A THEORY OF STACKS WITH TWISTED FIELDS AND RESOLUTION OF
MODULI OF GENUS TWO STABLE MAPS

YI HU AND JINGCHEN NIU

Abstract. We construct a smooth algebraic stack of tuples consisting of genus two nodal curves,
line bundles, and twisted fields. It leads to a desingularization of the moduli of genus two stable
maps to projective spaces. The construction is based on systematical application of the theory
of stacks with twisted fields (STF), which has its prototype appeared in [9, 10] and is fully
developed in this article. The results of this article are the second step of a series of works toward
the resolutions of the moduli of stable maps of higher genera.

Contents

1. Introduction 1
2. A theory of stacks with twisted fields 3
3. Recursive constructions 15
4. Applications of the STF theory to \mathbb{P}_2 and $\overline{M}_2(\mathbb{P}^n, d)$ 19
References 36

1. Introduction

This paper is the second of a series, sequel to [10]. The series aims to resolve the singularities
of the moduli $\overline{M}_g(\mathbb{P}^n, d)$ of degree d stable maps from genus g nodal curves into projective
spaces \mathbb{P}^n, which possess arbitrary singularities when all g and d are considered (see [16]). The
problem of resolution of singularities is arguably one of the hardest problems in algebraic geometry
([6, 7, 11, 12]).

For $g = 2$, the only resolution of $\overline{M}_2(\mathbb{P}^n, d)$ so far is provided in [9] via a huge sequence of
blowups. In higher genus cases, a direct blowup construction of a possible resolution of $\overline{M}_g(\mathbb{P}^n, d)$
may seem formidable. It thus calls for a more abstract and geometric approach. Our goal is
to construct a new moduli with smooth irreducible components and normal crossing boundaries
that dominates $\overline{M}_g(\mathbb{P}^n, d)$ properly and birationally onto the primary component (the component
whose general points have smooth domain curves).

To this end, we consider the smooth Artin stack \mathfrak{M}_g of pairs (C, L) where C are genus g nodal
curves and $L \rightarrow C$ are line bundles (i.e. the relative Picard stack), along with the morphism
$\mathfrak{M}_g(\mathbb{P}^n, d) \rightarrow \mathfrak{M}_g, \quad [C, u] \mapsto [C, u^* \mathcal{O}_{\mathbb{P}^n}(1)]$.

We hope to introduce a novel smooth Artin stack \mathfrak{P}_g of tuples (C, L, η) where $(C, L) \in \mathfrak{M}_g$ and
η are the extra structure (called twisted fields) added to (C, L), along with a canonical forgetful
morphism $\mathfrak{P}_g \rightarrow \mathfrak{M}_g$. We then take
$$\overline{M}_g(\mathbb{P}^n, d) := \overline{M}_g(\mathbb{P}^n, d) \times_{\mathfrak{M}_g} \mathfrak{P}_g$$
to be the moduli of degree d stable maps from genus g nodal curves into projective spaces \mathbb{P}^n
with twisted fields. We aim to demonstrate that $\overline{M}_g(\mathbb{P}^n, d)$ is a smooth Deligne-Mumford stack.
with the desired desingularization property aforementioned. The $g = 1$ case of this program is
accomplished in [10]. In this paper, we carry out the program when $g = 2$.

To make our approach systematic, we develop the theory of stacks with twisted fields (STF).
The STF theory is an abstraction based upon a thorough analysis on the combinatorial and
geometric structures of \mathcal{P}_g. To summarize it, let \mathcal{M} be a smooth stack (e.g. \mathcal{P}_g) and Γ be a
finite set of graphs (e.g. the set of dual graphs of nodal curves appearing in \mathcal{P}_g). We assume
\mathcal{M} admits a Γ-stratification (e.g. the stratification of \mathcal{P}_g indexed by Γ together with local
smooth divisors corresponding to the edges of the graphs); see Definition 2.13 for details. We
then introduce a treelike structure Λ on (\mathcal{M}, Γ) in Definition 2.16 which assigns a rooted tree to
each connected component of the strata of \mathcal{M} in a suitable way. Such a treelike structure encodes
a hidden blowing up process to be performed on the stack \mathcal{M}, although the STF theory does
not rely on the actual blowing up process. With all the above devices at hand, we construct a
new smooth stack $\mathcal{M}_\Lambda^{\text{tf}}$, properly and birationally dominating \mathcal{M}. The following theorem is the
key statement of the STF theory. It is a restatement of Theorem 2.18 and Proposition 2.19.

