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Abstract. We prove a convergence result for a family of Yang-Mills
connections over an elliptic K3 surface M as the fibers collapse. In
particular, assume M is projective, admits a section, and has singular
fibers of Kodaira type I1 and type II. Let Ξtk be a sequence of SU(n)
connections on a principal SU(n) bundle over M , that are anti-self-dual
with respect to a sequence of Ricci flat metrics collapsing the fibers of
M . Given certain non-degeneracy assumptions on the spectral covers
induced by ∂̄Ξtk

, we show that away from a finite number of fibers, the

curvature FΞtk
is locally bounded in C0, the connections converge along

a subsequence (and modulo unitary gauge change) in Lp
1 to a limiting

Lp
1 connection Ξ0, and the restriction of Ξ0 to any fiber is C1,α gauge

equivalent to a flat connection with holomorphic structure determined
by the sequence of spectral covers. Additionally, we relate the connec-
tions Ξtk to a converging family of special Lagrangian multi-sections in
the mirror HyperKähler structure, addressing a conjecture of Fukaya in
this setting.

1. Introduction

The adiabatic limit of anti-self-dual connections on 4-manifolds has been
extensively studied by many authors, with various interesting applications
to problems in gauge theory, geometry, and physics. In [22, 23], Dostoglou
and Salamon proved the Atiyah-Floer conjecture (see [5]) by showing that
the adiabatic limits of self-dual connections on the product of R and the
mapping cylinder of a principal SO(3)-bundle over a compact Riemann sur-
face of higher genus (greater than one) produce holomorphic curves in the
moduli space of flat connections on the SO(3)-bundle. Later, the behav-
ior of anti-self-dual SU(n)-connections along the adiabatic degenerations of
the product of two compact Riemann surfaces of higher genus was studied
in [11] and [60] respectively, which gave mathematical rigorous proofs of
the reduction from the 4-dimensional Yang-Mills theory to 2-dimensional
sigma models discovered by physicists (cf. [9]). Based on previous works
of gauge theory on higher dimensional manifolds [21, 65], [12] generalized
the 4-dimensional case to complex anti-self-dual connections on products of
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Calabi-Yau surfaces. The Atiyah-Floer conjecture was studied in [25] for
principal PU(n)-bundles.

Another motivation for the study of adiabatic limits of anti-self-dual con-
nections arises in the context of the mirror symmetry. In [64], Strominger,
Yau and Zaslow proposed a conjecture, called the SYZ conjecture, for con-
structing mirror Calabi-Yau manifolds via dual special Lagrangian fibra-
tions. Gross, Wilson, Kontsevich, Soibelman and Todorov [45, 54, 55] pro-
posed an alternative version of the SYZ conjecture by using the collapsing
of Ricci-flat Kähler metrics. Motivated by the study of homological mirror
symmetry, a gauge theory analogue of the collapsing of Ricci-flat Kähler
metrics was conjectured by Fukaya (Conjecture 5.5 in [34]), which relates
the adiabatic limits of anti-self-dual connections on Calabi-Yau manifold-
s to special Lagrangian cycles on the mirror Calabi-Yau manifolds. This
conjecture was studied in the preprints [31, 58] for Hermitian-Yang-Mills
connections on 2-dimensional complex torus, and in [14] for the case of
Hermitian-Yang-Mills connections on higher dimensional semi-flat Calabi-
Yau manifolds. The present paper proves a version of Fukaya’s conjecture
for anti-self-dual connections on elliptically fibered K3 surfaces.

Let M be a projective elliptically fibered K3 surface, f : M → N ∼=
CP1, admitting a section σ : N → M . Let α be an ample class on M ,
αt = tα + f∗c1(OCP1(1)), t ∈ (0, 1], and let ωt ∈ αt be the unique Ricci-
flat Kähler-Einstein metric in this class (from [77]). We denote by gt the
corresponding Riemannian metric of ωt, which is a HyperKähler metric. The
limit behavior of ωt as t → 0 was studied by Gross and Wilson in [45], for
K3 surfaces with only type I1 singular fibers. This was generalized to any
elliptically fibered K3 surface in [66, 41, 43]. More precisely, if N0 ⊆ N
denotes the complement of the discriminant locus of f , i.e. for any w ∈ N0

the fiber Mw = f−1(w) is a smooth elliptic curve, then it is proved in [41]
that ωt converges to f

∗ω in the locally C∞-sense on MN0 = f−1(N0), where
ω is a Kähler metric on N0 with Ricci curvature Ric(ω) = ωWP (obtained
previously by [62, 66]), and ωWP denotes the Weil-Petersson metric of the
fibers of f . Furthermore, (M,ωt) converges to a compact metric space Y
homeomorphic to N in the Gromov-Hausdorff sense [43].

Assume that f : M → N has only singular fibers of Kodaira type I1
and type II. Let P be a principal SU(n)-bundle on M , and (V,H) be the
smooth Hermitian vector bundle of rank n obtained by the twisted product,
i.e. V ∼= P ×ρ Cn where ρ is the standard SU(n) representation on Cn.
Assume that there is a family of anti-self-dual connections Ξt on P with
respect to gt, for t ∈ (0, 1]. This is equivalent to the curvature FΞt satisfying

FΞt ∧ ωt = 0, and FΞt ∧ Ω = 0,

where Ω is a holomorphic symplectic form on M . For each t ∈ (0, 1], Ξt

induces a holomorphic structure on V, and we denote the resulting holomor-
phic bundle of rank n as Vt.
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Under some non-degeneracy assumptions on the behavior of Vt, the main
result of this paper, Theorem 3.1, asserts that for any sequence tk → 0,
there exists a Zariski open subset No ⊂ N0 such that uk(Ξtk) converges
subsequentially to Ξ0 in the locally C0,α-sense on MNo , for some sequence
of unitary gauge transformations uk on P . Furthermore, the restriction of
the limit Ξ0 to any fiber is unitary gauge equivalent to a smooth flat SU(n)-
connection induced by a holomorphic curve in M , which can be regarded
as a multi-section of f . Furthermore, Ξ0 is the Fourier-Mukai transform of
a certain flat U(1)-connection on the multi-section. We refer the reader to
Theorem 3.1 and Theorem 3.2 for more precise statements. By perform-
ing the HyperKähler rotation, we can use this result to show a version of
Fukaya’s conjecture, relating the connections Ξtk to a converging family of
special Lagrangian multi-sections in the mirror HyperKähler structure.

In comparison to previous results on the adiabatic limits of anti-self-dual
connections, including, for example [22, 11, 60, 32], one essential difficulty
we encounter is that the moduli space ME(n) of flat SU(n)-connections
on a smooth elliptic curve is not smooth, and actually, the whole ME(n) is
degenerated, i.e. there is no smooth point (cf. [59]). Specifically, since every
flat connection is gauge equivalent to a reducible connection, Poincaré type
inequalities may not follow, creating immense analytic difficulties. The same
issue also appears for the case of T 4 = C2/Z4 as in [31, 58]. To overcome
this, we take a totally different approach from [31, 58], which is inspired by
the study of collapsing of Einstein 4-manifolds [1, 15]. In addition we adapt
some of the arguments from [22, 23], as suggested in [34].

Fortunately, in the literature there is a very satisfactory theory about
the moduli spaces of semi-stable holomorphic bundles of rank n on elliptic
curves in algebraic geometry. In the proof of Theorem 3.1, we utilize the
well understood results of holomorphic bundles on elliptic fibered surfaces in
[30, 29, 28], as opposed to the pseudo-holomorphic curve theory in symplectic
geometry used in [22, 58]. Additionally, in the course of our analysis, we
obtain a Poincaré type inequality for the curvatures of SU(n)-connections
on smooth elliptic curves, which relies on the earlier work of the first two
named authors (cf. [17]). This enables us to generalize certain arguments of
[22] to the present case. Finally, the small energy estimates for sufficiently
collapsed Einstein 4-manifolds developed in [1] can be adapted to the case
of Yang-Mills connections on collapsed 4-manifolds, which is used to finish
the proof of the main theorem.

Here we outline the paper briefly. Section 2 reviews the background no-
tions, and preliminary results, which are needed for the main theorem. We
recall the standard background on gauge theory in Section 2.1, and the the-
ory of holomorphic vectors bundles on elliptic curves in Section 2.2. Section
2.3 reviews the previous work about the gauge fixing on elliptic curves by
the first two named authors, which is one essential ingredient in the proof
of the main result of the present paper. Section 2.4 recalls the work of
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Friedman-Morgan-Witten [30, 29], where the relationship between holomor-
phic bundles and spectral covers on elliptic surfaces is established. This
work is the algebro-geometric input needed to overcome the difficulty of
non-smoothness of the moduli spaces of flat connections. In Section 2.5, we
set up some notations for the collapsing of Ricci-flat Kähler Einstein metrics
on K3 surfaces, and leave more detailed discussions to the Appendix. Sec-
tion 2.6 reviews the notion of Fourier-Mukai transform. We adapt the small
energy estimates for sufficiently collapsed Einstein 4-manifolds by Anderson
[1] to the present case in Section 2.7.

Section 3 is devoted to the main theorems of this paper. We state the main
theorems, and in Section 3.1, we apply the main theorems to the SYZ mirror
symmetry for K3 surfaces, which proves a version of Fukaya’s conjecture in
[34]. Section 4 contains the proof of Theorem 3.1 assuming some important
a priori estimates, which are established in the sections that follow. Section
5 contains the key analytic result of the paper, namely the Poincaré type
inequality mentioned above. In Section 6, we obtain a C0-bound for curva-
ture under the assumption of a certain decay rate of curvatures as the fibers
collapse. Section 7 studies the relationship between the energy of curvature
and the spectral covers. In Section 8, we use a blowup argument to prove
the desired curvature decay rate, thereby completing the proof of Theorem
3.1. Section 9 proves Theorem 3.2.

Finally, the appendix has some results of independent interest, where we
study the collapsing rate of Ricci-flat Kähler-Einstein metrics on general
Abelian fibered Calabi-Yau manifolds. Here we improve on the previous
results of [41, 43, 69].

Acknowledgements: We would like to thank Mark Haskins for introduc-
ing the authors to the question, and some valuable comments. The work
was initiated when the second and the third named author attended the
First Annual Meeting 2017 of the Simons Collaboration on Special Holono-
my in Geometry, Analysis and Physics. We thank the Simons Foundation
and the organisers of the meeting for providing this opportunity. We also
thank Simon Donaldson, Mark Gross, Valentino Tosatti, Yuuji Tanaka, and
Michael Singer for some discussions.

2. Preliminaries

In this section, we review the various notions, and preliminary results,
which are needed for the main theorem. Although there is quite a bit of
background to cover, we find it necessary to provide all the important details
before we can state our results.

LetM be a projective, elliptically fiberedK3 surface. Denote the fibration
by f : M → N ∼= CP1. Assume f admits a section σ : N → M , and
furthermore assume f has only singular fibers of Kodaira type I1 and type
II. Let I denote the holomorphic structure onM for which f is holomorphic.
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We denote by SN the discriminant locus f , and N0 = N\SN the regular
locus. The preimage of the regular locus is denoted by M0 := f−1(N0).
For any point w ∈ N , the fiber over this point is written Mw := f−1(w).
Additionally, for any subset U ⊂ N , we use the notation MU := f−1(U).

Let P be a principal SU(n)-bundle on M , and V be the smooth vector
bundle of rank n equipped with an Hermitian metric H induced by P , i.e.
V = P ×ρ Cn, where ρ is the standard unitary representation of SU(n) on
Cn. Note that first Chern class of V vanishes, i.e. c1(V) = 0.

For computing norms it is convenient to use a fixed Kähler form ω on M ,
which lies in a fixed Kähler class α. Unless otherwise specified, all norms
are computed with respect to ω and H. We let ⟨·, ·⟩w denote the inner
product of the space of forms induced by ω|Mw on the fiber Mw, and ∥ · ∥w
the respective L2-norm on Mw.

Throughout the paper, we let C denote constants, which only depend
on fixed background data, whose value may change from line to line. The
constants may depend on a compact or open sets contained in N , and this
dependence is either explicitly stated, or clear from context.

2.1. Anti-self-dual connections. We begin by recalling the standard back-
ground on anti-self-dual connections, and readers are referred to texts [6, 20,
27, 52] for details.

Given the definition of P above, let Ξ be a connection on P , or an SU(n)-
connection of V. If the curvature FΞ satisfies

F 0,2
Ξ = 0, or equivalently FΞ = F 1,1

Ξ ,

then Ξ induces a holomorphic structure on V. We denote the resulting holo-
morphic bundle as VΞ, and ∂̄Ξ the corresponding Cauchy-Riemann operator.
Specifically, we can write the covariant derivative dΞ : C∞(∧qT ∗M ⊗ V) →
C∞(∧q+1T ∗M ⊗ V) as dΞ = ∂Ξ + ∂̄Ξ, and the Cauchy-Riemann operator
is the (0, 1)-component. By construction Ξ is the unique Chern connection
induced by H and ∂̄Ξ.

Let A1,1 be the space of all unitary connections with vanishing (0, 2)-

component of curvatures on P , so for any Ξ ∈ A1,1, we have F 0,2
Ξ = 0. If G

denotes the unitary gauge group, i.e. the space of unitary automorphisms
of V covering the identity on M , then G acts on A1,1 by

u(Ξ) = Ξ + u−1(dΞu),

for u ∈ G and Ξ ∈ A1,1. The G-action extends to an action of the complex
gauge group GC, which consists all automorphisms of V covering the identity
on M , on A1,1 by

g(Ξ) = Ξ + g−1(∂̄Ξg)− (g−1(∂̄Ξg))
∗,

for g ∈ GC, where (·)∗ denotes the conjugate transpose. Any two connections
Ξ1 and Ξ2 ∈ A1,1 induce isomorphic holomorphic structures on V if and only
if Ξ1 = g(Ξ2) for a certain g ∈ GC. Therefore the quotient space A1,1/GC
parameterizes the holomorphic structures on V.
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Note that if g ∈ GC is an Hermitian gauge, i.e. g = g∗, then for any
Ξ ∈ A1,1, the curvature transforms via

Fg(Ξ) = FΞ + ∂Ξ(g
−1(∂̄Ξg))− ∂̄Ξ((∂Ξg)g

−1)

+∂Ξgg
−2∂̄Ξg − g−1∂̄Ξg∂Ξgg

−1,

where Fg(Ξ) is the curvature of the connection g(Ξ). The transformation of
Ξ to g(Ξ) by a Hermitian gauge g is equivalent to fixing the holomorphic
structure on a bundle V , and then changing the Hermitian metric (see [19]
for details).

Given a Kähler class α on M , choose a Kähler form ω ∈ α, and let g be
the corresponding Riemannian metric.

Definition 2.1. An SU(n)-connection Ξ is called anti-self-dual with respect
to the Kähler metric ω if Ξ satisfies the equation

(2.1) ⋆gFΞ = −FΞ,

where ⋆g denotes the Hodge star operator of g.

For any anti-self-dual connection, Chern-Weil theory gives

(2.2)

∫
M

|FΞ|2ωω2 = −
∫
M

tr(FΞ ∧ FΞ) = 8π2c2(V).

Furthermore, anti-self-dual connections are absolute minima of the Yang-
Mills functional on P , and thus satisfy the Yang-Mills equations

dΞFΞ = 0, and d∗ΞFΞ = 0.

This implies the following Weitzenböck formula for the curvature of Ξ

(2.3) 0 = ∆ΞFΞ = ∇∗
Ξ∇ΞFΞ +Rω#FΞ + FΞ#FΞ.

Here Rω denotes the Riemannian curvature of ω, and S#T denotes some
algebraic bilinear expression involving the tensors S and T , where the exact
form is not important for the present paper.

In complex dimension 2, a connection Ξ is anti-self-dual if and only if it is
Hermitian-Yang-Mills [20], which is given by the following set of equations

(2.4) F 1,1
Ξ ∧ ω = 0, and F 0,2

Ξ = 0.

Thus an anti-self-dual connection Ξ induces a holomorphic structure on V,
and we denote the resulting holomorphic vector bundle as VΞ.

For a given Kähler class α on M , a holomorphic vector bundle V is called
α-stable (respectively α-semi-stable), if for any proper torsion-free coherent
subsheaf F , the following inequality holds

c1(F) · α
rank(F)

<
c1(V ) · α
rank(V )

(respectively ≤).

Fundamental work of Donaldson, Uhlenbeck, and Yau, asserts the equiva-
lence between stability and the existence of Hermitian-Yang-Mills connec-
tions (cf. [19, 72]). In particular, we state the following Theorem, restricted
to the SU(n) case.
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Theorem 2.2 (Donaldson [19], Uhlenbeck-Yau [72]). Let (V,H) be the s-
mooth Hermitian bundle induced by a principal SU(n)-bundle P , α be a
Kähler class on M , and ω ∈ α a Kähler metric. If the holomorphic bun-
dle V determined by a GC-orbit O in A1,1 is α-stable, then O contains an
anti-self-dual connection (equivalently a Hermitian-Yang-Mills connection).
Furthermore, this connection is unique up to unitary gauge transformations.
Conversely, if Ξ is an anti-self-dual connection with respect to ω, and the
holomorphic bundle VΞ induced by Ξ is irreducible, then VΞ is α-stable.

Note that if ω is a Ricci-flat Kähler-Einstein metric, then the correspond-
ing Riemannian metric g is a HyperKähler metric, and (ω,Re(Ω), Im(Ω)) is
a HyperKähler triple (cf. [42]), where Ω is a holomorphic symplectic form
such that

ω2 = Re(Ω)2 = Im(Ω)2, ω ∧ Ω = 0, and Re(Ω) ∧ Im(Ω) = 0.

Complex structures making g HyperKähler are parameterized by S2, and
any anti-self-dual connection Ξ with respect to g is also a Hermitian-Yang-
Mills connection with respect to any such complex structure. In the Hyper-
Kähler case, the anti-self-dual equation (2.1) and the Hermitian-Yang-Mills
equation (2.4) are equivalent to the following system

(2.5) FΞ ∧ ω = 0, and FΞ ∧ Ω = 0.

For the remainder of the paper, we mainly work with the above equations,
as they are the most applicable to our setup.

The above equations (2.5) are given with respect to the complex structure
I making f : M → N holomorphic. By the HyperKähler rotation, we have
another complex structure J such that the holomorphic symplectic form
ΩJ = Im(Ω) + iω, and the Kähler form ωJ = Re(Ω). If Ξ is an anti-self-
dual connection with respect to g, then Ξ also satisfies FΞ ∧ ωJ = 0, and
FΞ ∧ ΩJ = 0. Thus Ξ induces a holomorphic bundle structure on V with
respect to the complex structure J , denoted as VΞ,J , and Ξ is a Hermitian-
Yang-Mills connection on VΞ,J .

We conclude this section by recalling Uhlenbeck’s compactness theorems,
which are divided into the cases of weak and strong compactness.

Theorem 2.3 (Uhlenbeck [71, 75]). Let K be a compact subset of M .

i) [Weak compactness] If Ξk is a sequence of unitary connections on
P |K such that ∥FΞk

∥Lp ≤ C, for p > 2, then there exists a sequence
of unitary gauge transformations uk ∈ G2,p so that uk(Ξk) converges
along a subsequence in Lp

1,loc to a Lp
1-unitary connection Ξ∞ on K,

where G2,p denotes the space of Lp
2-unitary gauge changes.

ii) [Strong compactness] If we further assume that Ξk is anti-self-dual
with respect to a Riemannian metric gk, and gk converges smoothly
to a smooth Riemannian metric g∞ locally on K, then uk(Ξk) con-
verges to Ξ∞ in the locally C∞-sense, and Ξ∞ is anti-self-dual with
respect to g∞.
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2.2. Gauge theory on elliptic curves. While working with bundles over
M , we need several preliminary results dealing with the restriction of a
bundle to a fixed elliptic fiber, which we detail here.

Fix a point w ∈ N0, and consider the fiber Mw = E, a smooth elliptic
curve with period τ , i.e. E = C/SpanZ{1, τ}. Equip E with the flat metric
ωF
w := iIm(τ)−1 dz ∧ dz̄. Let V be a holomorphic vector bundle of rank
n with trivial determinant line bundle

∧n V ∼= OE , let ∂̄ be the Cauchy-
Riemann operator, and fix a Hermitian metric H on V . Let Ach be the
unique Chern connection determined by the holomorphic structure and the
Hermitian metric H, i.e. Ach = (∂H)H−1 under a certain local holomorphic
trivialization. Recall that ∥ · ∥w denotes the L2 norm on E.

Proposition 2.4. There exists a δ > 0, dependent only on E and V , so
that if A is in the complexified gauge orbit of Ach and satisfies ∥FA∥w < δ,
then the holomorphic bundle V is semi-stable.

Proof. This proposition follows from the fact, proven by R̊ade, that the crit-
ical values of the Yang-Mills functional (the L2 norm of the curvature) are
discrete, and that in real dimension 2 and 3 the Yang-Mills flow converges in
L2
1 [61]. If A satisfies ∥FA∥w < δ for δ sufficiently small, then the Yang-Mills

flow starting at A must converge to a flat connection A0, by discreteness
of critical values. Thus ∥FA(t)∥w → 0, where A(t) denotes the flow of con-
nections. Furthermore, the Yang-Mills flow preserves the complex gauge
equivalence class of A, so A(t) all define isomorphic holomorphic structures
on V . As a result, V admits an approximate Hermitian-Einstein structure,
and is semi-stable [52]. �

Although the Yang-Mills flow preserves the complex gauge equivalence
class of A, it is not immediately clear whether the limiting flat connection
A0 is contained in the complexified gauge orbit, or only strictly in the closure.
To better understand this, we turn to Atiyah’s classification of semi-stable
bundles on an elliptic curve.

Let 0 ∈ E the identity of the group law. Denote the trivial line bundle
by OE , and given a point q ∈ E, let OE(q− 0) be the line bundle associated
to the divisor q− 0. Define Ir inductively, with I1 = OE and Ir the unique
nontrivial extension of Ir−1 by OE .

Theorem 2.5 (Atiyah [4]). Any semi-stable bundle V over E with trivial
determinant bundle is isomorphic to a direct sum of bundles of the form
OE(q − 0)⊗ Ir, i.e.

V ∼=
ℓ⊕

j=1

OE(qj − 0)⊗ Irj .

Definition 2.6. A semi-stable bundle V is called regular if it is of the form

V ∼=
ℓ⊕

j=1
OE(qj − 0)⊗ Irj with qj ̸= qi for any j ̸= i.
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Now, in our setting one (and only one) of two things can happen. Either
V is isomorphic a direct sum of line bundles V = ⊕OE(q − 0), and the
limiting flat connection A0 is in the complex gauge orbit of A, or V is
isomorphic to a direct sum of bundles of the form OE(q − 0) ⊗ Ir, with at
least one r > 1. In the latter case, OE(q − 0) ⊗ Ir is strictly semi-stable,
since OE(q − 0) ⊂ OE(q − 0)⊗ Ir has degree zero but OE(q − 0)⊗ Ir does
not split holomorphically. As a result V does not admit a flat connection,
and so A is not complex gauge equivalent to A0.

Note that if V ∼=
ℓ⊕

j=1
OE(qj − 0) ⊗ Irj , then V is S-equivalent to the flat

bundle
ℓ⊕

j=1
OE(qj−0)⊕rj (see [28] for the precise definition of S-equivalence).

Every S-equivalence class corresponds to a divisor
ℓ∑

j=1
rjqj in the complete

linear system |n0|. Conversely, any divisor
ℓ∑

j=1
rjqj ∈ |n0| on E induces an

S-equivalence class of semi-stable bundles with trivial determinant, which

contains
ℓ⊕

j=1
OE(qj − 0)⊕rj . Therefore, the moduli space of S-equivalence

classes of semi-stable bundles with trivial determinant is given by the com-
plete linear system |n0| ∼= CPn−1.

