖22-sub-gaussian (see Section 5.2.3 of Vershynin (2010) for a detailed dis-
cussion) and hence by definition of sub-Gaussianity,

P (|ATk Zj | ≥ σ‖Ak‖2t) ≤ 2e−
t2

2 .

Therefore, by a simple union bound, we conclude that

P (‖ATZj‖∞ ≥ σmax
k
‖Ak‖2t) ≤ 2ne−

t2

2 .

Let t = 2
√

log n,

P (‖ATZj‖∞ ≥ 2σmax
k
‖Ak‖2

√
log n) ≤ 2

n
= o(1).

This entails that

‖ATZj‖∞ = Op

(
max
k
‖Ak‖2 · polyLog(n)

)
= Op (‖A‖op · polyLog(n)) . (A-3)

with high probability. In Mj , the coefficient matrix (I −Hj)D
1
2 depends on Zj through

D and hence we cannot use (A-3) directly. However, the dependence can be removed by
replacing D by D[j] since ri,[j] does not depend on Zj .

Since Z has i.i.d. sub-gaussian entries, no column is highly influential. In other words,
the estimator will not change drastically after removing j-th column. This would suggest
Ri ≈ ri,[j]. It is proved by El Karoui (2013) that

sup
i,j
|Ri − ri,[j]| = Op

(
polyLog(n)√

n

)
.

It can be rigorously proved that∣∣‖ZTj D(I − H̃j)‖∞ − ‖ZTj D[j](I −Hj)‖∞
∣∣ = Op

(
polyLog(n)

n

)
,

where Hj = I − D
1
2

[j]Z[j](Z
T
[j]D[j]Z[j])

−1ZT[j]D
1
2

[j]; see Appendix A-1 for details. Since

D[j](I −Hj) is independent of Zj and

‖D[j](I −Hj)‖op ≤ ‖D[j]‖op ≤ K1 = O (polyLog(n)) ,

it follows from (A-2) and (A-3) that

‖ZTj D[j](I −Hj)‖∞ = Op

(
polyLog(n)

n

)
.

In summary,

Mj = Op

(
polyLog(n)

n

)
. (A-4)

A-2 Lower Bound of Var(β̂j)

A-2.1 Approximating Var(β̂j) by Var(bj)

It is shown by El Karoui (2013)1 that

β̂j ≈ bj ,
1√
n

Nj
ξj

(A-5)

1El Karoui (2013) considers a ridge regularized M estimator, which is different from our setting.
However, this argument still holds in our case and proved in Appendix B.
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where

Nj =
1√
n

n∑
i=1

Zijψ(ri,[j]), ξj =
1

n
ZTj (D[j] −D[j]Z[j](X

T
[j]D[j]X[j])

−1ZT[j]D[j])Zj .

It has been shown by El Karoui (2013) that

max
j
|β̂j − bj | = Op

(
polyLog(n)

n

)
.

Thus, Var(β̂j) ≈ Var(bj) and a more refined calculation in Appendix A-2.1 shows that

|Var(β̂j)−Var(bj)| = Op

(
polyLog(n)

n
3
2

)
.

It is left to show that

Var(bj) = Ωp

(
1

n · polyLog(n)

)
. (A-6)

A-2.2 Bounding Var(bj) via Var(Nj)

By definition of bj ,

Var(bj) = Ωp

(
polyLog(n)

n

)
⇐⇒ Var

(
Nj
ξj

)
= Ωp (polyLog(n)) .

As will be shown in Appendix B-6.4,

Var(ξj) = Op

(
polyLog(n)

n

)
.

As a result, ξj ≈ Eξj and

Var

(
Nj
ξj

)
≈ Var

(
Nj
Eξj

)
=

Var(Nj)

(Eξj)2
.

As in the previous paper (El Karoui, 2013), we rewrite ξj as

ξj =
1

n
ZTj D

1
2

[j](I −D
1
2

[j]Z[j](X
T
[j]D[j]X[j])

−1ZT[j]D
1
2

[j])D
1
2

[j]Zj .

The middle matrix is idempotent and hence positive semi-definite. Thus,

ξj ≤
1

n
ZTj D[j]Zj ≤ K1λ+ = Op (polyLog(n)) .

Then we obtain that
Var(Nj)

(Eξj)2
= Ωp

(
Var(Nj)

polyLog(n)

)
,

and it is left to show that

Var(Nj) = Ωp

(
1

polyLog(n)

)
. (A-7)

A-2.3 Bounding Var(Nj) via tr(Qj)

Recall the definition of Nj (A-5), and that of Qj (see Section 3.1 in p.8), we have

Var(Nj) =
1

n
ZTj QjZj

Notice that Zj is independent of ri,[j] and hence the conditional distribution of Zj given
Qj remains the same as the marginal distribution of Zj . Since Zj has i.i.d. sub-gaussian
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entries, the Hanson-Wright inequality (Hanson & Wright, 1971; Rudelson & Vershynin,
2013; see Proposition E.2), shown in Proposition E.2, implies that any quadratic form of
Zj , denoted by ZTj QjZj is concentrated on its mean, i.e.

ZTj QjZj ≈ EZj ,εZTj QjZj = (EZ2
1j) · tr(Qj).

As a consequence, it is left to show that

tr(Qj) = Ωp

(
n

polyLog(n)

)
. (A-8)

A-2.4 Lower Bound of tr(Qj)

By definition of Qj ,

tr(Qj) =

n∑
i=1

Var(ψ(ri,[j])).

To lower bounded the variance of ψ(ri,[j]), recall that for any random variable W ,

Var(W ) =
1

2
E(W −W ′)2. (A-9)

where W ′ is an independent copy of W . Suppose g : R → R is a function such that
|g′(x)| ≥ c for all x, then (A-9) implies that

Var(g(W )) =
1

2
E(g(W )− g(W ′))2 ≥ c2

2
E(W −W ′)2 = c2 Var(W ). (A-10)

In other words, (A-10) entails that Var(W ) is a lower bound for Var(g(W )) provided
that the derivative of g is bounded away from 0. As an application, we see that

Var(ψ(ri,[j])) ≥ K2
0 Var(ri,[j])

and hence

tr(Qj) ≥ K2
0

n∑
i=1

Var(ri,[j]).

By the variance decomposition formula,

Var(ri,[j]) = E
(
Var

(
ri,[j]

∣∣ε(i)))+ Var
(
E
(
ri,[j]

∣∣ε(i))) ≥ E
(
Var

(
ri,[j]

∣∣ε[i])) ,
where ε(i) includes all but i-th entry of ε. Given ε(i), ri,[j] is a function of εi. Using (A-10),
we have

Var(ri,[j]|ε(i)) ≥ inf
εi

∣∣∣∣∂ri,[j]∂εi

∣∣∣∣2 ·Var(εi|ε(i)) ≥ inf
εi

∣∣∣∣∂ri,[j]∂εi

∣∣∣∣2 ·Var(εi).

This implies that

Var(ri,[j]) ≥ E
(
Var

(
ri,[j]

∣∣ε[i])) ≥ E inf
ε

∣∣∣∣∂ri,[j]∂εi

∣∣∣∣2 ·min
i

Var(εi).

Summing Var(ri,[j]) over i = 1, . . . , n, we obtain that

tr(Qj) =

n∑
i=1

Var(ri,[j]) ≥ E

(∑
i

inf
ε

∣∣∣∣∂ri,[j]∂εi

∣∣∣∣2
)
·min

i
Var(εi).

It will be shown in Appendix B-6.3 that under assumptions A1-A3,

E
∑
i

inf
ε

∣∣∣∣∂ri,[j]∂εi

∣∣∣∣2 = Ωp

(
n

polyLog(n)

)
. (A-11)

This proves (A-8) and as a result,

min
j

Var(β̂j) = Ωp

(
1

n · polyLog(n)

)
.
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B Proof of Theorem 3.1

B-1 Notation

To be self-contained, we summarize our notations in this subsection. The model we
considered here is

y = Xβ∗ + ε

where X ∈ Rn×p be the design matrix and ε is a random vector with independent entries.

Notice that the target quantity
β̂j−Eβ̂j√
Var(β̂j)

is shift invariant, we can assume β∗ = 0 without

loss of generality provided that X has full column rank; see Section 3.1 for details.
Let xTi ∈ R1×p denote the i-th row of X and Xj ∈ Rn×1 denote the j-th column

of X. Throughout the paper we will denote by Xij ∈ R the (i, j)-th entry of X, by
X(i) ∈ R(n−1)×p the design matrix X after removing the i-th row, by X[j] ∈ Rn×(p−1) the

design matrix X after removing the j-th column, by X(i),[j] ∈ R(n−1)×(p−1) the design

matrix after removing both i-th row and j-th column, and by xi,[j] ∈ R1×(p−1) the vector

xi after removing j-th entry. The M-estimator β̂ associated with the loss function ρ is
defined as

β̂ = arg min
β∈Rp

1

n

n∑
k=1

ρ(εk − xTk β). (B-12)

Similarly we define the leave-j-th-predictor-out version as

β̂[j] = arg min
β∈Rp

1

n

n∑
k=1

ρ(εk − xTk,[j]β). (B-13)

Based on these notation we define the full residual Rk as

Rk = εk − xTk β̂, k = 1, 2, . . . , n (B-14)

the leave-j-th-predictor-out residual as

rk,[j] = εk − xTk,[j]β̂[j], k = 1, 2, . . . , n, j ∈ Jn. (B-15)

Four diagonal matrices are defined as

D = diag(ψ′(Rk)), D̃ = diag(ψ′′(Rk)), (B-16)

D[j] = diag(ψ′(rk,[j])), D̃[j] = diag(ψ′′(rk,[j])). (B-17)

Further we define G and G[j] as

G = I −X(XTDX)−1XTD, G[j] = I −X[j](X
T
[j]D[j]X[j])

−1XT
[j]D[j]. (B-18)

Let Jn denote the indices of coefficients of interest. We say a ∈]a1, a2[ if and only if a ∈
[min{a1, a2},max{a1, a2}]. Regarding the technical assumptions, we need the following
quantities

λ+ = λmax

(
XTX

n

)
, λ− = λmin

(
XTX

n

)
(B-19)

be the largest (resp. smallest) eigenvalue of the matrix XTX
n . Let ei ∈ Rn be the i-th

canonical basis vector and

hj,0 = (ψ(r1,[j]), . . . , ψ(rn,[j]))
T , hj,1,i = GT[j]ei. (B-20)

Finally, let

∆C = max

{
max
j∈Jn

|hTj,0Xj |
||hj,0||

, max
i≤n,j∈Jn

|hTj,1,iXj |
||hj,1,i||

}
, (B-21)
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Qj = Cov(hj,0). (B-22)

We adopt Landau’s notation (O(·), o(·), Op(·), op(·)). In addition, we say an = Ω(bn) if
bn = O(an) and similarly, we say an = Ωp(bn) if bn = Op(an). To simplify the logarithm
factors, we use the symbol polyLog(n) to denote any factor that can be upper bounded
by (log n)γ for some γ > 0. Similarly, we use 1

polyLog(n) to denote any factor that can be

lower bounded by 1
(logn)γ′

for some γ′ > 0.

Finally we restate all the technical assumptions:

A1 ρ(0) = ψ(0) = 0 and there exists K0 = Ω
(

1
polyLog(n)

)
, K1,K2 = O (polyLog(n)),

such that for any x ∈ R,

K0 ≤ ψ′(x) ≤ K1,

∣∣∣∣ ddx (
√
ψ′(x))

∣∣∣∣ =
|ψ′′(x)|√
ψ′(x)

≤ K2;

A2 εi = ui(Wi) where (W1, . . . ,Wn) ∼ N(0, In×n) and ui are smooth functions with
‖u′i‖∞ ≤ c1 and ‖u′′i ‖∞ ≤ c2 for some c1, c2 = O(polyLog(n)). Moreover, assume

mini Var(εi) = Ω
(

1
polyLog(n)

)
.

A3 λ+ = O(polyLog(n)) and λ− = Ω
(

1
polyLog(n)

)
;

A4 minj∈Jn
XTj QjXj
tr(Qj)

= Ω
(

1
polyLog(n)

)
;

A5 E∆8
C = O (polyLog(n)).

B-2 Deterministic Approximation Results

In Appendix A, we use several approximations under random designs, e.g. Ri ≈ ri,[j]. To
prove them, we follow the strategy of El Karoui (2013) which establishes the deterministic
results and then apply the concentration inequalities to obtain high probability bounds.
Note that β̂ is the solution of

0 = f(β) ,
1

n

n∑
i=1

xiψ(εi − xTi β),

we need the following key lemma to bound ‖β1−β2‖2 by ‖f(β1)− f(β2)‖2, which can be
calculated explicily.

Lemma B.1. [El Karoui (2013), Proposition 2.1] For any β1 and β2,

‖β1 − β2‖2 ≤
1

K0λ−
‖f(β1)− f(β2)‖2 .

Proof. By the mean value theorem, there exists νi ∈]εi − xTi β1, εi − xTi β2[ such that

ψ(εi − xTi β1)− ψ(εi − xTi β2) = ψ′(νi) · xTi (β2 − β1).

Then

‖f(β1)− f(β2)‖2 =

∥∥∥∥∥ 1

n

n∑
i=1

ψ′(νi)xix
T
i (β1 − β2)

∥∥∥∥∥
2

≥ λmin

(
1

n

n∑
i=1

ψ′(νi)xix
T
i

)
· ‖β1 − β2‖2

≥ K0λ− ‖β1 − β2‖2 .
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Based on Lemma B.1, we can derive the deterministic results informally stated in
Appendix A. Such results are shown by El Karoui (2013) for ridge-penalized M-estimates
and here we derive a refined version for unpenalized M-estimates. Throughout this sub-
section, we only assume assumption A1. This implies the following lemma,

Lemma B.2. Under assumption A1, for any x and y,

|ψ(x)| ≤ K1|x|, |
√
ψ′(x)−

√
ψ′(y)| ≤ K2|x−y|, |ψ′(x)−ψ′(y)| ≤ 2

√
K1K2|x−y| , K3|x−y|.

To state the result, we define the following quantities.

T =
1√
n

max

{
max
i
‖xi‖2,max

j∈Jn
‖Xj‖2

}
, E =

1

n

n∑
i=1

ρ(εi), (B-23)

U =

∥∥∥∥∥ 1

n

n∑
i=1

xi(ψ(εi)− Eψ(εi))

∥∥∥∥∥
2

, U0 =

∥∥∥∥∥ 1

n

n∑
i=1

xiEψ(εi)

∥∥∥∥∥
2

. (B-24)

The following proposition summarizes all deterministic results which we need in the proof.

Proposition B.3. Under Assumption A1,

(i) The norm of M estimator is bounded by

‖β̂‖2 ≤
1

K0λ−
(U + U0);

(ii) Define bj as

bj =
1√
n

Nj
ξj

where

Nj =
1√
n

n∑
i=1

Xijψ(ri,[j]), ξj =
1

n
XT
j (D[j] −D[j]X[j](X

T
[j]D[j]X[j])

−1XT
[j]D[j])Xj ,

Then

max
j∈Jn

|bj | ≤
1√
n
·
√

2K1

K0λ−
·∆C ·

√
E ,

(iii) The difference between β̂j and bj is bounded by

max
j∈Jn

|β̂j − bj | ≤
1

n
· 2K2

1K3λ+T

K4
0λ

7
2
−

·∆3
C · E .