Theorem 1.1. Let Γ be a set of finite graphs, \mathcal{M} be a smooth algebraic stack with a Γ-stratification
$\mathcal{M} = \bigsqcup_{\gamma \in \Gamma} \mathcal{M}_\gamma$ as in Definition 2.13. Λ be a treelike structure on (\mathcal{M}, Γ) as in Definition 2.16.
$\pi_0(\mathcal{M}_\gamma)$ be the set of the connected components \mathcal{M}_γ of \mathcal{M}_γ, and $\mathcal{A}_{\pi_0(\mathcal{M}_\gamma)}$ be the set of equivalence
classes of rooted level trees (c.f. Definitions 2.10 & 2.12) associated with \mathcal{M}_γ, as in (2.13). Then,
the following fiber products of open subsets of the projectivization of the direct sums of certain
line bundles as in (2.14):

$$
\mathcal{M}_\Lambda^{\text{tf}}[\gamma, [t]] = \left(\prod_{i \in [\mathcal{M}, 0]} \left(\mathcal{P}(\bigoplus_{\ell \in \mathcal{A}} L_{\geq \pi_0(\mathcal{M}_\gamma)} \mathcal{E}_i[t]) / \mathcal{M}_\gamma \right) \right) \overset{\varpi}{\rightarrow} \mathcal{M}_\gamma, \quad \gamma \in \Gamma, \quad \mathcal{M}_\gamma \in \pi_0(\mathcal{M}_\gamma), \quad [t] \in \mathcal{A}_{\pi_0(\mathcal{M}_\gamma)}.
$$

can be glued together in a canonical way to form a smooth algebraic stack $\mathcal{M}_\Lambda^{\text{tf}}$:

$$
\mathcal{M}_\Lambda^{\text{tf}} = \bigsqcup_{\gamma \in \Gamma, \mathcal{M}_\gamma \in \pi_0(\mathcal{M}_\gamma), [t] \in \mathcal{A}_{\pi_0(\mathcal{M}_\gamma)}} \mathcal{M}_\Lambda^{\text{tf}}[\gamma, [t]].
$$

Moreover, the stratwise projections $\varpi : \mathcal{M}_\Lambda^{\text{tf}}[\gamma, [t]] \rightarrow \mathcal{M}_\gamma$ together give rise to a proper and birational
morphism $\varpi : \mathcal{M}_\Lambda^{\text{tf}} \rightarrow \mathcal{M}$.

The stack $\mathcal{M}_\Lambda^{\text{tf}}$ is called the stack with twisted fields of \mathcal{M} with respect to Λ, and it enjoys
several desirable properties as stated in Theorem 2.18 and Proposition 2.19. In particular, Theorem
2.18 and Proposition 2.19 further suggest a possible recursive construction:

$$
\cdots \rightarrow (\mathcal{M}_\Lambda^{\text{tf}})_N^{\text{tf}} \rightarrow \mathcal{M}_\Lambda^{\text{tf}} \rightarrow \mathcal{M}.
$$

The key observation is that the new smooth stack $\mathcal{M}_\Lambda^{\text{tf}}$ naturally comes with some choices of the
sets Γ' of graphs and the corresponding Γ'-stratifications. Upon introducing a suitable treelike
structure \mathcal{N} on $(\mathcal{M}_\Lambda^{\text{tf}}[\gamma], \Gamma')$, one can obtain a newer stack $(\mathcal{M}_\Lambda^{\text{tf}}[\gamma])_{N'}$, and the construction keeps on.
For example, we assume the STF theory to the smooth stack \mathcal{P}_2 eight times to obtain $\mathcal{P}_2^{\text{tf}}$ in
Corollary 4.34 which leads to the main application of the STF theory in this paper:

Theorem 1.2. There exits a smooth algebraic stack $\tilde{\mathcal{P}}_2^{\text{tf}}$ of tuples consisting of nodal curves of
genus two, line bundles, and twisted fields, along with a proper and birational forgetful morphism
$\tilde{\mathcal{P}}_2^{\text{tf}} \rightarrow \mathcal{P}_2$, such that the Deligne-Mumford moduli stack of genus two stable maps with twisted
fields given by

$$
\tilde{\mathcal{M}}_2^{\text{tf}}(\mathbb{P}^n, d) := \mathcal{M}_2(\mathbb{P}^n, d) \times \mathcal{P}_2 \mathcal{P}_2^{\text{tf}}
$$
satisfies that
(1) $\widetilde{M}_2^g(\mathbb{P}^n, d)$ has smooth irreducible components and admits at worst normal crossing singularities;
(2) the morphism $\pi^g : \widetilde{M}_2^g(\mathbb{P}^n, d) \to M_2(\mathbb{P}^n, d)$ is proper;
(3) the induced morphism $\pi^g : \widetilde{M}_2^g(\mathbb{P}^n, d) \to M_2(\mathbb{P}^n, d)$ between the primary components (whose general points are stable maps with smooth domain curves) is birational; and
(4) for any irreducible component N of $\widetilde{M}_2^g(\mathbb{P}^n, d)$, with
$$\pi_N : \mathcal{C}_N \to N \subset \widetilde{M}_2^g(\mathbb{P}^n, d),$$
$$\mathfrak{C}_N : \mathcal{C}_N \to \mathbb{P}^n,$$

denoting the restriction of the pullback of the universal family $\pi : \mathcal{C} \to M_2(\mathbb{P}^n, d)$, the induced morphism $\pi_N^* : (\mathfrak{C}_N)^* \mathcal{O}_{\mathbb{P}^n}(k)$ is locally free for all $k \geq 1$.

The eight-step construction of the stack \widetilde{M}_2^g is provided in §4.2. The proof of the properties (1)-(4) of Theorem 1.2 is provided in §4.10.

We remark that the stack with twisted fields \mathcal{M}_2^g may not be isomorphic to the blowup stack \mathcal{M}_2^g constructed in [9]. Indeed, several blowups in [9] can be performed in various orders, and in general, they should lead to different resolutions of $M_2(\mathbb{P}^n, d)$.

We also remark that if we take $N = \widetilde{M}_2^g(\mathbb{P}^n, d)^{pri}$ in Part (4) of Theorem 1.2, then
$$\langle e(\pi_{\widetilde{M}_2^g(\mathbb{P}^n, d)^{pri}}^* \mathcal{C}_{\widetilde{M}_2^g(\mathbb{P}^n, d)^{pri}}), [\widetilde{M}_2^g(\mathbb{P}^n, d)^{pri}] \rangle$$
should equal the expected reduced genus 2 Gromov-Witten (GW) invariants of the corresponding complete intersection, parallel to [17] (1.4]) and [15] (1.7)]. The reduced genus 1 GW-invariants, as well as its comparison with the standard genus 1 GW-invariants, are introduced in [20] and further studied in [15] [17] [4] [5] [13] [14], and lead to important results such as A. Zinger’s proof [21] of the prediction of [3] for genus 1 GW-invariants of a quintic 3-fold.

Acknowledgments. We would like to thank Dawei Chen, Qile Chen, Jack Hall, and YP Lee for the valuable discussions.