Furthermore, the moduli space of flat line bundles on E is the dual torus
Ě ∼= H0,1(E)/H1(E,Z), and we identify E and Ě by q 7→ OE(q−0). Another
way to state this is that a point q ∈ E corresponds to a flat connection
π(Imτ)−1(qdz̄ − q̄dz) on the trivial Hermitian bundle E ×C. Therefore the

flat bundle structure of
n⊕

j=1
OE(qj − 0) is given by the flat connection

(2.6) A0 = π(Imτ)−1(diag{q1, · · · , qn}dz̄ − diag{q̄1, · · · , q̄n}dz),

where
n∑

j=1
qj ∈ |n0|. Note that the above connection has this form in a global

unitary frame for V . Let ME(n) denote the moduli space of flat SU(n)
connections on V , which is naturally identified with |n0|, the moduli space
of S-equivalence classes of semi-stable bundles with trivial determinant.

We note that from the perspective of algebraic geometry, the linear sys-
tem |n0| is a well behaved object. On the other hand, from the perspective
of symplectic geometry, the moduli space ME(n) is quite complicated. In
particular, any flat SU(n)-connection on E is degenerate, the virtual dimen-
sion of ME(n) is zero, and the whole space ME(n) is regarded as singular,
i.e. there is no smooth point (cf. [58, 60]). If we let A denote the space of
all unitary connections on the trivial bundle on E, and G the unitary gauge
group, then following Atiyah-Bott [6], one can construct ME(n) as the sym-
plectic reduction ME(n) = {A ∈ A|FA = 0}/G. Using this construction
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ME(n) is in the singular locus of A/G. Such ill behavior of ME(n) prevents
us to generalize the arguments in [11, 22, 32, 59] directly, where the moduli
space of flat connections on Riemann surfaces of higher genus are considered.
Instead we follow an algebro-geometric approach combined with estimates
for the above non-linear partial differential equations.

2.3. Gauge fixing. In this section we continue to work on a single elliptic
curve (E,ω). Let V be a regular, semi-stable, holomorphic vector bundle of
rank n which admits a flat connection A0, equipped with a Hermitian metric
H. Suppose A is another connection in the complex gauge orbit of A0, i.e.
A = g(A0) for some g ∈ GC. It will be important for us to know under
what conditions we have control over the C0 norm of g. Since the action
of a fixed unitary gauge transformation will not affect this norm, without
loss of generality we assume that A = es(A0) for a trace free Hermitian
endomorphism s.

In general it is not reasonable to expect direct control of s. For example,
if es were a diagonal matrix of constants c1, ..., cn in the trivial frame, then
es(A0) will also be a flat connection. However, one eigenvalue ci can be
arbitrarily large while still preserving the condition that s be trace free, so
s cannot be controlled. What does end up being true is that under a small
curvature assumption, there exists a normalized endomorphism ŝ, which
may be distinct from s, that nevertheless gives the same connection under
the complexified gauge group action, and is uniformly controlled in C0. The
key result of the first two named authors is as follows.

Theorem 2.7 (Datar-Jacob [17]). Let es(A0) be a connection on V given by
the action of a trace free Hermitian endomorphism s. There exists constants
ϵ0 > 0, and C0 > 0, depending only on ω, A0, and H, so that if

∥Fes(A0)∥
2
C0(E) ≤ ϵ0,

then there exists another trace free Hermitian endomorphism ŝ satisfying
that ŝ is perpendicular to the Kernel of dA0, in addition to

es(A0) = eŝ(A0) and ∥ŝ∥C0(E) ≤ C0.

We remark that the assumptions that V be regular and admit a flat con-
nection are critical, as they imply that the holomorphic automorphism group
of V is precisely n dimensional [30]. The idea of the proof is that the lin-
earization of the complex gauge group action of a Hermitian endomorphism
on A0 is ⋆dA0s. Restricting to endomorphisms perpendicular to the Ker-
nel of dA0 , a Poincaré inequality gives that the linearized map is invertible
with bounded inverse. Thus, if es(A0) is sufficiently close to A0, via the
contraction mapping principle the results of the theorem hold. In order for
the theorem to hold under the small curvature assumption, a connectedness
argument is applied. We direct the reader to [17] for further details.

10



2.4. Spectral covers. We now discuss holomorphic vector bundles over our
elliptic fibration M , as opposed to a single elliptic curve.

We assume that f : M → N has only singular fibers of Kodaira type I1
and type II. Then M coincides with the Weierstrass model f̌ : M̌ → N ,
i.e. M = M̌ and f = f̌ (cf. Definition 18 of Chapter 7 in [28]). Let V be
a holomorphic vector bundle V of rank n on M such that the determinant
line bundle

∧n V is trivial, i.e.
∧n V ∼= OM . If the restriction of V on the

generic fiber of f is regular semi-stable, then a multi-valued section of f is
constructed in [30], which is called the spectral cover associated to V . More
precisely, we have the following theorem.

Theorem 2.8 ([30]). Assume that the restriction of V on the generic fiber
of f is semi-stable and regular. Then there exists a divisor

DV ∈ |nσ(N) +ml|,

called the spectral cover associated to V , where l denotes effective divisor
class of the fibers of f , m ∈ Z satisfies 0 ≤ m ≤ c2(V ), and for a generic
w ∈ N0,

V |Mw
∼=

ℓ⊕
j=1

OMw(qj − 0)⊗ Irj , DV ∩Mw =
ℓ∑

j=1

rjqj ∈ |nσ(w)|.

We recall the construction in [30]. Since h0(Mw,OMw(nσ(w))) = n for
any fiber Mw, the push forward f∗OM (nσ) is a vector bundle of rank n on
N , and more precisely,

f∗OM (nσ) = ON ⊕ L−2 ⊕ · · · ⊕ L−n,

where L−1 = σ∗OM (σ) by Lemma 4.1 of [30]. We denote p : Pn−1 → N the
projection bundle, so Pn−1 = Pf∗OM (nσ) (cf. Section 4.1 of [30]). For any
w ∈ N , the fiber p−1(w) is the complete linear system |nσ(w)| ∼= CPn−1,
i.e. p−1(w) = |nσ(w)|, and is identified as the coarse moduli space for semi-
stable bundles of rank n on Mw (cf. Section 1 of [30]). Since the restriction
of V to the generic fiber is semi-stable, there is a non-empty Zariski open
subset N ′ ⊂ N such that for any w ∈ N ′, V |Mw is semi-stable, which defines
a point ϱ(V |Mw) ∈ |nσ(w))| by Theorem 1.2 in [30]. Then Lemma 4.2 of
[30] defines a section

AV : N ′ → p−1(N ′), by AV (w) = ϱ(V |Mw),

and by Lemma 6.1 in [30], AV extends to N as a section of Pn−1, denoted
still by AV : N → Pn−1.

Section 4.3 in [30] constructs an n-sheeted branched covering ϱ : T →
Pn−1, which admits a CPn−2–fibration r : T → M . For any smooth fiber
Mw, Tw = r−1(Mw) →Mw coincides with the construction in Section 2.1 of
[30] as follows. Let Πw ⊂ M⊗n

w be the subset such that (q1, · · · , qn) ∈ Πw

if and only if the divisor q1 + · · ·+ qn is linearly equivalent to nσ(w). If Sn
denotes the symmetric group, and Sn−1 ⊂ Sn is the subgroup fixing the last
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element, then Sn acts on Πw, and the quotient Πw/Sn = |nσ(w)| ∼= CPn−1.
Also Tw = Πw/Sn−1, r|Tw : Tw → Mw is given by (q1, · · · , qn−1, qn) 7→ qn,
and ϱ|Tw : Tw → |nσ(w)| is a branched n-sheeted cover such that ϱ|Tw is
unbranched over q1 + · · · + qn ∈ |nσ(w)| if and only if qi ̸= qj for any

i ̸= j. Clearly, r|Tw(ϱ|−1
Tw (q1 + · · · + qn)) = {q1, · · · , qn} ⊂ Mw for any

q1 + · · ·+ qn ∈ |nσ(w)|.
The spectral cover DV is defined as the scheme-theoretic inverse image of

AV (N), i.e. DV = ϱ−1(AV (N)), which is a subscheme of T , and p ◦ ϱ|DV
:

DV → N is finite and flat of degree n (cf. Definition 5.3 in [30]). By
Lemma 5.4 of [30], r|DV

embeds DV in M as an effective Cartier divisor,
and f ◦ r|DV

= p ◦ ϱ|DV
. Therefore, we always regard DV as a divisor

of M in the present paper. Furthermore, Lemma 5.4 in [30] shows that
OM (DV ) ∼= OM (nσ(N))⊗ f∗LV where LV = A∗

V OPn−1(1). Thus

DV ∈ |nσ(N) +ml|,

where l denotes the effective divisor class of the fibers of f , andm = degLV ∈
Z.

The arguments in Section 6.1 of [30] show that

(2.7) 0 ≤ m = degLV ≤ c2(V ),

which is sketched as follows. Since the restriction of V to the generic fiber
is regular semi-stable, there are only finite possible fibers such that the
restrictions of V are unstable. Lemma 6.2 of [30] proves that by preforming
finite allowable elementary modifications to V , one obtains a new bundle
V ′ such that the restriction of V ′ to any fiber is semi-stable. Furthermore
c2(V

′) ≤ c2(V ), and equality holds if and only if V ′ = V , i.e. there is no
elementary modification preformed.

The proof of Corollary 6.3 in [30] shows that there is a coherent sheaf
V0, whose restriction on any fiber is regular semi-stable, and a morphism
ψ : V0 → V ′, which is an isomorphism on f−1(U) for a nonempty Zariski
open set U ⊂ N . The cokernel coherent sheaf Q is a torsion sheaf supported
on finite fibers, and admits a filtration by degree zero sheaves. Consequently,
c2(V0) = c2(V

′). Note that V0 is isomorphic to V on f−1(U ′) for a nonemp-
ty Zariski open set U ′ ⊂ N , as the above two processes only change the
restrictions of V on finite fibers. Therefore we have AV0 = AV , DV0 = DV ,
and LV0 = LV . By Proposition 5.15 of [30], degLV0 = c2(V0), and we obtain
the inequality (2.7).

The spectral cover DV gives a criterion of V being stable.

Theorem 2.9 (Theorem 7.4 of [30]). If DV is reduced and irreducible, then

V is stable with respect to f∗c1(OCP1(1)) + tα, for all 0 < t ≤ (n
3

4 c2(V ))−1,
where α is an ample class on M .

This theorem can be used to construct stable bundles on M as follows. If
D ∈ |nσ(N) +ml|, m > 2n, is an effective reduced and irreducible divisor,
then Lemma 5.4 in [30] asserts that D is the spectral cover of a unique
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section A of Pn−1, which satisfies m = degA∗OPn−1(1). A holomorphic
vector bundle V is constructed from A (cf. Definition 5.2 in [30]) such
that the restriction of V on every fiber is regular semi-stable with trivial
determinant line bundle, and D is the spectral cover of V , i.e. DV = D.

We recall the construction in Section 5.1 of [30] by assuming that D is
smooth, and does not intersect with any singular set of the singular fibers
of f . If M̃ = D×N M denotes the base change, which is smooth, then there
are morphisms f̃ : M̃ → D and νD : M̃ → M such that f ◦ νD = f |D ◦ f̃ .
We regard M̃ = D ×N M ⊂ M ×N M via the natural embedding D ↪→ M .
Then ΣD = ν∗Dσ and ∆ = M̃ ∩∆0 are divisors, where ∆0 is the diagonal of

M ×N M . For any w ∈ N0, and qj(w) ∈Mw ∩D, we have M̃(w,qj(w)) =Mw,

ΣD ∩M̃(w,qj(w)) = {σ(w)}, and ∆∩M̃(w,qj(w)) = {qj(w)}. Lemma 5.5 of [30]

asserts that the push forward (νD)∗OM̃ (∆−ΣD) satisfies that its restriction
on every fiber is regular semi-stable with trivial determinant line bundle.
Furthermore, for any line bundle L̃ on D, (νD)∗(OM̃ (∆ − ΣD) ⊗ f̃∗L̃) also
satisfies the required conditions.

Conversely, if V is a holomorphic vector bundle whose restriction of V on
every fiber is regular semi-stable with trivial determinant line bundle, and
D is the spectral cover of V , then

V = (νD)∗(OM̃ (∆− ΣD)⊗ f̃∗L̃)

for a certain line bundle L̃ on D by Proposition 5.7 in [30]. Now, since
degL = −σ2 = 2, Proposition 5.12 of [30] asserts that one can choose V via

a suitable L̃ on D such that the first Chern class c1(V ) = 0, and therefore, V
has trivial determinant line bundle on M . Now Theorem 7.4 of [30] shows
that V is stable with respect to f∗c1(OCP1(1)) + tα for 0 < t ≪ 1. In
summary, we have

Theorem 2.10. If D ∈ |nσ(N) +ml|, m > 2n, is an effective reduced and
irreducible divisor, then there exists a holomorphic vector bundle V of rank n
with c1(V ) = 0 on M such that the restriction of V on every fiber is regular
semi-stable, and D is the spectral cover of V , i.e. DV = D. Furthermore,

V is stable with respect to f∗c1(OCP1(1)) + tα, for all 0 < t ≤ (n
3

4 c2(V ))−1,
where α is an ample class on M .

2.5. Collapsing of Ricci-flat Kähler-Einstein metrics. We now intro-
duce some preliminary results on our family of collapsing base metrics on
M , and highlight a new decay estimate necessary for our main theorem. The
reader is directed to Appendix A for a proof of this particular asymptotic
decay.

Let α be an ample class on M , αt = tα + f∗c1(OCP1(1)), t ∈ (0, 1], and
ωt ∈ αt the unique Ricci-flat Kähler-Einstein metric, which satisfies the
complex Monge-Ampère equation

ω2
t = cttΩ ∧ Ω.
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Here Ω is a holomorphic symplectic form on M , and ct tends to a positive
number c0 when t→ 0.

For any t ∈ (0, 1], there exists a family of Kähler metrics ωSF
t onM0, such

that ωSF
t |Mw is the flat metric in the class tα|Mw . Such metrics are called

semi-flat, and we recall their construction here. Note that M0 is obtained
by the quotient of the holomorphic cotangent bundle T ∗N0 by a lattice
subbundle Λ. More precisely, we have a covering map p : T ∗N0 → M0,
so that p(Λ) = σ(N0), and the pull-back p∗Ω is the canonical holomorphic
symplectic form on T ∗N0. If U ⊂ N0 is a small open disk, we can choose
a holomorphic coordinate w on U so that Λ ∩ T ∗U = SpanZ{dw, τ(w)dw},
where τ(w) is the period of the elliptic curve Mw. Under the trivialization
T ∗U ∼= U ×C given by zdw 7→ (w, z), we see p∗Ω = dw ∧ dz. Note that the
(1, 1)-form

i∂∂Im(τ)−1(Im(z))2 =
i

2
W (dz + bdw) ∧ (dz + bdw)

is invariant under the translation of any local constant section of Λ (cf.
Section 3 in [41]), where

W = Im(τ)−1 and b = − Im(z)

Im(τ)

∂τ

∂w
.

Thus the above (1, 1)-form can be regarded as living on f−1(U). The semi-
flat metric is defined as

(2.8) ωSF
t =

i

2

(
tW (dz + bdw) ∧ (dz + bdw) +W−1dw ∧ dw̄

)
.

For simplicity we denote ωSF := ωSF
1 , which we use as a fixed base metric.

We denote

(2.9) θ = dz + bdw.

We now state our decay result for ωt as t → 0, which is contained in
Theorem A.1 (see Appendix A below). Given U ⊂ N0, [41] asserts that
there exists a local section σ0 such that for any ℓ ≥ 0,

∥T ∗
σ0
ωt − ωSF

t ∥Cℓ
loc(MU ,ωSF

t ) → 0,

when t→ ∞, where Tσ0 denotes the fiberwise translation by σ0 (cf. Lemma
4.7 in [41]). Theorem A.1 shows that there is a (1, 1)-form χt satisfying
χt → 0 in C∞ as t→ 0, so that T ∗

σ0
ωt approaches to ω

SF
t + f∗χt faster than

any polynomial rate, i.e.

T ∗
σ0
ωt = ωSF

t + f∗χt + o(t
ν
2 ),

for any ν ≫ 1.
In the proof of the main theorem we need a slightly stronger statement.

The difference between T ∗
σ0
ωt and ω

SF
t can be written out in components in

the fiber and base directions:

T ∗
σ0
ωt − ωSF

t = φt,zz̄dz ∧ dz̄ + φt,ww̄dw ∧ dw̄ + φt,wz̄dw ∧ dz̄ + φt,zw̄dz ∧ dw̄.
14



We need the following important lemma, which is a direct consequence of
Lemma A.2.

Lemma 2.11. For any ν ≫ 1 and ℓ ≥ 0, there is a constant Cℓ,ν > 0 such
that on MU ′, U ′ ⊂ U ,

∥φt,ww̄ − χt,ww̄∥C0 ≤ C0,νt
ν
2 ,

∥ ∂
∂z
φt,ww̄∥Cℓ + ∥ ∂

∂z̄
φt,ww̄∥Cℓ + ∥φt,zz̄∥Cℓ + ∥φt,zw̄∥Cℓ + ∥φt,wz̄∥Cℓ ≤ Cℓ,νt

ν
2 ,

and χt,ww̄ → 0 in the C∞-sense when t→ 0. Here χt = χt,ww̄dw ∧ dw̄, and
the Cℓ-norms are calculated using the fixed Kähler metric ωSF on MU .

In this section we also recall the blow-up limit of t−1ωt, which shows up
in the analysis to follow. Let tk → 0 and wk → w0 in U ⊂ N0. By [41],

(M, t−1
k ωtk , pk) → (C×Mw0 , ω∞ = ωF

w0
+
i

2
W−1(w0)dw̃ ∧ d ¯̃w, p0),

in the C∞-Cheeger-Gromov sense, where wk = f(pk), pk → p0 ∈ Mw0 , ω
F
w0

is the flat Kähler metric representing α|Mw0
, i.e. ωF

w0
= ωSF |Mw0

, and w̃

denotes the coordinate of C. More precisely, if Dr = {w̃ ∈ C||w̃| < r}, we
define smooth embeddings Φk,r : Dr ×Mw0 →MU by

(w̃, a1 + a2τ(w0)) 7→ (wk +
√
tkw̃, a1 + a2τ(wk +

√
tkw̃)), a1, a2 ∈ R/Z,

where we identify MU with (U ×C)/SpanZ{1, τ}. If z = a1 + a2τ(w0), then
a1 + a2τ(wk +

√
tkw̃) = z + hk, where

hk = i(2Imτ(w0))
−1(z̄ − z)(τ(wk +

√
tkw̃)− τ(w0)),

which satisfies that ∥hk∥Cℓ → 0 when tk → 0. Therefore

Φ∗
k,r(dz + bdw) = dz + dhk +

√
tk(b− Imhk(Imτ)

−1∂wτ)dw̃ → dz,

in the C∞-sense. Clearly, dΦ−1
k,rIdΦk,r → I∞, where I is the complex struc-

ture of M and I∞ denotes the complex structure of C×Mw0 , and

(2.10) Φ∗
k,rt

−1
k ωSF

tk
→ ω∞ =

i

2

(
W (w0)dz ∧ dz̄ +W−1(w0)dw̃ ∧ d ¯̃w

)
,

in the C∞-sense on Dr ×Mw0 . Furthermore,

(2.11) (Tσ0 ◦ Φk,r)
∗t−1

k ωtk = Φ∗
k,rt

−1
k T ∗

σ0
ωtk → ω∞,

in the C∞-sense, on Dr ×Mw0 , when tk → 0 by [41].

2.6. Fourier-Mukai transform. In this section, we recall a notion, called
the Fourier-Mukai transform (cf. [7, 56, 14, 13] etc.), and we present a
little variant of the standard construction for the convenience of the proof
of Theorem 3.2.

Let No ⊂ N0 be a Zariski open subset, and Do ⊂ MNo be a smooth
curve such that f |Do : Do → No is a unbranched n-sheets cover. Note
that the moduli space of flat U(1)-connections on Do is the cohomology
group H1(Do,Uc(1)) ∼= H1(Do, U(1)), where Uc(1) is the U(1)-valued locally
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constant sheaf. For any Θ ∈ H1(Do,Uc(1)), the Fourier-Mukai transform
takes the pair (Do,Θ) to a unitary gauge equivalent class FM(Do,Θ) of
U(n)-connections on MNo . We review the construction as the following.

If M̃o = Do ×No MNo is the base change, then the projection f̃ : M̃o →
Do is a fibration with the fiber M̃o

p = Mf(p), and νD : M̃o → MNo is a

unbranched n-sheets cover satisfying f ◦ νD = f |Do ◦ f̃ . We embed M̃o =
Do ×No MNo ↪→ MNo ×No MNo via the natural inclusion Do ↪→ MNo . Let
Σ = ν∗Dσ and ∆ = M̃o∩∆0, where ∆0 denotes the diagonal ofMNo×NoMNo .

For any x ∈ No, and q(x) ∈Mx∩Do, we have M̃o
(x,q(x)) =Mx, Σ∩M̃o

(x,q(x)) =

{σ(x)}, and ∆ ∩ M̃o
(x,q(x)) = {q(x)}. We regard Σ as the zero section of f̃ ,

which is used to identify the fibers with elliptic curves, and view ∆ as the
pull back the multi-section Do, which is a section of f̃ .

There is a U(1)-connection Ao on the smooth trivial line bundle M̃o ×C,
which is obtained by the restriction of the Poincaré line bundle (cf. [7]) on
MNo ×No MNo by identifying MNo with the Jacobian M̌No . We exhibit Ao

explicitly.
If U ⊂ Do is an open disc such that f |U : U → f(U) is biholomorphic, we

choose the coordinate w such that M̃o
U
∼= T ∗U/SpanZ{dw, τdw}, where τ(w)

is the period of M̃o
w. Here the section Σ ≡ 0 under this identification. If z

denotes the coordinate on the fiber, then the holomorphic symplectic form
ν∗DΩ = dw ∧ dz, and ∆ ∩ M̃o

U is given by a holomorphic function q = q(w)

on U , i.e. ∆ ∩ M̃o
U = {(w, q(w))} ⊂ U × C/SpanZ{1, τ}. We have the

U(1)-connection

(2.12) Ao = π(Im(τ))−1(qθ̄ − q̄θ),

on M̃o
U , where θ is defined by (2.9).

If y1 and y2 are real functions defined on U ×C by z = y1+ τy2, then dy1
and dy2 are well-defined 1-forms on M̃o

U . Note that M̃o
U is diffeomorphic to

U×(R/Z)2, and we can regard y1 and y2 as the angle coordinates of R/Z. We

have the decomposition of the cotangent bundle T ∗M̃o
U = SpanR{dy1, dy2}⊕

SpanR{dx1, dx2}, where w = x1 + ix2. Since dz = dy1 + τdy2 + y2dτ ,
2iIm(τ)y2 = z − z̄, we have θ = dy1 + τdy2. If we write q = q1 + τq2, then

(2.13) Ao = 2πi(q2dy1 − q1dy2).

If we choose another basis of the lattice SpanZ{1, τ}, and let y′1 and y′2 be
the corresponding angle coordinates, then y′j =

∑
cjiyi and q′j =

∑
cjiqi

with det(cji) = 1 and cji ∈ Z. A direct calculation shows that Ao is in-
dependent of the choice of the basis, and therefore Ao is a global defined
U(1)-connection on the trivial line bundle M̃o × C.