(iv) The difference between the full and the leave-one-predictor-out residual is bounded
by

max
j∈Jn

max
i
|Ri − ri,[j]| ≤

1√
n

(
2K2

1K3λ+T
2

K4
0λ

7
2
−

·∆3
C · E +

√
2K1

K
3
2
0 λ−

·∆2
C ·
√
E

)
.

Proof. (i) By Lemma B.1,

‖β̂‖2 ≤
1

K0λ−
‖f(β̂)− f(0)‖2 =

‖f(0)‖2
K0λ−

,

since β̂ is a zero of f(β). By definition,

f(0) =
1

n

n∑
i=1

xiψ(εi) =
1

n

n∑
i=1

xi(ψ(εi)− Eψ(εi)) +
1

n

n∑
i=1

xiEψ(εi).

This implies that
‖f(0)‖2 ≤ U + U0.
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(ii) First we prove that
ξj ≥ K0λ−. (B-25)

Since all diagonal entries of D[j] is lower bounded by K0, we conclude that

λmin

(
XTD[j]X

n

)
≥ K0λ−.

Note that ξj is the Schur’s complement (Horn & Johnson, 2012, chapter 0.8) of
XTD[j]X

n , we have

ξ−1j = eTj

(
XTD[j]X

n

)−1
ej ≤

1

K0λ−
,

which implies (B-25). As for Nj , we have

Nj =
XT
j hj,0√
n

=
‖hj,0‖2√

n
·
XT
j hj,0

‖hj,0‖2
. (B-26)

The the second term is bounded by ∆C by definition, see (B-21). For the first term,
the assumption A1 that ψ′(x) ≤ K1 implies that

ρ(x) = ρ(x)− ρ(0) =

∫ x

0

ψ(y)dy ≥
∫ x

0

ψ′(y)

K1
· ψ(y)dy =

1

2K1
ψ2(x).

Here we use the fact that sign(ψ(y)) = sign(y). Recall the definition of hj,0, we
obtain that

‖hj,0‖2√
n

=

√∑n
i=1 ψ(ri,[j])2

n
≤
√

2K1 ·

√∑n
i=1 ρ(ri,[j])

n
.

Since β̂[j] is the minimizer of the loss function
∑n
i=1 ρ(εi − xTi,[j]β[j]), it holds that

1

n

n∑
i=1

ρ(ri,[j]) ≤
1

n

n∑
i=1

ρ(εi) = E .

Putting together the pieces, we conclude that

|Nj | ≤
√

2K1 ·∆C

√
E . (B-27)

By definition of bj ,

|bj | ≤
1√
n
·
√

2K1

K0λ−
∆C

√
E .

(iii) The proof of this result is almost the same as El Karoui (2013). We state it here for
the sake of completeness. Let b̃j ∈ Rp with

(b̃j)j = bj , (b̃j)[j] = β̂[j] − bj(XT
[j]D[j]X[j])

−1XT
[j]D[j]Xj (B-28)

where the subscript j denotes the j-th entry and the subscript [j] denotes the sub-
vector formed by all but j-th entry. Furthermore, define γj with

(γj)j = −1, (γj)[j] = (XT
[j]D[j]X[j])

−1XT
[j]D[j]Xj . (B-29)

Then we can rewrite b̃j as

(b̃j)j = −bj(γj)j , (b̃j)[j] = β̂[j] − bj(γj)[j].
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By definition of β̂[j], we have [f(β̂[j])][j] = 0 and hence

[f(b̃j)][j] = [f(b̃j)][j] − [f(β̂[j])][j] =
1

n

n∑
i=1

xi,[j]

[
ψ(εi − xTi b̃j)− ψ(εi − xTi,[j]β̂[j])

]
.

(B-30)

By mean value theorem, there exists νi,j ∈]εi − xTi b̃j, εi − xTi,[j]β̂[j][ such that

ψ(εi − xTi b̃j)− ψ(εi − xTi,[j]β̂[j]) = ψ′(νi,j)(x
T
i,[j]β̂[j] − x

T
i b̃j)

=ψ′(νi,j)(x
T
i,[j]β̂[j] − x

T
i,[j](b̃j)[j] −Xijbj)

=ψ′(νi,j) · bj ·
[
xTi,[j](X

T
[j]D[j]X[j])

−1XT
[j]D[j]Xj −Xij

]
Let

di,j = ψ′(νi,j)− ψ′(ri,[j]) (B-31)

and plug the above result into (B-30), we obtain that

[f(b̃j)][j] =
1

n

n∑
i=1

xi,[j] ·
(
ψ′(ri,[j]) + di,j

)
· bj ·

[
xTi,[j](X

T
[j]D[j]X[j])

−1XT
[j]D[j]Xj −Xij

]
= bj ·

1

n

n∑
i=1

ψ′(ri,[j])xi,[j]

[
xTi,[j](X

T
[j]D[j]X[j])

−1XT
[j]D[j]Xj −Xij

]
+ bj ·

1

n

n∑
i=1

di,jxi,[j](x
T
i,[j](X

T
[j]D[j]X[j])

−1XT
[j]D[j]Xj −Xij)

= bj ·
1

n

[
XT

[j]D[j]X[j](X
T
[j]D[j]X[j])

−1XT
[j]D[j]Xj −XT

[j]D[j]Xj

]
+ bj ·

1

n

n∑
i=1

di,jxi,[j] · xTi γj

= bj ·
1

n

(
n∑
i=1

di,jxi,[j]x
T
i

)
γj .

Now we calculate [f(b̃j)]j , the j-th entry of f(b̃j). Note that

[f(b̃j)]j =
1

n

n∑
i=1

Xijψ(εi − xTi b̃j)

=
1

n

n∑
i=1

Xijψ(ri,[j]) + bj ·
1

n

n∑
i=1

Xij(ψ
′(ri,[j]) + di,j) ·

[
xTi,[j](X

T
[j]D[j]X[j])

−1XT
[j]D[j]Xj −Xij

]
=

1

n

n∑
i=1

Xijψ(ri,[j]) + bj ·
1

n

n∑
i=1

ψ′(ri,[j])Xij

[
xTi,[j](X

T
[j]D[j]X[j])

−1XT
[j]D[j]Xj −Xij

]
+ bj ·

(
1

n

n∑
i=1

di,jXijx
T
i

)
γj

=
1√
n
Nj + bj ·

(
1

n
XT
j D[j]X[j](X

T
[j]D[j]X[j])

−1XT
[j]D[j]Xj −

1

n

n∑
i=1

ψ′(ri,[j])X
2
ij

)

+ bj ·

(
1

n

n∑
i=1

di,jXijx
T
i

)
γj

=
1√
n
Nj − bj · ξj + bj ·

(
1

n

n∑
i=1

di,jXijx
T
i

)
γj

= bj ·

(
1

n

n∑
i=1

di,jXijx
T
i

)
γj
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where the second last line uses the definition of bj . Putting the results together, we
obtain that

f(b̃j) = bj ·

(
1

n

n∑
i=1

di,jxix
T
i

)
· γj .

This entails that
‖f(b̃j)‖2 ≤ |bj | ·max

i
|di,j | · λ+ · ‖γj‖2. (B-32)

Now we derive a bound for maxi |di,j |, where di,j is defined in (B-36). By Lemma
B.2,

|di,j | = |ψ′(νi,j)− ψ′(ri,[j])| ≤ K3|νi,j − ri,[j]| = K3|xTi,[j]β̂[j] − x
T
i b̃j|.

By definition of b̃j and hj,1,i,

|xTi,[j]β̂[j] − x
T
i b̃j| = |bj | ·

∣∣xTi,[j](XT
[j]D[j]X[j])

−1XT
[j]D[j]Xj −Xij

∣∣
=|bj | · |eTi (I −X[j](X

T
[j]D[j]X[j])

−1XT
[j]D[j])Xj |

=|bj | · |hTj,1,iXj | ≤ |bj | ·∆C ‖hj,1,i‖2 , (B-33)

where the last inequality is derived by definition of ∆C , see (B-21). Since hj,1,i
is the i-th column of matrix I −D[j]X[j](X

T
[j]D[j]X[j])

−1XT
[j], its L2 norm is upper

bounded by the operator norm of this matrix. Notice that

I −D[j]X[j](X
T
[j]D[j]X[j])

−1XT
[j] = D

1
2

[j]

(
I −D

1
2

[j]X[j](X
T
[j]D[j]X[j])

−1XT
[j]D

1
2

[j]

)
D
− 1

2

[j] .

The middle matrix in RHS of the displayed atom is an orthogonal projection matrix
and hence

‖I −D[j]X[j](X
T
[j]D[j]X[j])

−1XT
[j]‖op ≤ ‖D

1
2

[j]‖op · ‖D
− 1

2

[j] ‖op ≤
(
K1

K0

) 1
2

. (B-34)

Therefore,

max
i,j
‖hj,1,i‖2 ≤ max

j∈Jn
‖I −D[j]X[j](X

T
[j]D[j]X[j])

−1XT
[j]‖op ≤

(
K1

K0

) 1
2

, (B-35)

and thus

max
i
|di,j | ≤ K3

√
K1

K0
· |bj | ·∆C . (B-36)

As for γj , we have

K0λ−‖γj‖22 ≤ γTj

(
XTD[j]X

n

)
γj

=(γj)
2
j ·
XT
j DjXj

n
+ (γj)

T
[j]

(
XT

[j]D[j]X[j]

n

)
(γj)[j] + 2γj

XT
j D[j]X[j]

n
(γj)[j]

Recall the definition of γj in (B-37), we have

(γj)
T
[j]

(
XT

[j]D[j]X[j]

n

)
(γj)[j] =

1

n
XT
j D[j]X[j](X

T
[j]D[j]X[j])

−1XT
[j]D[j]Xj

and

γj
XT
j D[j]X[j]

n
(γj)[j] = − 1

n
XT
j D[j]X[j](X

T
[j]D[j]X[j])

−1XT
[j]D[j]Xj .
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As a result,

K0λ−‖γj‖22

≤ 1

n
XT
j D

1
2

[j](I −D
1
2

[j]X[j](X
T
[j]D[j]X[j])

−1XT
[j]D

1
2

[j])D
1
2

[j]Xj

≤
‖D

1
2

[j]Xj‖22
n

·
∥∥∥I −D 1

2

[j]X[j](X
T
[j]D[j]X[j])

−1XT
[j]D

1
2

[j]

∥∥∥
op

≤
‖D

1
2

[j]Xj‖22
n

≤ K1‖Xj‖22
n

≤ T 2K1,

where T is defined in (B-23). Therefore we have

‖γj‖2 ≤

√
K1

K0λ−
T. (B-37)

Putting (B-32), (B-36), (B-37) and part (ii) together, we obtain that

‖f(b̃j)‖2 ≤ λ+ · |bj | ·K3

√
K1

K0
∆C |bj | ·

√
K1

K0λ−
T

≤ λ+ ·
1

n

2K1

(K0λ−)2
∆2
CE ·K3

√
K1

K0
∆C ·

√
K1

K0λ−
T

=
1

n
· 2K2

1K3λ+T

K3
0λ

5
2
−

·∆3
C · E .

By Lemma B.1,

‖β̂ − b̃j‖2 ≤
‖f(β̂)− f(b̃j)‖2

K0λ−
=
‖f(b̃j)‖2
K0λ−

≤ 1

n
· 2K2

1K3λ+T

K4
0λ

7
2
−

·∆3
C · E .

Since β̂j − bj is the j-th entry of β̂ − b̃j, we have

|β̂j − bj | ≤ ‖β̂ − b̃j‖2 ≤
1

n
· 2K2

1K3λ+T

K4
0λ

7
2
−

·∆3
C · E .

(iv) Similar to part (iii), this result has been shown by El Karoui (2013). Here we state
a refined version for the sake of completeness. Let b̃j be defined as in (B-28), then

|Ri − ri,[j]| = |xTi β̂ − xTi,[j]β̂[j]| = |x
T
i (β̂ − b̃j) + xTi b̃j − xTi,[j]β̂[j]|

≤ ‖xi‖2 · ‖β̂ − b̃j‖2 + |xTi b̃j − xTi,[j]β̂[j]|.

Note that ‖xi‖2 ≤
√
nT , by part (iii), we have

‖xi‖2 · ‖β̂ − b̃j‖2 ≤
1√
n

2K2
1K3λ+T

2

K4
0λ

7
2
−

·∆3
C · E . (B-38)

On the other hand, similar to (B-36), by (B-33),

|xTi b̃j − xTi,[j]β̂[j]| ≤
√
K1

K0
· |bj | ·∆C ≤

1√
n
·
√

2K1

K
3
2
0 λ−

·∆2
C ·
√
E . (B-39)

Therefore,

|Ri − ri,[j]| ≤
1√
n

(
2K2

1K3λ+T
2

K4
0λ

7
2
−

·∆3
C · E +

√
2K1

K
3
2
0 λ−

·∆2
C ·
√
E

)
.
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B-3 Summary of Approximation Results

Under our technical assumptions, we can derive the rate for approximations via Proposi-
tion B.3. This justifies all approximations in Appendix A.

Theorem B.4. Under the assumptions A1 - A5,

(i)
T ≤ λ+ = O (polyLog(n)) ;

(ii)

max
j∈Jn

|β̂j | ≤ ‖β̂‖2 = OL4 (polyLog(n)) ;

(iii)

max
j∈Jn

|bj | = OL2

(
polyLog(n)√

n

)
;

(iv)

max
j∈Jn

|β̂j − bj | = OL2

(
polyLog(n)

n

)
;

(v)

max
j∈Jn

max
i
|Ri − ri,[j]| = OL2

(
polyLog(n)√

n

)
.

Proof. (i) Notice that Xj = Xej , where ej is the j-th canonical basis vector in Rp, we
have

‖Xj‖2

n
= eTj

XTX

n
ej ≤ λ+.

Similarly, consider the XT instead of X, we conclude that

‖xi‖2

n
≤ λmax

(
XXT

n

)
= λ+.

Recall the definition of T in (B-23), we conclude that

T ≤
√
λ+ = O (polyLog(n)) .

(ii) Since εi = ui(Wi) with ‖u′i‖∞ ≤ c1, the gaussian concentration property (Ledoux,
2001, chapter 1.3) implies that εi is c21-sub-gaussian and hence E|εi|k = O(ck1) for
any finite k > 0. By Lemma B.2, |ψ(εi)| ≤ K1|εi| and hence for any finite k,

E|ψ(εi)|k ≤ Kk
1E|εi|k = O(ck1).

By part (i) of Proposition B.3, using the convexity of x4 and hence
(
a+b
2

)4 ≤ a4+b4

2 ,

E‖β̂‖42 ≤
1

(K0λ−)4
E(U + U0)4 ≤ 8

(K0λ−)4
(EU4 + U4

0 ).