2. A theory of stacks with twisted fields

2.1. Graphs and levels. Throughout the article, we use the following definition of the graphs adapted from [18] §5.1.

Definition 2.1. A finite graph γ, or simply a graph when the context is clear, is a finite set $\text{HE}(\gamma)$ of half-edges along with
- a set $\text{Ver}(\gamma)$ of disjoint subsets $v \subseteq \text{HE}(\gamma)$ known as the vertices such that
 $$\bigcup_{v \in \text{Ver}(\gamma)} v = \text{HE}(\gamma)$$

 and
- a set $\text{Edg}(\gamma)$ of disjoint subsets $e \subseteq \text{HE}(\gamma)$ known as the edges such that
 $$|e| = 2 \quad \forall e \in \text{Edg}(\gamma); \quad \bigcup_{e \in \text{Edg}(\gamma)} e = \text{HE}(\gamma).$$

Definition 2.1 naturally allows graphs that have self loops and multiple edges with the same endpoints, which is convenient for our purpose. For every half-edge $h \in \text{HE}(\gamma)$, Definition 2.1 implies that there exist a unique vertex $v(h)$ and a unique edge $e(h)$ containing h, respectively.
Definition 2.2. Let \(\gamma, \gamma' \) be graphs. We say \(\gamma' \) is a subgraph of \(\gamma \) if there exist injections
\[
 f_{\gamma, \gamma'} : HE(\gamma') \hookrightarrow HE(\gamma), \quad f^{e}_{\gamma, \gamma'} : Edg(\gamma') \hookrightarrow Edg(\gamma), \quad f^{v}_{\gamma, \gamma'} : Ver(\gamma') \hookrightarrow Ver(\gamma)
\]
satisfying
\[
 f^{e}_{\gamma, \gamma'}(e) = \{ f_{\gamma, \gamma'}(h^{+}), f_{\gamma, \gamma'}(h^{-}) \} \quad \forall \, e = \{ h^{+}, h^{-} \} \in Edg(\gamma'); \\
 f^{v}_{\gamma, \gamma'}(v) \supseteq \{ f_{\gamma, \gamma'}(h) : \forall \, h \in v \} \quad \forall \, v \in Ver(\gamma').
\]

Definition 2.3. Given a graph \(\gamma \) and two vertices \(v \) and \(w \) of \(\gamma \), a path from \(v \) to \(w \) is a sequence of pairwise distinct half-edges of \(\gamma \):
\[
h^{+}_{1}, h^{-}_{1}, h^{+}_{2}, h^{-}_{2}, \ldots, h^{+}_{m}, h^{-}_{m}
\]
such that \(v(h^{+}_{1}) = v \), \(v(h^{-}_{m}) = w \), \(\{ h^{+}_{i}, h^{-}_{i} \} \in Edg(\gamma) \) for all \(1 \leq i \leq m \), and \(\{ h^{-}_{i}, h^{+}_{i+1} \} \in Ver(\gamma) \) for all \(1 \leq i \leq m-1 \).

A path defined in this way cannot contain repetitive edges.

Definition 2.4. A graph \(\gamma \) is said to be connected if it is non-empty and for any two vertices \(v \) and \(w \), there exists a path from \(v \) to \(w \). The set of all connected graphs is denoted by \(G \).

Given \(\gamma \in G \) and \(E \subset Edg(\gamma) \), we write the set of all half-edges of \(E \) as \(HE(E) = \bigsqcup_{e \in E} \{ e \} \).

If \(E \neq \emptyset \), there exists a unique partition \(P(E) \) of \(E \), with each \(E' \in P(E) \) corresponding to a connected subgraph \(\gamma(E') \) of \(\gamma \), satisfying \(Edg(\gamma(E')) = E' \) and \(Ver(\gamma(E')) \cap Ver(\gamma(E'')) = \emptyset \) for all distinct \(E', E'' \in P(E) \). If \(E = \emptyset \), we set \(P(E) = \emptyset \).

Definition 2.5. With notation as above, let \(\gamma(E) \) be the graph obtained from \(\gamma \) by contracting the edges in \(E \):
\[
 HE(\gamma(E)) = HE(\gamma) \setminus HE(E), \quad Edg(\gamma(E)) = Edg(\gamma) \setminus E, \\
 Ver(\gamma(E)) = \{ v \in Ver(\gamma) : v \cap HE(E) = \emptyset \} \cup \{ \bigcup_{h \in HE(E')} v(h) \setminus HE(E) : E' \in P(E) \}.
\]

Such an operation is called an edge contraction. For \(e \in Edg(\gamma) \), we simply write \(\gamma(e) = \gamma([e]) \).