Let y̌1 and y̌2 be the dual coordinates of y1 and y2 on the dual space (R2)∗,
i.e. if we view (R2)∗ as the cotangent space, then y̌1 and y̌2 are coordinates
with respect to the basis dy1 and dy2. We identify R2/Z2 with the dual
torus (R2)∗/(Z2)∗ via the symplectic form ω = dy2 ∧ dy1, i.e. v 7→ ω(v, ·).
Then q = (q1, q2) ∈ R2/Z2 is mapped to q̌ = (q2,−q1) in (R2)∗/(Z2)∗. The
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Poincaré line bundle is a line bundle on U × R2/Z2 × (R2)∗/(Z2)∗ with the
U(1)-connection

AP = 2πi(y̌1dy1 + y̌2dy2).

Thus Ao = AP |U×R2/Z2×{q̌}, which coincides with the constructions [7, 56].
Let {Uλ|λ ∈ Λ} be a locally finite open cover of No such that any intersec-

tion Uλ1 ∩ · · · ∩Uλh
is contractible. On any Uλ, there are holomorphic func-

tions q1, · · · , qn, such that Do∩MUλ
= {(w, q1(w)), · · · , (w, qn(w))|w ∈ Uλ}.

Furthermore, Do ∩MUλ
= U1

λ ∪ · · · ∪ Un
λ is a disjoint union of open sets bi-

holomorphic to Uλ where U j
λ = {(w, qj(w))}, and {U j

λ|λ ∈ Λ, j = 1, · · · , n}
is an open cover of Do such that any intersections are contractible.

If Θ ∈ H1(Do,Uc(1)), then we let {gijiµλ} ∈ C1({U j
λ},Uc(1)) be the cocycle

representing Θ, where U i
µ ∩ U ji

λ ̸= ∅, and gijiµλ are U(1)-valued constant

functions on U i
µ ∩ U ji

λ . If U i
µ ∩ U j

λ ∩ Uk
ν ̸= ∅, then gijµλg

jk
λνg

ki
νλ = 1. We

identify f̃∗gijiµλ = gijiµλ, and regard gijiµλ as U(1)-valued constant functions on

M̃o
U i
µ
∩ M̃o

U
ji
λ

. Note that (gijiµλ)
−1Aogijiµλ + (gijiµλ)

−1dgijiµλ = Ao. If LΘ denotes

the line bundle on M̃o given by the cocycle {(M̃o
U i
µ
∩ M̃o

U
ji
λ

, gijiµλ)}, then A
o

induces a U(1)-connection on LΘ locally given by (2.12) denoted still by Ao.
The pushforward (νD)∗LΘ is a rank n bundle onMNo given by the transi-

tions gµλ = diag{g1,j1µλ , · · · , gn,jnµλ } onMUµ ∩MUλ
, where U i

µ∩U
ji
λ ̸= ∅. There

is a natural U(n)-connection Ξ on (νD)∗LΘ induced by Ao given locally by

Ξ|MUλ
= diag{(νD)∗Ao|M̃o

U1
λ

, · · · , (νD)∗Ao|M̃o
Un
λ

}

= π(Im(τ))−1(diag{q1, · · · , qn}θ̄ − diag{q̄1, · · · , q̄n}θ),

which satisfies g−1
µλΞ|MUµ

gµλ + g−1
µλdgµλ = Ξ|MUλ

. If {g′ijiµλ } is an another

cocycle representing Θ, then there is a cycle {sjλ} ∈ C0({U j
λ},Uc(1)) such

that g′ijiµλ s
ji
λ = siµg

iji
µλ when U i

µ ∩ U ji
λ ̸= ∅. If we define sλ = diag{s1λ, · · · , snλ}

onMUλ
, then g′µλsλ = sµgµλ, and {sλ|λ ∈ Λ} induces a unitary gauge change

of (νD)∗LΘ.

Definition 2.12. The Fourier-Mukai transform FM(Do,Θ) of (Do,Θ) is
defined as the unitary gauge equivalent class [Ξ] of the U(n)-connection Ξ
on (νD)∗LΘ, i.e.

FM(Do,Θ) = [Ξ].

For any t ∈ (0, 1], the semi-flat metric ωSF
t is HyperKähler, and by us-

ing the HyperKähler rotation, we can find a new complex structure and a
symplectic form such that Do is a special lagrangian submanifold. In [56],
it is shown that the connection obtained by the Fourier-Mukai transform of
a special lagrangian section satisfies the deformed Hermitian-Yang-Mills e-
quation, and in the case of dimension 2, the standard Hermitian-Yang-Mills
equation. In the present case, the bundle (νD)∗LΘ with the connection Ξ
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splits locally, and therefore, it is a corollary of [56] that Ξ is an anti-self-dual
connection. We give a direct calculation proof of this assertion.

Proposition 2.13. If Θ ∈ H1(Do,Uc(1)), then for any Ξ ∈ FM(Do,Θ),
Ξ is an anti-self-dual connection with respect to the semi-flat HyperKähler
structure (ωSF

t ,Ω), t ∈ (0, 1], i.e. the curvature FΞ satisfies that

FΞ ∧ ωSF
t = 0, and FΞ ∧ Ω = 0.

Proof. Since the anti-self-dual equation is unitary gauge invariant, we only
need to verify the split case, i.e. Ξ|MUλ

= diag{Ao|M̃o
U1
λ

, · · · , Ao|M̃o
Un
λ

}, where

we identify MUλ
and M̃o

Uj
λ

via νD. The curvature

FΞ|MUλ
= diag{FAo |M̃o

U1
λ

, · · · , FAo |M̃o
Un
λ

},

and thus we need to prove that FAo satisfies the anti-self-dual equation.
By ∂τ = 0, we have 0 = ∂τ1 + i∂τ2, where τ = τ1 + iτ2, and ∂w̄τ̄ =

∂w̄τ1 − i∂w̄τ2 = −2i∂w̄τ2. Thus

F 0,2
Ao = π∂(τ−1

2 qθ̄) =
πq

2iτ22
∂w̄τ̄ dz̄ ∧ dw̄ +

πq

τ22
∂w̄τ2dz̄ ∧ dw̄ = 0,

which is equivalent to FAo ∧ Ω = 0. By (2.13),

FAo = dAo = 2πi
∑
j=1,2

(∂xjq2dxj ∧ dy1 − ∂xjq1dxj ∧ dy2),

and by (2.8),

ωSF
t = tdy1 ∧ dy2 +W−1dx1 ∧ dx2.

Thus

FAo ∧ ωSF
t = 0,

and we obtain the conclusion. �

Finally, we remark that the split Ξ obtained by the Fourier-Mukai trans-
form is T 2-invariant, and thus reduces to solutions of the Hitchin equation
[49] and the Poisson metric equation [16] on the base No.

2.7. Small energy estimates on collapsed K3 surfaces. Finally, we
review small energy estimates for curvatures of anti-self-dual connections
with respect to collapsed metrics.

As above, for t ∈ (0, 1], let ωt ∈ αt = tα + f∗c1(OCP1(1)) be the unique
Ricci-flat Kähler-Einstein metric in αt, and consider Ξt, a family of anti-
self-dual connections on P with with respect to ωt.

For any p ∈ M , and r > 0, we define the local energy of the curvature
FΞt as

(2.14) Et(p, r) =
r4

Volωt(Bωt(p, r))

∫
Bωt (p,r)

|FΞt |2ωt
ω2
t .
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This energy is a continuous function of p and r. By the Bishop-Gromov
comparison Theorem, for r1 ≤ r2 it holds

Et(p, r1) ≤ Et(p, r2) and Et(p, 0) = 0.

We have the following small energy estimate for curvatures of anti-self-
dual connections, which is essentially Theorem 4.4 in [1].

Lemma 2.14. There exists a universal constant ε > 0, independent of t,
such that if

Et(p, r) ≤ ε,

for p and r satisfying p ∈ MK and Bωt(p, r) ⊂ MK′ (for fixed compact
subsets K ⊂ K ′ ⊂ N0), then

sup
Bωt (p,r/2)

|FΞt |ωt ≤
CK′ε

1
2

r2

for a constant CK′ > 0.

Proof. By Lemma 4.4 of [41], the curvature Rωt is bounded by a uniform
constant cK′ on MK′ . The Weitzenböck formula (2.3) implies the Bochner
formula

∆ωt |FΞt |ωt ≥ −|FΞt |2ωt
− cK′ |FΞt |ωt .

One can now carry over the exact argument from [1], consisting of Moser
iteration with the local Sobolev inequality

cS
3

(Bωt(p, r)

r4
) 1

4 ∥ξ∥L4(ωt) ≤ ∥dξ∥L2(ωt)

for any compactly supported function ξ on Bωt(p, r), where cS is a universal
constant (cf. (4.1) and Theorem 4.1 in [1]). If we keep track of the extra
cK′ term, because this term is of lower order, it does not affect the choice
of the uniform constant τ , which is thus independent of K and K ′. �

Choose ε≪ 1 such that CK′ε
1
2 ≤ 4. This allows us to make the following

definition.

Definition 2.15. For any t ∈ (0, 1], we define Rt(p) > 0 be the minimal
number such that

Et(p,Rt(p)) = ε.

In particular, for any compact set K ⊂ N0, and p ∈MK , as long as Rt(p)
is small enough, it holds

(2.15) |FΞt |ωt(p) ≤ 4Rt(p)
−2,

and for any r ≥ Rt(p),

Et(p, r) ≥ ε.
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3. The main theorems

In this section, we present the main theorems of this paper, and demon-
strate its applications to SYZ mirror symmetry of K3 surfaces.

Theorem 3.1. Let M be a projective elliptically fibered K3 surface with
fibration f : M → N ∼= CP1. Assume f has a section σ : N → M , and
assume it has only singular fibers of Kodaira type I1 and type II. Let Ω be a
holomorphic symplectic form on M , and let ωt ∈ αt be the unique Ricci-flat
Kähler-Einstein metric in αt = tα + f∗c1(OCP1(1)), t ∈ (0, 1], where α is
an ample class on M . Let P be a principal SU(n)-bundle on M , and let V
be the smooth vector bundle of rank n equipped with a Hermitian metric H
induced by P , i.e. V = P ×ρ Cn.

Assume there exists a family of anti-self-dual SU(n)-connections Ξt on P
with respect to (ωt,Ω), i.e.

FΞt ∧ ωt = 0, and FΞt ∧ Ω = 0,

with t ∈ (0, 1]. Let Vt denote the holomorphic bundle of V equipped with the
holomorphic structure induced by Ξt. Furthermore, assume:

i) The restriction of Vt to a generic fiber of f is semi-stable and regular.
ii) Let Dt ∈ |nσ(N) + ml| be the corresponding spectral cover of Vt,

where 0 < m ≤ c2(V). As t→ 0,

Dt → D0 in |nσ(N) +ml|.

iii) The limit D0 can be written

D0 = Do
0 +D′

0,

where Do
0 ∈ |nσ(N) + m′l| is reduced, for some 0 ≤ m′ ≤ m, and

D′
0 ∈ |(m −m′)l| consists of all irreducible components of D0 sup-

ported on fibers.

Then the following holds:

i) For any sequence tk → 0, and any p > 2, there exists a Zariski
open subset No ⊂ N0, a subsequence (still denoted tk), a sequence
of Lp

2 unitary gauge changes uk ∈ G2,p of P |MNo , and a Lp
1 SU(n)-

connection Ξ0 on P |MNo so that on MNo

uk(Ξtk) → Ξ0

in the locally Lp
1 sense. Here the norms are calculated using a fixed

Kähler metric on M , and the Hermitian metric H on V.
ii) The curvature FΞtk

of Ξtk is locally bounded, i.e. for any compact
subset K ⊂ No, there exists a constant CK so that

∥FΞtk
∥C0(MK) ≤ CK .

iii) For any w ∈ No and 0 < α < 1, there is a C1,α unitary gauge
u∞ on Mw so that u∞(Ξ0|Mw) is a smooth flat connection. This
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limiting connection satisfies that the bundle V|Mw equipped with the
holomorphic structure induced by u∞(Ξ0|Mw) is bi-holomorphic to⊕

q∈Do
0∩Mw

OMw(q − σ(w)).

Remark 1. We remark that D′
0 ∈ |(m −m′)l| is supported on fibers over

a finite number of points, and we refer to these fibers as type III bubbles,
which is the terminology used in the previous relevant works [22, 58, 60].

Remark 2. There is a topological constraint on V built into the above
theorem, namely that

c2(V) ≥ 2n− 2.

To see this, note that if σ(N) is not an irreducible component of Do
0, then

Do
0·σ(N) = −2n+m′ ≥ 0. Otherwise, (Do

0−σ(N))·σ(N) = −2n+2+m′ ≥ 0.
In both cases, we have m′ ≥ 2n − 2, which implies the inequality for the
second Chern number.

Let us demonstrate a case in which the hypotheses of Theorem 3.1 hold.
For a given m ∈ N and s ∈ (0, 1], let Ds be a family of effective reduced
irreducible divisors in the complete linear system |nσ(N)+ml| such that as
s→ 0,

Ds → D0 = Do
0 +

∑
j

Dj in |nσ(N) +ml|,

where Do
0 is reduced and irreducible, Do

0 ∈ |nσ(N) +m′l| for some m′ ≤ m,
and

∑
j Dj ∈ |(m−m′)l|. For example, we can take Ds ≡ D for some fixed

divisor. By Theorem 2.10, we can construct a family of holomorphic bundles
Vs of rank n satisfying c1(Vs) = 0, the restriction of Vs to any fiber Mw is
semi-stable and regular, and Ds is the spectral cover of Vs. Furthermore,
Proposition 5.15 of [30] asserts that c2(Vs) = m, and therefore, all of Vs
are smoothly isomorphic to the same smooth bundle, since SU(n) is simply
connected. Now, Theorem 7.4 of [30] shows that for any s the bundle Vs is
stable with respect to f∗c1(OCP1(1)) + tα for 0 < t ≪ 1 and t ≤ s. As a
result, by Theorem 2.2 (and taking a diagonal sequence) we obtain a family
of anti-self-dual connections Ξt, for which the hypotheses of Theorem 3.1
are verified.

Theorem 3.2. Under the setup of Theorem 3.1, the unitary gauge equiv-
alent class of the limit connection Ξ0 is the Fourier-Mukai transform of a
Θ ∈ H1(Do

0 ∩MNo ,Uc(1)), i.e.

Ξ0 ∈ FM(Do
0 ∩MNo ,Θ),

where Uc(1) is the U(1)-valued locally constant sheaf.
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3.1. Strominger-Yau-Zaslow mirror symmetry with anti-self-dual
connections. We now apply Theorem 3.1 to Fukaya’s Conjecture 5.5 in
[34], which relates the adiabatic limits of anti-self-dual connections to special
Lagrangian cycles on the mirror Calabi-Yau manifolds. While describing the
mirror symmetry background, we first consider the more general setup where
M is any projective elliptically fibered K3 surface admitting a section.

We normalize αt by multiplying a constant, so that the normalized class
α̃t satisfies α̃2

t = [ReΩ]2 = [ImΩ]2. Let ω̃t ∈ α̃t be the Ricci-flat Kähler-
Einstein metric in this class, and so (ω̃t,ReΩ, ImΩ) is a HyperKähler triple.
Using the HyperKähler rotation, we have a family of complex structures Jt
with corresponding Kähler form and the holomorphic symplectic from

ωJt = ImΩ and ΩJt = ω̃t + iReΩ.

Using Ω|Mw = 0 and Ω|σ(N) = 0, under Jt the fibration f becomes a special
Lagrangian fibration, and the section σ is a special Lagrangian section with
respect to ωJt and ΩJt .

Mirror symmetry for K3 surfaces is well understood (cf. [3, 18, 44, 40, 2]),
and in particular the SYZ mirror symmetry of K3 surfaces was studied in
Section 7 of Gross [40] and in Gross-Wilson [44]. For the reader’s conve-
nience we elaborate further on this setup. Let [σ] denotes the class of the
section σ(N) in H2(M,Z) and l the fiber class. Then we have the following
intersection pairings:

l2 = 0, [σ] · l = 1, [σ]2 = −2, [ωJt ] · [σ] = 0,

[ImΩJt ] · [σ] = 0, [ωJt ] · l = 0, and [ImΩJt ] · l = 0.

Now, the SYZ construction from Section 7 of [40] uses the choice of a B-
field B ∈ l⊥/l ⊗ R/Z. However, Gross’ assumptions are slightly different
than those of the present paper. Namely, Gross assumes the K3 surface M
is generic, i.e. the Picard group Pic(M) ∼= Z, while in our case we have
dimPic(M) ≥ 2. Nevertheless, the proof of Theorem 7.3 of [40] shows that,
in our case, if we further assume that [σ] + (1 + 1

2 [ωJt ]
2)l is an ample class

on M , and the B-field B vanishes, then the SYZ mirror of (M, ω̃t,ΩJt) is
f : M → N equipped with the HyperKähler structure (ω̌t, Ω̌t) and the
B-field B̌t satisfying

[Ω̌t] = (l·[ReΩJt ])
−1([σ]+(1+

1

2
[ωJt ]

2)l−i[ωJt ]), [ω̌t] = (l·[ReΩJt ])
−1[ImΩJt ],

and B̌t = (l · [ReΩJt ])
−1[ReΩJt ]− [σ] + mod(l),

on the cohomological level.
We study the case that [σ]+(1+ 1

2 [ωJt ]
2)l is not necessarily ample. Recall

that the Weierstrass model f̌ : M̌ → N of f : M → N is obtained by
contracting the irreducible components of singular fibers of f , which do not
intersect with the section σ (cf. Chapter 7 in [28]). Denote by π : M → M̌
the contraction morphism. Since π contracts finitely many (−2)-curves, M̌
has only orbifold A-D-E singularities.
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Proposition 3.3. Normalize Ω so that [ImΩ]2 = 4. The SYZ mirror of
(M,ωJt ,ΩJt) with vanishing B-field is (M, (l · α̃t)

−1ω̌, (l · α̃t)
−1Ω̌) with the

B-field B̌t, where

Ω̌ = π∗ωM̌ − iImΩ, ω̌ = ReΩ, and

B̌t = (l · α̃t)
−1α̃t − [σ] + mod(l).

Here ωM̌ is the Ricci-flat Kähler-Einstein metric, possibly in the orbifold
sense, such that π∗ωM̌ ∈ c1(OM (σ(N) + 3l)).

Proof. Firstly, note that ([σ] + 3l)2 = 4 > 0. Now, let D be an irreducible
curve such that ([σ] + 3l) · [D] ≤ 0. If [D] · l > 0, then [σ] · [D] < 0. Thus
D = σ, and ([σ]+3l) · [D] = 1 > 0, which is a contradiction. We obtain that
[D] · l ≤ 0, and D is an irreducible component of a fiber. Thus [D] · l = 0,
and [σ] · [D] ≤ 0, which implies that [σ] · [D] = 0, and D is an irreducible
component of a singular fiber of f which does not intersect with σ. Therefore
[σ]+3l is nef and big, and an irreducible curve D satisfies ([σ]+3l) · [D] = 0
if and only if D is an irreducible component of a singular fiber of f which
does not intersect with σ. There is an ample class αM̌ on the Weierstrass

model M̌ such that [σ] + 3l = π∗αM̌ , and by [53], there exists a unique

Ricci-flat Kähler-Einstein metric ωM̌ ∈ αM̌ on M̌ in the orbifold sense.
Since [π∗ωM̌ ]2 = ([σ] + 3l)2 = [ImΩ]2 = [ReΩ]2, (π∗ωM̌ ,ReΩ, ImΩ) is

a HyperKähler triple on π−1(M̌reg). By using the HyperKähler rotation,
we can find new complex structure K, and define a family of HyperKähler
structures

Ω̌t = (l · α̃t)
−1(π∗ωM̌ − iImΩ), ω̌t = (l · α̃t)

−1ReΩ,

which satisfy

[Ω̌t] = (l · [ReΩJt ])
−1([σ] + 3l − i[ωJt ]), and [ω̌t] = (l · [ReΩJt ])

−1[ImΩJt ].

By letting

B̌t = (l · [ReΩJt ])
−1[ReΩJt ]− [σ] + mod(l),

the proof of Theorem 7.3 in [40] shows that (M, ω̌t, Ω̌t) with B̌t is the SYZ
mirror of (M,ωJt ,ΩJt), i.e. (f : MN0 → N0, ω̌t, Ω̌t) is the dual special
Lagrangian fibration of (f :MN0 → N0, ωJt ,ΩJt). �

We now assume that M satisfies the hypotheses of Theorem 3.1, which
gives M = M̌ and π is the identity. We can now see how Theorem 3.1
applies to Conjecture 5.5 in [34]. In our setup, the anti-self-dual connection
Ξt and the complex structure Jt induce a holomorphic structure on V for
any t ∈ (0, 1], and Ξt satisfies the Hermitian-Yang-Mills equation

FΞt ∧ ωJt = 0, and FΞt ∧ ΩJt = 0.

The spectral cover Dt and the limit D0 are special Lagrangian cycles with
respect to the mirror HyperKähler structure (ω̌, Ω̌). We now rephrase The-
orem 3.1 and Theorem 3.2 in the context of SYZ mirror symmetry.
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Theorem 3.4. Under the assumptions of Theorem 3.1, for any sequence
tk → 0 and any p > 2, there exists an open dense subset No ⊂ N0, a
subsequence (still denoted tk), a sequence of Lp

2 unitary gauge changes uk of
P , and a Lp

1 SU(n)-connection Ξ0 on P |MNo so that

uk(Ξtk) → Ξ0

in the locally Lp
1 sense on MNo. Here the norms are calculated by using a

fixed metric on M .
For any w ∈ No, the restriction of Ξ0 to the fiber Mw, denoted Ξ0|Mw , is

C1,α gauge equivalent to a smooth flat SU(n)-connection

u∞(Ξ0|Mw) =
π

Im(τ)
(diag{q1(w), · · · , qn(w)}dz̄−diag{q̄1(w), · · · , q̄n(w)}dz),

where u∞ ∈ G1,α(Mw), Mw
∼= C/Λτ , Λτ = SpanZ{1, τ}, σ(w) = 0, and

z denotes the coordinate on C. As w varies, {q1(w), · · · , qn(w)} ⊂ Mw

forms a special Lagrangian multisection of f−1(No) → No with respect to
the SYZ mirror HyperKähler structure (ω̌, Ω̌), and its closure Do

0 is a special
Lagrangian cycle, i.e.

ω̌|Do
0
≡ 0, and ImΩ̌|Do

0
≡ 0.

The family of special Lagrangian submanifolds Dt with respect to (ω̌, Ω̌) con-
verges to Do

0 on f−1(No) in the locally Hausdorff sense. Furthermore, the u-
nitary gauge equivalent class of the limit connection Ξ0 is the Fourier-Mukai
transform of a flat U(1)-connection Θ on Do

0 ∩MNo, i.e.

Ξ0 ∈ FM(Do
0 ∩MNo ,Θ).

Conversely, if D is a smooth special Lagrangian submanifold with respect
to (ω̌, Ω̌) onM such thatD represents n[σ]+ml ∈ H2(M,Z) for somem ∈ N,
and Θ is a flat U(1)-connection on D, then D is a smooth holomorphic curve
in M . The argument in Section 3.1 shows that there is a stable bundle V
of rank n with respect to f∗c1(OCP1(1)) + tα for 0 < t ≪ 1. The anti-
self-dual connections Ξt on V are also Hermitian-Yang-Mills with respect to
(ωJt ,ΩJt).

In the context of mirror symmetry, a special Lagrangian submanifold
with a flat U(1)-connection is called an A-cycle, and a Hermitian-Yang-Mills
connection on a complex submanifold is called a B-cycle (cf. [56, 51, 73]).
The correspondence between B-cycles and A-cycles is motivated by the study
of homological mirror symmetry via the SYZ construction in [7, 33, 34], and
the extended mirror symmetry with bundles [56, 73]. Theorem 3.4 says that
in the current case, the adiabatic limit of B-cycles is corresponding to an
A-cycle on the mirror K3 surface.