Recall (B-24) that U =
∥∥ 1
n

∑n
i=1 xi(ψ(εi)− Eψ(εi))

∥∥
2
,

U4 = (U2)2 =
1

n4

 n∑
i,i′=1

xTi xi′(ψ(εi)− Eψ(εi))(ψ(εi′)− Eψ(εi′))

2

=
1

n4

 n∑
i=1

‖xi‖22(ψ(εi)− Eψ(εi))
2 +

∑
i 6=i′
|xTi xi′ |(ψ(εi)− Eψ(εi))(ψ(εi′)− Eψ(εi′))

2
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=
1

n4

{ n∑
i=1

‖xi‖42(ψ(εi)− Eψ(εi))
4 +

∑
i6=i′

(2|xTi xi′ |2 + ‖xi‖22‖xi′‖22)(ψ(εi)− Eψ(εi))
2(ψ(εi′)− Eψ(εi′))

2

+
∑

others

|xTi xi′ | · |xTk xk′ | · (ψ(εi)− Eψ(εi))(ψ(εi′)− Eψ(εi′))(ψ(εk)− Eψ(εk))(ψ(εk′)− Eψ(εk′))

}

Since ψ(εi)− Eψ(εi) has a zero mean, we have

E(ψ(εi)− Eψ(εi))(ψ(εi′)− Eψ(εi′))(ψ(εk)− Eψ(εk))(ψ(εk′)− Eψ(εk′)) = 0

for any (i, i′) 6= (k, k′) or (k′, k) and i 6= i′. As a consequence,

EU4 =
1

n4

( n∑
i=1

‖xi‖42E(ψ(εi)− Eψ(εi))
4

+
∑
i 6=i′

(2|xTi xi′ |22 + ‖xi‖22‖xi′‖22)E(ψ(εi)− Eψ(εi))
2E(ψ(εi′)− Eψ(εi′))

2

)

≤ 1

n4

 n∑
i=1

‖xi‖42E(ψ(εi)− Eψ(εi))
4 + 3

∑
i 6=i′
‖xi‖22‖xi′‖22E(ψ(εi)− Eψ(εi))

2E(ψ(εi′)− Eψ(εi′))
2

 .

For any i, using the convexity of x4, hence (a+b2 )4 ≤ a4+b4

2 , we have

E(ψ(εi)− Eψ(εi))
4 ≤ 8E

(
ψ(εi)

4 + (Eψ(εi))
4
)
≤ 16Eψ(εi)

4 ≤ 16 max
i

Eψ(εi)
4.

By Cauchy-Schwartz inequality,

E(ψ(εi)− Eψ(εi))
2 ≤ Eψ(εi)

2 ≤
√
Eψ(εi)4 ≤

√
max
i

Eψ(εi)4.

Recall (B-23) that ‖xi‖22 ≤ nT 2 and thus,

EU4 ≤ 1

n4
(
16n · n2T 4 + 3n2 · n2T 4

)
·max

i
Eψ(εi)

4

≤ 1

n4
· (16n3 + 3n4)T 4 max

i
Eψ(εi)

4 = O (polyLog(n)) .

On the other hand, let µT = (Eψ(ε1), . . . ,Eψ(εn)), then ‖µ‖22 = O(n · polyLog(n))
and hence by definition of U0 in (B-24),

U0 =
‖µTX‖2

n
=

1

n

√
µTXXTµ ≤

√
‖µ‖22
n
· λ+ = O (polyLog(n)) .

In summary,
E‖β̂‖42 = O (polyLog(n)) .

(iii) By mean-value theorem, there exists ax ∈ (0, x) such that

ρ(x) = ρ(0) + xψ(0) +
x2

2
ψ′(ax).

By assumption A1 and Lemma B.2, we have

ρ(x) =
x2

2
ψ′(ax) ≤ x2

2
‖ψ′‖∞ ≤

K3x
2

2
,

where K3 is defined in Lemma B.2. As a result,

Eρ(εi)
8 ≤

(
K3

2

)8

Eε16i = O(c161 ).
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Recall the definition of E in (B-23) and the convexity of x8, we have

EE8 ≤ 1

n

n∑
i=1

Eρ(εi)
8 = O(c161 ) = O (polyLog(n)) . (B-40)

Under assumption A5, by Cauchy-Schwartz inequality,

E(∆C

√
E)2 = E∆2

CE ≤
√
E∆4

C ·
√
EE2 = O (polyLog(n)) .

Under assumptions A1 and A3,

√
2K1

K0λ−
= O (polyLog(n)) .

Putting all the pieces together, we obtain that

max
j∈Jn

|bj | = OL2

(
polyLog(n)√

n

)
.

(iv) Similarly, by Holder’s inequality,

E(∆3
CE)2 = E∆6

CE2 ≤
(
E∆8

C

) 3
4 ·
(
EE8

) 1
4 = O (polyLog(n)) ,

and under assumptions A1 and A3,

2K2
1K3λ+T

K4
0λ

7
2
−

= O (polyLog(n)) .

Therefore,

max
j∈Jn

|β̂j − bj | = OL2

(
polyLog(n)

n

)
.

(v) It follows from the previous part that

E(∆2
C ·
√
E)2 = O (polyLog(n)) .

Under assumptions A1 and A3, the multiplicative factors are also O (polyLog(n)),
i.e.

2K2
1K3λ+T

2

K4
0λ

7
2
−

= O (polyLog(n)) ,

√
2K1

K
3
2
0 λ−

= O (polyLog(n)) .

Therefore,

max
j∈Jn

max
i
|Ri − ri,[j]| = OL2

(
polyLog(n)√

n

)
.

B-4 Controlling Gradient and Hessian

Proof of Lemma 4.2. Recall that β̂ is the solution of the following equation

1

n

n∑
i=1

xiψ(εi − xTi β̂) = 0. (B-41)

Taking derivative of (B-41), we have

XTD

(
I −X ∂β̂

∂εT

)
= 0 =⇒ ∂β̂

∂εT
= (XTDX)−1XTD.
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This establishes (9). To establishes (10), note that (9) can be rewritten as

(XTDX)
∂β̂

∂εT
= XTD. (B-42)

Fix k ∈ {1, · · · , n}. Note that

∂Ri
∂εk

=
∂εi
∂εk
− xTi

∂β̂

∂εk
= I(i = k)− xTi (XTDX)−1XTD.

Recall that G = I −X(XTDX)−1XTD, we have

∂Ri
∂εk

= eTi Gek, (B-43)

where ei is the i-th canonical basis of Rn. As a result,

∂D

∂εk
= D̃ diag(Gek). (B-44)

Taking derivative of (B-42), we have

XT ∂D

∂εk
X
∂β̂

∂εT
+ (XTDX)

∂β̂

∂εk∂εT
= XT ∂D

∂εk

=⇒ ∂β̂

∂εk∂εT
= (XTDX)−1XT ∂D

∂εk

(
I −X(XTDX)−1XTD

)
=⇒ ∂β̂

∂εk∂εT
= (XTDX)−1XT D̃ diag(Gek)G,

where G = I − X(XTDX)−1XTD is defined in (B-18) in p.30. Then for each j ∈
{1, · · · , p} and k ∈ {1, . . . , n},

∂β̂j
∂εk∂εT

= eTj (XTDX)−1XT D̃ diag(Gek)G = eTkG
T diag(eTj (XTDX)−1XT D̃)G

where we use the fact that aT diag(b) = bT diag(a) for any vectors a, b. This implies that

∂β̂j
∂ε∂εT

= GT diag(eTj (XTDX)−1XT D̃)G

Proof of Lemma 4.3. Throughout the proof we are using the simple fact that ‖a‖∞ ≤
‖a‖2. Based on it, we found that∥∥∥eTj (XTDX)−1XTD

1
2

∥∥∥
∞
≤
∥∥∥eTj (XTDX)−1XTD

1
2

∥∥∥
2

=
√
eTj (XTDX)−1XTDX(XTDX)−1ej

=
√
eTj (XTDX)−1ej ≤

1

(nK0λ−)
1
2

. (B-45)

Thus for any m > 1, recall that Mj = E
∥∥∥eTj (XTDX)−1XTD

1
2

∥∥∥
∞

,

E
∥∥∥eTj (XTDX)−1XTD

1
2

∥∥∥m
∞

≤E
∥∥∥eTj (XTDX)−1XTD

1
2

∥∥∥
∞
·
∥∥∥eTj (XTDX)−1XTD

1
2

∥∥∥m−1
2

≤ Mj

(nK0λ−)
m−1

2

. (B-46)
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We should emphasize that we cannot use the naive bound that

E
∥∥∥eTj (XTDX)−1XTD

1
2

∥∥∥m
∞
≤ E

∥∥∥eTj (XTDX)−1XTD
1
2

∥∥∥m
2
≤ 1

(nK0λ−)
m
2
, (B-47)

=⇒
∥∥∥eTj (XTDX)−1XTD

1
2

∥∥∥
∞

= OLm

(
polyLog(n)√

n

)
since it fails to guarantee the convergence of TV distance. We will address this issue after
deriving Lemma 4.4.

By contrast, as proved below,∥∥∥eTj (XTDX)−1XTD
1
2

∥∥∥
∞

= Op(Mj) = Op

(
polyLog(n)

n

)
<<

1√
nK0λ−

. (B-48)

Thus (B-46) produces a slightly tighter bound∥∥∥eTj (XTDX)−1XTD
1
2

∥∥∥
∞

= OLm

(
polyLog(n)

n
m+1
2m

)
.

It turns out that the above bound suffices to prove the convergence. Although (B-48)

implies the possibility to sharpen the bound from n−
m+1
2m to n−1 using refined analysis,

we do not explore this to avoid extra conditions and notation.

• Bound for κ0j
First we derive a bound for κ0j . By definition,

κ20j = E

∥∥∥∥∥∂β̂j∂εT

∥∥∥∥∥
4

4

≤ E

∥∥∥∥∥∂β̂j∂εT

∥∥∥∥∥
2

∞

·

∥∥∥∥∥∂β̂j∂εT

∥∥∥∥∥
2

2

 .

By Lemma 4.2 and (B-46) with m = 2,

E

∥∥∥∥∥∂β̂j∂εT

∥∥∥∥∥
2

∞

≤ E
∥∥∥eTj (XTDX)−1XTD

1
2

∥∥∥2
∞
·K1 =

K1Mj

(nK0λ−)
1
2

.

On the other hand, it follows from (B-45) that∥∥∥∥∥∂β̂j∂εT

∥∥∥∥∥
2

2

=
∥∥eTj (XTDX)−1XTD

∥∥2
2
≤ K1 ·

∥∥∥eTj (XTDX)−1XTD
1
2

∥∥∥2
2
≤ K1

nK0λ−
. (B-49)

Putting the above two bounds together we have

κ20j ≤
K2

1

(nK0λ−)
3
2

·Mj . (B-50)

• Bound for κ1j
As a by-product of (B-49), we obtain that

κ41j = E

∥∥∥∥∥∂β̂j∂εT

∥∥∥∥∥
4

2

≤ K2
1

(nK0λ−)2
. (B-51)

• Bound for κ2j
Finally, we derive a bound for κ2j . By Lemma 4.2, κ2j involves the operator norm

of a symmetric matrix with form GTMG where M is a diagonal matrix. Then by the
triangle inequality,∥∥GTMG

∥∥
op
≤ ‖M‖op ·

∥∥GTG∥∥
op

= ‖M‖op · ‖G‖2op .
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Note that
D

1
2GD−

1
2 = I −D 1

2X(XTDX)−1XTD
1
2

is a projection matrix, which is idempotent. This implies that∥∥∥D 1
2GD−

1
2

∥∥∥
op

= λmax

(
D

1
2GD−

1
2

)
≤ 1.

Write G as D−
1
2 (D

1
2GD−

1
2 )D

1
2 , then we have

‖G‖op ≤
∥∥∥D− 1

2

∥∥∥
op
·
∥∥∥D 1

2GD−
1
2

∥∥∥
op
·
∥∥∥D 1

2

∥∥∥
op
≤
√
K1

K0
.

Returning to κ2j , we obtain that

κ42j = E
∥∥∥GT diag(eTj (XTDX)−1XT D̃)G

∥∥∥4
op

≤ E
(∥∥∥eTj (XTDX)−1XT D̃

∥∥∥4
∞
· ‖G‖8op

)
≤ E

(∥∥∥eTj (XTDX)−1XT D̃
∥∥∥4
∞

)(
K1

K0

)4

= E
(∥∥∥eTj (XTDX)−1XTD

1
2D−

1
2 D̃
∥∥∥4
∞

)
·
(
K1

K0

)4

Assumption A1 implies that

∀i, |ψ
′′(Ri)|√
ψ′(Ri)

≤ K2 & hence ‖D− 1
2 D̃‖op ≤ K2.

Therefore, ∥∥∥eTj (XTDX)−1XTD
1
2D−

1
2 D̃
∥∥∥4
∞
≤ K4

2 ·
∥∥∥eTj (XTDX)−1XTD

1
2

∥∥∥4
∞
.

By (B-46) with m = 4,

κ42j ≤
K4

2

(nλ−)
3
2

·
(
K1

K0

)4

·Mj . (B-52)

Proof of Lemma 4.4. By Theorem B.4, for any j,

Eβ̂4
j ≤ E‖β̂‖42 <∞.

Then using the second-order Poincaré inequality (Proposition 4.1),

max
j∈Jn

dTV

L
 β̂j − Eβ̂j√

Var(β̂j)

 , N(0, 1)

 = O

(
c1c2κ0j + c31κ1jκ2j

Var(β̂j)

)

=O


M

1
2
j

n
3
4

+
M

1
4
j

n
7
8

Var(β̂j)
· polyLog(n)

 = O

(
(nM2

j )
1
4 + (nM2

j )
1
8

nVar(β̂j)
· polyLog(n)

)
.

It follows from (B-45) that nM2
j = O (polyLog(n)) and the above bound can be simplified

as

max
j∈Jn

dTV

L
 β̂j − Eβ̂j√

Var(β̂j)

 , N(0, 1)

 = O

(
(nM2

j )
1
8

nVar(β̂j)
· polyLog(n)

)
.
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Remark B.5. If we use the naive bound (B-47), by repeating the above derivation, we

obtain a worse bound for κ0,j = O(polyLog(n)
n ) and κ2 = O(polyLog(n)√

n
), in which case,

max
j∈Jn

dTV

L
 β̂j − Eβ̂j√

Var(β̂j)

 , N(0, 1)

 = O

(
polyLog(n)

nVar(β̂j)

)
.

However, we can only prove that Var(β̂j) = Ω( 1
n ). Without the numerator (nM2

j )
1
8 , which

will be shown to be O(n−
1
8 polyLog(n)) in the next subsection, the convergence cannot be

proved.

B-5 Upper Bound of Mj

As mentioned in Appendix A, we should approximate D by D[j] to remove the functional

dependence on Xj . To achieve this, we introduce two terms, M
(1)
j and M

(2)
j , defined as

M
(1)
j = E(‖eTj (XTDX)−1XTD

1
2

[j]‖∞), M
(2)
j = E(‖eTj (XTD[j]X)−1XTD

1
2

[j]‖∞).

We will first prove that both |Mj−M (1)
j | and |M (1)

j −M
(2)
j | are negligible and then derive

an upper bound for M
(2)
j .

B-5.1 Controlling |Mj −M (1)
j |

By Lemma B.2,

‖D 1
2 −D

1
2

[j]‖∞ ≤ K2 max
i
|Ri − ri,[j]| , K2Rj ,

and by Theorem B.4, √
ER2

j = O

(
polyLog(n)√

n

)
.