By definition, \(\gamma(\emptyset) = \gamma \) for any \(\gamma \in G \). If \(\gamma \) is connected, then every graph obtained from \(\gamma \) via edge contraction is still connected.

Given \(\gamma, \gamma' \in G \), we define
\[
 (2.1) \quad \gamma' < \gamma \iff \exists \ E \subset Edg(\gamma') \ \text{s.t.} \ E \neq \emptyset, \ \gamma = \gamma(E).
\]

This gives rise to a partial order \(< \) on \(G \).

Aside from the edge contractions, we introduce two more graph operations that will be used in \(\# \) to describe the treelike structures of each step.

Definition 2.6. Given \(\gamma \in G \) and \(V \subset Ver(\gamma) \), let \(\gamma^{ds}_{V} \) be the graph obtained from \(\gamma \) by dissolving the vertices in \(V \):
\[
 HE(\gamma^{ds}_{V}) = HE(\gamma), \quad Edg(\gamma^{ds}_{V}) = Edg(\gamma), \quad Ver(\gamma^{ds}_{V}) = (Ver(\gamma) \setminus V) \sqcup \bigsqcup_{h \in V, v \in V} \{ h \}.
\]

Such an operation is called a vertex dissolution.

Definition 2.7. Given \(\gamma \in G \) and \(V \subset Ver(\gamma) \), let \(\gamma^{id}_{V} \) be the graph obtained from \(\gamma \) by identifying the vertices in \(V \):
\[
 HE(\gamma^{id}_{V}) = HE(\gamma), \quad Edg(\gamma^{id}_{V}) = Edg(\gamma), \quad Ver(\gamma^{id}_{V}) = (Ver(\gamma) \setminus V) \sqcup \{ h \in V : v \in V \}.
\]

Such an operation is called a vertex identification.
Intuitively, dissolving a vertex \(v \in \text{Ver}(\gamma) \) means removing \(v \) from \(\text{Ver}(\gamma) \) and assigning to each edge \(e \) with \(e \sim v \neq \emptyset \) a distinct new vertex, whereas identifying the vertices in a subset \(V \) of \(\text{Ver}(\gamma) \) means “gluing” the vertices in \(V \) into a single vertex. If \(\gamma \) is connected, a graph obtained from \(\gamma \) via vertex dissolution may become disconnected, but that via vertex identification is connected. Figure 1 provides illustrations for Definitions 2.5-2.7.

Definition 2.8. For a connected graph \(\gamma \), its first Betti number \(b_1(\gamma) \) is given by
\[
b_1(\gamma) = |\text{Edg}(\gamma)| - |\text{Ver}(\gamma)| + 1.
\]

The graphs with \(b_1 = 0 \) are of our particular interest. They play crucial roles in the STF theory.

Definition 2.9. A rooted tree
\[
\tau = (\gamma, o)
\]
consists of a connected graph \(\gamma \) with \(b_1(\gamma) = 0 \) as well as a chosen vertex \(o \in \text{Ver}(\gamma) \) known as the root. We write
\[
\text{HE}(\tau) := \text{HE}(\gamma), \quad \text{Edg}(\tau) := \text{Edg}(\gamma), \quad \text{Ver}(\tau) := \text{Ver}(\gamma).
\]

When the root is clear, we simply write \(\tau = \gamma \). The single vertex edge-less rooted tree is denoted by \(\tau \).

Every rooted tree \(\tau \) determines a unique partial order \(< \) on \(\text{HE}(\tau) \), known as the tree order, so that \(h < h' \) if and only if \(h \neq h' \) and the unique path from \(o \) to \(v(h) \) contains \(h' \). Thus, every \(e \in \text{Edg}(\tau) \) can be written as
\[
e = \{h^+, \overline{h}^-\} \quad \text{with} \quad \overline{h}^- < h^+.
\]
The tree order on \(\text{HE}(\tau) \) induces partial orders \(< \) on \(\text{Edg}(\tau) \) and \(\text{Ver}(\tau) \) by requiring
\[
e < e' \iff \{h < h' \forall h \in e, h' \in e'\}, \quad v < v' \iff \{\exists h \in e, h' \in e' \text{ s.t. } h < h'\},
\]
respectively. We still call the induced orders on \(\text{Edg}(\tau) \) and \(\text{Ver}(\tau) \) the tree orders. The subsets of the maximal edges, minimal edges, maximal vertices, and minimal vertices with respect to the tree orders are denoted by
\[
\text{Edg}(\tau)_{\text{max}}, \quad \text{Edg}(\tau)_{\text{min}}, \quad \text{Ver}(\tau)_{\text{max}}, \quad \text{Ver}(\tau)_{\text{min}},
\]
respectively. The minimal vertices are known as the leaves in the graph theory.