3.2. Remarks. We conclude this section with a few more remarks.

Remark 3. Note that the Levi-Civita connection of the Ricci-flat Kähler-
Einstein metric ωt is an anti-self-dual connection. However Theorem 3.1 does
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not apply to this case due to the following. If Mw is a smooth fiber, then
the restriction of the tangent bundle of M satisfies a short exact sequence

0 → TMw → TM |Mw → f∗TwN → 0,

and TM |Mw is S-equivalent to OMw ⊕OMw . Thus the special cover of TM
is DTM = 2σ(N), and is not reduced. Consequently, the hypotheses of
Theorem 3.1 are not satisfied.

The curvature FΞt in Theorem 3.1 behaves very differently from the cur-
vature of the Ricci-flat Kähler-Einstein metric ωt. In the metric case, the
curvature Rωt of ωt is bounded away from the singular fibers along the
collapsing of ωt, i.e.

sup
MK

|Rωt |ωt ≤ CK ,

for any compact subset K ⊂ N0, by [45, 41]. Furthermore, there is a more
general result in [15] that asserts the boundedness of curvatures of sufficient-
ly collapsed Ricci-flat Riemannian Einstein metrics g on 4-manifolds away
from finite metric balls. The readers are referred to [15] for details.

In Theorem 3.1, it is shown that the curvature FΞt is bounded with respect
to any fixed metric on MU . However, FΞt can not be bounded with respect
to the collapsed metric ωt as the following demonstrates. If it were bounded,
then Proposition 7.1 of Section 7 shows that on any U ⊂ No,∫

U

∑
j=1,2

∥∂xjA0,t∥2wdx1dx2 ≤ C(∥FΞt∥2L2(MU ,ωt)
+ t)

≤ C(sup
MU

|FΞt |2ωt
Volωt(MU ) + t)

≤ Ct→ 0,

where x1 and x2 are coordinates on U , which implies ∂xjA0 ≡ 0, j = 1, 2.

Thus ∂xj (Im(τ)−1qi(w)) ≡ 0, j = 1, 2, and qi(w) = ci(τ(w) − τ̄(w)) for
constants ci ∈ C, i = 1, · · · , n. Note that qi(w) is holomorphic, and τ(w) is
not constant as the fibration f is a Weierstrass fibration. We have ci = 0
and qi(w) ≡ 0, i = 1, · · · , n. Hence Do

0 ∩MU = nσ(U), which contradicts
the assumption of Do

0 being reduced.

Remark 4. Theorem 3.1 is a compactness result, i.e. the convergence of Ξt

occurs along subsequences tk. The convergence along the parameter t may
hold under certain stronger assumptions, for example the following. For any
t ≪ 1, we assume that Vt|Mw is regular semi-stable for any w ∈ N . As in
Section 2.4, Proposition 5.7 of [30] shows that

Vt = (νDt)∗(OM̃ (∆t − ΣDt)⊗ f̃∗L̃t)

for a line bundle L̃t on Dt. If we assume further that L̃t converges to a L̃0

on D0 as divisors along the convergence of Dt to D0, then we expect that Ξt

converges away from finite fibers without passing to any subsequence, which
would be left for the future study.
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Remark 5. There are many more questions that the authors would like to
investigate in the future. Firstly, we would like to understand what are the
corresponding algebraic geometric descriptions of the type I and type II
bubbles in the proof of Proposition 4.1. Secondly, we like to have an explicit
formula for the second Chern number c2(V) via the bubbles and the limit
special cover D0. Here a certain bubble tree convergence is expected.

Finally, we like to study the metric geometry of the moduli space of anti-
self-dual Yang-Mills connections on collapsed K3 surfaces, inspired by the

F-theory/heterotic string theory duality as in [29]. For any 0 < t ≤ (n
3

4 c)
−1,

let Mt(n, c) be the moduli space of anti-self-dual connections on V with re-
spect to the HyperKähler structure (ωt,Ω), where c = c2(V), which is not
empty (cf. Theorem 2.9). By Theorem 7.10 in [52], (ωt,Ω) induces a Hy-
perKähler structure (ωM,t,ΩM,t) on the regular locus Mt(n, c)

o of Mt(n, c).
Furthermore, it is expected that there is a holomorphic lagrangian fibration
f : Mt(n, c)

o → U ⊂ |nσ(N) +ml| (cf. Section 2.4 of [29]). For example, if
D ∈ |nσ(N) +ml| is smooth, then the fiber f−1(D) is the Jacobian J(D) of
D, which parameterises the flat U(1)-connections on D. We would like to
investigate the degeneration behavior of (ωM,t,ΩM,t) when t → 0 in future
study.

4. The proof of Theorem 3.1

In this section we prove Theorem 3.1, assuming some important estimates
which will be proved in the subsequent sections. We begin with a bubbling
result, which gives a decay estimate for curvature away from a finite set.
This set may depend on the chosen sequence of times tk → 0.

Since we are interested in the behavior of the restriction of the connections
Ξtk to a fiber Mw, we use the notation Atk(w) = Ξtk |Mw . In general we
write this fiberwise connection as Atk , as the dependence on w is clear from
context.

Proposition 4.1. If Ξt is a family of anti-self-dual connections on P with
respect to (ωt,Ω), then for any sequence tk → 0, there is a Zariski open
subset N1 ⊂ N0, and a subsequence (still denoted tk), so that the curvature
FΞtk

satisfies

sup
MK

|FΞtk
|ωtk

≤ ϵk
tk

on any compact subset K ⊂ N1. Here the constants ϵk may depend on K,
and satisfy ϵk → 0 as k → ∞. Consequently, for any w ∈ K and tk ≪ 1,

∥FAtk
∥C0(ωSF |Mw ) → 0,

and Vtk |Mw is semi-stable.

Note that the above assumptions are slightly weaker than those used in
Theorem 3.1. To prove the proposition, we follow a bubbling argument
similar to arguments seen previously (for example [22]), however we present
the details here for completeness.
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Proof. Suppose that there exists a sequence of points pk ∈ M so that
f(pk) → w in N0, and furthermore

(4.1) lim inf
k→∞

tk|FΞtk
|ωtk

(pk) > 0.

We claim that there is a universal constant ε > 0 such that for any neigh-
borhood Uw of w, ∫

MUw

|FΞtk
|2ωtk

ω2
tk

≥ ε,

for k ≫ 1. Once this is demonstrated, by (2.2) there can only be a finite
number of such w.

By [41], for some p ∈Mw we have

(M, t−1
k ωtk , pk) → (Mx × C, ω∞ = ωF

w +
i

2
W−1(w)dw̃ ∧ d ¯̃w, p)

in the pointed C∞-Cheeger-Gromov sense, where ωF
w is the flat Kähler metric

representing α|Mw , i.e. ω
F
w = ωSF |Mw , and w̃ denotes the scaled coordinate

of C (see Section 2.4). More precisely, if Dr = {w̃ ∈ C||w̃| < r}, there are
smooth embeddings Φtk,r :Mw ×Dr →MU such that

Φ∗
tk,r

t−1
k ωtk → ω∞, Φ∗

tk,r
IΦtk,r,∗ → I∞,

in the C∞-sense on Mw × Dr, where I (resp. I∞) denotes the complex
structure on M (resp. Mw × C).

We have two cases. In the first case, for any compact subset K ⊂Mw×C,
there is a constant CK > 0 such that

|FΞtk
|t−1

k ωtk
= tk|FΞtk

|ωtk
≤ CK ,

on Φtk,r(K), r ≫ 1. By passing a subsequence, Uhlenbeck’s strong com-
pactness theorem shows that there is a sequence of unitary gauge transfor-
mations uK,k, and an anti-self-dual SU(n)-connection Ξ∞ on Mw × C such
that uK,k(Φ

∗
tk,r

Ξtk) converges to Ξ∞ in the locally C∞-sense on K. Thus,

in the C0-sense on K,

Φ∗
tk,r

|FΞtk
|t−1

k ωtk
→ |FΞ∞ |ω∞ , and |FΞ∞ |ω∞(p) > 0.

By [74], there is a constant µ = µ(n) depending only on the group SU(n),
such that ∫

Mx×C
|FΞ∞ |2ω∞ω

2
∞ ≥ µ.

Furthermore if n = 2, we know µ(2) = 4π2. This is called the bubble of
type II in [22]. By choosing K large enough,∫

MUw

|FΞtk
|2ωtk

ω2
tk

≥
∫
Φtk,r(K)

|FΞtk
|2
t−1
k ωtk

t−2
k ω2

tk
≥ µ

2
,

for k ≫ 1.
The second case is that there are p′k ∈M such that

dt−1
k ωtk

(pk, p
′
k) < C <∞, and, tk|FΞtk

|ωtk
(p′k) → ∞,
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when k → ∞. In order to perform the bubbling argument, recall the follow-
ing point choosing lemma.

Lemma 4.2 (Lemma 9.3 in [22]). Let (Y, dY ) be a complete metric space,
and ζ be a continuous non-negative function. For any y ∈ Y , there exist
y′ ∈ Y and 0 < ρ ≤ 1 such that

dY (y, y
′) ≤ 1, sup

BdY
(y′,ρ)

ζ ≤ 2ζ(y′), and 2ρζ(y′) ≥ ζ(y).

We apply this lemma to ζ = |FΞtk
|t−1

k ωtk
, y = p′k, and obtain y′ = p′′k and

0 ≤ ρ ≤ 1. We further rescale the metric, and (M, |FΞtk
|−1
ωtk

(p′′k)ωtk , p
′′
k) con-

verges to the standard Euclidean space (C2, ωE , 0) in the smooth Cheeger-
Gromov sense by passing to a subsequence. The same argument as above
shows that Ξtk smoothly converges to an non-trivial anti-self-dual SU(n)-
connection Ξ′

∞ on C2 by passing to certain unitary gauge changes and sub-
sequences. We now have ∫

C2

|FΞ′
∞ |2ωE

ω2
E ≥ τ,

where τ is the constant in Lemma 2.14. This is called a bubble of type I, and
is standard in the study of Yang-Mills fields on 4-manifolds (cf. [20, 27]).
Just as above,∫

MUw

|FΞtk
|2ωtk

ω2
tk

≥
∫
ΦK,k(K)

|FΞtk
|2
t−1
k ωtk

t−2
k ω2

tk
≥ τ

2
,

for k ≫ 1, where K satisfies that p′k ∈ ΦK,k(K). We obtain the claim by

letting ε = 1
2 min{µ, τ}.

Let S1 be the set of points x ∈ N0 for which there is a sequence pk ∈ M
such that f(pk) → w in N0, and (4.1) is satisfied. By (2.2)

8π2c2(V) = lim
k→∞

∫
M

|FΞtk
|2ωtk

ω2
tk

≥ ♯(S1)ε,

and as a result S1 is a finite set. Therefore N1 = N0\S1 is a Zariski open
subset, and for any compact subset K ⊂ N1,

sup
MK

tk|FΞtk
|ωtk

≤ ϵk → 0,

when k → ∞.
Since Φ∗

tk,r
t−1
k ωtk converges smoothly to ω∞ on Mw ∈ C for w ∈ K, we

have

∥FAtk
∥C0(ωF ) ≤ 2∥FAtk

∥C0(t−1
k ωtk

|Mw ) ≤ 2 sup
MK

|FΞtk
|t−1

k ωtk
→ 0.

By Proposition 2.4, Vtk |Mw is semi-stable, where as above Vtk denotes V
equipped with the holomorphic structure induced by Ξtk . �
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Restricting to a fiber Mw, by the above proposition, weak Uhlenbeck
compactness gives that for any p > 2, there exists a sequence of unitary
gauge uw,k such that along a subsequence of times, uw,k(Atk) converges in
Lp
1 to a flat Lp

1-connection Ξ∞,w on Mw. In other words, we have fiberwise
convergence of Ξtk up to gauge changes. However, it is not clear yet that
Ξtk has any limit when tk → 0 on MK . For this, we need the stronger
assumptions in Theorem 3.1, and further results and estimates.

We now work under the setup of Theorem 3.1, and consider a sequence
of connections Ξtk where tk → 0 as k → ∞. Before we turn to the key
estimates, we need to describe the explicit form of the holomorphic structure
of the bundle Vt in a local trivialization.

Note that f |Do
0
: Do

0 → N is an n-sheeted branched covering. If SDo
0

denotes the subset of Do
0 consisting all singular points of Do

0 and all branch
points of f |Do

0
, then f(SDo

0
) is a finite subset of N . We define a Zariski open

subset

(4.2) No = N1\(f(D0 −Do
0) ∪ f(SDo

0
)).

On No, f |Do
0
: f |−1

Do
0
(No) → No is an n-sheeted unbranched covering,

since Do
0 is reduced. For any w ∈ No, Do

0 ∩Mw consists n distinct points in
Mw, i.e. D

o
0 ∩Mw = {q1, · · · , qn} where qi ̸= qj for any i ̸= j. The trivial

bundle V|Mw equipped with the holomorphic structure induced by Do
0 ∩Mw

is isomorphic to the flat holomorphic bundle

OMw(q1 − σ(w))⊕ · · · ⊕ OMx(qn − σ(w)).

SinceDt converges toD0 andD0−Do
0 ∈ |(m−m′)l| is supported on fibers, for

any compact subset K ⊂ No we have that f : Dt∩MK → K is an n-sheeted
unbranched covering for t ≪ 1. For any w ∈ K, Dt ∩Mw = {q1,t, · · · , qn,t}
such that qi,t ̸= qj,t for any i ̸= j, and qi,t → qi when t → 0. Furthermore,
Vt|Mw is semi-stable, which implies that Vt|Mw is regular by Proposition 6.4
in [30], and

Vt|Mw
∼= OMw(q1,t − σ(w))⊕ · · · ⊕ OMw(qn,t − σ(w)).

For any t ≪ 1, there is a Zariski open subset No
t ⊃ K such that Vt|Mw ,

w ∈ No
t , is regular semi-stable. Proposition 5.7 of [30] asserts that

Vt|MNo
t
= (νDt)∗(OM̃No

t

(∆t − ΣDt)⊗ f̃∗L̃t)

for a certain line bundle L̃t on Dt ∩MNo
t
. Here, as in Section 2.4,

νDt : M̃No
t
= Dt ×No

t
M →MNo

t
,

ΣDt = ν∗Dt
σ, and ∆t = M̃No

t
∩∆0 for the diagonal ∆0 of M ×No

t
M via the

natural embedding M̃No
t
= Dt ×No

t
M ↪→M ×No

t
M .

Let U ⊂ K ⊂ No
t be an open subset biholomorphic to the unit disk,

and w be a coordinate on U . Then MU
∼= (U × C)/Λ for lattice subbundle

Λ = SpanZ{1, τ}, where τ = τ(w) varies holomorphically and is the period
of the elliptic curve Mw. Furthermore under this identification the section
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σ satisfies σ ≡ 0. If z is the coordinate on C, we define real functions y1
and y2 on U × C by z = y1 + τy2. Then dy1 and dy2 are well-defined 1-
forms on MU , and we have the decomposition of cotangent bundle T ∗MU

∼=
SpanR{dy1, dy2}⊕SpanR{dx1, dx2}, where w = x1+ix2. Let θ = dy1+τdy2,
whose restriction θ|Mw = dz on any fiber Mw. Note that ∂τ = 0, dτ = ∂τ
and 0 = ∂τ1 + i∂τ2, where τ = τ1 + iτ2. Thus dz = dy1 + τdy2 + y2dτ ,
2iτ2y2 = z − z̄, and θ = dz − z−z̄

2iτ2
∂wτdw = dz + bdw.

We fix the trivializations P |MU
∼=MU×SU(n) and V|MU

∼=MU×Cn. The
unitary gauge group consists of SU(n) valued functions, in other words G =
C∞(MU , SU(n)), and the complex gauge group is GC = C∞(MU , SL(n,C))
under this trivialization. The respective Lie algebras are g = C∞(MU , su(n))
and gC = C∞(MU , sl(n,C)). Note that there is the decomposition gC =
g ⊕ ig induced by sl(n,C) = su(n) + isu(n), and if s ∈ gC is Hermitian
(given by s∗ = s), then s ∈ ig. Therefore any complex gauge g can be
written as g = exp (v + s), for a certain v ∈ g and an s ∈ ig.

Note that Do
0 ∩MU (resp. Dt ∩MU ) is given by n distinct holomorphic

functions qj(w) (resp. qj,t(w)), and for any j, qj,t(w) → qj(w) in the C∞-
sense as t→ 0. Thus Dt ∩MU consists of n distinct unit disks, and because
L̃t|Dt∩MU

is holomorphically trivial, we obtain

Vt|MU
∼=

n⊕
j=1

OMU
(qj,t(U)− σ(U)).

We define the background connections on the trivial bundle V|MU

(4.3) A0,t = π(Im(τ))−1(diag{q1,t, · · · , qn,t}θ̄ − diag{q̄1,t, · · · , q̄n,t}θ),

(4.4) A0 = π(Im(τ))−1(diag{q1, · · · , qn}θ̄ − diag{q̄1, · · · , q̄n}θ).
Thus A0,t → A0 in the C∞-sense when t→ 0, Vt|Mw is isomorphic to V|Mw

equipped with the holomorphic structure induced by the flat connection

A0,t|Mw , andA0|Mw induces the holomorphic bundle structure
n⊕

i=1
OMw(qi(w)−

σ(w)).

Lemma 4.3. The unitary connection A0,t on V|MU
induces the holomorphic

structure isomorphic to Vt|MU
.

Proof. In general, if L is a holomorphic line bundle, and h determines a
Hermitian metric on L in a local holomorphic trivialization, then the unique
Chern connection is given by Ah = ∂ log h. If ρ is a local unitary frame,
i.e. |ρ|2h = h|ρ|2 ≡ 1, then we have smooth trivialization of L via ρ 7→ 1,

and under such trivialization, Ah is transformed to A = ∂ log ρ− ∂ log ρ̄. A
different choice of ρ gives a unitary gauge transformation of A.

Note that the holomorphic line bundle OMU
(qj,t(U) − σ(U)) is given by

the multiplier {e1 ≡ 1, eτ = exp (−2πiqj,t(w))}, i.e. OMU
(qj,t(U)− σ(U)) is

obtained by the quotient of U × C× C via

(w, z, ξ) ∼ (w, z + 1, e1ξ), (w, z, ξ) ∼ (w, z + τ, eτξ)
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(cf. Section 6 in Chapter 2 of [38]). On U × C, if we let

h = expπ
(
Im(τ)−1(z − z̄)(qj,t − q̄j,t)

)
,

then h(w, z + 1) = h(w, z) and h(w, z + τ) = | exp (2πiqj,t(w))|2h(w, z), and
thus h defines a Hermitian metric on OMU

(qj,t(U)− σ(U)). If

ρ = exp
(
− πIm(τ)−1(z − z̄)qj,t

)
,

then h|ρ|2 = 1, ρ(w, z + 1) = ρ(w, z) and ρ(w, z + τ) = eτρ(w, z). Thus ρ is
a global unitary frame, and under the trivialization induced by ρ, the Chern

connection Ξ0,t,j = Ξ1,0
j + Ξ0,1

j is given by Ξ1,0
j = −Ξ0,1

j and

Ξ0,1
j = ∂ log ρ = πIm(τ)−1qj,tdz̄ − π(z − z̄)qj,t∂Im(τ)−1 = πIm(τ)−1qj,tθ̄,

by

θ̄ = dz̄ − z − z̄

2iIm(τ)
∂w̄τ̄ dw̄ = dz̄ +

z − z̄

Im(τ)
∂w̄Im(τ)dw̄.

We obtain the desired conclusion. �

Since Ξt and A0,t induce the same holomorphic structure on V|MU
over

MU , there is a complex gauge g ∈ GC such that g(Ξt) = A0,t. Note that gg∗

is Hermitian, and gg∗ = e2st for some st ∈ C∞(MU , sl(n,C)) with s∗t = st.
If we let u = e−stg, then u∗ = u−1, i.e. u is a unitary gauge, and g = estu.
Therefore, by a further unitary gauge change if necessary, we assume that

(4.5) est(Ξt) = A0,t

for a Hermitian gauge est on MU .
In order to prove the main theorem, we need to improve the curvature

estimates of Proposition 4.1.

Proposition 4.4. For any compact set K ⊂ No, there exists a constant CK

such that

sup
MK

|FΞtk
|ωtk

≤ CKtk
− 1

2 .

The proof of this proposition can be found in Section 7. This implies the
subsequence of connections Ξtk satisfies (6.3), which is the main assumption
of Proposition 6.1 in Section 6. Thus we can apply Proposition 6.1 to Ξtk

and achieve uniform C0 control of the curvature, from which we conclude:

Proposition 4.5. Along the sequence of connection Ξtk , there exists a con-
stant C1 > 0 such that

∥FAtk
∥C0(Mw) ≤ C1tk, and ∥FΞtk

∥C0(MK) ≤ C1,

for any w ∈ K. Consequently, for any p > 2, by the weak Uhlenbeck com-
pactness theorem [71] there exists a subsequence (still denoted tk), a sequence
of unitary gauge transformations uk ∈ G2,p, and a limiting Lp

1 connection
Ξ∞, so that

uk(Ξtk) → Ξ∞
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in Lp
1(MK). Here all norms are calculated by using a fixed Kähler metric on

M .

In order to prove Theorem 3.1, we also need a generalization of Theorem
1.1 in [17], which is a direct consequence of Lemma 5.4.

Proposition 4.6. For any w ∈ K and 0 < α < 1, there exists a constant
C2 > 0 so that

∥Atk −A0,tk∥C0,α(Mw) ≤ C2tk.

Granted these three propositions, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. By Proposition 4.5 and the Sobolev embedding the-
orem, there exists uk ∈ G1,α and a limiting C0,α-connection Ξ0, so that

uk(Ξtk) → Ξ0

in C0,α(MK). Thus, for any w ∈ K, the restriction Ξ0|Mw of Ξ0 is a C0,α-
connection on Mw, and uk(Ξtk)|Mw converges to Ξ0|Mw in the C0,α-sense.
Proposition 4.6, along with the fact that A0,t → A0 in the C∞-sense, gives

Atk → A0,

on Mw in the C0,α-sense, where A0 is given by (4.4).
Since

duk = ukΞtk |Mw − uk(Ξtk)|Mwuk,

and the uk are unitary, we have a C1-bound for uk, i.e. ∥uk∥C1(Mw) ≤ C.

As a result, the C0,α-convergence of uk(Ξtk)|Mw and Ξtk |Mw imply the C1,α-
bound of uk, i.e. ∥uk∥C1,α(Mw) ≤ C ′. Thus by passing a subsequence, for

α′ < α we have uk converges to a C1,α′
-unitary gauge u∞ in the C1,α′

-sense,
which satisfies that u∞(Ξ0|Mw) = A0. This concludes the theorem. �

5. A Poincaré inequality for FAt

We continue to work under the setup of Theorem 3.1, and choose a se-
quence of connections Ξtk . We work on the fiber Mw over a point w ∈ No,
which is away from the discriminant locus of f , the bubbling points, and the
ramification points and singularities of the spectral cover. As above we let
Atk denote the restriction of the anti-self-dual connection Ξtk to the smooth
fiber Mw. The goal of this section is to derive a Poincaré type inequality for
the curvature FAtk

, when FAtk
is sufficiently small in the C0-sense. The fol-

lowing proposition is the key analytic input to overcome the difficulty of the
non-smoothness of the moduli spaces of flat connections on elliptic curves.

For notational simplicity we drop the subscript k, and denote our connec-
tions by At. We do this because, aside from being used to define No, the
explicit sequence of times tk does not have any bearing on the results in this
section.
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Proposition 5.1. For any compact set K ⊂ No, there are constants ϵK > 0
and CK > 0 such that if

∥FAt∥C0(Mw,ωSF ) ≤ ϵK

for a certain t ∈ (0, 1] and w ∈ K, then

∥FAt∥w ≤ CK∥d∗At
FAt∥w.