Then we can bound |Mj −M (1)
j | via the fact that ‖a‖∞ ≤ ‖a‖2 and algebra as follows.

|Mj −M (1)
j | ≤ E(‖eTj (XTDX)−1XT (D

1
2 −D

1
2

[j])‖∞)

≤ E(‖eTj (XTDX)−1XT (D
1
2 −D

1
2

[j])‖2)

≤
√
E(‖eTj (XTDX)−1XT (D

1
2 −D

1
2

[j])‖
2
2)

=

√
E(eTj (XTDX)−1XT (D

1
2 −D

1
2

[j])
2X(XTDX)−1ej).

By Lemma B.2,

|
√
ψ′(Ri)−

√
ψ′(ri,[j])| ≤ K2|Ri − ri,[j]| ≤ K2Rj ,

thus

(D
1
2 −D

1
2

[j])
2 � K2

2R2
jI �

K2
2

K0
R2
jD.

This entails that

|Mj −M (1)
j | ≤ K2K

− 1
2

0

√
E(R2

j · eTj (XTDX)−1XTDX(XTDX)−1ej)

= K2K
− 1

2
0

√
E(R2

j · eTj (XTDX)−1ej)

≤ K2√
nK0

√
λ−

√
E(R2

j ) = O

(
polyLog(n)

n

)
.
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B-5.2 Bound of |M (1)
j −M (2)

j |

First we prove a useful lemma.

Lemma B.6. For any symmetric matrix N with ‖N‖op < 1,

(I − (I +N)−1)2 � N2

(1− ‖N‖op)2
.

Proof. First, notice that

I − (I +N)−1 = (I +N − I)(I +N)−1 = N(I +N)−1,

and therefore
(I − (I +N)−1)2 = N(I +N)−2N.

Since ‖N‖op < 1, I +N is positive semi-definite and

(I +N)−2 � 1

(1− ‖N‖op)2
I.

Therefore,

N(I +N)−2N � N2

(1− ‖N‖op)2
.

We now back to bounding |M (1)
j −M

(2)
j |. Let Aj = XTD[j]X, Bj = XT (D−D[j])X.

By Lemma B.2,
‖D −D[j]‖∞ ≤ K3 max

i
|Ri − ri,[j]| = K3Rj

and hence
‖Bj‖op ≤ K3Rj · nλ+I , nηj .

where ηj = K3λ+ · Rj . Then by Theorem B.4.(v),

E(η2j ) = O

(
polyLog(n)

n

)
.

Using the fact that ‖a‖∞ ≤ ‖a‖2, we obtain that

|M (1)
j −M (2)

j | ≤ E(‖eTj A−1j XTD
1
2

[j] − e
T
j (Aj +Bj)

−1XTD
1
2

[j]‖∞)

≤
√
E(‖eTj A

−1
j XTD

1
2

[j] − e
T
j (Aj +Bj)−1XTD

1
2

[j]‖
2
2)

=
√
E
[
eTj (A−1j − (Aj +Bj)−1)XTD[j]X(A−1j − (Aj +Bj)−1)ej

]
=
√
E
[
eTj (A−1j − (Aj +Bj)−1)Aj(A

−1
j − (Aj +Bj)−1)ej

]
The inner matrix can be rewritten as

(A−1j − (Aj +Bj)
−1)Aj(A

−1
j − (Aj +Bj)

−1)

=A
− 1

2
j (I − (I +A

− 1
2

j BjA
− 1

2
j )−1)A

− 1
2

j AjA
− 1

2
j (I − (I +A

− 1
2

j BjA
− 1

2
j )−1)A

− 1
2

j

=A
− 1

2
j (I − (I +A

− 1
2

j BjA
− 1

2
j )−1)2A

− 1
2

j . (B-53)

Let Nj = A
− 1

2
j BjA

− 1
2

j , then

‖Nj‖op ≤ ‖A
− 1

2
j ‖op · ‖Bj‖op · ‖A

− 1
2

j ‖op ≤ (nK0λ−)−
1
2 · nηj · (nK0λ−)−

1
2 =

ηj
K0λ−

.
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On the event {ηj ≤ 1
2K0λ−}, ‖Nj‖op ≤ 1

2 . By Lemma B.6,

(I − (I +Nj)
−1)2 � 4N2

j .

This together with (B-53) entails that

eTj (A−1j − (Aj +Bj)
−1)Aj(A

−1
j − (Aj +Bj)

−1)ej = eTj A
− 1

2
j (I − (I +Nj)

−1)2A
− 1

2
j ej

≤4eTj A
− 1

2
j N2

j A
− 1

2
j ej = eTj A

−1
j BjA

−1
j BjA

−1
j ej ≤ ‖A−1j BjA

−1
j BjA

−1
j ‖op.

Since Aj � nK0λ−I, and ‖Bj‖op ≤ nηj , we have

‖A−1j BjA
−1
j BjA

−1
j ‖op ≤ ‖A

−1
j ‖

3
op · ‖Bj‖2op ≤

1

n
· 1

(K0λ−)3
· η2j .

Thus,

E
[
eTj (A−1j − (Aj +Bj)

−1)Aj(A
−1
j − (Aj +Bj)

−1)ej · I
(
ηj ≤

K0λ−
2

)]
≤E

[
eTj A

−1
j BjA

−1
j BjA

−1
j ej

]
≤ 1

n
· 1

(K0λ−)3
· Eη2j = O

(
polyLog(n)

n2

)
.

On the event {ηj > 1
2K0λ−}, since nK0λ−I � Aj � nK1λ+I and Aj +Bj � nK0λ−I,

|eTj (A−1j − (Aj +Bj)
−1)Aj(A

−1
j − (Aj +Bj)

−1)ej |
≤nK1λ+ · |eTj (A−1j − (Aj +Bj)

−1)2ej |
≤nK1λ+ ·

(
2|eTj A−2j ej |+ 2|eTj (Aj +Bj)

−2ej |
)

≤ 4nK1λ+
(nK0λ−)2

=
1

n
· 4K1λ+

(K0λ−)2
.

This together with Markov inequality implies htat

E
[
eTj (A−1j − (Aj +Bj)

−1)Aj(A
−1
j − (Aj +Bj)

−1)ej · I
(
ηj >

K0λ−
2

)]
≤ 1

n
· 4K1λ+

(K0λ−)2
· P
(
ηj >

K0λ−
2

)
≤ 1

n
· 4K1λ+

(K0λ−)2
· 4

(K0λ−)2
· Eη2j

=O

(
polyLog(n)

n2

)
.

Putting pieces together, we conclude that

|M (1)
j −M (2)

j | ≤
√

E
[
eTj (A−1j − (Aj +Bj)−1)Aj(A

−1
j − (Aj +Bj)−1)ej

]
≤

√
E
[
eTj (A−1j − (Aj +Bj)−1)Aj(A

−1
j − (Aj +Bj)−1)ej · I

(
ηj >

K0λ−
2

)]

+

√
E
[
eTj (A−1j − (Aj +Bj)−1)Aj(A

−1
j − (Aj +Bj)−1)ej · I

(
ηj ≤

K0λ−
2

)]
=O

(
polyLog(n)

n

)
.

B-5.3 Bound of M
(2)
j

Similar to (A-1), by block matrix inversion formula (See Proposition E.1),

eTj (XTD[j]X)−1XTD
1
2

[j] =
XT
j D

1
2

[j](I −Hj)

XT
j D

1
2

[j](I −Hj)D
1
2

[j]Xj

,
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where Hj = D
1
2

[j]X[j](X
T
[j]D[j]X[j])

−1XT
[j]D

1
2

[j]. Recall that ξj ≥ K0λ− by (B-25), so we

have
XT
j D

1
2

[j](I −Hj)D
1
2

[j]Xj = nξj ≥ nλ−.

As for the numerator, recalling the definition of hj,1,i, we obtain that

‖XT
j D

1
2

[j](I −Hj)‖∞ =

∥∥∥∥ 1

n
XT
j (I −D[j]X[j](X

T
[j]D[j]X[j])

−1X[j]) ·D
1
2

[j]

∥∥∥∥
∞

≤
√
K1 ·

∥∥∥∥ 1

n
XT
j (I −D[j]X[j](X

T
[j]D[j]X[j])

−1X[j])

∥∥∥∥
∞

=
√
K1 max

i

∣∣hTj,1,iXj

∣∣ ≤√K1∆C max
i
‖hj,1,i‖2.

As proved in (B-35),

max
i
‖hj,1,i‖2 ≤

(
K1

K0

) 1
2

.

This entails that

‖XT
j D

1
2

[j](I −Hj)‖∞ ≤
K1√
K0

·∆C = OL1 (polyLog(n)) .

Putting the pieces together we conclude that

M
(2)
j ≤

E‖XT
j D

1
2

[j](I −Hj)‖∞
nλ−

= O

(
polyLog(n)

n

)
.

B-5.4 Summary

Based on results from Section B.5.1 - Section B.5.3, we have

Mj = O

(
polyLog(n)

n

)
.

Note that the bounds we obtained do not depend on j, so we conclude that

max
j∈Jn

Mj = O

(
polyLog(n)

n

)
.

B-6 Lower Bound of Var(β̂j)

B-6.1 Approximating Var(β̂j) by Var(bj)

By Theorem B.4,

max
j

E(β̂j − bj)2 = O

(
polyLog(n)

n2

)
, max

j
Eb2j = O

(
polyLog(n)

n

)
.

Using the fact that

β̂2
j − b2j = (β̂j − bj + bj)

2 − b2j = (β̂j − bj)2 + 2(β̂j − bj)bj ,

we can bound the difference between Eβ̂2
j and Eb2j by

∣∣Eβ̂2
j − Eb2j

∣∣ = E(β̂j − bj)2 + 2|E(β̂j − bj)bj | ≤ E(β̂j − bj)2 + 2

√
E(β̂j − bj)2

√
Eb2j = O

(
polyLog(n)

n
3
2

)
.

Similarly, since |a2 − b2| = |a− b| · |a+ b| ≤ |a− b|(|a− b|+ 2|b|),

|(Eβ̂j)2 − (Ebj)2| ≤ E|β̂j − bj | ·
(
E|β̂j − bj |+ 2E|bj |

)
= O

(
polyLog(n)

n
3
2

)
.
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Putting the above two results together, we conclude that∣∣Var(β̂j)−Var(bj)
∣∣ = O

(
polyLog(n)

n
3
2

)
. (B-54)

Then it is left to show that

Var(bj) = Ω

(
1

n · polyLog(n)

)
.

B-6.2 Controlling Var(bj) by Var(Nj)

Recall that

bj =
1√
n

Nj
ξj

where

Nj =
1√
n

n∑
i=1

Xijψ(ri,[j]), ξj =
1

n
XT
j (D[j] −D[j]X[j](X

T
[j]D[j]X[j])

−1XT
[j]D[j])Xj .

Then

nVar(bj) = E
(
Nj
ξj
− E

Nj
ξj

)2

= E
(
Nj − ENj

ξj
+

ENj
ξj
− E

Nj
ξj

)2

.

Using the fact that (a+ b)2 − ( 1
2a

2 − b2) = 1
2 (a+ 2b)2 ≥ 0, we have

nVar(bj) ≥
1

2
E
(
Nj − ENj

ξj

)2

− E
(
ENj
ξj
− E

Nj
ξj

)2

,
1

2
I1 − I2. (B-55)

B-6.3 Controlling I1

The Assumption A4 implies that

Var(Nj) =
1

n
XT
j QjXj = Ω

(
tr(Cov(hj,0))

npolyLog(n)

)
.

It is left to show that tr(Cov(hj,0))/n = Ω
(

1
polyLog(n)

)
. Since this result will also be used

later in Appendix C, we state it in the following the lemma.

Lemma B.7. Under assumptions A1 - A3,

tr(Cov(ψ(hj,0)))

n
≥ K4

0

K2
1

·
(
n− p+ 1

n

)2

·min
i

Var(εi) = Ω

(
1

polyLog(n)

)
.

Proof. The (A-10) implies that

Var(ψ(ri,[j])) ≥ K2
0 Var(ri,[j]). (B-56)

Note that ri,[j] is a function of ε, we can apply (A-10) again to obtain a lower bound for
Var(ri,[j]). In fact, by variance decomposition formula, using the independence of ε′is,

Var(ri,[j]) = E
(
Var

(
ri,[j]

∣∣ε(i)))+ Var
(
E
(
ri,[j]

∣∣ε(i))) ≥ E
(
Var

(
ri,[j]

∣∣ε(i))) ,
where ε(i) includes all but the i-th entry of ε. Apply A-10 again,

Var
(
ri,[j]

∣∣ε(i)) ≥ inf
εi

∣∣∣∣∂ri,[j]∂εi

∣∣∣∣2 ·Var(εi),

and hence

Var(ri,[j]) ≥ EVar
(
ri,[j]

∣∣ε(i)) ≥ E inf
ε

∣∣∣∣∂ri,[j]∂εi

∣∣∣∣2 ·Var(εi). (B-57)
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Now we compute
∂ri,[j]
∂εi

. Similar to (B-43) in p.40, we have

∂rk,[j]

∂εi
= eTi G[j]ek, (B-58)

where G[j] is defined in (B-18) in p.30. When k = i,

∂ri,[j]

∂εi
= eTi G[j]ei = eTi D

− 1
2

[j] D
1
2

[j]G[j]D
− 1

2

[j] D
1
2

[j]ei = eTi D
1
2

[j]G[j]D
− 1

2

[j] ei. (B-59)

By definition of G[j],

D
1
2

[j]G[j]D
− 1

2

[j] = I −D
1
2

[j]X[j](X
T
[j]D[j]X[j])

−1XT
[j]D

1
2

[j].

Let X̃[j] = D
1
2

[j]X[j] and Hj = X̃[j](X̃
T
[j]X̃[j])

−1X̃T
[j]. Denote by X̃(i),[j] the matrix X̃[j]

after removing i-th row, then by block matrix inversion formula (See Proposition E.1),

eTi Hjei = x̃Ti,[j](X̃
T
(i),[j]X̃(i),[j] + x̃i,[j]x̃

T
i,[j])

−1x̃i,[j]

= x̃Ti,[j]

(
(X̃T

(i),[j]X̃(i),[j])
−1 −

(X̃T
(i),[j]X̃(i),[j])

−1x̃i,[j]x̃
T
i,[j](X̃

T
(i),[j]X̃(i),[j])

−1

1 + x̃Ti,[j](X̃
T
(i),[j]X̃(i),[j])−1x̃i,[j]

)
x̃i,[j]

=
x̃Ti,[j](X̃

T
(i),[j]X̃(i),[j])

−1x̃i,[j]

1 + x̃Ti,[j](X̃
T
(i),[j]X̃(i),[j])−1x̃i,[j]

.

This implies that

eTi D
1
2

[j]G[j]D
− 1

2

[j] ei = eTi (I −Hj)ei =
1

1 + x̃Ti,[j](X̃
T
(i),[j]X̃(i),[j])−1x̃i,[j]

=
1

1 + eTi D
1
2

[j]X[j](X
T
(i),[j]D(i),[j]X(i),[j])−1X

T
[j]D

1
2

[j]ei

≥ 1

1 +K−10 eTi D
1
2

[j]X[j](X
T
(i),[j]X(i),[j])−1X

T
[j]D

1
2

[j]ei

=
1

1 +K−10 (D[j])i,i · eTi X[j](X
T
(i),[j]X(i),[j])−1X

T
[j]ei

≥ 1

1 +K−10 K1eTi X[j](X
T
(i),[j]X(i),[j])−1X

T
[j]ei

≥ K0

K1
· 1

1 + eTi X[j](X
T
(i),[j]X(i),[j])−1X

T
[j]ei

. (B-60)

Apply the above argument to Hj = X[j](X
T
[j]X[j])

−1XT
[j], we have

1

1 + eTi X
T
[j](X

T
(i),[j]X(i),[j])−1X[j]ei

= eTi (I −X[j](X
T
[j]X[j])

−1XT
[j])ei.