Definition 2.10. A rooted level tree
\[
t = (\tau_l, \ell_t)
\]
is a tuple consisting of a rooted tree \(\tau_l = (\gamma_l, o_l) \) and a map
\[
(2.2) \quad \ell = \ell_t : \text{HE}(\tau_l) \longrightarrow \mathbb{R}_{\leq 0},
\]
called a level map, that satisfies
\[
\ell^{-1}(0) = o_l; \quad \ell(h) = \ell(h') \text{ whenever } v(h) = v(h'); \quad \ell(h^+) < \ell(h^-) \quad \forall e \in \text{Edg}(\tau_l).
\]
We write
\[HE(t) := HE(\tau_1), \quad \text{Edg}(t) := \text{Edg}(\tau_1), \quad \text{Ver}(t) := \text{Ver}(\tau_1). \]
The level map \(\ell \) determines a map on \(\text{Ver}(\tau_1) \), which is still denoted by \(\ell \), that is given by
\[\ell: \text{Ver}(\tau_1) \to \mathbb{R}_{\leq 0}, \quad \ell(v) = \ell(h) \quad \forall \ h \in v, \]
which is also called a level map when the context is clear. The image of \(\ell \) is denoted by \(\text{Im}(\ell) \), whose elements are called levels of \(t \). The set of all rooted level trees is denoted by \(T \).

Remark 2.11. In Definition 2.10, the level maps on \(HE(\tau_1) \) and \(\text{Ver}(\tau_1) \) determine each other, and a rooted level tree defined in this way is consistent with that introduced in \([10, \S 2.1]\). We remark that a rooted level tree is a level graph with the root as the unique top level vertex in \([11, 2]\). The relation between the STF theory and the theory of twisted/multi-scale differentials \((1, 2)\) appears to be beyond the combinatorial resemblance, which will be revealed in the succeeding works on the resolution of \(M_\delta(P^n, d) \).

For every level \(i \in \text{Im}(\ell) \), we denote by \(i^\delta \) and \(i^\delta \) the levels immediately above and below \(i \) (if such levels exist), respectively:
\[i^\delta = \min \{ j \in \text{Im}(\ell) : j > i \}, \quad i^\delta = \max \{ h \in \text{Im}(\ell) : h < i \}. \]
Among the levels of \(t \), a particularly important one is
\[m = m(t) := \max \{ \ell(v) : v \in \text{Ver}(\gamma)_{\min} \} \in \text{Im}(\ell). \]
For \(i \in \text{Im}(\ell) \), we write
\[\mathcal{E}_i = \mathcal{E}_i(t) = \{ e \in \text{Edg}(\tau_1) : \ell(h_e^+) > i, \ell(h_e^-) \leq i \}, \quad \mathcal{E}_{\geq i} = \mathcal{E}_{\geq i}(t) = \bigcup_{j \geq i} \mathcal{E}_j, \]
\[\mathcal{E}_i^\delta = \mathcal{E}_i^\delta(t) = \{ e \in \mathcal{E}_i : \ell(h_e^-) = i \}, \quad \mathcal{E}_{\leq i}^\delta = \mathcal{E}_{\leq i}^\delta(t) = \bigcup_{j \leq i} \mathcal{E}_j^\delta, \]
\[(\mathcal{E}_{m;\min}^\geq) = \bigcup_{e \in \mathcal{E}_{m;\min} \cap \text{Edg}(\tau_1)} \{ e' \in \text{Edg}(\tau_1) : e' \geq e \}. \]
The notation "\(\bot \)" in \(\mathcal{E}_i^\delta \) intuitively suggests the lower half-edges of the edges in \(\mathcal{E}_i^\delta \) "stop" at the level \(i \), with "\(\cup \)" representing the edges and "\(\cap \)" representing the level \(i \). The set \((\mathcal{E}_{m;\min}^\geq) \) consists of the edges of the paths from the root \(o \) to the minimal vertices on level \(m \); see Figure 2 for illustration.