We begin by recalling part of our setup, as described in Theorem 3.1. Fix
an open subset U ⊂ No biholomorphic to a disk in C, satisfying f−1(U) ∼=
(U × C)/SpanZ{1, τ}, where τ is a holomorphic function on U . Fix trivial-
izations P |MU

∼=MU ×SU(n) and V|MU
∼=MU ×Cn. In Section 4 we define

the connections A0,t = diag{αt,1, · · · , αt,n} and A0 = diag{α0,1, · · · , α0,n}
associated to the spectral covers, where

αt,j = πIm(τ)−1(qj,t(w)θ̄ − q̄j,t(w)θ), α0,j = πIm(τ)−1(qj(w)θ̄ − q̄j(w)θ),

and θ|Mw = dz. Here all points vary holomorphically in the base, and satisfy
n∑

j=1

qj,t(w) ≡ 0,

n∑
j=1

qj(w) ≡ 0.

We also have that qj,t converges to qj as t → 0 as holomorphic functions.
Furthermore, for any w ∈ U ,

qi,t(w) ̸= qj,t(w)mod(Z+ τ(w)Z), qi(w) ̸= qj(w)mod(Z+ τ(w)Z)
if i ̸= j. The connections dA0,t and dA0 act on η ∈ C∞(Mw, sl(n,C)) via

dA0,tη = dη + [A0,t, η], dA0η = dη + [A0, η].

Note that if dA0,tη = 0, then dηjj = 0 and dηij + (αt,i − αt,j)ηij = 0,
which implies that ηij = 0 for i ̸= j, and ηjj are constants. Therefore
ker dA0,t = {diag{η1, · · · , ηn} ∈ sl(n,C)}, and the same argument gives also
ker dA0 = {diag{η1, · · · , ηn} ∈ sl(n,C)}.

Since A0,t is flat (FA0,t = d2A0,t
= 0), we have a de Rham complex

C∞(Mw, sl(n,C))
dA0,t−→ C∞(T ∗Mw ⊗ sl(n,C))

dA0,t−→ C∞(∧2T ∗Mw ⊗ sl(n,C)).
Furthermore, there is a well behaved Hodge theory (cf. [6]). If ⋆w denotes
the Hodge star operator with respect to the flat metric ωF

w := ωSF |Mw , then
d∗A0,t

= − ⋆w dA0,t⋆w is the adjoint of dA0,t , and d∗A0,t
dA0,t + dA0,td

∗
A0,t

is

the Hodge Laplacian. If we denote Hq
A0,t

(Mw, sl(n,C)) the space of sl(n,C)
valued harmonic q-forms, the Hodge theory asserts an orthogonal decompo-
sition

C∞(∧qT ∗Mw ⊗ sl(n,C)) ∼= Hq
A0,t

(Mw, sl(n,C))⊕ ImdA0,t ⊕ Imd∗A0,t
,

for q = 0, 1, 2.
If we replace sl(n,C) by the subalgebra su(n), then we have the sub-

complex (C∞(∧qT ∗Mw ⊗ su(n)), dA0,t), the harmonic space of su(n) valued

q-forms Hq
A0,t

(Mw, su(n)), and the respective Hodge decomposition. Note
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that we have the connection At ∈ C∞(T ∗Mw ⊗ su(n)) and the curvature
FAt ∈ C∞(∧2T ∗Mw ⊗ su(n)). The virtual dimension of the moduli space
MMw(n) of flat SU(n)-connections on Mw is zero due to the Euler num-
ber of the complex (C∞(∧qT ∗Mw ⊗ su(n)), dA0,t) vanishing, and thus the
whole MMw(n) is regarded as degenerated, which causes many difficulties
in the global analysis. However, the flat connection A0,t belongs to the reg-
ular part of MMw(n), and H1

A0,t
(Mw, su(n)) is the tangent space at A0,t.

The infinitesimal deformation space under the action of the unitary gauge
group is ImdA0,t ∩ C∞(T ∗Mw ⊗ su(n)), and by using the decomposition
sl(n,C) = su(n)⊕ isu(n), the space Imd∗A0,t

∩C∞(T ∗Mw ⊗ su(n)) is identi-

fied with the infinitesimal deformation space induced by Hermitian gauges.
The readers are referred to [59] for details of the above discussion.

We denote by ∆A0,t = −d∗A0,t
dA0,t the Laplacian operator acting on

C∞(Mw, sl(n,C)), and have ker∆A0,t = ker dA0,t , Im∆A0,t = Imd∗A0,t
, and

ker∆A0,t⊥Imd∗A0,t
by the Hodge decomposition. We need a uniform estimate

for the lower bounds of the first eigenvalue of ∆A0,t .

Lemma 5.2. For any w ∈ U and t ∈ (0, 1], if λw,t is the first eigenvalue of
−∆A0,t on the fiber Mw, then there is a constant C1 > 0 independent of t
and w such that

λw,t ≥ C1.

Proof. If the above bound does not hold, there are sequences wk and tk such
that tk → t0 in [0, 1], wk → w0 in U , and

λwk,tk → 0

when k → ∞. Let ψk ∈ C∞(Mwk
, sl(n,C)) be a normalized eigenvector of

∆A0,tk
, i.e. ∆A0,tk

ψk = −λwk,tkψk and ∥ψk∥wk
= 1.

We regard Mw as the 2-torus T 2 equipped with the complex structure
Iw, and the Kähler metric ωF

w as a metric on T 2 with respect to Iw. Since
τ(wk) → τ(w0), we have that Iwk

→ Iw0 and ωF
wk

→ ωF
w0

in the C∞-sense.
Note that A0,tk → A0,t0 in the C∞-sense, and if t0 = 0, then A0,t0 = A0.
Standard elliptic estimates show that ∥ψk∥Cℓ ≤ Cℓ for constants Cℓ > 0
independent of k, where the Cℓ-norms are calculated by using any fixed
metric on T 2. By passing to a subsequence, we have that ψk → ψ∞ smoothly
on T 2, ∥ψ∞∥w0 = 1, and ∆A0,t0

ψ∞ = 0. Thus ψ∞ ∈ ker∆A0,t0
and can be

represented as diag{η1, · · · , ηn} ∈ sl(n,C).
Since ψk⊥ ker∆A0,tk

, for any ψ ∈ ker∆A0,t0
= ker∆A0,tk

we have

0 = ⟨ψk, ψ⟩wk
→ ⟨ψ∞, ψ⟩w0 .

So ⟨ψ∞, ψ⟩w0 = 0 yet ∥ψ∞∥w0 = 1. This is a contradiction, and we obtain
the conclusion. �

Again restricting our attention to a single fiber Mw for w ∈ U , we can
compute the norm of the fiberwise component of the curvature FAt with
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respect to the semi-flat metric

∥FAt∥2C0(Mw,ωSF
t )

=
1

t2
∥FAt∥2C0(Mw,ωSF ).

Because the error terms relating ωt and ω
SF
t decay fast enough (see Theorem

A.1), we have

∥FAt∥2C0(Mw,ωSF ) ≤ Ct2∥FAt∥2C0(Mw,ωt)
≤ Ct2∥FΞt∥2C0(Mw,ωt)

.

We assume that there is a constant 0 < ϵ ≪ 1, which is determined later,
such that for a certain t small enough it holds

(5.1) ∥FAt∥C0(Mw,ωSF ) ≤ ϵ,

for w ∈ U . By Proposition 4.1, there is a sequence tk → 0 such that

∥FAtk
∥2C0(Mw,ωSF ) ≤ Ct2k∥FΞtk

∥2C0(Mw,ωtk
) ≤ ϵk → 0.

Here we used that U is away from the bubbling set. Therefore, for any fixed
ϵ > 0, if we take t to be some time tk ≪ 1 such that ϵk < ϵ, then (5.1) holds.

Recall by (4.5) that there exists a Hermitian gauge transformation e−st

so that e−st(At) = A0,t. Although given above, we include the definition of
this action here to emphasize that we are working exclusively on a fiber:

(5.2) e−st(At) = At + e−st ∂̄Ate
st +

(
e−st ∂̄ Ate

st
)∗
.

Given inequality (5.1), the assumptions of Theorem 6.1 from [17] are sat-
isfied, which yields a new sequence of Hermitian gauge transformations eŝt

which are perpendicular to the kernel of dA0,t , bounded in C0, and define

the same connection e−ŝt
∗ At = A0,t.

For the remainder of this section we work on the fiber Mw, and so we
may drop it from adorning norms when it is clear from context. Similarly,
all norms in this section are computed with respect to H and ωF

w .

Lemma 5.3. Given (5.1), for every w ∈ U the Hermitian endomorphism
ŝt satisfies

(5.3) ∥ŝt∥C0(Mw,ωSF ) ≤ C2ϵ

for a uniform constant C2.

Proof. To begin, we use that ŝt is uniformly bounded in C0. Following
Appendix A of [50], the fact that A0,t is flat, along with a standard formula
for curvatures related by a complex gauge transformation, yields

(5.4) −∆w|ŝt|2 ≤ −|∂A0,t ŝt|2 +Tr
(
eŝt ⋆w FAte

−ŝt ŝt

)
,

where ∆w is the Laplacian with respect to the flat Kähler metric ωF
w . Inte-

grating the above equality over Mw, and using Lemma 5.2 along with the
fact that ŝt is perpendicular to the kernel of dA0,t , gives

∥ŝt∥2w ≤ C∥dA0,t ŝt∥2w ≤ Cϵ∥ŝt∥w.
Therefore ∥ŝt∥w ≤ Cϵ. Now we argue ∥ŝt∥C0(Mw) is also bounded by Cϵ.
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Note that (5.4) implies

−∆w|ŝt|2 ≤ Cϵ|ŝt|.
Now, suppose the desired bound does not hold, so we can find a sequence
of constants Ct → ∞ so ∥ŝt∥C0 ≥ Ctϵ. Set ϕt = |ŝt|2/∥ŝt∥2C0 . For t small
enough it holds

−∆wϕt ≤
Cϵ|ŝt|
∥ŝt∥2C0

≤ C

Ct
≤ 1.

If yt denotes the point in Mw realizing sup |ŝt|2, in a fixed neighborhood of
radius a of yt we see ϕt is a C

2 function satisfying −∆wϕt ≤ 1, 0 ≤ ϕt ≤ 1,
and ϕt(yt) = 1. Let ut be a C2 function satisfying both ∆wut = −1 and
ut(yt) = 1. By making a smaller if necessary we can guarantee that ut is
strictly positive on Ba(yt), and this choice will only depend on ωF

w . Thus we
have −∆w(ϕt − ut) ≤ 0 and ϕt(yt) − ut(yt) = 0. Applying the mean value
inequality to ϕt − ut gives

0 ≤
∫
Ba(yt)

(ϕt − ut).

By the positivity of ut, there exists a constant δ > 0 independent of t so
that

δ ≤
∫
Ba(yt)

ut ≤
∫
Ba(yt)

ϕt.

Rearranging terms gives

∥ŝt∥2C0 ≤ 1

δ

∫
Ba(yt)

|ŝt|2 ≤
1

δ
∥ŝt∥2w ≤ Cϵ2,

which is our desired bound. �
The above lemma has some strong consequences, which we now detail.

First we need a few key formulas on Mw. The complex gauge action by a
Hermitian endomorphism (5.2) gives

At = eŝt∗ A0,t = A0,t + eŝt ∂̄A0,te
−ŝt +

(
eŝt ∂̄ A0,te

−ŝt
)∗
.

For a given s define ads := [s, ·], and let Υ(s) ∈ End(End(Vt)) denote the
power series

Υ(s) =
eads − 1

ads
=

∞∑
m=0

(−1)m

(m+ 1)!
(ads)

m.

Note that the first term from the power series Υ(ŝt) is the identity, allowing

us to write Υ(ŝt) = Id + Υ̃(ŝt). Now, recall the standard formula for the
derivative of the exponential map

eŝt ∂̄A0,te
−ŝt = −Υ(ŝt)∂̄A0,t ŝt.

Following Appendix A in [50] we see

At = A0,t − ∂̄A0,t ŝt + ∂A0,t ŝt − Υ̃(ŝt)∂̄A0,t ŝt + Υ̃(−ŝt)∂A0,t ŝt

= A0,t − i ⋆w dA0,t ŝt + o(ŝt,∇A0,t ŝt),(5.5)
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and

FAt = FA0,t +Υ(−ŝt)∂̄A0,t∂A0,t ŝt −Υ(ŝt)∂A0,t ∂̄A0,t ŝt

+∂̄A0,tΥ(−ŝt) ∧ ∂A0,t ŝt − ∂A0,tΥ(ŝt) ∧ ∂̄A0,t ŝt(5.6)

−Υ(−ŝt)∂A0,t ŝt ∧Υ(ŝt)∂̄A0,t ŝt +Υ(ŝt)∂̄A0,t ŝt ∧Υ(−ŝt)∂A0,t ŝt.

This formula, along with the fact that A0,t is flat, leads to the following
characterization of the curvature FAt

(5.7) FAt = −i dA0,t ⋆w dA0,t ŝt + T1(ŝt,∇2
A0,t

ŝt) + T2(∂A0,t ŝt, ∂̄A0,t ŝt).

Thus we conclude
⋆wFAt = −i∆A0,t ŝt + T1 + T2

where the tensors T1 and T2 satisfy

(5.8) |T1| ≤ Cϵ|∇2
A0,t

ŝt| and |T2| ≤ |∇A0,t ŝt|2.

Lemma 5.4. Given (5.1) and (5.3), the following bound holds

(5.9) ∥At −A0,t∥C0,α(Mw,ωSF ) ≤ C3ϵ, ∥∇A0,t ŝt∥C0,α(Mw,ωSF ) ≤ C3ϵ

for any 0 < α < 1, by choosing ϵ small enough. Here the constant C3

depends on U ⊂ No.

Proof. We begin the proof with the standard elliptic a priori estimate (cf.
[36, 10])

∥ŝt∥Lp
2

≤ C
(
∥∆A0,t ŝt∥Lp + ∥ŝt∥Lp

)
≤ C (∥FAt∥Lp + ∥T1∥Lp + ∥T2∥Lp + ∥ŝt∥Lp)

≤ C (ϵ+ ∥T1∥Lp + ∥T2∥Lp)

where we have used (5.1) and (5.3) in the last inequality. We also use the
assumption that A0,t → A0 smoothly, and therefore all derivatives of A0,t

are bounded independent of t. Thus all constants in the above inequality
are independent of t.

The necessary bound for T1 follows immediately ∥T1∥Lp ≤ Cϵ∥ŝt∥Lp
2
. For

T2 we use the interpolation inequality for tensors from [46] (see also Section
7.6 in [8])(∫

Mw

|∇A0,t ŝt|2p
) 1

p

≤ (
√
2 + 2p− 2)∥ŝt∥C0

(∫
Mw

|∇2
A0,t

ŝt|p
) 1

p

.

This implies ∥T2∥Lp ≤ Cϵ∥ŝt∥Lp
2
. Thus

∥ŝt∥Lp
2
≤ C

(
ϵ+ ϵ∥ŝt∥Lp

2

)
and for ϵ small enough

(5.10) ∥ŝt∥Lp
2
≤ Cϵ.

By Morrey’s inequality, for large enough p we can conclude

∥∇A0,t ŝt∥C0,α ≤ Cϵ,
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and the proof follows from (5.5). �

Comparing this lemma to Theorem 3.11 of [59], the bound of (5.9) is

stronger, i.e. we have ϵ instead of ϵ
1
2 , due to our assumption that A0,t and

A0 are regular.
We now turn to the proof of the main proposition of this section.

Proof of Proposition 5.1. Once again we begin with the standard elliptic a
priori estimate

∥ŝt∥L2
2
≤ C

(
∥∆A0,t ŝt∥w + ∥ŝt∥w

)
.

Since ŝt is perpendicular to the the kernel of dA0,t , we have a stronger in-
equality

∥ŝt∥L2
2
≤ C∥∆A0,t ŝt∥w

(cf. [36, 10]). Again we use the fact that all derivatives of A0,t and A0 are
bounded independent of t.

Next, we recall (5.8). Applying the the interpolation inequality for tensors
from the previous lemma for p = 2, we have

∥T1 + T2∥w ≤ Cϵ∥ŝt∥L2
2
≤ Cϵ∥∆A0,t ŝt∥w.

Let F o
t denote the projection of ⋆wFAt onto the kernel of ∆A0,t , and set

F⊥
t = ⋆wFAt − F o

t . Because ∆A0,t ŝt is perpendicular to the kernel of ∆A0,t ,
we can conclude

∥F⊥
t ∥w ≥ ∥∆A0,t ŝt∥w − ∥F⊥

t −∆A0,t ŝt∥w
= ∥∆A0,t ŝt∥w − ∥(T1 + T2)

⊥∥w
≥ (1− Cϵ)∥∆A0,t ŝt∥w

≥ 1

2
∥∆A0,t ŝt∥w.

We take ϵ small enough such that Cϵ < 1
2 .

Now, since (∆A0,t ŝt)
o = 0, we also have

∥F o
t ∥w ≤ ∥(T1 + T2)

o∥w ≤ Cϵ∥∆A0,t ŝt∥w ≤ 2Cϵ∥F⊥
t ∥w,

which implies

∥FAt∥w ≤ ∥F o
t ∥w + ∥F⊥

t ∥w
≤ (1 + 2Cϵ)∥F⊥

t ∥w
≤ 2∥F⊥

t ∥w.

Thus, applying the Poincaré inequality to F⊥
t and Lemma 5.2, we can con-

clude

∥FAt∥w ≤ 2∥F⊥
t ∥w ≤ C∥d∗A0,t

FAt∥w.
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The proposition now follows from Lemma 5.4, which allows us to bound the
difference between the connections At and A0,t

∥FAt∥w ≤ C∥d∗A0,t
FAt∥w

≤ C∥d∗At
FAt∥w + C∥At −A0,t∥C0∥FAt∥w

≤ C∥d∗At
FAt∥w + Cϵ∥FAt∥w.

We choose further that Cϵ < 1
2 , and obtain

∥FAt∥w ≤ 2C∥d∗At
FAt∥w.

For anyK ⊂ No, we coverK by finite open disks Uβ, i.e. K ⊂
∪
Uβ ⊂ No,

and apply the above arguments to any Uβ. By letting ϵK = min{ϵ} over the
covering, and CK the maximum constant over the covering, the proposition
is proved. �

A corollary is the following Sobolev inequality.

Corollary 5.5. For any p ≥ 2, there exists a cosntant Cp so that

∥FAt∥Lp(Mw) ≤ Cp∥d⋆At
FAt∥w.

Proof. In dimension two we have the Sobolev inequality

∥ξ∥Lp ≤ Cp(∥∇A0,tξ∥w + ∥ξ∥w) ≤ Cp(∥∇Atξ∥w + ∥(At −A0,t)ξ∥w + ∥ξ∥w),
for any smooth section ξ of End(V) and some constant Cp independent of
w ∈ U and t. Applying this to ξ = ⋆wFAt , we obtain

∥FAt∥Lp ≤ Cp(∥d⋆At
FAt∥w + (1 + ϵ)∥FAt∥w) ≤ 2CpCK∥d⋆At

FAt∥w,
by Proposition 5.1. �

6. C0 bounds on curvature

The main goal of this section is to prove Proposition 6.1, which establishes
C0 control for the curvature of a family of connections. It is a conditional
result relying on assumption (6.3). To avoid confusion, we note that this
result is applied twice. In Section 8, in the proof of Proposition 4.4, it
is applied to a family of connections in scaled coordinates, for which (6.3)
can be verified directly. Once Proposition 4.4 is established, assumption
(6.3) holds for our main sequence of connections Ξtk from the statement of
Theorem 3.1, and so Proposition 6.1 can be used to establish Proposition
4.5.

As above, let U ⊂⊂ No be an open subset, compactly contained in N0,
and biholomorphic to a disk in C. We have f−1(U) ∼= (U ×C)/SpanZ{1, τ},
where the period τ is holomorphic on U . Let w denote the complex coordi-
nate on U , and z the coordinate on C. Furthermore, we fix a trivialization
P |MU

∼= MU × SU(n) and V|MU
∼= MU × Cn. Under such trivialization,

the Hermitian metric H is the absolute value | · |, the connection Ξt is a
matrix valued 1-form, and the curvature FΞt is a matrix valued 2-form, i.e.
Ξt ∈ C∞(T ∗MU , su(n)) and FΞt ∈ C∞(∧2T ∗MU , su(n)).
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Define real coordinates (x1, x2) on U satisfying w = x1 + ix2, and recall
that we have the decomposition T ∗MU

∼= SpanR{dy1, dy2}⊕SpanR{dx1, dx2},
where z = y1 + τy2, and z is the coordinate on C. In these coordinates we
write

(6.1) Ξt = At +Bt,1dx1 +Bt,2dx2,

where At is a connection on the restriction to the fiber V|Mw , and Bt,i is a
section in Γ(U,Ω0(Mw, su(n))) for i = 1, 2. Given this decomposition, the
curvature can be written as

(6.2) FΞt = FAt − κt,1 ∧ dx1 − κt,2 ∧ dx2 − FB,tdx1 ∧ dx2.
Here FAt is the curvature of At, the mixed terms are given by

κt,i =
∂

∂xi
At − dAtBt,i for i = 1, 2,

and the curvature in the base direction can be expressed as

FB,t =
∂

∂x2
Bt,1 −

∂

∂x1
Bt,2 − [Bt,1, Bt,2].

Because of the uniform equivalence

C−1
U ωSF

t ≤ ωt ≤ CUω
SF
t , and ωSF

t |Mw = tωSF |Mw ,

the norms of the different curvature components satisfy

|FAt |ωSF = t|FAt |ωSF
t
, |κt,i|ωSF =

√
t|κt,i|ωSF

t
, |FB,t|ωSF = |FB,t|ωSF

t
.

We now state the main assumption of this section. Assume that there is
a constant C1 > 0, so that for a t ∈ (0, 1] it holds

(6.3) sup
MU

|FΞt |ωt ≤ C1t
− 1

2 .

This implies

sup
MU

|FAt |ωSF ≤ C1t
1
2 , sup

MU

|κt,i|ωSF ≤ C1, sup
MU

|FB,t|ωSF ≤ C1t
− 1

2 .

We assume that t ≪ 1 small enough such that C1t
1
2 < ϵK , where ϵK is

the small constant controlling the curvature in Proposition 5.1, and U ⊂ K.
Thus by Proposition 5.1, we see that the curvature FAt satisfies the Poincaré
type inequality

(6.4) ∥FAt∥w ≤ C2∥d∗At
FAt∥w.

This inequality, along with assumption (6.3), are instrumental in the follow-
ing:

Proposition 6.1. Let ∇xi = ∂xi + Bt,i for i = 1, 2 denote covariant dif-
ferentiation in the base direction. If (6.3) and (6.4) hold for t ≪ 1, for
U ′ ⊂⊂ U we have the following inequalities:

i)

∥FAt∥C0(MU′ ,ωSF ) ≤ C3t, ∥FB,t∥C0(MU′ ,ωSF ) ≤ C3,
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ii)

∥∇xiFAt∥L2(MU′ ,ωSF ) ≤ C3t
1
2 ,

iii)

∥FΞt∥C0(MU′ ,ωSF ) ≤ C3,

where the constant C3 may depend on the distance from U ′ to ∂U , but is
independent of t.

As above let ⋆w denote the Hodge star operator on the fiber Mw with
respect to the flat metric ωF

w := ωSF |Mw = iIm(τ)−1 dz∧dz̄. Then ⋆2w = −1,
⋆wdz = −idz and ⋆wdz̄ = idz̄. We write the anti-self-dual equation under
the decomposition (6.2).