Thus, by (B-56) and (B-57),

Var(ψ(ri,[j])) ≥
K4

0

K2
1

· [eTi (I −X[j](X
T
[j]X[j])

−1XT
[j])ei]

2.

Summing i over 1, . . . , n, we obtain that

tr(Cov(hj,0))

n
≥ K4

0

K2
1

· 1

n

n∑
i=1

[eTi (I −X[j](X
T
[j]X[j])

−1XT
[j])ei]

2 ·min
i

Var(εi)
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≥ K4
0

K2
1

·
(

1

n
tr(I −X[j](X

T
[j]X[j])

−1XT
[j])

)2

·min
i

Var(εi)

=
K4

0

K2
1

·
(
n− p+ 1

n

)2

·min
i

Var(εi)

Since mini Var(εi) = Ω
(

1
polyLog(n)

)
by assumption A2, we conclude that

tr(Cov(hj,0))

n
= Ω

(
1

polyLog(n)

)
.

In summary,

Var(Nj) = Ω

(
1

polyLog(n)

)
.

Recall that

ξj =
1

n
XT
j (D[j] −D[j]X[j](X

T
[j]D[j]X[j])

−1XT
[j]D[j])Xj ≤

1

n
XT
j D[j]Xj ≤ K1T

2,

we conclude that

I1 ≥
Var(Nj)

(K1T 2)2
= Ω

(
1

polyLog(n)

)
. (B-61)

B-6.4 Controlling I2

By definition,

I2 = E
(
ENj

(
1

ξj
− E

1

ξj

)
+ ENjE

1

ξj
− E

Nj
ξj

)2

= Var

(
ENj
ξj

)
+

(
ENjE

1

ξj
− E

Nj
ξj

)2

= (ENj)2 ·Var

(
1

ξj

)
+ Cov

(
Nj ,

1

ξj

)2

≤ (ENj)2 ·Var

(
1

ξj

)
+ Var(Nj) Var

(
1

ξj

)
= EN2

j ·Var

(
1

ξj

)
. (B-62)

By (B-27) in the proof of Theorem B.4,

EN2
j ≤ 2K1E(E ·∆2

C) ≤ 2K1

√
EE2 · E∆4

C = O (polyLog(n)) ,

where the last equality uses the fact that E = OL2 (polyLog(n)) as proved in (B-40). On
the other hand, let ξ̃j be an independent copy of ξj , then

Var

(
1

ξj

)
=

1

2
E

(
1

ξj
− 1

ξ̃j

)2

=
1

2
E

(ξj − ξ̃j)2

ξ2j ξ̃
2
j

.

Since ξj ≥ K0λ− as shown in (B-25), we have

Var

(
1

ξj

)
≤ 1

2(K0λ−)4
E(ξj − ξ̃j)2 =

1

(K0λ−)4
·Var(ξj). (B-63)

To bound Var(ξj), we propose to using the standard Poincaré inequality (Chernoff, 1981),
which is stated as follows.
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Proposition B.8. Let W = (W1, . . . ,Wn) ∼ N(0, In×n) and f be a twice differentiable
function, then

Var(f(W )) ≤ E
∥∥∥∥∂f(W )

∂W

∥∥∥∥2
2

.

In our case, εi = ui(Wi), and hence for any twice differentiable function g,

Var(g(ε)) ≤ E
∥∥∥∥∂g(ε)

∂W

∥∥∥∥2
2

= E
∥∥∥∥∂g(ε)

∂ε
· ∂ε

∂WT

∥∥∥∥2
2

≤ max
i
‖u′i‖

2
∞ · E

∥∥∥∥∂g(ε)

∂ε

∥∥∥∥2
2

.

Applying it to ξj , we have

Var(ξj) ≤ c21 · E
∥∥∥∥∂ξj∂ε

∥∥∥∥2
2

. (B-64)

For given k ∈ {1, . . . , n}, using the chain rule and the fact that dB−1 = −B−1dBB−1 for
any square matrix B, we obtain that

∂

∂εk

(
D[j] −D[j]X[j](X

T
[j]D[j]X[j])

−1XT
[j]D[j]

)
=
∂D[j]

∂εk
−
∂D[j]

∂εk
X[j](X

T
[j]D[j]X[j])

−1XT
[j]D[j] −D[j]X[j](X

T
[j]D[j]X[j])

−1XT
[j]

∂D[j]

∂εk

+D[j]X[j](X
T
[j]D[j]X[j])

−1XT
[j]

∂D[j]

∂εk
X[j](X

T
[j]D[j]X[j])

−1XT
[j]D[j]

=GT[j]
∂D[j]

∂εk
G[j]

where G[j] = I −X[j](X
T
[j]D[j]X[j])

−1XT
[j]D[j] as defined in last subsection. This implies

that
∂ξj
∂εk

=
1

n
XT
j G

T
[j]

∂D[j]

∂εk
G[j]Xj .

Then (B-64) entails that

Var(ξj) ≤
1

n2

n∑
k=1

E
(
XT
j G

T
[j]

∂D[j]

∂εk
G[j]Xj

)2

(B-65)

First we compute
∂D[j]

∂εk
. Similar to (B-44) in p.40 and recalling the definition of D[j] in

(B-17) and that of G[j] in (B-18) in p.30, we have

∂D[j]

∂εk
= D̃[j] diag(G[j]ek) diag(D̃[j]G[j]ek),

Let Xj = G[j]Xj and X̃j = Xj ◦ Xj where ◦ denotes Hadamard product. Then

XT
j G

T
[j]

∂D[j]

∂εk
G[j]Xj = X Tj

∂D[j]

∂εk
Xj = X Tj diag(D̃[j]G[j]ek)Xj = X̃ Tj D̃[j]G[j]ek.

Here we use the fact that for any vectors x, a ∈ Rn,

xT diag(a)x =

n∑
i=1

aix
2
i = (x ◦ x)Ta.

This together with (B-65) imply that

Var(ξj) ≤
1

n2

n∑
k=1

E(X̃ Tj D̃[j]G[j]ek)2 =
1

n2
E
∥∥∥X̃ Tj D̃[j]G[j]

∥∥∥2
2

=
1

n2
E(X̃ Tj D̃[j]G[j]G

T
[j]D̃[j]X̃j)
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Note that G[j]G
T
[j] � ‖G[j]‖2opI, and D̃[j] � K3I by Lemma B.2 in p.(B.2). Therefore we

obtain that

Var(ξj) ≤
1

n2
E
(∥∥G[j]

∥∥2
op
· X̃ Tj D̃2

[j]X̃j
)
≤ K2

3

n2
· E
(∥∥G[j]

∥∥2
op
· ‖X̃j‖22

)
=
K2

3

n2
E
(∥∥G[j]

∥∥2
op
· ‖Xj‖44

)
≤ K2

3

n
E
(∥∥G[j]

∥∥2
op
· ‖Xj‖4∞

)
As shown in (B-34),

‖G[j]‖op ≤
(
K1

K0

) 1
2

.

On the other hand, notice that the i-th row of G[j] is hj,1,i (see (B-20) for definition), by
definition of ∆C we have

‖Xj‖∞ = ‖G[j]Xj‖∞ = max
i
|hTj,1,iXj | ≤ ∆C ·max ‖hj,1,i‖2.

By (B-35) and assumption A5,

‖Xj‖∞ ≤ ∆C ·
(
K1

K0

) 1
2

= OL4 (polyLog(n)) .

This entails that

Var(ξj) = O

(
polyLog(n)

n

)
.

Combining with (B-62) and (B-63), we obtain that

I2 = O

(
polyLog(n)

n

)
.

B-6.5 Summary

Putting (B-55), (B-61) and (B-62) together, we conclude that

nVar(bj) = Ω

(
1

polyLog(n)

)
−O

(
1

n · polyLog(n)

)
= Ω

(
1

polyLog(n)

)
=⇒ Var(bj) = Ω

(
polyLog(n)

n

)
.

Combining with (B-54),

Var(β̂j) = Ω

(
polyLog(n)

n

)
.

C Proof of Other Results

C-1 Proofs of Propositions in Section 2.3

Proof of Proposition 2.1. Let Hi(α) = Eρ(εi−α). First we prove that the conditions

imply that 0 is the unique minimizer of Hi(α) for all i. In fact, since εi
d
= −εi,

Hi(α) = Eρ(εi − α) =
1

2
(Eρ(εi − α) + ρ(−εi − α)) .

Using the fact that ρ is even, we have

Hi(α) = Eρ(εi − α) =
1

2
(Eρ(εi − α) + ρ(εi + α)) .

By (4), for any α 6= 0, Hi(α) > Hi(0). As a result, 0 is the unique minimizer of Hi. Then
for any β ∈ Rp

1

n

n∑
i=1

Eρ(yi − xTi β) =
1

n

n∑
i=1

Eρ(εi − xTi (β − β∗)) =
1

n

n∑
i=1

Hi(x
T
i (β − β∗)) ≥ 1

n

n∑
i=1

Hi(0).
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The equality holds iff xTi (β−β∗) = 0 for all i since 0 is the unique minimizer of Hi. This
implies that

X(β∗(ρ)− β∗) = 0.

Since X has full column rank, we conclude that

β∗(ρ) = β∗.

Proof of Proposition 2.2. For any α ∈ R and β ∈ Rp, let

G(α;β) =
1

n

n∑
i=1

Eρ(yi − α− xTi β).

Since αρ minimizes Eρ(εi − α), it holds that

G(α;β) =
1

n

n∑
i=1

Eρ(εi − α− xTi (β − β∗)) ≥ 1

n

n∑
i=1

Eρ(εi − αρ) = G(αρ, β
∗).

Note that αρ is the unique minimizer of Eρ(εi − α), the above equality holds if and only
if

α+ xTi (β − β∗) ≡ αρ =⇒ (1 X)

(
α− αρ
β − β∗

)
= 0.

Since (1 X) has full column rank, it must hold that α = αρ and β = β∗.

C-2 Proofs of Corollary 3.3

Proposition C.1. Suppose that εi are i.i.d. such that Eρ(ε1 −α) as a function of α has
a unique minimizer αρ. Further assume that XJcn

contains an intercept term, XJn has
full column rank and

span({Xj : j ∈ Jn}) ∩ span({Xj : j ∈ Jcn}) = {0} (C-66)

Let

βJn(ρ) = arg min
βJn

{
min
βJcn

1

n

n∑
i=1

Eρ(yi − xTi β)

}
.

Then βJn(ρ) = β∗Jn .

Proof. let

G(β) =
1

n

n∑
i=1

Eρ(yi − xTi β).

For any minimizer β(ρ) of G, which might not be unique, we prove that βJn(ρ) = β∗Jn . It
follows by the same argument as in Proposition 2.2 that

xTi (β(ρ)−β∗) ≡ α0 =⇒ X(β(ρ)−β∗) = α01 =⇒ XJn(βJn(ρ)) = −XJcn
(β(ρ)Jcn−β

∗
Jcn

)+α01.

Since XJcn
contains the intercept term, we have

XJn(βJn(ρ)− β∗Jn) ∈ span({Xj : j ∈ Jcn}).

It then follows from (C-68) that

XJn(βJn(ρ)− β∗Jn) = 0.

Since XJn has full column rank, we conclude that

βJn(ρ) = β∗Jn .
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The Proposition C.1 implies that β∗Jn is identifiable even when X is not of full column

rank. A similar conclusion holds for the estimator β̂Jn and the residuals Ri. The following

two propositions show that under certain assumptions, β̂Jn and Ri are invariant to the

choice of β̂ in the presense of multiple minimizers.

Proposition C.2. Suppose that ρ is convex and twice differentiable with ρ′′(x) > c > 0

for all x ∈ R. Let β̂ be any minimizer, which might not be unique, of

F (β) ,
1

n

n∑
i=1

ρ(yi − xTi β)

Then Ri = yi − xiβ̂ is independent of the choice of β̂ for any i.

Proof. The conclusion is obvious if F (β) has a unique minimizer. Otherwise, let β̂(1) and

β̂(2) be two different minimizers of F denote by η their difference, i.e. η = β̂(2) − β̂(1).
Since F is convex, β̂(1) + vη is a minimizer of F for all v ∈ [0, 1]. By Taylor expansion,

F (β̂(1) + vη) = F (β̂(1)) + v∇F (β̂(1))η +
v2

2
ηT∇2F (β̂(1))η + o(v2).

Since both β̂(1) + vη and β̂(1) are minimizers of F , we have F (β̂(1) + vη) = F (β̂(1)) and

∇F (β̂(1)) = 0. By letting v tend to 0, we conclude that

ηT∇2F (β̂(1))η = 0.

The hessian of F can be written as

∇2F (β̂(1)) =
1

n
XT diag(ρ′′(yi − xTi β̂(1)))X � cXTX

n
.

Thus, η satisfies that

ηT
cXTX

n
η = 0 =⇒ Xη = 0. (C-67)

This implies that
y −Xβ̂(1) = y −Xβ̂(2)

and hence Ri is the same for all i in both cases.

Proposition C.3. Suppose that ρ is convex and twice differentiable with ρ′′(x) > c > 0
for all x ∈ R. Further assume that XJn has full column rank and

span({Xj : j ∈ Jn}) ∩ span({Xj : j ∈ Jcn}) = {0} (C-68)

Let β̂ be any minimizer, which might not be unique, of

F (β) ,
1

n

n∑
i=1

ρ(yi − xTi β)

Then β̂Jn is independent of the choice of β̂.

Proof. As in the proof of Proposition C.2, we conclude that for any minimizers β̂(1) and
β̂(2), Xη = 0 where η = β̂(2) − β̂(1). Decompose the term into two parts, we have

XJnηJn = −Xc
JnηJcn ∈ span({Xj : j ∈ Jcn}).

It then follows from (C-68) that XJnηJn = 0. Since XJn has full column rank, we conclude

that ηJn = 0 and hence β̂
(1)
Jn

= β̂
(2)
Jn

.
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Proof of Corollary 3.3. Under assumption A3*, XJn must have full column rank.
Otherwise there exists α ∈ R|Jn| such that XJnα, in which case αTXT

Jn
(I−HJcn

)XJnα = 0.

This violates the assumption that λ̃− > 0. On the other hand, it also guarantees that

span({Xj : j ∈ Jn}) ∩ span({Xj : j ∈ Jcn}) = {0}.

This together with assumption A1 and Proposition C.3 implies that β̂Jn is independent

of the choice of β̂.

Let B1 ∈ R|Jcn|×|Jn|, B2 ∈ R|Jcn|×|Jcn| and assume that B2 is invertible. Let X̃ ∈ Rn×p
such that

X̃Jn = XJn −XJcn
B1, X̃Jcn

= XJcn
B2.

Then rank(X) = rank(X̃) and model (1) can be rewritten as

y = X̃β̃∗ + ε

where
β̃∗Jn = β∗Jn , β̃∗Jcn = B−12 β∗Jcn +B1β

∗
Jn .

Let
˜̂
β be an M-estimator, which might not be unique, based on X̃. Then Proposition C.3

shows that
˜̂
βJn is independent of the choice of

˜̂
β, and an invariance argument shows that

˜̂
βJn = β̂Jn .

In the rest of proof, we use ·̃ to denote the quantity obtained based on X̃. First we show
that the assumption A4 is not affected by this transformation. In fact, for any j ∈ Jn,
by definition we have

span(X̃[j]) = span(X[j])

and hence the leave-j-th-predictor-out residuals are not changed by Proposition C.2. This
implies that ˜hj,0 = hj,0 and Q̃j = Qj . Recall the definition of hj,0, the first-order condition

of β̂ entails that XThj,0 = 0. In particular, XT
Jcn
hj,0 = 0 and this implies that for any

α ∈ Rn,
0 = Cov(XT

Jcn
hj,0, α

Thj,0) = XJcn
Qjα.

Thus,
X̃T
j Q̃jX̃j

tr(Q̃j)
=

(Xj −Xc
Jn

(B1)j)
TQj(Xj −XJcn

(B1)j)

tr(Qj)
=
XT
j QjXj

tr(Qj)
.

Then we prove that the assumption A5 is also not affected by the transformation. The
above argument has shown that

h̃Tj,0X̃j

‖h̃j,0‖2
=
hTj,0Xj

‖hj,0‖2
.

On the other hand, let B =

(
I|Jn| 0
−B1 B2

)
, then B is non-singular and X̃ = XB. Let

B(j),[j] denote the matrix B after removing j-th row and j-th column. Then B(j),[j] is

also non-singular and X̃[j] = X[j]B(j),[j]. Recall the definition of hj,1,i, we have

h̃j,1,i = (I − D̃[j]X̃[j](X̃
T
[j]D̃[j]X̃j)

−1X̃T
[j])ei

= (I −D[j]X[j]B(j),[j](B
T
(j),[j]X

T
[j]D[j]XjB(j),[j])

−1BT(j),[j]X[j])ei

= (I −D[j]X[j](X
T
[j]D[j]Xj)

−1X[j])ei

= hj,1,i.

On the other hand, by definition,

XT
[j]hj,1,i = XT

[j](I −D[j]X[j](X
T
[j]D[j]X[j])

−1XT
[j])ei = 0.

54



Thus,
hTj,1,iX̃j = hTj,1,i(Xj −Xc

Jn(B1)j) = hTj,1,iXj .

In summary, for any j ∈ Jn and i ≤ n,

h̃Tj,1,iX̃j

‖h̃j,1,i‖2
=
hTj,1,iXj

‖hj,1,i‖2
.

Putting the pieces together we have

∆̃C = ∆C .

By Theorem 3.1,

max
j∈Jn

dTV

L
 β̂j − Eβ̂j√

Var(β̂j)

 , N(0, 1)

 = o(1).

provided that X̃ satisfies the assumption A3.

Now let UΛV be the singular value decomposition ofXJcn
, where U ∈ Rn×p,Λ ∈ Rp×p, V ∈

Rp×p with UTU = V TV = Ip and Λ = diag(ν1, . . . , νp) being the diagonal matrix formed
by singular values of XJcn . First we consider the case where XJcn has full column rank,

then νj > 0 for all j ≤ p. Let B1 = (XT
Jn
XJn)−XT

Jn
XJn and B2 =

√
n/|Jcn|V TΛ−1. Then

X̃T X̃

n
=

1

n

(
XT
Jn

(I −XJcn
(XT

Jcn
XJcn

)−1XJcn
)XJn 0

0 nI

)
.

This implies that

λmax

(
X̃T X̃

n

)
= max

{
λ̃max, 1

}
, λmin

(
X̃T X̃

n

)
= min

{
λ̃min, 1

}
.

The assumption A3* implies that

λmax

(
X̃T X̃

n

)
= O(polyLog(n)), λmin

(
X̃T X̃

n

)
= Ω

(
1

polyLog(n)

)
.

By Theorem 3.1, we conclude that

Next we consider the case where Xc
Jn

does not have full column rank. We first remove
the redundant columns from Xc

Jn
, i.e. replace XJcn

by the matrix formed by its maximum
linear independent subset. Denote by X this matrix. Then span(X) = span(X) and
span({Xj : j 6∈ Jn}) = span({Xj : j 6∈ Jn}). As a consequence of Proposition C.1 and

C.3, neither β∗Jn nor β̂Jn is affected. Thus, the same reasoning as above applies to this
case.

C-3 Proofs of Results in Section 3.3

First we prove two lemmas regarding the behavior of Qj . These lemmas are needed for
justifying Assumption A4 in the examples.

Lemma C.4. Under assumptions A1 and A2,

‖Qj‖op ≤ c21
K2

3K1

K0
, ‖Qj‖F ≤

√
nc21

K2
3K1

K0

where Qj = Cov(hj,0) as defined in section B-1.
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Proof of Lemma C.4. By definition,

||Qj ||op = sup
α∈Sn−1

αTQjα

where Sn−1 is the n-dimensional unit sphere. For given α ∈ Sn−1,

αTQjα = αT Cov(hj,0)α = Var(αThj,0)

It has been shown in (B-59) in Appendix B-6.3 that

∂ri,[j]

∂εk
= eTi G[j]ek,

where G[j] = I −X[j](X
T
[j]D[j]X[j])

−1XT
[j]D[j]. This yields that

∂

∂ε

(
n∑
i=1

αiψ(ri,[j])

)
=

n∑
i=1

αiψ
′(ri,[j]) ·

∂ri,[j]

∂ε
=

n∑
i=1

αiψ
′(ri,[j]) · eTi G[j] = αT D̃[j]G[j].

By standard Poincaré inequality (see Proposition B.8), since εi = ui(Wi),

Var

(
n∑
i=1

αiψ(ri,[j])

)
≤ max

k
||u′k||2∞ · E

∥∥∥∥ ∂∂ε
(

n∑
i=1

αiψ(ri,[j])

)∥∥∥∥2
≤c21 · E

(
αT D̃[j]G[j]G

T
[j]D̃[j]α

)
≤ c21E‖D̃[j]G[j]G

T
[j]D̃[j]‖22 ≤ c21E‖D̃j‖2op‖G[j]‖2op.

We conclude from Lemma B.2 and (B-34) in Appendix B-2 that

‖D̃[j]‖op ≤ K3, ‖G[j]‖2op ≤
K1

K0
.

Therefore,

||Qj ||op = sup
α∈Sn−1

Var

(
n∑
i=1

αiψ(Ri)

)
≤ c21

K2
3K1

K0

and hence

||Qj ||F ≤
√
n||Qj ||op ≤

√
n · c21

K2
3K1

K0
.

Lemma C.5. Under assumptions A1 - A3,

tr(Qj) ≥ K∗n = Ω(n · polyLog(n)),

where K∗ =
K4

0

K2
1
·
(
n−p+1
n

)2 ·mini Var(εi).

Proof. This is a direct consequence of Lemma B.7 in p.47.

Throughout the following proofs, we will use several results from the random matrix
theory to bound the largest and smallest singular values of Z. The results are shown in
Appendix E. Furthermore, in contrast to other sections, the notation P (·),E(·),Var(·)
denotes the probability, the expectation and the variance with respect to both ε and Z in
this section.

Proof of Proposition 3.4. By Proposition E.3,

λ+ = (1 +
√
κ)2 + op(1) = Op(1), λ− = (1−

√
κ)2 − op(1) = Ωp(1)

and thus the assumption A3 holds with high probability. By Hanson-Wright inequality
(Hanson & Wright, 1971; Rudelson & Vershynin, 2013; see Proposition E.2), for any given
deterministic matrix A,

P (|ZTj AZj − EZTj AZj | ≥ t) ≤ 2 exp

[
−cmin

{
t2

σ4‖A‖2F
,

t

σ2‖A‖op

}]
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for some universal constant c. Let A = Qj and conditioning on Z[j], then by Lemma C.4,
we know that

‖Qj‖op ≤ c21
K2

3K1

K0
, ‖Qj‖F ≤

√
nc21

K2
3K1

K0

and hence

P

(
ZTj QjZj − E(ZTj QjZj

∣∣Z[j]) ≤ −t
∣∣∣∣Z[j]

)
≤ 2 exp

[
−cmin

{
t2

σ4 · nc41K4
3K

2
1/K

2
0

,
t

σ2c21K
2
3K1/K0

}]
.

(C-69)

Note that

E(ZTj QjZj
∣∣Z[j]) = tr(E[ZjZ

T
j |Z[j]]Qj) = EZ2

1j tr(Qj) = τ2 tr(Qj).

By Lemma C.5, we conclude that

P

(
ZTj QjZj

tr(Qj)
≤ τ2 − t

nK∗

∣∣∣∣Z[j]

)
≤ P

(
ZTj QjZj

tr(Qj)
≤ τ2 − t

tr(Qj)

∣∣∣∣Z[j]

)

≤2 exp

[
−cmin

{
t2

σ4 · nc41K4
3K

2
1/K

2
0

,
t

2σ2c21K
2
3K1/K0

}]
. (C-70)

Let t = 1
2τ

2nK∗ and take expectation of both sides over Z[j], we obtain that

P

(
ZTj QjZj

tr(Qj)
≤ τ2

2

)
≤ 2 exp

[
−cnmin

{
K∗2τ4

4σ4c41K
4
3K

2
1/K

2
0

,
K∗τ2

2σ2c21K
2
3K1/K0

}]
and hence

P

(
min
j∈Jn

ZTj QjZj

tr(Qj)
≤ τ2

2

)
≤ 2n exp

[
−cnmin

{
K∗2τ4

4σ4c41K
4
3K

2
1/K

2
0

,
K∗τ2

2σ2c21K
2
3K1/K0

}]
= o(1).

(C-71)
This entails that

min
j∈Jn

ZTj QjZj

tr(Qj)
= Ωp(polyLog(n)).

Thus, assumption A4 is also satisfied with high probability. On the other hand, since Zj
has i.i.d. mean-zero σ2-sub-gaussian entries, for any deterministic unit vector α ∈ Rn,
αTZj is σ2-sub-gaussian and mean-zero, and hence

P (|αTZj | ≥ t) ≤ 2e−
t2

2σ2 .

Let αj,i = hj,1,i/‖hj,1,i‖2 and αj,0 = hj,0/‖hj,0‖2. Since hj,1,i and hj,0 are independent
of Zj , a union bound then gives

P
(

∆C ≥ t+ 2σ
√

log n
)
≤ 2n2e−

t2+4σ2 logn

2σ2 = 2e−
t2

2σ2 .

By Fubini’s formula (Durrett, 2010, Lemma 2.2.8.),

E∆8
C =

∫ ∞
0

8t7P (∆C ≥ t)dt ≤
∫ 2σ

√
logn

0

8t7dt+

∫ ∞
2σ
√
logn

8t7P (∆C ≥ t)dt

= (2σ
√

log n)8 +

∫ ∞
0

8(t+ 2σ
√

log n)7P (∆C ≥ t+ 2σ
√

log n)dt

≤ (2σ
√

log n)8 +

∫ ∞
0

64(8t7 + 128σ7(log n)
7
2 ) · 2e−

t2

2σ2 dt

= O(σ8 · polyLog(n)) = O (polyLog(n)) . (C-72)

This, together with Markov inequality, guarantees that assumption A5 is also satisfied
with high probability.
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Proof of Proposition 3.5. It is left to prove that assumption A3 holds with high prob-
ability. The proof of assumption A4 and A5 is exactly the same as the proof of Proposition
3.5. By Proposition E.4,

λ+ = Op(1).

On the other hand, by Proposition E.7 (Litvak et al., 2005),

P

(
λmin

(
ZTZ

n

)
< c1

)
≤ e−c2n.

and thus
λ− = Ωp(1).

Proof of Proposition 3.6. Since Jn excludes the intercept term, the proof of assump-
tion A4 and A5 is still the same as Proposition 3.5. It is left to prove assumption A3. Let
R1, . . . , Rn be i.i.d. Rademacher random variables, i.e. P (Ri = 1) = P (Ri = −1) = 1

2 ,
and

Z∗ = diag(B1, . . . , Bn)Z.

Then (Z∗)TZ∗ = ZTZ. It is left to show that the assumption A3 holds for Z∗ with high
probability. Note that

(Z∗i )T = (Bi, Bix̃
T
i ).

For any r ∈ {1,−1} and borel sets B1, . . . , Bp ⊂ R,

P (Bi = r,BiZ̃i1 ∈ B1, . . . , BiZ̃i(p−1) ∈ Bp−1)

= P (Bi = r, Z̃i1 ∈ rB1, . . . , Z̃i(p−1) ∈ rBp−1)

= P (Bi = r)P (Z̃i1 ∈ rB1) . . . P (Z̃i(p−1) ∈ rBp−1)

= P (Bi = r)P (Z̃i1 ∈ B1) . . . P (Z̃i(p−1) ∈ Bp−1)

= P (Bi = r)P (BiZ̃i1 ∈ B1) . . . P (BiZ̃i(p−1) ∈ Bp−1)

where the last two lines uses the symmetry of Z̃ij . Then we conclude that Z∗i has indepen-
dent entries. Since the rows of Z∗ are independent, Z∗ has independent entries. Since Bi

are symmetric and sub-gaussian with unit variance and BiZ̃ij
d
= Z̃ij , which is also sym-

metric and sub-gaussian with variance bounded from below, Z∗ satisfies the conditions
of Propsition 3.5 and hence the assumption A3 is satisfied with high probability.

Proof of Proposition 3.8 (with Proposition 3.7 being a special case). Let Z∗ =

Λ−
1
2ZΣ−

1
2 , then Z∗ has i.i.d. standard gaussian entries. By Proposition 3.6, Z∗ satisfies

assumption A3 with high probability. Thus,

λ+ = λmax

(
Σ

1
2ZT∗ ΛZ∗Σ

1
2

n

)
≤ λmax(Σ) · λmax(Λ) · λmax

(
ZT∗ Z∗
n

)
= Op(polyLog(n)),

and

λ− = λmin

(
Σ

1
2ZT∗ ΛZ∗Σ

1
2

n

)
≥ λmin(Σ) · λmin(Λ) · λmin

(
ZT∗ Z∗
n

)
= Ωp

(
1

polyLog(n)

)
.

As for assumption A4, the first step is to calculate E(ZTj QjZj |Z[j]). Let Z̃ = Λ−
1
2Z,

then vec(Z̃) ∼ N(0, I ⊗ Σ). As a consequence,

Z̃j |Z̃[j] ∼ N(µ̃j , σ
2
j I)

where
µ̃j = Z̃[j]Σ

−1
[j],[j]Σ[j],j = Λ−

1
2Z[j]Σ

−1
[j],[j]Σ[j],j .
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Thus,
Zj |Z[j] ∼ N(µj , σ

2
jΛ)

where µj = Z[j]Σ
−1
[j],[j]Σ[j],j . It is easy to see that

λ− ≤ min
j
σ2
j ≤ max

j
σ2
j ≤ λ+. (C-73)

It has been shown that Qjµj = 0 and hence

ZTj QjZj = (Zj − µj)TQj(Zj − µj).

Let Zj = Λ−
1
2 (Zj − µj) and Q̃j = Λ

1
2QjΛ

1
2 , then Zj ∼ N(0, σ2

j I) and

ZTj QjZj = Z T
j Q̃jZj .