Lemma 6.2. The curvature of Ξt satisfies

(6.5) ⋆wκt,1 = κt,2

and

(6.6) t−1(1 +G0 +G1) ⋆w FAt − (W +G2)FB,t =

2∑
j=1

κt,j#G3,

where G1, G2, G3 are smooth functions depending on t such that

t−
ν
2 (∥G1∥C0(ωSF )+∥ ∂

∂z
G1∥Cℓ(ωSF )+∥ ∂

∂z̄
G1∥Cℓ(ωSF )+

∑
j=2,3

∥Gj∥Cℓ(ωSF )) → 0,

for any ν ∈ N, and G0 is a function on U such that ∥G0∥Cℓ(U) → 0, when
t→ 0.

Proof. We first demonstrate that (6.5) follows from F 0,2
Ξt

= F 2,0
Ξt

= 0. Note
that

2(κt,1 ∧ dx1 + κt,2 ∧ dx2) = (κt,1 − iκt,2) ∧ dw + (κt,1 + iκt,2) ∧ dw̄.

This implies, using ⋆wdz = −idz and ⋆wdz̄ = idz̄, that

⋆w(κt,1 − iκt,2) = i(κt,1 − iκt,2) = iκt,1 + κt,2

and

⋆w(κt,1 + iκt,2) = −i(κt,1 + iκt,2) = −iκt,1 + κt,2.

Adding these two equations together proves (6.5).
We now concentrate on (6.6). Using FΞt ∧ ωt = 0, along with the decom-

positions (2.8) and (6.2), we see

0 = FΞt ∧ ωt = FΞt ∧ ωSF
t + FΞt ∧ i∂∂̄φt

=
i

2
(W−1 + 2φt,ww̄)FAt ∧ dw ∧ dw̄

− i

2
(tW + 2φt,zz̄)FB,t dx1 ∧ dx2 ∧ θ ∧ θ̄

+(κt,1 ∧ dx1 + κt,2 ∧ dx2) ∧ Im (2φt,wz̄dw ∧ dz̄) .
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Next, note that θ = dy1 + τdy2 = dz + bdw,

dx1 ∧ dx2 =
i

2
dw ∧ dw̄ and FAt =

i

2
(⋆wFAt)Wθ ∧ θ̄.

Thus, dividing out by the volume form dz ∧ dw∧ dz̄ ∧ dw̄ = θ∧ dw∧ θ̄∧ dw̄,
the above equation can be rewritten as

0 = (1 + 2φt,ww̄W ) ⋆w FAt − (tW + 2φt,zz̄)FB,t

+

2∑
i=1

κt,i#(φt,zw̄ + φt,wz̄) .

We set G0 = 2χt,ww̄W , G1 = 2(φt,ww̄ − χt,ww̄)W , G2 = 2t−1φt,zz̄, and
G3 = t−1(φt,zw̄ + φt,wz̄). The proof now follows from Lemma 2.11. �

Next we turn to a Bochner type formula for FAt .

Lemma 6.3. If we denote ∆ = ∂2x1
+ ∂2x2

, then

∆∥FAt∥2w ≥ 1

4

∑
i=1,2

∥∇xiFAt∥2w +
δ

t
∥d∗At

FAt∥2w

−C ′
4t(

∑
j=1,2

∥[κt,j , κt,j ]∥2w + tν)

≥ 1

4

∑
i=1,2

∥∇xiFAt∥2w +
δ

t
∥d∗At

FAt∥2w − C4t,

for constants δ > 0, C4 > 0 and C ′
4 > 0.

Proof. Note we can write the mixed and base curvature terms as

∇x1dAt − dAt∇x1 = κt,1, ∇x2dAt − dAt∇x2 = κt,2, [∇x1 ,∇x2 ] = FB,t.

By the Bianchi identity dΞtFΞt = 0, and so

dAtFt,B = ∇x1κt,2 −∇x2κt,1, ∇x1FAt = dAtκt,1, and ∇x2FAt = dAtκt,2.

Recall that ⋆wdz = −idz, ⋆wdz̄ = idz̄ and ⋆w
i
2Wdz ∧ dz̄ = 1. Also, ⋆w is

independent of w when acting on 1-forms, and ∂xi⋆w = −W−1(∂xiW )⋆w in
the other cases. By the above formulas, we derive

(∇2
x1

+∇2
x2
)FAt = ∇x1dAtκt,1 +∇x2dAtκt,2

= dAt(∇x1κt,1 +∇x2κt,2) +
∑
j=1,2

[κt,j , κt,j ].

By (6.5), we also have

∇x1κt,1 = − ⋆w ∇x1κt,2, and ∇x2κt,2 = ⋆w∇x2κt,1.
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Hence, using (6.6), we obtain a Weitzenböck type formula for FAt :

(∇2
x1

+∇2
x2
)FAt = dAt ⋆w (∇x2κt,1 −∇x1κt,2) +

∑
j=1,2

[κt,j , κt,j ](6.7)

= −dAt ⋆w dAtFB,t +
∑
j=1,2

[κt,j , κt,j ]

= −t−1dAt ⋆w dAt(G4 ⋆w FAt) +
∑
j=1,2

[κt,j , κt,j ]

+dAt ⋆w dAt(
∑
i=1,2

κt,i#G5),

where

G4 = (W +G2)
−1(1 +G0 +G1), and G5 = (W +G2)

−1G3.

Note that for any differential form α, dAtα = dfα, where df denotes the
differential along the fiber direction, i.e. df = ∂y1(·)dy1 + ∂y2(·)dy2, and
∇xiα = ∂xiα.

Since ∥FAt∥2w =
∫
Mw

trFAt ∧ ⋆wFAt , a direct calculation shows

∂2xi
∥FAt∥2w = ∥∇xiFAt∥2w + 2Re⟨∇2

xi
FAt , FAt⟩w + Ti,

where the term Ti arises from derivative on the fiber metric, and satisfies

|Ti| ≤ C(|∂xi ⋆w |∥∇xiFAt∥w∥FAt∥w + |∂2xi
⋆w |∥FAt∥2w)

≤ 1

2
∥∇xiFAt∥2w + C∥FAt∥2w.

Using the notation ∥∇xFAt∥2w =
∑

i=1,2
∥∇xiFAt∥2w, the above calculations

give

∆∥FAt∥2w = ∥∇xFAt∥2w + 2Re⟨(∇2
x1

+∇2
x2
)FAt , FAt⟩w + T1 + T2.

To this equality, we can now apply (6.7). Using d∗At
= − ⋆w dAt⋆w, we see

Re⟨(∇2
x1

+∇2
x2
)FAt , FAt⟩w = t−1Re⟨G4d

∗
At
FAt , d

∗
At
FAt⟩w

+Re⟨
∑
j=1,2

[κt,j , κt,j ], FAt⟩w

−t−1Re⟨⋆w(dfG4) ⋆w FAt , d
∗
At
FAt⟩w

+Re⟨⋆wdAt(
∑
i=1,2

κt,i#G5), d
∗
At
FAt⟩w.

Next, note that for a constant δ > 0, we have

Re⟨G4d
∗
At
FAt , d

∗
At
FAt⟩w ≥ 8δ∥d∗At

FAt∥2w.
43



Using (6.3) to bound the mixed terms, and the Poincaré inequality (6.4),
we have

|⟨
∑
j=1,2

[κt,j , κt,j ], FAt⟩w| ≤ C
∑
j=1,2

∥[κt,j , κt,j ]∥w∥FAt∥w

≤ C
∑
j=1,2

∥[κt,j , κt,j ]∥w∥d∗At
FAt∥w

≤ Ct
∑
j=1,2

∥[κt,j , κt,j ]∥2w +
δ

t
∥d∗At

FAt∥2w.

Because dfW = 0, dfG0 = 0, and dfG4 = o(tν) for ν ≫ 1, it follows that

|t−1Re⟨⋆w(dfG4) ⋆w FAt , d
∗
At
FAt⟩w| ≤ C∥FAt∥w∥d∗At

FAt∥w

≤ Ct∥FAt∥2w +
δ

t
∥d∗At

FAt∥2w.

Finally, |dfG5|ωSF = o(tν) for any ν ≫ 1, and so

|⟨⋆wdAt(
∑
i=1,2

κt,i#G5), d
∗
At
FAt⟩w| ≤ C∥d∗At

FAt∥w(tν +
∑
i=1,2

∥dAtκt,i∥w)

= C∥d∗At
FAt∥w(tν +

∑
i=1,2

∥∇xiFAt∥w)

≤ Ct(tν + ∥∇xFAt∥2w) +
δ

t
∥d∗At

FAt∥2w.

Putting everything together

Re⟨(∇2
x1

+∇2
x2
)FAt , FAt⟩w ≥ 4δ

t
∥d∗At

FAt∥2w − Ct(tν + ∥FAt∥2w + ∥∇xFAt∥2w

+
∑
j=1,2

∥[κt,j , κt,j ]∥2w),

which implies

∆∥FAt∥2w ≥ ∥∇xFAt∥2w +
4δ

t
∥d∗At

FAt∥2w − 1

2
∥∇xFAt∥2w − 2C∥FAt∥2w

−Ct(tν + ∥FAt∥2w + ∥∇xFAt∥2w +
∑
j=1,2

∥[κt,j , κt,j ]∥2w).

The Poincaré inequality (6.4), along with Young’s inequality, gives

∆∥FAt∥2w ≥ 1

4
∥∇xFAt∥2w +

δ

t
∥d∗At

FAt∥2w − Ct(
∑
j=1,2

∥[κt,j , κt,j ]∥2w + tν).

�

We need the following elementary lemma, and we include the proof for
the reader’s convenience (cf. Sublemma 6.48 in [32]). As in the previous
lemma, let ∆ = ∂2x1

+ ∂2x2
denote the coordinate Laplacian in the base.
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Lemma 6.4. Let ζ be a non-negative real valued function satisfying

∆ζ ≥ δ

t
ζ − t

on a disk U ⊂ C. Then for an open subset U ′ ⊂⊂ U , there exists a constant
C5, which depends on the distance from U ′ to ∂U , such that

sup
U ′

|ζ| ≤ C5t
2.

Proof. For any point w0 ∈ U ′, let d = sup{|w − w0∥w ∈ U}, and let a
be a positive number such that 4a2d2 + 4a < δ. Consider the function

ξ = ζ exp (−a|w−w0|2√
t

). If ξ achieves its maximum w1 on ∂U , then

ζ(w0) = ξ(w0) ≤ ξ(w1) = ζ(w1) exp (−
a|w1 − w0|2√

t
) ≤ C exp (−ar

2

√
t
),

where r is the distance from w0 to ∂U . For t small enough the right hand
side is smaller than Ct2.

Otherwise, at an interior maximum w1, we see

0 = ∂wξ(w1) = (−a(w̄1 − w̄0)√
t

ζ(w1) + ∂wζ(w1)) exp (−
a|w1 − w0|2√

t
),

and ∂w̄ξ(w1) = 0. Furthermore, since ∆ = 2∂w∂w̄, at this maximum point

0 ≥ ∆ξ(w1)

= 2

(
∂w∂w̄ζ(w1)−

a2|w1 − w0|2 + a
√
t

t
ζ(w1)

)
exp (−a|w1 − w0|2√

t
)

≥
(
δ

t
ζ(w1)− 2

a2d2 + a

t
ζ(w1)− t

)
exp (−a|w1 − w0|2√

t
)

≥
(
δ

2t
ζ(w1)− t

)
exp (−a|w1 − w0|2√

t
).

Thus
ξ(w1) ≤ ζ(w1) ≤ 2δ−1t2,

and so
ζ(w0) = ξ(w0) ≤ ξ(w1) ≤ 2δ−1t2.

�
Lemma 6.5. For any w ∈ U ′ ⊂⊂ U ,

∥FAt∥w ≤ C6t, and ∥∇xiFAt∥L2(U ′,ωSF ) ≤ C6t
1
2 ,

for a constant C6 > 0 independent of t and w.

Proof. Lemma 6.3 and Lemma 5.2 imply

∆∥FAt∥2w ≥ 1

4
∥∇xFAt∥2w +

δ

t
∥d∗At

FAt∥2w − Ct ≥ δ′

t
∥FAt∥2w − Ct.

Thus by Lemma 6.4,
∥FAt∥2w ≤ Ct2.
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Let ϑ be a smooth non-negative function on U such that ϑ ≡ 1 on U ′,
and U ′ ⊂ supp(ϑ) ⊂ U . By Lemma 6.3,∫

U ′

1

4
∥∇xFAt∥2wdx1dx2 ≤

∫
U
ϑ∆∥FAt∥2wdx1dx2 + Ct

≤
∫
U
max{0,∆ϑ}∥FAt∥2wdx1dx2 + C22t

≤ C(

∫
U
∥FAt∥2wdx1dx2 + t)

≤ Ct,

and we obtain the second estimate. �
Proof of Proposition 6.1. Firstly, we prove the C0-estimate of FAt . Assume
that there is a sequence tk → 0 such that

t−1
k sup

Mwk

|FAtk
|ωSF → ∞,

where wk → w0 in U ′.
In Section 2.4, we saw that for Dr = {w̃ ∈ C||w̃| < r}, one can define

smooth embeddings Φk,r : Dr ×Mw0 →MU by

(w̃, a1 + a2τ(w0)) 7→ (wk +
√
tkw̃, a1 + a2τ(wk +

√
tkw̃)), a1, a2 ∈ R/Z,

using the identification of MU with (U × C)/SpanZ{1, τ}. We also demon-
strated that dΦ−1

k,rIdΦk,r → I∞, where I is the complex structure of M , and

I∞ denotes the complex structure of C×Mw0 . Furthermore, as tk → 0, we
have both

Φ∗
k,rt

−1
k ωSF

tk
→ ω∞ and (Tσ0 ◦ Φk,r)

∗t−1
k ωtk = Φ∗

k,rt
−1
k T ∗

σ0
ωtk → ω∞

in the C∞-sense on Dr × Mw0 . For any tk, we identify Dr × Mw0 with
Φk,r(Dr ×Mw0) by Φk,r. We have the curvature bound

|FΞtk
|t−1

k ωSF
tk

≤ Ct
1
2
k , and |FΞtk

|ω∞ ≤ 2Ct
1
2
k ,

by (6.3).
Since Ξtk is Yang-Mills, by the strong Uhlenbeck compactness theorem

(cf. Theorem 2.3), there exists a subsequence and a family of unitary gauges
utk , such that

Ξ′
tk

= utk(Ξtk) → Ξ∞

in the locally C∞-sense on Dr×Mw0 , where Ξ∞ is a flat SU(n)-connection.
Note that FΞ′

tk
= utkFΞtk

u−1
tk

, and so

|FΞ′
tk
|t−1

k ωSF
tk

= |FΞtk
|t−1

k ωSF
tk

≤ Ct
1
2
k and |FΞ′

tk
|ω∞ ≤ 2Ct

1
2
k .

Furthermore we have ∥FΞ′
tk
∥Cℓ(ω∞) → 0 for any ℓ ≥ 0, when tk → 0. Now,

recall the Weitzenböck formula

0 = ∆Ξ′
tk
FΞ′

tk
= ∇∗

Ξ′
tk

∇Ξ′
tk
FΞ′

tk
+Rtk−1ωtk

#FΞ′
tk
+ FΞ′

tk
#FΞ′

tk
,
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which is an elliptic partial differential equation with smooth coefficients.
The Lp-estimate for elliptic equations (cf. [36], and the appendix of [10])
gives

∥FΞ′
tk
∥Lp

2(ω∞) ≤ C∥FΞ′
tk
∥Lp(ω∞) ≤ Ct

1
2
k ,

for any p > 2.
We have w − wk =

√
tkw̃ through Φk,r, and let w̃ = x̃1 + ix̃2. By (6.7),

(∇2
x1

+∇2
x2
)FA′

tk
= −t−1

k dA′
tk
⋆w dA′

tk
(G4 ⋆w FA′

tk
) +

∑
ij

κ′tk,i#κ
′
tk,j

+dA′
tk
⋆w dA′

tk
(
∑
i=1,2

κ′tk,i#G5),(6.8)

where ∇xj = ∂xj + B′
tk,j

, G4 = (W +G2)
−1(1 +G0 +G1) and G5 = (W +

G2)
−1G3. Recall

∥G1∥C0 + ∥dfG1∥Cℓ + ∥Gj∥Cℓ ≤ Ctνk

for ν ≫ 1. Let z = ỹ1 + iỹ2, and set ∇A′
tk
,yj = ∂ỹj + A′

tk,j
. By the

Weitzenböck formula,

dA′
tk
d∗A′

tk

FA′
tk

= ∇∗
A′

tk

∇A′
tk
FA′

tk
+ FA′

tk
#FA′

tk
.

The connection Laplacian above is given by

∇∗
A′

tk

∇A′
tk

= −W−1(∇2
A′

tk
,ỹ1

+∇2
A′

tk
,ỹ2

),

since |∂ỹj |2ωSF =W .
We want to bound terms on the right hand side of (6.8). Scaling gives

B′
tk,i
dxi =

√
tkB

′
tk,i
dx̃i and κ

′
tk,i
dxi =

√
tkκ

′
tk,i
dx̃i, in addition to

FB,tkdx1 ∧ dx2 = tkFB,tkdx̃1 ∧ dx̃2.
This leads to the following control of the mixed terms

|
√
tkκ

′
tk,i

|ω∞ ≤ 2Ct
1
2
k , ∥

√
tkκ

′
tk,i

∥Cℓ(ω∞) → 0,

and

∥
√
tkκ

′
tk,i

∥Lp
2(ω∞) ≤ ∥FΞ′

tk
∥Lp

2(ω∞) ≤ Ct
1
2
k .

Additionally, writing ∇x̃j = ∂x̃j +
√
tkB

′
tk,j

, we have

∇2
x̃1

+∇2
x̃2

= tk(∇2
x1

+∇2
x2
).

The bound |∂ℓyjG5| ≤ C gives

∥t
1
2
k dA′

tk
⋆w dA′

tk
(
∑
i=1,2

κ′tk,i#G5)∥Lp(ω∞) ≤ Ct
1
2
k

for any p > 2. Furthermore

∥
∑
ij

κ′tk,i#κ
′
tk,j

∥C0(ω∞) ≤ C.
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Now, if we write G4 =W−1(1 +G0) +G6, then

1

2
W−1(w0) ≤ G4 ≤ 2W−1(w0), |∂ℓỹjG6| ≤ Ctνk,

and

dA′
tk
d∗A′

tk

G4FA′
tk

= G4dA′
tk
d∗A′

tk

FA′
tk
+ dfG6#∇A′

tk
FA′

tk

+∂2ỹiỹjG6#FA′
tk
.

We define the operator

Dk = ∇2
x̃1

+∇2
x̃2

−G4∇∗
A′

tk

∇A′
tk

= ∇2
x̃1

+∇2
x̃2

+W−1G4(∇2
A′

tk
,ỹ1

+∇2
A′

tk
,ỹ2

),

which is a uniformly elliptic operator of order two. Then FA′
tk

satisfies the

following elliptic equation

DkFA′
tk
− dfG6#∇A′

tk
FA′

tk
− ∂2ỹiỹjG6#FA′

tk
(6.9)

= G4FA′
tk
#FA′

tk
+ tk

∑
ij

κ′tk,i#κ
′
tk,j

+ tkdA′
tk
⋆w dA′

tk
(
∑
i=1,2

κ′tk,i#G5)

= G7.

By the Lp-estimate for elliptic equations, for any p > 2,

∥FA′
tk
∥Lp

2(Dr′×Mw0 )
≤ C(∥FA′

tk
∥L2(Dr×Mw0 )

+ ∥G7∥Lp(Dr×Mw0 )
),

for a r′ < r. We obtain

∥FA′
tk
∥Lp

2(Dr′×Mw0 )
≤ Ctk,

since

∥G7∥Lp(Dr×Mw0 )
≤ C(∥FA′

tk
∥2C0(Dr×Mw0 )

+ tk) ≤ Ctk,

and

∥FA′
tk
∥2L2(Dr×Mw0 )

=

∫
Dr

∥FA′
tk
∥2wdx̃1dx̃2 ≤ Ct2k

by Lemma 6.5. The Sobolev embedding theorem gives

∥FA′
tk
∥C1,α(Dr′×Mw0 )

≤ Ctk,

and thus

∥FAtk
∥C0(Mwk

) = ∥FA′
tk
∥C0(Mwk

) ≤ ∥FA′
tk
∥C1,α(Dr′×Mw0 )

≤ Ctk,

which is a contradiction.
Therefore we obtain the C0-estimate, i.e.

∥FAt∥C0(MU′ ,ωSF ) ≤ Ct,

for a constant C > 0, and

∥FB,t∥C0(MU′ ,ωSF ) ≤ C(t−1∥FAt∥C0(MU′ ,ωSF ) + ∥κt,j∥C0(MU′ ,ωSF )) ≤ C,

by (6.6). �
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7. Further estimates for small fiberwise curvature

We continue our discussion of the previous section, and prove further esti-
mates under the exact same setup. Let U ⊂⊂ No be an open subset, biholo-
morphic to a disk in C, andMU

∼= (U×C)/SpanZ{1, τ}. Fix a trivialization
P |MU

∼=MU × SU(n) and V|MU
∼=MU ×Cn. Under such trivialization, the

Hermitian metric H is the absolute value | · |, the connection Ξt is a matrix
valued 1-form, and the curvature FΞt is a matrix valued 2-form. Assume
that for t ≪ 1, (6.3) and (6.4) hold, and thus all conclusions of Section 6
hold.

Recall that a fiberwise flat connection

(7.1) A0,t = π(Im(τ))−1(diag{q1,t, · · · , qn,t}θ̄ − diag{q̄1,t, · · · , q̄n,t}θ)

is induced byDt∩MU (see Section 3.3), i.e. Dt∩Mw = {q1,t(w), · · · , qn,t(w)}.
The goal of this section is the following proposition, which shows the rela-
tionship between the energy of curvature and the spectral covers. Here, as
above, the coordinate derivative in the base is computed in our fixed frame.

Proposition 7.1. If (6.3) and (6.4) hold for t ≪ 1, we have the following
inequalities. For U ′ ⊂⊂ U ,

∥FΞt∥2L2(MU′ ,ωt)
≤ C1(t+

∫
U ′

∑
j=1,2

∥∂xjA0,t∥2wdx1dx2), and

∥FΞt∥2L2(MU′ ,ωt)
≥ C−1

1 (

∫
U ′

∑
j=1,2

∥∂xjA0,t∥2wdx1dx2 − t),

where the constant C1 may depend on the distance from U ′ to ∂U , but is
independent of t.

The proof rests on several important lemmas.

Lemma 7.2. There exists a constant C2 such that for all t≪ 1,

sup
MU′

|∇A0,tFAt |ωSF ≤ C2t
1
2 .

Proof. By (5.9), it suffices to prove the above bound for ∇AtFAt . We argue
by contradiction. Let tk → 0 such that

lim
k→∞

t
− 1

2
k sup

MU′
|∇Atk

FAtk
|ωSF = ∞.

Let pk ∈MU ′ be the points where the supremum is attained, and in addition
let f(pk) := wk → w0 ∈ U . As in Section 2.5, we consider the rescaled
metrics ω̂k = t−1

k ωtk and the embeddings Φk,r : Dr ×Mw0 →MU defined by

(w̃, a1 + a2τ(w0)) 7→ (wk +
√
tkw̃, a1 + a2τ(wk +

√
tkw̃)), a1, a2 ∈ R/Z,

whereDr = {w̃ ∈ C||w̃| < r}. We have seen that if I is the complex structure
of M , and I∞ the complex structure of C ×Mw0 , then dΦ

−1
k,rIdΦk,r → I∞,
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and in addition

Φ∗
k,rt

−1
k ωSF

tk
→ ω∞ and Φ∗

k,rω̂k → ω∞

in the C∞-sense on Dr×Mw0 . Here ω∞ is a flat Kähler metric on Dr×Mw0 .