By Lemma C.4,

‖Q̃j‖op ≤ ‖Λ‖op · ‖Qj‖op ≤ λmax(Λ) · c21
K2

3K1

K0
,

and hence

‖Q̃j‖F ≤
√
nλmax(Λ) · c21

K2
3K1

K0
.

By Hanson-Wright inequality (Hanson & Wright, 1971; Rudelson & Vershynin, 2013; see
Proposition E.2), we obtain a similar inequality to (C-69) as follows:

P

(
|ZTj QjZj − E(ZTj QjZj

∣∣Z[j])| ≥ t
∣∣∣∣Z[j]

)
≤2 exp

[
−cmin

{
t2

σ4
j · nλmax(Λ)2c41K

4
3K

2
1/K

2
0

,
t

σ2
jλmax(Λ)c21K

2
3K1/K0

}]
.

On the other hand,

E(ZTj QjZj |Z[j]) = E(Z T
j Q̃jZj |Z[j]) = σ2

j tr(Q̃j).

By definition,

tr(Q̃j) = tr(Λ
1
2QjΛ

1
2 ) = tr(ΣQj) = tr(Q

1
2
j ΛQ

1
2
j ) ≥ λmin(Λ) tr(Qj).

By Lemma C.5,
tr(Q̃j) ≥ λmin(Λ) · nK∗.

Similar to (C-70), we obtain that

P

(
ZTj QjZj

tr(Qj)
≥ σ2

j −
t

nK∗

∣∣∣∣Z[j]

)

≤2 exp

[
−cmin

{
t2

σ4
j · nλmax(Λ)2c41K

4
3K

2
1/K

2
0

,
t

σ2
jλmax(Λ)c21K

2
3K1/K0

}]
.

Let t = 1
2σ

2
jnK

∗, we have

P

(
ZTj QjZj

tr(Qj)
≥
σ2
j

2

)
≤ 2 exp

[
−cnmin

{
K∗2

4λmax(Λ)2c41K
4
3K

2
1/K

2
0

,
K∗

2λmax(Λ)c21K
2
3K1/K0

}]
= o

(
1

n

)
and a union bound together with (C-73) yields that

min
j∈Jn

ZTj QjZj

tr(Qj)
= Ωp

(
min
j
σ2
j ·

1

polyLog(n)

)
= Ωp

(
1

polyLog(n)

)
.
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As for assumption A5, let

αj,0 =
Λ

1
2hj,0
‖hj,0‖2

, αj,i =
Λ

1
2hj,1,i
‖hj,1,i‖2

then for i = 0, 1, . . . , p,
‖αj,i‖2 ≤

√
λmax(Λ).

Note that
hTj,0Zj

‖hj,0‖2
= αTj,0Zj ,

hTj,1,iZj

‖hj,1,i‖2
= αTj,iZj

using the same argument as in (C-72), we obtain that

E∆8
C = O

(
λmax(Λ)4 ·max

j
σ8
j · polyLog(n)

)
= O (polyLog(n)) ,

and by Markov inequality and (C-73),

E(∆8
C |Z) = Op

(
E∆8

C

)
= Op(polyLog(n)).

Proof of Proposition 3.9. The proof that assumptions A4 and A5 hold with high
probability is exactly the same as the proof of Proposition 3.8. It is left to prove assump-
tion A3*; see Corollary 3.3. Let c = (mini |(Λ−

1
2 1)i|)−1 and Z = (c1 Z̃). Recall the the

definition of λ̃+ and λ̃−, we have

λ̃+ = λmax(Σ{1}), λ̃− = λmin(Σ{1}),

where

Σ{1} =
1

n
Z̃T
(
I − 11T

n

)
Z̃.

Rewrite Σ{1} as

Σ{1} =
1

n

((
I − 11T

n

)
Z̃

)T ((
I − 11T

n

)
Z̃

)
.

It is obvious that

span

((
I − 11T

n

)
Z̃

)
⊂ span(Z).

As a consequence

λ̃+ ≤ λmax

(
ZTZ

n

)
, λ̃− ≥ λmin

(
ZTZ

n

)
.

It remains to prove that

λmax

(
ZTZ

n

)
= Op (polyLog(n)) , λmin

(
ZTZ

n

)
= Ωp

(
1

polyLog(n)

)
.

To prove this, we let

Z∗ = Λ−
1
2 Z

(
1 0

0 Σ−
1
2

)
, (ν Z̃∗),

where ν = cΛ−
1
2 1 and Z̃∗ = Λ−

1
2 Z̃Σ−

1
2 . Then

λmax

(
ZTZ

n

)
= λmax

(
Σ

1
2ZT∗ ΛZ∗Σ

1
2

n

)
≤ λmax(Σ) · λmax(Λ) · λmax

(
ZT∗ Z∗
n

)
,
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and

λmin

(
ZTZ

n

)
= λmin

(
Σ

1
2ZT∗ ΛZ∗Σ

1
2

n

)
≥ λmin(Σ) · λmin(Λ) · λmin

(
ZT∗ Z∗
n

)
.

It is left to show that

λmax

(
ZT∗ Z∗
n

)
= Op(polyLog(n)), λmin

(
ZT∗ Z∗
n

)
= Ωp

(
1

polyLog(n)

)
.

By definition, mini |νi| = 1 and maxi |νi| = O (polyLog(n)), then

λmax

(
ZT∗ Z∗
n

)
= λmax

(
Z̃T∗ Z̃∗
n

+
ννT

n

)
≤ λmax

(
Z̃T∗ Z̃∗
n

)
+
‖ν‖22
n

.

Since Z̃∗ has i.i.d. standard gaussian entries, by Proposition E.3,

λmax

(
Z̃T∗ Z̃∗
n

)
= Op(1).

Moreover, ‖ν‖22 ≤ nmaxi |νi|2 = O(n · polyLog(n)) and thus,

λmax

(
ZT∗ Z∗
n

)
= Op(polyLog(n)).

On the other hand, similar to Proposition 3.6,

Z∗ = diag(B1, . . . , Bn)Z∗

where B1, . . . , Bn are i.i.d. Rademacher random variables. The same argument in the
proof of Proposition 3.6 implies that Z∗ has independent entries with sub-gaussian norm
bounded by ‖ν‖2∞ ∨ 1 and variance lower bounded by 1. By Proposition E.7, Z∗ satisfies
assumption A3 with high probability. Therefore, A3* holds with high probability.

Proof of Proposition 3.10. Let Λ = (λ1, . . . , λn) and Z be the matrix with entries
Zij , then by Proposition 3.4 or Proposition 3.5, Zij satisfies assumption A3 with high
probability. Notice that

λ+ = λmax

(
ZTΛ2Z

n

)
≤ λmax(Λ)2 · λmax

(
ZTZ
n

)
= Op(polyLog(n)),

and

λ− = λmin

(
ZTΛ2Z

n

)
≥ λmin(Λ)2 · λmin

(
ZTZ
n

)
= Ωp

(
1

polyLog(n)

)
.

Thus Z satisfies assumption A3 with high probability.

Conditioning on any realization of Λ, the law of Zij does not change due to the indepen-
dence between Λ and Z. Repeating the arguments in the proof of Proposition 3.4 and
Proposition 3.5, we can show that

ZTj Q̃jZj
tr(Q̃j)

= Ωp

(
1

polyLog(n)

)
, and E max

i=0,...,n;j=1,...,p
|α̃Tj,iZj |8 = Op(polyLog(n)),

(C-74)
where

Q̃j = ΛQjΛ, α̃j,0 =
Λhj,0
‖Λhj,0‖2

, α̃j,1,i =
Λhj,1,i
‖Λhj,1,i‖2

.
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Then

ZTj QjZj

tr(Qj)
=
ZTj Q̃jZj
tr(Q̃j)

· tr(ΛQjΛ)

tr(Qj)
≥ a2 ·

ZTj Q̃jZj
tr(Q̃j)

= Ωp

(
1

polyLog(n)

)
, (C-75)

and

E∆8
C = E

[
max

i=0,...,n;j=1,...,p
|α̃Tj,iZj |8 ·max

{
max
j

‖Λhj,0‖2
‖hj,0‖2

,max
i,j

‖Λhj,1,i‖2
‖hj,1,i‖2

}8
]

(C-76)

≤ b8E
[

max
i=0,...,n;j=1,...,p

|α̃Tj,iZj |8
]

= Op(polyLog(n)).

By Markov inequality, the assumption A5 is satisfied with high probability.

Proof of Proposition 3.11. The concentration inequality of ζi plus a union bound
imply that

P
(

max
i
ζi > (log n)

2
α

)
≤ nc1e−c2(logn)

2

= o(1).

Thus, with high probability,

λmax = λmax

(
ZTΛ2Z

n

)
≤ (log n)

4
α · λmax

(
ZTZ
n

)
= Op(polyLog(n)).

Let n′ = b(1 − δ)nc for some δ ∈ (0, 1 − κ). Then for any subset I of {1, . . . , n} with
size n′, by Proposition E.6 (Proposition E.7), under the conditions of Proposition 3.4
(Proposition 3.5), there exists constants c3 and c4, which only depend on κ, such that

P

(
λmin

(
ZTI ZI
n

)
< c3

)
≤ e−c4n

where ZI represents the sub-matrix of Z formed by {Zi : i ∈ I}, where Zi is the i-th row
of Z. Then by a union bound,

P

(
min
|I|=n′

λmin

(
ZTI ZI
n

)
< c3

)
≤
(

n
n′

)
e−c4n.

By Stirling’s formula, there exists a constant c5 > 0 such that(
n
n′

)
=

n!

n′!(n− n′)!
≤ c5 exp

{
(−δ̃ log δ̃ − (1− δ̃) log(1− δ̃))n

}
where δ̃ = n′/n. For sufficiently small δ and sufficiently large n,

−δ̃ log δ̃ − (1− δ̃) log(1− δ̃) < c4

and hence

P

(
min
|I|=n′

λmin

(
ZTI ZI
n

)
< c3

)
< c5e

−c6n (C-77)

for some c6 > 0. By Borel-Cantelli Lemma,

lim inf
n→∞

min
|I|=b(1−δ)nc

λmin

(
ZTI ZI
n

)
≥ c3 a.s..

On the other hand, since F−1 is continuous at δ, then

ζ(b(1−δ)nc)
a.s.→ F−1(δ) > 0.

62



where ζ(k) is the k-th largest of {ζi : i = 1, . . . , n}. Let I∗ be the set of indices corre-
sponding to the largest b(1− δ)nc ζ ′is. Then with probability 1,

lim inf
n→∞

λmin

(
ZTZ

n

)
= lim inf

n→∞
λmin

(
ZTΛ2Z

n

)
≥ lim inf

n→∞
ζ(b(1−δ)nc) · lim inf

n→∞
λmin

(
ZTI∗Λ2

I∗ZI∗
n

)
≥ lim inf

n→∞
ζ(b(1−δ)nc) · lim inf

n→∞
min

|I|=b(1−δ)nc
λmin

(
ZTI ZI
n

)
≥ c3F−1(δ)2 > 0.

To prove assumption A4, similar to (C-75) in the proof of Proposition 3.10, it is left to
show that

min
j

tr(ΛQjΛ)

tr(Qj)
= Ωp

(
1

polyLog(n)

)
.

Furthermore, by Lemma C.5, it remains to prove that

min
j

tr(ΛQjΛ) = Ωp

(
n

polyLog(n)

)
.

Recalling the equation (B-60) in the proof of Lemma B.7, we have

eTi Qjei ≥
K0

K1
· 1

1 + eTi Z
T
[j](Z

T
(i),[j]Z(i),[j])−1Z[j]ei

. (C-78)

By Proposition E.5,

P


√√√√λmax

(
ZTj Zj
n

)
> 3C1

 ≤ 2e−C2n.

On the other hand, apply (C-77) to Z(i),[j], we have

P

(
min

|I|=b(1−δ)nc
λmin

(
(Z(i),[j])

T
I (Z(i),[j])I

n

)
< c3

)
< c5e

−c6n.

A union bound indicates that with probability (c5np+ 2p)e−min{C2,c6}n = o(1),

max
j
λmax

(
ZT[j]Z[j]

n

)
≤ 9C2

1 , min
i,j

min
|I|=b(1−δ)nc

λmin

(
(Z(i),[j])

T
I (Z(i),[j])I

n

)
≥ c3.

This implies that for any j,

λmax

(
ZT[j]Z[j]

n

)
= λmax

(
ZT[j]Λ

2Z[j]

n

)
≤ ζ2(1) · 9C

2
1

and for any i and j,

λmin

(
ZT(i),[j]Z(i),[j]

n

)
= λmin

(
ZT(i),[j]ζ

2
(i)Z(i),[j]

n

)

≥min{ζ(b(1−δ)nc), ζ(b(1−δ)nc) + 1}2 · min
|I|=b(1−δ)nc

λmin

(
(Z(i),[j])

T
I ζ

2
(i)(Z(i),[j])I

n

)
≥c3 min{ζ(b(1−δ)nc), ζ(b(1−δ)nc) + 1}2 > 0.

Moreover, as discussed above,

ζ(1) ≤ (log n)
2
α ,min{ζ(b(1−δ)nc), ζ(b(1−δ)nc) + 1} → F−1(δ)
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almost surely. Thus, it follows from (C-78) that with high probability,

eTi Qjei ≥
K0

K1
· 1

1 + eTi Z
T
[j](Z

T
(i),[j]Z(i),[j])−1Z[j]ei

≥ K0

K1
· 1

1 + eTi
ZT

[j]
Z[j]

n ei · c3(F−1(δ))2

≥ K0

K1
· 1

1 + (log n)
4
α · 9C2

1 · c3(F−1(δ))2
.

The above bound holds for all diagonal elements of Qj uniformly with high probability.
Therefore,

tr(ΛQjΛ) ≥ ζ2(b(1−δ)nc)·b(1−δ)nc·
K0

K1
· 1

1 + (log n)
4
α · 9C2

1 · c3(F−1(δ))2
= Ωp

(
n

polyLog(n)

)
.

As a result, the assumption A4 is satisfied with high probability. Finally, by (C-76), we
obtain that

E∆8
C ≤ E

[
max

i=0,...,n;j=1,...,p
|α̃Tj,iZj |8 · ‖Λ‖8op

]
.

By Cauchy’s inequality,

E∆8
C ≤

√
E max
i=0,...,n;j=1,...,p

|α̃Tj,iZj |16 ·
√
Emax

i
ζ16i .

Similar to (C-72), we conclude that

E∆8
C = O (polyLog(n))

and by Markov inequality, the assumption A5 is satisfied with high probability.

C-4 More Results of Least-Squares (Section 5)

C-4.1 The Relation Between Sj(X) and ∆C

In Section 5, we give a sufficient and almost necessary condition for the coordinate-
wise asymptotic normality of the least-square estimator β̂LS ; see Theorem 5.1. In this
subsubsection, we show that ∆C is a generalization of maxj∈Jn Sj(X) for general M-
estimators.