Denote by Ξ̂k the pull-back of Ξtk by Φk,r, and identify Dr × Mw0 with
Φk,r(Dr ×Mw0) via Φk,r. By our hypothesis,

(7.2) sup
Dr×Mw0

t
− 1

2
k |∇Ξ̂k

FΞ̂k
|ω∞ = ∞,

while by (6.3) we have the curvature bounds

|FΞ̂k
|t−1

k ωSF
tk

≤ Ct
1
2
k and |FΞ̂k

|ω̂k
≤ 2Ct

1
2
k .

Since ω̂k is equivalent to a fixed metric, standard Yang-Mills theory gives
the first derivative bound |∇Ξ̂k

FΞ̂k
|ω̂k

≤ C (for instance see [76]), but this is

of course not enough to obtain a contradiction. So following [76], as in the
proof of Lemma 2.14, we consider the the Bochner formula

0 = ∆ω̂k
|FΞ̂k

|2ω̂k
− 2|∇Ξ̂k

FΞ̂k
|2ω̂k

+ FΞ̂k
#FΞ̂k

#FΞ̂k
+Rω̂k

#FΞ̂k
#FΞ̂k

.

We have seen that the curvature of the base metric satisfies |Rωt |2ωt
≤ C on a

compact subset of N0, and scaling only improves this bound |Rω̂k
|2ω̂k

≤ Ct2k.
Rearranging terms, and multiplying by a positive function χ yields

2χ|∇Ξ̂k
FΞ̂k

|2ω̂k
≤ χ∆ω̂k

|FΞ̂k
|2
ω̂kΞ̂k

+ χ|FΞ̂k
|3ω̂k

+ Cχ|FΞ̂k
|2ω̂k
.

If η is a positive bump function supported in Dr/2 and satisfying η ≡ 1 in

Dr/4, we specify χ = f−1(η). Integrating the above inequality gives∫
D r

4
×Mw0

|∇Ξ̂k
FΞ̂k

|2ω̂k
ω̂2
k ≤ 1

2

∫
D r

2
×Mw0

∆ω̂k
χ|FΞ̂k

|2ω̂k
ω̂2
k + C

∫
D r

2
×Mw0

tk

≤ Ctk,(7.3)

where the constant C depends on r, which again we take to be fixed.
We next turn to the higher order Bochner formula for Yang-Mills connec-

tions:

0 =∆ω̂k
|∇Ξ̂k

FΞ̂k
|2ω̂k

− 2|∇2
Ξ̂k
FΞ̂k

|2ω̂k
+∇Ξ̂t

FΞ̂k
#∇Ξ̂k

FΞ̂k
#FΞ̂k

+Rω̂k
#∇Ξ̂k

FΞ̂k
#∇Ξ̂k

FΞ̂k
+∇ω̂k

Rω̂k
#FΞ̂k

#∇FΞ̂k
.

Since |∇ω̂k
Rω̂k

|ω̂k
≤ tk|∇ωtk

Rωtk
|ωtk

≤ CU tk, we have

−∆ω̂k
|∇Ξ̂k

FΞ̂k
|2ω̂k

≤ C(t
1
2
k |∇Ξ̂k

FΞ̂k
|2ω̂k

+ t
3
2
k |∇Ξ̂k

FΞ̂k
|ω̂k

).

Set
ψk := |∇Ξ̂k

FΞ̂k
|2ω̂k
/ sup
Dr×Mw0

|∇Ξ̂k
FΞ̂k

|2ω̂k
.

The above Bochner formula, in addition to our hypothesis (7.2), gives

−∆ω̂k
ψk ≤ C(t

1
2
k + tk) ≤ 1,
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for k ≫ 1. We now follow the argument used in Lemma 5.3. Let p̂k be
the pullbacks of the points pk via Φk,r. These are the points realizing the
supremum of |∇Ξ̂k

FΞ̂k
|2ω̂k

, so that ψk(p̂k) = 1. Now construct a sequence of

functions uk solving ∆ω̂k
uk = −1 and uk(p̂k) = 1. Working on a small ball

Bω̂k
(p̂k, r0), we can assume that uk > ε0 for some ε0 > 0 independent of k.

Then since −∆(ψk − uk) ≤ 0, by the mean value inequality, there exists a
δ > 0 depending only ε0 and r0 such that

δ <

∫
Bω̂k

(p̂k,r0)
uk ≤

∫
Bω̂k

(p̂k,r0)
ψk ≤

∫
Dr/4×Mw0

ψk ≤ C8tk
sup

Dr×Mw0

|∇Ξ̂k
FΞ̂k

|2ω̂k

where the final inequality follows from (7.3). This contradicts (7.2), com-
pleting the proof. �

Next, we have a C1,α-estimate for At.

Lemma 7.3. For all w ∈ U ′, and for all t≪ 1, 0 < α < 1,

∥At −A0,t∥C1,α(Mw) ≤ C3t
1
2 and ∥∇2

A0,t
ŝt∥C0,α(Mw) ≤ C4t

1
2 ,

for constants C3 and C4 independent of w and t.

Proof. We begin by recalling inequality (5.10), which follows from Proposi-
tion 6.1, and properties of ŝt

∥ŝt∥Lp
2(Mw) ≤ Ct.

We would like to extend the above estimate to the case of p = ∞. To
accomplish this, we turn to the higher order elliptic a priori estimate

∥ŝt∥Lp
3(Mw) ≤ C

(
∥∆A0,t ŝt∥Lp

1(Mw) + ∥ŝt∥Lp(Mw)

)
≤ C

(
∥∆A0,t ŝt∥Lp

1(Mw) + t
)
.

Taking one fiber derivative of (5.7), and using the fact that ∥ŝt∥C0(Mw) and
∥∇A0,t ŝt∥C0(Mw) are controlled by t, we see that

∥∆A0,t ŝt∥Lp
1(Mw) ≤ ∥∇A0,tFAt∥Lp(Mw) + t∥ŝt∥Lp

3(Mw) + t∥ŝt∥Lp
2(Mw).

Thus, for t small enough

∥ŝt∥Lp
3(Mw) ≤ C(t+ ∥∇A0,tFAt∥Lp(Mw)) ≤ Ct

1
2 .

By Morrey’s inequality we have

(7.4) ∥∇2
A0,t

ŝt∥C0,α(Mw) ≤ Ct
1
2 .

�
If we let Ξ0

t = e−ŝt(Ξt), then Ξ0
t |Mw = A0,t, and we write

Ξ0
t = A0,t+B

0
t,1dx1+B

0
t,2dx2, and FΞ0

t
= −κ0t,1dx1−κ0t,2dx2−F 0

B,tdx1∧dx2,

where
κ0t,j = ∂xjA0,t − dA0,tB

0
t,j .
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Note that we still have F 0,2
Ξ0
t
= 0, which implies

(7.5) ⋆wκ
0
t,1 = κ0t,2,

and thus
⋆w∂x1A0,t − ∂x2A0,t = ⋆wdA0,tB

0
t,1 − dA0,tB

0
t,2.

Since

⋆w∂x1A0,t−∂x2A0,t ∈ ker∆A0,t , dA0,tB
0
t,2 ∈ ImdA0,t , and ⋆wdA0,tB

0
t,1 ∈ Imd∗A0,t

,

we have ⋆w∂x1A0,t = ∂x2A0,t and dA0,tB
0
t,j = 0 by the Hodge decomposition.

As a result we obtain

(7.6) κ0t,j = ∂xjA0,t.

A direct calculation shows

κt,j − κ0t,j = ∂xj (At −A0,t)− dAtBt,j(7.7)

= ∇xj (At −A0,t)− [Bt,j , At −A0,t]

−dA0,tBt,j + [A0,t −At, Bt,j ]

= ∇xj (At −A0,t)− dA0,tBt,j .

Now, by (6.5), (7.5) and (7.7),

⋆w∇x1(At −A0,t)−∇x2(At −A0,t) = ⋆wdA0,tBt,1 − dA0,tBt,2,

and since ⋆wdA0,tBt,1⊥dA0,tBt,2, i.e. ⟨⋆wdA0,tBt,1, dA0,tBt,2⟩w = 0, we have

∥dA0,tBt,j∥w ≤
∑
i=1,2

∥∇xi(At −A0,t)∥w,

for any w ∈ U . Consequently, for j = 1, 2

(7.8) ∥κt,j − κ0t,j∥w ≤ 2
∑
i=1,2

∥∇xi(At −A0,t)∥w.

Furthermore, if we decompose Bt,j = Bo
t,j +B⊥

t,j , where B
o
t,j ∈ ker dA0,t and

B⊥
t,j⊥ ker dA0,t , then

(7.9) ∥B⊥
t,j∥w ≤ C∥dA0,tBt,j∥w ≤ C

∑
i=1,2

∥∇xi(At −A0,t)∥w,

by Lemma 5.2. We need one more Lemma before we are ready to prove
Proposition 7.1.

Lemma 7.4. On U ′ ⊂⊂ U , we have∫
U

∑
j=1,2

∥∇xj (At −A0,t)∥2wdx1dx2 ≤ C5(t
2 +

∫
U

∑
j=1,2

∥∇xjFAt∥2wdx1dx2),

for a constant C5 > 0. Consequently, by ii) of Proposition 6.1,∫
U

∑
j=1,2

∥κt,j − κ0t,j∥2wdx1dx2 ≤ C6t.
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Proof. We denote two important terms by

Λ =
∑
j=1,2

∥∇xj (At −A0,t)∥w, Θ =
∑
j=1,2

∥∇xjFAt∥w.

First, for j = 1, 2, we decompose ∇xj ŝt = ∇xj ŝ
o
t +∇xj ŝ

⊥
t , where ∇xj ŝ

⊥
t

is perpendicular to the kernel of dA0,t ,and ∇xj ŝ
o
t ∈ ker dA0,t . Recall that

ker dA0,t = {diag{η1, · · · , ηn} ∈ sl(n,C)}, and as a volume form ωSF |Mw =

dv is independent of w under the identification Mw
∼= T 2. For any η ∈

ker dA0,t , since [Bo
t,j , η] = 0,

∇xjη = ∂xjη + [Bt,j , η] = [B⊥
t,j , η].

Thus

0 = ∂xj ⟨ŝt, η⟩w = ⟨∇xj ŝt, η⟩w + ⟨ŝt,∇xjη⟩w = ⟨∇xj ŝ
o
t , η⟩w + ⟨ŝt, [B⊥

t,j , η]⟩w,

and by (7.9)

∥∇xj ŝ
o
t∥w ≤ C∥ŝt∥C0∥B⊥

t,j∥w ≤ CtΛ.

Along with Lemma 5.2, this implies

∥∇xj ŝt∥w ≤ C(∥∇xj ŝ
⊥
t ∥w + tΛ) ≤ C(∥dA0,t∇xj ŝt∥w + tΛ).

Since

dAt∇xj ŝt = dA0,t∇xj ŝt + [At −A0,t,∇xj ŝt], and ∥At −A0,t∥C0 ≤ Ct,

we obtain

∥∇xj ŝt∥w ≤ C(∥dAt∇xj ŝt∥w + tΛ).

Next, take the derivative of (5.5) in the base direction to see

∥∇xj (At −A0,t)∥2w ≤ 2∥∇xj (Υ(ŝt))dAt ŝt∥2w + 2∥Υ(ŝt)∇xj (dAt ŝt)∥2w.

We concentrate on the two terms on the right hand side above separately.
By Lemma 5.4 and Proposition 6.1, ŝt, ∇A0,t ŝt and At − A0,t are bounded

in C0 by t, and so the first term satisfies

∥∇xj (Υ(ŝt))dAt ŝt∥2w ≤ t2C∥∇xj ŝt∥2w ≤ t2C(∥dAt∇xj ŝt∥2w + t2Λ2).

To bound the second of the two terms, note that κt,j is bounded, and
∇xjdAt − dAt∇xj = κt,j . Thus

∥Υ(ŝt)∇xj (dAt ŝt)∥2w ≤ C∥ŝt∥2w + 2∥dAt∇xj ŝt∥2w ≤ Ct2 + 2∥dAt∇xj ŝt∥2w,

from which we conclude

Λ2 ≤ 2
∑
j=1,2

∥∇xj (At −A0,t)∥2w ≤ 6
∑
j=1,2

∥dAt∇xj ŝt∥2w + Ct2.

Therefore it suffices to bound ∥dAt∇xj ŝt∥2w.
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Integration by parts, along with Lemma 5.2, gives∫
Mw

|dAt∇xj ŝt|2ωSF ≤
∫
Mw

|∇xj ŝt∥∆At∇xj ŝt|ωSF

≤ ∥∇xj ŝt∥w∥∆At∇xj ŝt∥w
≤ C(∥dAt∇xj ŝt∥w + tΛ)∥∆At∇xj ŝt∥w

and so

(7.10) ∥dAt∇xj ŝt∥2w ≤ C∥∆At∇xj ŝt∥2w + t2Λ2.

Thus we obtain

Λ2 ≤ C(
∑
j=1,2

∥∆At∇xj ŝt∥2w + t2).

In order to bound ∆At∇xj ŝt, we turn to the equality (5.6) for the curva-
ture of At, using the fact that A0,t is flat,

FAt = i dAt ⋆w dAt ŝt − Υ̃(ŝt)∂̄At∂At ŝt + Υ̃(−ŝt)∂At ∂̄At ŝt

−∂̄AtΥ̃(ŝt) ∧ ∂At ŝt + ∂AtΥ̃(−ŝt) ∧ ∂̄At ŝt

−Υ(ŝt)∂At ŝt ∧Υ(−ŝt)∂̄At ŝt +Υ(−ŝt)∂̄At ŝt ∧Υ(ŝt)∂At ŝt.

We take the derivative of this equation in the base direction, and calculate
∇xjFAt . Firstly,

∇xjdAt ⋆w dAt ŝt = dAt∇xj ⋆w dAt ŝt + κt,j#dAt ŝt

= dAt ⋆w dAt∇xj ŝt + dAt [⋆wκt,j , ŝt] + κt,j#dAt ŝt

= dAt ⋆w dAt∇xj ŝt ± [∇xiFAt , ŝt] + κt,j#dAt ŝt

by ∇xiFAt = dAtκt,i = ±dAt ⋆w κt,j , which implies

|∇xjdAt ⋆w dAt ŝt − dAt ⋆w dAt∇xj ŝt|
≤ C(|∇A0,t ŝt|+ |At −A0,t∥ŝt|+ |∇xiFAt∥ŝt|),

≤ Ct(1 +
∑
i=1,2

|∇xiFAt |).

As a result, we have

∥∇xjdAt ⋆w dAt ŝt − dAt ⋆w dAt∇xj ŝt∥w ≤ Ct(1 + Θ).

Secondly, note that ∇At = ∇A0,t + (At −A0,t), and

∇2
At

= ∇2
A0,t

+(At−A0,t)#∇A0,t+∇A0,t(At−A0,t)+(At−A0,t)#(At−A0,t).
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A direct calculation shows

∥∇xj (Υ̃(ŝt)∂̄At∂At ŝt)∥w
≤ C(∥∇xj ŝt∥w∥∇2

At
ŝt∥C0 + ∥∇xj ∂̄At∂At ŝt∥w∥ŝt∥C0)

≤ C∥∇xj ŝt∥w(∥∇2
A0,t

ŝt∥C0 + ∥At −A0,t∥C1∥ŝt∥C1)

+ C(∥∆At∇xj ŝt∥w + 1 + tΘ)∥ŝt∥C0

≤ C(t∥∆At∇xj ŝt∥w + t
1
2 ∥∇xj ŝt∥w + t+ t2Θ)

≤ C(t
1
2 ∥∆At∇xj ŝt∥w + t+ tΛ + t2Θ),

where we used Lemma 7.3. For the later terms, we have

∥∇xj (∂̄AtΥ̃(ŝt) ∧ ∂At ŝt)∥w + ∥∇xj (Υ(ŝt)∂At ŝt ∧Υ(−ŝt)∂̄At ŝt)∥w
≤ C(∥∇A0,t ŝt∥C0 + ∥At −A0,t∥C0∥ŝt∥C0)(∥∇xj ŝt∥w

+∥dAt∇xj ŝt∥w + ∥ŝt∥w)
≤ C(t2 + t∥∆At∇xj ŝt∥w + t2Λ).

Returning to (7.10), we put everything together to see

∥∇xjFAt − idAt ⋆w dAt∇xj ŝt∥w ≤ C(t
1
2 ∥∆At∇xj ŝt∥w + tΛ + tΘ+ t),

∥∆At∇xj ŝt∥w ≤ C(Θ + t+ tΛ),

and

∥dAt∇xj ŝt∥w ≤ C(Θ + t+ tΛ).

Thus we conclude

Λ2 ≤ C(Θ2 + t2),

proving the lemma. �

Now, we are ready to prove Proposition 7.1.

Proof of Proposition 7.1. Note that we have

∥FΞt∥2L2(MU′ ,ωt)
≤ 2

∫
MU′

(t−1|FAt |2ωSF +
∑
j=1,2

|κt,j |2ωSF + t|FB,t|2ωSF )(ω
SF )2.

By (6.6), we have

t|FB,t|2ωSF ≤ C(t−1|FAt |2ωSF + t
∑
j=1,2

|κt,j |2ωSF ),
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which in turn implies

∥FΞt∥2L2(MU′ ,ωt)
≤ C

∫
U ′
(t−1∥FAt∥2w +

∑
j=1,2

∥κt,j∥2w)dx1dx2

≤ C(t+
∑
j=1,2

∫
U ′

∥κt,j − κ0t,j∥2wdx1dx2

+
∑
j=1,2

∫
U ′

∥∂xjA0,t∥2wdx1dx2)

≤ C(t+
∑
j=1,2

∫
U ′

∥∂xjA0,t∥2wdx1dx2)

For the second inequality above we used ∥FAt∥2w ≤ Ct2 and κ0t,j = ∂xjA0,t.
Finally,

∥FΞt∥2L2(MU′ ,ωt)
≥ 1

2

∫
U ′

∑
j=1,2

∥κt,j∥2wdx1dx2

≥ 1

2
(
∑
j=1,2

∫
U ′

∥∂xjA0,t∥2wdx1dx2

−
∑
j=1,2

∫
U ′

∥κt,j − κ0t,j∥2wdx1dx2)

≥ C(
∑
j=1,2

∫
U ′

∥∂xjA0,t∥2wdx1dx2 − t),

and we obtain the conclusion. �
We finish this section by a lemma that is needed in the proof of Theorem

3.2.

Lemma 7.5. ∑
j=1,2

∥[κt,j , κt,j ]∥2L2(MU′ ,ωSF ) ≤ C7t,

for a constant C7 > 0.

Proof. Recall that κ0t,j = ∂xjA0,t by (7.6), and thus

[κ0t,j , κ
0
t,j ] = 0, j = 1, 2.

We have

[κt,j , κt,j ] = 2[κ0t,j , κt,j − κ0t,j ] + [κt,j − κ0t,j , κt,j − κ0t,j ],

and by |κt,j | ≤ C,

|[κt,j , κt,j ]| ≤ C|κt,j − κ0t,j |.
Lemma 7.4 shows that∫

U

∑
j=1,2

∥[κt,j , κt,j ]∥2wdx1dx2 ≤ C

∫
U

∑
j=1,2

∥κt,j − κ0t,j∥2wdx1dx2 ≤ Ct.
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We obtain the conclusion. �

8. Proof of Proposition 4.4

Now, we have the tools to verify assumption (6.3) along our main subse-
quence of times tk, which is chosen in Proposition 4.1.

Proof of Proposition 4.4. We work via contradiction, and assume the Propo-
sition is false, in other words assumption (6.3) fails for our sequence Ξtk . By
passing to a subsequence, there exists a sequence of points p′k ∈MK so that

(8.1) t
1
2
k |FΞtk

|ωtk
(p′k) → ∞,

and f(p′k) converges to a point x ∈ K, as tk → 0.
Applying Lemma 4.2, we can pick new points near pk to carry out our

argument. Specifically, if r = 1
2distω(x,N\K), there exists a sequence of

real numbers 0 < ρk < r and a sequence pk ∈M so that dωtk
(pk, p

′
k) ≤ r,

sup
Bωtk

(pk,ρk)
|FΞtk

|ωtk
≤ 2|FΞtk

|ωtk
(pk),

and
2ρk|FΞtk

|ωtk
(pk) ≥ r|FΞtk

|ωtk
(p′k).

If we set δk := t
− 1

2
k |FΞtk

|−1
ωtk

(pk), then (8.1) and the above inequalities give

δk → 0, and

ρkδ
−1
k ≥ rt

1
2
k |FΞtk

|ωtk
(p′k) → ∞.

Furthermore, define

t̃k := tkδ
−2
k = tk

2|FΞtk
|2ωtk

(pk) ≤ ϵ2k → 0,

which goes to zero as tk → 0 by Proposition 4.1.
We now consider the scaled metric ω̃t̃k

= δ−2
k ωtk , and claim that ω̃t̃k

satisfies the same collapsing properties of ωtk . If w̃ = δ−1
k w denotes the

scaled coordinate on Dr = {|w| < rδk} = {|w̃| < r}, where f(pk) is given by
w = 0, then

δ−2
k ωSF

tk
=
i

2

(
t̃kW (dz + b̃dw̃) ∧ (dz + b̃dw̃) +W−1dw̃ ∧ d ¯̃w

)
,

where b̃ = − Im(z)
Im(τ)

∂τ
∂w̃ . For a certain fiberwise translation Tσ0 , we write

T ∗
σ0
δ−2
k ωtk − δ−2

k ωSF
tk

= δ−2
k φtk,zz̄dz ∧ dz̄ + φtk,ww̄dw̃ ∧ d ¯̃w
+δ−1

k φtk,wz̄dw̃ ∧ dz̄ + δ−1
k φtk,zw̄dz ∧ d ¯̃w.

By Lemma 2.11, for ν ≫ 1,

∥δ−2
k φtk,zz̄∥Cℓ

loc
+ ∥δ−1

k φtk,zw̄∥Cℓ
loc

+ ∥δ−1
k φtk,wz̄∥Cℓ

loc
≤ Cℓt̃

ν
k,

and

∥ ∂
∂z
φtk,ww̄∥Cℓ

loc
+ ∥ ∂

∂z̄
φtk,ww̄∥Cℓ

loc
≤ Cℓt̃

ν
k, ∥φtk,ww̄ − χtk,ww̄∥C0

loc
≤ C0t̃

ν
k.
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Here we used tk ≤ t̃k, and that χtk,ww̄ is a function on Dr that satisfies

χtk,ww̄ → 0 in the C∞-sense as tk → 0. The Cℓ
loc-norms are calculated in

coordinates z and w̃.
Working in the scaled metrics, we have that dωt̃k

(pk, p) ≤ ρkδ
−1
k for any

p ∈ Bωtk
(pk, ρk), so the radius of the disk approaches infinity. In particular

this implies that on Bω̃t̃k
(pk, ρkδ

−1
k ), we have the bound

|FΞtk
|ω̃t̃k

= δ2k|FΞtk
|ωtk

≤ 2δ2k|FΞtk
|ωtk

(pk) = 2t−1
k |FΞtk

|−1
ωtk

(pk) = 2t̃
− 1

2
k .

Now, because the energy Etk(p,Rtk(pk)) is scale invariant,

ε = Etk(pk, Rtk(pk))

=
δ−4
k Rtk(pk)

4

Vol(Bω̃t̃k
(pk, δ

−1
tk
Rtk(pk)))

∫
Bω̃

t̃k
(pk,δ

−1
tk

Rtk
(pk))

|FΞtk
|2ω̃t̃k

ω̃2
t̃k
.

Additionally, note that

δ−1
k Rtk(pk) = tk

1
2 |FΞtk

|ωtk
(pk)Rtk(pk) ≤ 4t

1
2
k |FΞtk

|
1
2
ωtk

(pk) = 4t̃
1
4
k ,

since |FΞtk
|ωtk

(pk) ≤ 4R−2
tk

(pk) by (2.15). Thus, on Bω̃t̃k
(pk, ρkδ

−1
k ) we have

(8.2) |FΞtk
|ω̃t̃k

≤ 2t̃
− 1

2
k

and

(8.3) ε ≤ 44t̃k

Vol(Bω̃t̃k
(pk, 4t̃

1
4
k ))

∫
Bω̃

t̃k
(pk,4t̃

1
4
k )

|FΞtk
|2ω̃t̃k

ω̃2
t̃k
.

Inequality (8.2) gives assumption (6.3) for our connections in scaled coordi-
nates (with scaled parameter t̃). Also (6.4) is also satisfied since the scaling
does not effect the fiber direction. Thus Proposition 6.1 holds in scaled
coordinates, which in turn allows us to conclude Proposition 7.1 as well.

To achieve our contradiction, we show these bounds force the energy on
the right hand side of (8.3) to go to zero. We continue to use the notation
∥ · ∥w := ∥ · ∥L2(Mw,ω̃SF ) since scaling does not affect the fiber direction.

Applying Proposition 7.1, on any K ⊂ Dr we have

∥FΞtk
∥2L2(MK ,ω̃t̃k

) ≤ C(t̃k +

∫
K

∑
j=1,2

∥∂x̃jA0,tk∥
2
wdx̃1dx̃2)

for a uniform constant C, where x̃1 + ix̃2 = w̃. Since A0,tk → A0 in the
C∞-sense on MU , we have

∥∂x̃jA0,tk∥
2
w = δ2k∥∂xjA0,tk∥

2
w ≤ Cδ2k,

and thus

∥FΞtk
∥2L2(MK ,ω̃t̃k

) ≤ C(t̃k + δ2k

∫
K
dx̃1dx̃2).
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Because the radius t̃
1
4
k grows slower than the injectivity radius of the elliptic

fibers in the metric ω̃t̃k
(which is roughly t̃

1
2
k ), we see that for t̃k small enough

t̃k

Vol(Bω̃t̃k
(p, 4t̃

1
4
k ))

≤ Ct̃k

t̃k t̃
1
2
k

=
C

t̃
1
2
k

.

Also Bω̃t̃k
(pk, 4t̃

1
4
k ) ⊂MDr . Thus, returning to (8.3), we have

ε ≤ 44t̃k

Vol(Bω̃t̃k
(pk, 4t̃

1
4
k ))

∫
Bω̃

t̃k
(pk,4t̃

1
4
k )

|FΞtk
|2ω̃t̃k

ω̃2
t̃k

≤ C

t̃
1
2
k

(t̃k + δ2k t̃
1
2
k )

≤ C(t̃
1
2
k + δ2k).

The right hand side above goes to zero, a contradiction. �

9. The proof of Theorem 3.2

At last, we prove Theorem 3.2 in this section. Under the same setup as
in Section 6, the first lemma shows that for any fixed p ≥ 2,

∥FB,t∥Lp(MU ,ωSF ) → 0

when t→ 0.

Lemma 9.1. If (6.3) and (6.4) hold for t ≪ 1, for any p ≥ 2, we have the
following inequalities

∥FAt∥
p
Lp(MU ,ωSF )

≤ C1t
1+p, and ∥FB,t∥pLp(MU ,ωSF )

≤ C1t
1+ 1

p ,

where the constant C1 is independent of t.

Proof. By Lemma 6.3,

∆∥FAt∥2w ≥ δ

t
∥FAt∥2w − CtZt,

where
Zt =

∑
j=1,2

∥[κt,j , κt,j ]∥2w + tν ,

for ν ≫ 1 and a constant C > 0. Lemma 7.5 implies that∫
U
Ztdx1dx2 ≤ Ct.

Let η be a smooth function such that 0 ≤ η ≤ 1 and supp(η) ⊂ U . Then∫
U
∥FAt∥2wdx1dx2 ≤ tδ−1

∫
U
∥FAt∥2w∆ηdx1dx2 + t2C

∫
U
ηZtdx1dx2

≤ tC̃δ−1

∫
U
∥FAt∥2wdx1dx2 + t2C

∫
U
Ztdx1dx2,
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for a constant C̃ ≥ sup
U

∆η. Thus for t≪ 1,∫
U
∥FAt∥2wdx1dx2 ≤ Ct3.

For any p ≥ 2,

∥FAt∥
p
Lp(MU ,ωSF )

≤ Ctp−2

∫
U
∥FAt∥2wdx1dx2 ≤ Ctp+1,

by Lemma 6.5, and

∥FB,t∥pLp(MU ,ωSF )
≤ Ct

1+ 1
p ,

by (6.6). �

Recall that for any sequence tk → 0, a subsequence of Ξtk Lp
1 ∩ C0,α-

converges to a Lp
1∩C0,α-connection Ξ0 by preforming certain further unitary

gauge changes if necessary on MK in Theorem 3.1, where K ⊂ No. Thus
the curvature FΞtk

Lp-converges to FΞ0 on MK .
On any open disc U ⊂ K, we have the decompositions

Ξ0 = Ã0 + B̃0,1dx1 + B̃0,2dx2, and

FΞ0 = FÃ0
− κ̃0,1 ∧ dx1 − κ̃0,2 ∧ dx2 − FB̃,0dx1 ∧ dx2,

where κ̃0,j = ∂
∂xj

Ã0 − dÃ0
B̃0,j . By Lemma 9.1 and the convergence, we

obtain that

FÃ0
≡ 0, FB̃,0 ≡ 0, and ⋆w κ̃0,1 = κ̃0,2.

Thus Ξ0 is an anti-self-dual connection with respect to (ωSF ,Ω), i.e.

FΞ0 ∧ ωSF = 0, and FΞ0 ∧ Ω = 0.

It is standard (cf. Theorem 9.4 of [75]) that by preforming a further unitary
gauge change if necessary, we can have that Ξ0 is smooth.

Lemma 9.2. There is a unitary gauge u such that

u(Ξ0) = A0

on MU , where A0 is given by (4.4).

Proof. By Theorem 3.1, for any w ∈ U , there is a unitary gauge uw on
Mw such that uw(Ξ0|Mw) = A0|Mw , and uw is smooth since both Ξ0|Mw

and A0|Mw are smooth. We claim that one can choose uw depending on w
smoothly.

Note that Mw
∼= T 2 and P |Mw

∼= Mw × SU(n). Let Aℓ,p be the space of
Lp
ℓ SU(n)-connections on the trivial bundle on T 2, ℓ ≥ 1, and Gℓ+1,p be the

Lp
ℓ+1 unitary gauge group. We have identifications Aℓ,p = Lp

ℓ (T
2, sl(n)) and

Gℓ+1,p = Lp
ℓ+1(T

2, SU(n)) under the trivialization, and Gℓ+1,p acts on Aℓ,p
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by u(A) = u−1Au + u−1du. If we denote the orbit Ow = {u(Ξ0|Mw)|u ∈
Gℓ+1,p} ⊂ Aℓ,p for any w ∈ U , then A0|Mw ∈ Ow. Define the orbit map

Ψ : Gℓ+1,p × U →
∪
w∈U

Ow ⊂ Aℓ,p, by Ψ(u,w) = u(Ξ0|Mw).

For a fixed w0 ∈ U , let ϱw : Ow → Ow0 by A 7→ v(A0|Mw0
), where

v(A0|Mw) = A for a unitary gauge v. If v′ is an another unitary gauge such
that v′(A0|Mw) = A, then v′v−1(A0|Mw) = A0|Mw , and thus v′v−1 ∈ Tn−1 ⊂
SU(n), i.e. a diagonal matrix. Since A0|Mw0

is a diagonal matrix valued

1-form, we have v(A0|Mw0
) = v′(A0|Mw0

), and ϱw is well-defined.

Let Ψ′ = ϱw◦Ψ : Gℓ+1,p×U → Ow0 be the the composition. Note that the
tangent space TA0|Mw0

Ow0 = Im(dA0|Mw0
), and the first partial derivative

of Ψ′ at (u,w) such that Ψ′(u,w) = A0|Mw0
is D1Ψ

′ = −dA0|Mw0
. Thus

A0|Mw0
is a regular value of Ψ′, and Ψ′−1(A0|Mw0

) is a smooth submanifold.

Furthermore, the projection Gℓ+1,p×U → U induces a Tn−1-bundle structure
on Ψ′−1(A0|Mw0

) with fiber Tn−1 ⊂ SU(n).

If ũ : U → Ψ′−1(A0|Mw0
) is a smooth section, then ũ(w)(Ξ0|Mw) = A0|Mw ,

and we can regard ũ as a smooth unitary gauge change on MU . Therefore
we have

ũ(Ξ0) = A0 +B0,1dx1 +B0,2dx2,

which still satisfies

⋆wκ0,1 = κ0,2, with κ0,j =
∂

∂xj
A0 − dA0B0,j , j = 1, 2, and

0 = FB,0 =
∂

∂x2
B0,1 −

∂

∂x1
B0,2 − [B0,1, B0,2].

Note that ∂
∂xj

A0 ∈ ker∆A0 , j = 1, 2, on any Mw, and

⋆w
∂

∂x1
A0 −

∂

∂x2
A0 = ⋆wdA0B0,1 − dA0B0,2.

By the Hodge decomposition, ker∆A0 , Im(d∗A0
) and Im(dA0) are orthogonal

to each other. Thus
dA0B0,j ≡ 0, j = 1, 2,

on any Mw, and B0,j |Mw is a diagonal matrix in sl(n). If we write B0,j =

idiag{bj,1, · · · , bj,n}, then ∂
∂x2

B0,1 = ∂
∂x1

B0,2 implies that there are real
functions ϑℓ on U such that b1,ℓdx1 + b2,ℓdx2 = −dϑℓ, ℓ = 1, · · · , n. If
ṽ = diag{ exp (iϑ1), · · · , exp (iϑn)}, and we regard ṽ as a unitary gauge
change on MU , then

ṽ(ũ(Ξ0)) = A0.

We obtain the conclusion by letting u = ṽ · ũ. �
Proof of Theorem 3.2. Let {Uλ|λ ∈ Λ} be an open cover of No such that
any intersection Uλ1 ∩ · · · ∩ Uλh

is contractible. For any Uλ, D
o
0 ∩MUλ

=
U1
λ ∪ · · · ∪ Un

λ is a disjoint union of open sets biholomorphic to Uλ, and
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{U j
λ|λ ∈ Λ, j = 1, · · · , n} is an open cover of Do

0 ∩ MNo such that any
intersections are contractible.

On any MUλ
, there is a unitary gauge uλ such that uλ(Ξ0) = A0 by

Lemma 9.2. Recall that

A0 = diag{α1, · · · , αn}, αj = π(Im(τ))−1(qj θ̄ − q̄jθ),

where {(w, qj(w))} = U j
λ is one component of Do

0 ∩ MUλ
, and αj is not

unitary gauge equivalent to αi if j ̸= i. On any intersection MUλ∩Uµ , A0 =

uµ · u−1
λ (A0). Thus uµ · u−1

λ |Mw ∈ Tn−1 ⊂ SU(n) for any w ∈ Uλ ∩ Uµ.

We can write uµ · u−1
λ = diag{g1j1µλ , · · · , g

njn
µλ }, where gijiµλ is a U(1)-valued

function on Uλ ∩ Uµ, and is the unitary gauge change between αi on MUµ

and αji on MUλ
. Hence we have that U i

µ ∩ U ji
λ ̸= ∅, and d log gijiµλ = 0,

which implies that gijiµλ, i = 1, · · · , n, are U(1)-valued constant functions on

Uλ ∩ Uµ. By regarding gijiµλ as a function on U i
µ ∩ U ji

λ , we obtain a 1-chain

{(U i
µ∩U

ji
λ , g

iji
µλ)} ∈ C1({U j

λ},Uc(1)) for the U(1)-valued locally constant sheaf

Uc(1) on D
o
0 ∩MNo .

If U i
µ ∩ U j

λ ∩ Uk
ν ̸= ∅, then Uµ ∩ Uλ ∩ Uν ̸= ∅, and by uµ · u−1

λ · uλ ·
u−1
ν · uν · u−1

µ = Id, we obtain that gijµλg
jk
λνg

ki
νµ = 1. Therefore {(U i

µ ∩
U ji
λ , g

iji
µλ)} satisfies the cocycle condition, and defines a cohomological class

Θ = [{(U i
µ∩U

ji
λ , g

iji
µλ)}] ∈ H1(Do

0 ∩MNo ,Uc(1)), which is equivalent to a flat

U(1)-connection on Do
0 ∩MNo . From the construction in Subsection 2.6, it

is clear that Ξ0 ∈ FM(Do
0 ∩MNo ,Θ). �

Appendix A. Collapsing rate of Ricci-flat Kähler-Einstein
metrics

Here we study the collapsing rate of Ricci-flat Kähler-Einstein metrics
on general Calabi-Yau manifolds, which is used in the proof of the main
theorem.

Let M be a Calabi-Yau m-manifold, i.e. M is projective with trivial
canonical bundle KM

∼= OM . Assume M admits a holomorphic fibration
f :M → N , where N is smooth projective manifold with n = dimCN < m.
As above, let SN denotes the discriminant locus f , and N0 = N\SN the
regular locus. For any w ∈ N0, the smooth fiber Mw = f−1(w) is a Calabi-
Yau manifold of dimension m−n. Let α be an ample class onM , and α0 an
ample class on N . Then for t ∈ [0, 1), αt = tα+ f∗α0 is a family of Kähler
classes. Denote by ωt ∈ αt the unique Ricci-flat Kähler-Einstein metric,
which satisfies the complex Monge-Ampère equation

ωm
t = ctt

m−n(−1)
m2

2 Ω ∧ Ω.

Here Ω is a holomorphic volume form onM , and ct has a positive limit when
t→ 0.
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The behavior of ωt when t → 0 has been studied intensively in the liter-
ature (see cf. [45, 66, 41, 43, 47, 67, 68, 69, 48], among others). We briefly
recall some of the important developments, and refer the readers to the
above sources for details. Under the assumption that M is an elliptically
fibered K3 surface with only singular fibers of Kodaira type I1, Gross-Wilson
first proved that (M,ωt) converges to a compact metric space homeomorphic
to the sphere S2 [45]. In the case of general fibered Calabi-Yau manifolds,
Tosatti proved that ωt converges to f∗ω in the current sense [66], where ω
is the Kähler metric on N0 with

Ric(ω) = ωWP

obtained in [66, 62, 63], and ωWP is the Weil-Petersson metric of the fibers
on N0.

If M is an Abelian fibered Calabi-Yau m-manifold, then Gross-Tosatti-
Zhang improved the convergence of ωt to C

∞ away from the singular fibers
[41]. More precisely ωt converges smoothly to f∗ω on f−1(K) for any com-
pact K ⊂ N0 when t → 0, and additionally the curvature of ωt is local-
ly uniformly bounded on f−1(N0). The Gromov-Hausdorff convergence of
(M,ωt) is obtained in [43] for the case of one dimensional base N , which
generalizes the Gross-Wilson’s result to any elliptically fibered K3 surface.
In a recent paper of Tosatti-Zhang [69], the Gromov-Hausdorff convergence
of (M,ωt) is generalized to the case when M is a holomorphic symplectic
manifold admitting a holomorphic Lagrangian fibration, and ωt is a Hyper-
Kähler metric.

However, despite this later progress, one important property is still miss-
ing for the general cases of Calabi-Yau manifolds that appears in the orig-
inal work of Gross-Wilson. In their setting they show that ωt approaches
a semi-flat Kähler metric exponentially fast on compact subsets away from
the singular fibers. This behavior is expected in general. In fact, motivated
by physics, Gaiotto-Moore-Neitzke propose a construction of complete Hy-
perKähler metrics on certain compactifications of complex, completely inte-
grable systems, which asserts the exponential approximations by semi-flat
Kähler metrics [35]. In particular, the asymptotic behavior of HyperKähler
metrics on the Hitchin moduli spaces are studied in several recent papers
[57, 24, 26].

The goal of this appendix is to study the asymptotic rate of ωt for any
Abelian fibered Calabi-Yau manifolds. From now on assume any smooth
fiberMw is an Abelian variety. For an open subset U ⊂ N0 biholomorphic to
a polydisk, f :MU → U is a family of Abelian varieties, which is isomorphic
to f : (U × Cm−n)/Λ → U, where Λ → U is a lattice bundle with fiber
Λw

∼= Z2m−2n, so that Mw
∼= Cm−n/Λw. We denote the universal covering

map p : U × Cm−n → MU , which satisfies that f ◦ p(w, z) = w for all
(w, z) ∈ U × Cm−n.

For completeness we recall the construction of the semi-flat Kähler metric
onMU (cf. [37, 41]). Note that the ample class α gives an ample polarization
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of type (d1, . . . , dm−n) of the fiber Mw, where di ∈ N and d1|d2| · · · |dm−n.
Then Λw is generated by d1e1, . . . , dn−mem−n, Z1, . . . , Zm−n ∈ Cm−n, where
e1, . . . , em−n denotes the standard basis for Cm−n, and the matrix Z =
[Z1, . . . , Zm−n] is the period matrix of Mw, which satisfies the Riemann
relationship

Z = Zt, and ImZ > 0.

If z1, · · · , zm−n denote the coordinates on Cm−n, then on the fiber Mw, the
flat Kähler form

i
∑
k,l

(ImZ)−1
kl dzk ∧ dz̄l

represents α|Mw . Using the notation Wkl = (ImZ)−1
kl , by Section 3 in [41], if

η(w, z) = −1

2

m−n∑
k,l=1

Wkl(w)(zk − z̄k)(zl − z̄l),

then i∂∂̄η is invariant under translation by sections of Λ, and therefore,
defines a semi-positive (1, 1)-form on MU . The semi-flat metric is defined as

(A.1) ωSF
t = it∂∂̄η + f∗ω,

for any t ∈ (0, 1], which satisfies that ωSF
t |Mw is the flat metric in the class

tα|Mw . Again ω ∈ α0 is the Kähler metric on N whose Ricci curvature is
the Weil-Petersson metric of fibers on the regular part.

The main result of the appendix is the following:

Theorem A.1. For any ν ∈ N, there is a constant Cν > 0 such that

∥T ∗
σ0
ωt − ωSF

t − f∗χt∥C0
loc(MU ,ωSF

t ) ≤ Cνt
ν
2 ,

for a certain local section σ0, where χt is a (1, 1)-form on U such that χt → 0
in the C∞-sense when t→ 0, and Tσ0 is the fiberwise translation by σ0.

Note that ωSF
t + f∗χt is still a semi-flat metric for 0 < t ≪ 1. Thus this

theorem asserts that as t → 0, ωt approaches a semi-flat metric faster than
any polynomial rate. We remark that this decay rate is not as fast as the
one demonstrated by Gross-Wilson (Theorem 5.6 in [45]), where

T ∗
σ0
ωt = ωSF

t + f∗χt + o(e
−C′

√
t )

is obtained. However a sufficiently high polynomial decay rate is enough for
the proof of the main theorem of the present paper. We leave the exponential
rate for future study.

Proof of Theorem A.1. By Proposition 3.1 in [41], for any Kähler metric
ωM ∈ α, there is a holomorphic section σ0 : U →MU such that

ω + tωM = T ∗
−σ0

ωSF
t + i∂∂ξt.

Thus

T ∗
σ0
ωt = ω + tT ∗

σ0
ωM + i∂∂ϕt ◦ Tσ0 = ωSF

t + i∂∂φt,
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where φt = (ϕt + ξt) ◦ Tσ0 . If we denote λt : U × Cm−n → U × Cm−n the

dilation given by λt(w, z) = (w, t−
1
2 z), then λ∗t it∂∂̄η = i∂∂̄η, and

λ∗t p
∗ωSF

t = i∂∂̄η + f∗ω.

By Proposition 4.3 in [41],

∥λ∗t p∗T ∗
σ0
ωt∥Cℓ

loc
≤ Cℓ

for constants Cℓ > 0, and by Lemma 4.7 in [41] (also Proposition 3.2 of
[69]),

λ∗t p
∗T ∗

σ0
ωt → i∂∂̄η + f∗ω

when t→ 0, in the locally C∞-sense.

If we denote ψt = φt ◦ p ◦ λt, then ψt is t
1
2Λ-periodic, i.e.

ψt(w, z) = ψt(w, z + t
1
2 (a+ bZ))

where a + bZ = (a1d1e1 + b1Z1, · · · , am−ndm−nem−n + bm−nZm−n) for any
aj , bj ∈ Z. By the above we can write

λ∗t p
∗T ∗

σ0
ωt = i∂∂̄η + ω + i∂∂ψt,

and note that ∥i∂∂ψt∥Cℓ
loc

≤ Cℓ, and i∂∂ψt → 0 as t→ 0, on U × Cm−n.

Lemma A.2. Denote

ψt,wkw̄l
=

∂2ψt

∂wk∂w̄l
, ψt,zk z̄l =

∂2ψt

∂zk∂z̄l
, and ψt,zkw̄l

=
∂2ψt

∂zk∂w̄l
.

For any ν ∈ N and ℓ ≥ 0, there is a constant C ′
ℓ,ν > 0 such that

∥ψt,wkw̄l
− χt,kl∥C0

loc
≤ C ′

0,νt
ν
2 ,

and

∥ ∂

∂zj
ψt,wkw̄l

∥Cℓ
loc

+ ∥ψt,zk z̄l∥Cℓ
loc

+ ∥ψt,zkw̄l
∥Cℓ

loc
≤ C ′

ℓ,νt
ν
2 ,

where χt,kl are functions on U .

Proof. For any t ∈ (0, 1], let ht be a
√
tΛ-periodic real function on U×Cm−n

such that ∣∣∂ββ1,··· ,β2(m−n)
ht
∣∣ ≤ Cβ,

where

∂ββ1,··· ,β2(m−n)
ht =

∂βht

∂β1y1 · · · ∂β2(m−n)y2(m−n)

,

and zj = yj + ym−n+jZj , β = β1 + · · · + β2(m−n), and Cβ is independent

of t. For w ∈ U , let Dw ⊂ {w} × Cm−n be the fundamental domain of the
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√
tΛw-action. For any p1 and p2 ∈ Dw, if we denote by γ ⊂ Dw the line

segment connecting p1 and p2, then

|∂ββ1,··· ,β2(m−n)
ht(p1)− ∂ββ1,··· ,β2(m−n)

ht(p2)|

≤
∣∣∣ ∫

γ
∂γ̇∂

β
β1,··· ,β2(m−n)

ht(γ(s))ds
∣∣∣

≤ C
√
t

2(m−n)∑
j=1

sup |∂yj∂
β
β1,··· ,β2(m−n)

ht|.

Since ht is periodic we can choose p2 to be a local maximum of ∂β−1
β1−1,··· ,β2(m−n)

ht,

which implies ∂ββ1,··· ,β2(m−n)
ht(p2) = 0. Thus for any k ≥ 1, we obtain

|ht − h̄t| ≤ C0,νt
ν
2 , and |∂ββ1,··· ,β2(m−n)

ht| ≤ Cβ,νt
ν
2 ,

for constants Cβ,ν independent of t, where h̄t = sup
z∈Dw

ht is a function on U .

The first inequality in the lemma is obtained by letting ht = ψt,wkw̄l
and

h̄t = χt,k,l, and the second inequality follows by taking

ht =
∂ℓψt

∂ℓ1y1 · · · ∂ℓ2(m−n)y2(m−n)

for any ℓ ≥ 1. �
We obtain the desired conclusion by letting χt = i

∑
kl

χt,kldwk∧dw̄l. Note

that the convergence in Lemma A.2 is slightly stronger than Theorem A.1,
and we use Lemma 2.11, a simplified version of Lemma A.2, in the proof of
Theorem 3.1. �
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