Consider the matrix (XTDX)−1XT , where D is obtain by using general loss functions,
then by block matrix inversion formula (see Proposition E.1),

eT1 (XTDX)−1XT = eT1

(
XT

1 DX1 XT
1 DX[1]

XT
[1]DX1 XT

[1]DX[1]

)−1(
XT

1

XT
[1]

)
=

XT
1 (I −DX[1](X

T
[1]DX[1])

−1XT
[1])

XT
1 (D −DX[1](X

T
[1]DX[1])−1X

T
[1]D)X1

≈
XT

1 (I −D[1]X[1](X
T
[1]D[1]X[1])

−1XT
[1])

XT
1 (D −DX[1](X

T
[1]DX[1])−1X

T
[1]D)X1

where we use the approximation D ≈ D[1]. The same result holds for all j ∈ Jn, then

‖eTj (XTDX)−1XT ‖∞
‖eTj (XTDX)−1XT ‖2

≈
‖XT

1 (I −D[1]X[1](X
T
[1]D[1]X[1])

−1XT
[1])‖∞

‖XT
1 (I −D[1]X[1](X

T
[1]D[1]X[1])−1X

T
[1])‖2

.

Recall that hTj,1,i is i-th row of I −D[1]X[1](X
T
[1]D[1]X[1])

−1XT
[1], we have

max
i

|hTj,1,iX1|
‖hj,1,i‖2

≈
‖eTj (XTDX)−1XT ‖∞
‖eTj (XTDX)−1XT ‖2

.

The right-handed side equals to Sj(X) in the least-square case. Therefore, although of
complicated form, assumption A5 is not an artifact of the proof but is essential for the
asymptotic normality.
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C-4.2 Additional Examples

Benefit from the analytical form of the least-square estimator, we can depart from sub-
gaussinity of the entries. The following proposition shows that a random design matrix
Z with i.i.d. entries under appropriate moment conditions satisfies maxj∈Jn Sj(Z) = o(1)
with high probability. This implies that, when X is one realization of Z, the conditions
Theorem 5.1 are satisfied for X with high probability over Z.

Proposition C.6. If {Zij : i ≤ n, j ∈ Jn} are independent random variables with

1. maxi≤n,j∈Jn(E|Zij |8+δ)
1

8+δ ≤M for some δ,M > 0;

2. mini≤n,j∈Jn Var(Zij) > τ2 for some τ > 0

3. P (Z has full column rank) = 1− o(1);

4. EZj ∈ span{Zj : j ∈ Jcn} almost surely for all j ∈ Jn;

where Zj is the j-th column of Z. Then

max
j∈Jn

Sj(Z) = Op

(
1

n
1
4

)
= op(1).

A typical practically interesting example is that Z contains an intercept term, which is
not in Jn, and Zj has i.i.d. entries for j ∈ Jn with continuous distribution and sufficiently
many moments, in which case the first three conditions are easily checked and EZj is a
multiple of (1, . . . , 1), which belongs to span{Zj : j ∈ Jcn}.

In fact, the condition 4 allows Proposition C.6 to cover more general cases than the
above one. For example, in a census study, a state-specific fix effect might be added into
the model, i.e.

yi = αsi + zTi β
∗ + εi

where si represents the state of subject i. In this case, Z contains a sub-block formed by
zi and a sub-block with ANOVA forms as mentioned in Example 1. The latter is usually
incorporated only for adjusting group bias and not the target of inference. Then condition
4 is satisfied if only Zij has same mean in each group for each j, i.e. EZij = µsi,j .

Proof of Proposition C.6. By Sherman-Morison-Woodbury formula,

eTj (ZTZ)−1ZT =
ZTj (I −Hj)

ZTj (I −Hj)Zj

where Hj = Z[j](Z
T
[j]Z[j])

−1ZT[j] is the projection matrix generated by Z[j]. Then

Sj(Z) =
‖eTj (ZTZ)−1ZT ‖∞
‖eTj (ZTZ)−1ZT ‖2

=
‖ZTj (I −Hj)‖∞√
ZTj (I −Hj)Zj

. (C-79)

Similar to the proofs of other examples, the strategy is to show that the numerator, as a
linear contrast of Zj , and the denominator, as a quadratic form of Zj , are both concen-
trated around their means. Specifically, we will show that there exists some constants C1

and C2 such that

max
j∈Jn

sup
A∈Rn×n,A2=A,
tr(A)=n−p+1

{
P
(
‖AZj‖∞ > C1n

1
4

)
+ P

(
ZTj AZj < C2n

)}
= o

(
1

n

)
. (C-80)

If (C-80) holds, since Hj is independent of Zj by assumptions, we have

P

(
Sj(Z) ≥ C1√

C2

· n− 1
4

)
= P

 ‖ZTj (I −Hj)‖∞√
ZTj (I −Hj)Zj

≥ C1√
C2

· n− 1
4
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≤P
(
‖(I −Hj)Zj‖∞ > C1n

1
4

)
+ P

(
ZTj (I −Hj)Zj < C2n

)
=E

[
P
(
‖(I −Hj)Zj‖∞ > C1n

1
4

) ∣∣∣∣Z[j]

]
+ E

[
P
(
ZTj (I −Hj)Zj < C2n

) ∣∣∣∣Z[j]

]
(C-81)

≤ sup
A∈Rn×n,A2=A,tr(A)=n−p+1

P
(
‖AZj‖∞ > C1n

1
4

)
+ P

(
ZTj AZj < C2n

)
≤max
j∈Jn

{
sup

A∈Rn×n,A2=A,tr(A)=n−p+1

P
(
‖AZj‖∞ > C1n

1
4

)
+ P

(
ZTj AZj < C2n

)}
= o

(
1

n

)
.

(C-82)

Thus with probability 1− o(|Jn|/n) = 1− o(1),

max
j∈Jn

Sj(Z) ≤ C1√
C2

· n− 1
4

and hence

max
j∈Jn

Sj(Z) = Op

(
1

n
1
4

)
.

Now we prove (C-80). The proof, although looks messy, is essentially the same as the
proof for other examples. Instead of relying on the exponential concentration given by
the sub-gaussianity, we show the concentration in terms of higher-order moments.

In fact, for any idempotent A, the sum square of each row is bounded by 1 since∑
i

A2
ij = (A2)j,j ≤ λmax(A2) = 1.

By Jensen’s inequality,

EZ2
ij ≤ (E|Zij |8+δ)

2
8+δ .

For any j, by Rosenthal’s inequality (Rosenthal, 1970), there exists some universal con-
stant C such that

E

∣∣∣∣∣
n∑
i=1

AijZij

∣∣∣∣∣
8+δ

≤ C


n∑
i=1

|Aij |8+δE|Zij |8+δ +

(
n∑
i=1

A2
ijEZ2

ij

)4+δ/2


≤ C


n∑
i=1

|Aij |2E|Zij |8+δ +

(
n∑
i=1

A2
ijEZ2

ij

)4+δ/2


≤ CM8+δ


n∑
i=1

A2
ij +

(
n∑
i=1

A2
ij

)4+δ/2
 ≤ 2CM8+δ.

Let C1 = (2CM8+δ)
1

8+δ , then for given i, by Markov inequality,

P

(∣∣∣∣ n∑
i=1

AijZij

∣∣∣∣ > C1n
1
4

)
≤ 1

n2+δ/4

and a union bound implies that

P
(
‖AZj‖∞ > C1n

1
4

)
≤ 1

n1+δ/4
= o

(
1

n

)
. (C-83)

Now we derive a bound for ZTj AZj . Since p/n → κ ∈ (0, 1), there exists κ̃ ∈ (0, 1 − κ)
such that n− p > κ̃n. Then

EZTj AZj =

n∑
i=1

AiiEZ2
ij > τ2 tr(A) = τ2(n− p+ 1) > κ̃τ2n. (C-84)

To bound the tail probability, we need the following result:
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Lemma C.7 (Bai and Silverstein (2010), Lemma 6.2). Let B be an n × n nonrandom
matrix and W = (W1, . . . ,Wn)T be a random vector of independent entries. Assume that
EWi = 0, EW 2

i = 1 and E|Wi|k ≤ νk. Then, for any q ≥ 1,

E|WTBW − tr(B)|q ≤ Cq
(

(ν4 tr(BBT ))
q
2 + ν2q tr(BBT )

q
2

)
,

where Cq is a constant depending on q only.

It is easy to extend Lemma C.7 to non-isotropic case by rescaling. In fact, denote σ2
i

by the variance of Wi, and let Σ = diag(σ1, . . . , σn), Y = (W1/σ1, . . . ,Wn/σn). Then

WTBW = Y TΣ
1
2BΣ

1
2Y,

with Cov(Y ) = I. Let B̃ = Σ
1
2BΣ

1
2 , then

B̃B̃T = Σ
1
2BΣBTΣ

1
2 � ν2Σ

1
2BBTΣ

1
2 .

This entails that

tr(B̃B̃T ) ≤ nu2 tr(Σ
1
2BBTΣ

1
2 ) = ν2 tr(ΣBBT ) ≤ ν22 tr(BBT ).

On the other hand,

tr(B̃B̃T )
q
2 ≤ nλmax(B̃B̃T )

q
2 = nν

q
2
2 λmax

(
Σ

1
2BBTΣ

1
2

) q
2 ≤ nνq2λmax(BBT )

q
2 .

Thus we obtain the following result

Lemma C.8. Let B be an n×n nonrandom matrix and W = (W1, . . . ,Wn)T be a random
vector of independent mean-zero entries. Suppose E|Wi|k ≤ νk, then for any q ≥ 1,

E|WTBW − EWTBW |q ≤ Cqνq2
(

(ν4 tr(BBT ))
q
2 + ν2q tr(BBT )

q
2

)
,

where Cq is a constant depending on q only.

Apply Lemma C.8 with W = Zj , B = A and q = 4 + δ/2, we obtain that

E|ZTj AZj − EZTj AZj |4+δ/2 ≤ CM16+2δ
(

(tr(AAT ))2+δ/4 + tr(AAT )2+δ/4
)

for some constant C. Since A is idempotent, all eigenvalues of A is either 1 or 0 and thus
AAT � I. This implies that

tr(AAT ) ≤ n, tr(AAT )2+δ/4 ≤ n

and hence
E|ZTj AZj − EZTj AZj |4+δ/2 ≤ 2CM16+2δn2+δ/4

for some constant C1, which only depends on M . By Markov inequality,

P

(
|ZTj AZj − EZTj AZj | ≥

κ̃τ2n

2

)
≤ 2CM16+2δ

(
2

κ̃τ2

)4+δ/2

· 1

n2+δ/4
.

Combining with (C-84), we conclude that

P
(
ZTj AZj < C2n

)
= O

(
1

n2+δ/4

)
= o

(
1

n

)
(C-85)

where C2 = κ̃τ2

2 . Notice that both (C-83) and (C-85) do not depend on j and A. There-
fore, (C-80) is proved and hence the Proposition.
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D Additional Numerical Experiments

In this section, we repeat the experiments in section 6 by using L1 loss, i.e. ρ(x) = |x|.
L1-loss is not smooth and does not satisfy our technical conditions. The results are
displayed below. It is seen that the performance is quite similar to that with the huber
loss.
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Figure 5: Empirical 95% coverage of β̂1 with κ = 0.5 (left) and κ = 0.8 (right) using
L1 loss. The x-axis corresponds to the sample size, ranging from 100 to 800; the y-axis
corresponds to the empirical 95% coverage. Each column represents an error distribution
and each row represents a type of design. The orange solid bar corresponds to the case
F = Normal; the blue dotted bar corresponds to the case F = t2; the red dashed bar
represents the Hadamard design.
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Figure 6: Mininum empirical 95% coverage of β̂1 ∼ β̂10 with κ = 0.5 (left) and κ = 0.8
(right) using L1 loss. The x-axis corresponds to the sample size, ranging from 100 to 800;
the y-axis corresponds to the minimum empirical 95% coverage. Each column represents
an error distribution and each row represents a type of design. The orange solid bar
corresponds to the case F = Normal; the blue dotted bar corresponds to the case F = t2;
the red dashed bar represents the Hadamard design.
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Figure 7: Empirical 95% coverage of β̂1 ∼ β̂10 after Bonferroni correction with κ = 0.5
(left) and κ = 0.8 (right) using L1 loss. The x-axis corresponds to the sample size,
ranging from 100 to 800; the y-axis corresponds to the empirical uniform 95% coverage
after Bonferroni correction. Each column represents an error distribution and each row
represents a type of design. The orange solid bar corresponds to the case F = Normal;
the blue dotted bar corresponds to the case F = t2; the red dashed bar represents the
Hadamard design.
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E Miscellaneous

In this appendix we state several technical results for the sake of completeness.

Proposition E.1 (Horn & Johnson, 2012, formula (0.8.5.6)). Let A ∈ Rp×p be an in-
vertible matrix and write A as a block matrix

A =

(
A11 A12

A21 A22

)
with A11 ∈ Rp1×p1 , A22 ∈ R(p−p1)×(p−p1) being invertible matrices. Then

A−1 =

(
A11 +A−111 A12S

−1A21A
−1
11 −A−111 A12S

−1

−S−1A21A
−1
11 S−1

)
where S = A22 −A21A

−1
11 A12 is the Schur’s complement.

Proposition E.2 (Rudelson & Vershynin, 2013; improved version of the original form
by Hanson & Wright, 1971). Let X = (X1, . . . , Xn) ∈ Rn be a random vector with
independent mean-zero σ2-sub-gaussian components Xi. Then, for every t,

P
(
|XTAX − EXTAX| > t

)
≤ 2 exp

{
−cmin

(
t2

σ4‖A‖2F
,

t

σ2‖A‖op

)}
Proposition E.3 (Bai & Yin, 1993). If {Zij : i = 1, . . . , n, j = 1, . . . , p} are i.i.d. random
variables with zero mean, unit variance and finite fourth moment and p/n→ κ, then

λmax

(
ZTZ

n

)
a.s.→ (1 +

√
κ)2, λmin

(
ZTZ

n

)
a.s.→ (1−

√
κ)2.

Proposition E.4 (Lata la, 2005). Suppose {Zij : i = 1, . . . , n, j = 1, . . . , p} are indepen-
dent mean-zero random variables with finite fourth moment, then

E
√
λmax (ZTZ) ≤ C

max
i

√∑
j

EZ2
ij + max

j

√∑
i

EZ2
ij + 4

√∑
i,j

EZ4
ij


for some universal constant C. In particular, if EZ4

ij are uniformly bounded, then

λmax

(
ZTZ

n

)
= Op

(
1 +

√
p

n

)
.

Proposition E.5 (Rudelson & Vershynin, 2010). Suppose {Zij : i = 1, . . . , n, j =
1, . . . , p} are independent mean-zero σ2-sub-gaussian random variables. Then there exists
a universal constant C1, C2 > 0 such that

P

(√
λmax

(
ZTZ

n

)
> Cσ

(
1 +

√
p

n
+ t

))
≤ 2e−C2nt

2

.

Proposition E.6 (Rudelson & Vershynin, 2009). Suppose {Zij : i = 1, . . . , n, j =
1, . . . , p} are i.i.d. σ2-sub-gaussian random variables with zero mean and unit variance,
then for ε ≥ 0

P

(√
λmin

(
ZTZ

n

)
≤ ε(1−

√
p− 1

n
)

)
≤ (Cε)n−p+1 + e−cn

for some universal constants C and c.
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Proposition E.7 (Litvak et al., 2005). Suppose {Zij : i = 1, . . . , n, j = 1, . . . , p} are
independent σ2-sub-gaussian random variables such that

Zij
d
= −Zij , Var(Zij) > τ2

for some σ, τ > 0, and p/n → κ ∈ (0, 1), then there exists constants c1, c2 > 0, which
only depends on σ and τ , such that

P

(
λmin

(
ZTZ

n

)
< c1

)
≤ e−c2n.
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