With \(t \) as above, we write
\[[i, j]_t = \text{Im}(t) \cap [i, j], \quad [i, j]_t = \text{Im}(t) \cap [i, j] \quad \forall \ i, j \in \text{Im}(\ell). \]
For \(k \in \mathbb{Z}_{\geq 0} \), let
\[n_k = n_k(t) = \min \left(\{ i \in [m, 0]_t : |\mathcal{E}_i \cap (\mathcal{E}_{m;\min}^\geq) | \leq k \} \cup \{ 0 \} \right) \in [m, 0]_t. \]
Intuitively, \(n_k \) is the lowest level on which there are at most \(k \) vertices that are contained in the paths from the root \(o \) to the minimal vertices on level \(m \); see Figure 2 for illustration.

Each subset
\[I' = I'_+ \sqcup E'_m \sqcup E'_- \]
\[: = [m, 0]_t \sqcup (\mathcal{E}_m \setminus \mathcal{E}_m^\bot) \sqcup (\text{Edg}(t) \setminus \mathcal{E}_{\geq m}) \]
determines a rooted level tree
\[t_{(\gamma')} = \left(\tau_{(\gamma')}, \ell_{(\gamma')} \right) = \left(\gamma_{(\gamma')}, \alpha_{(\gamma')}, \ell_{(\gamma')} \right) \]

Figure 2. A rooted level tree

as follows:

- the rooted tree $\tau_{[\ell]}$ is obtained from τ by contracting the edges in

$$\{ e \in E_{\ell}^\ell \cup \ell^\ell : \max \{ \ell(h^e), m \}, \ell(h^e) \} \subset \ell^\ell \} \cup E_{\ell}^\ell;$$

- the level map $\ell_{[\ell]}$ is such that for any $h \in HE(\gamma_{[\ell]}),$

$$\ell_{[\ell]}(h) = \begin{cases} \min \{ i \in [m, 0] : i \geq \ell(h) \} & \text{if } h = h^e, e \in E_m, \\ \min \{ i \in \text{Im}(\ell) : i \geq \ell(h) \} & \text{otherwise.} \end{cases}$$

The above construction of $t_{[\ell]}$ implies that

$$m(t_{[\ell]}) = \min([m, 0] \setminus \ell^e_0), \quad E_m(t_{[\ell]}) = \{ e \in E_m \setminus E_{\ell}^e : \ell(h^e) > m(t_{[\ell]}) \},$$

$$I_+(t_{[\ell]}) = I^e_0 \setminus \ell^e_0, \quad E_+(t_{[\ell]}) = (E_+ \setminus E_{\ell}^e) \cup \{ e \in E_m \setminus E_{\ell}^e : \ell(h^e) \leq m(t_{[\ell]}) \}.$$

In particular, we have

$$E_m(t_{[\ell]}) \cup E_+(t_{[\ell]}) = (E_m \setminus E_{\ell}^e) \cup (E_+ \setminus E_{\ell}^e).$$

Intuitively, $t_{[\ell]}$ is obtained from t by contracting E_{ℓ}^e, then lifting the lower half-edges of the elements of E_{ℓ}^e to the level m, and finally contracting the levels in I^e_0.

Definition 2.12. Two rooted level trees $t = (\tau, \ell)$ and $t' = (\tau', \ell')$ are said to be equivalent, denoted by $t \sim t'$, if the following conditions are satisfied:

(E1) $\tau = \tau'$;
(E2) $\ell^{-1}(m, 0)_t = (\ell')^{-1}(m', 0)_{t'}$;
(E3) there exists a (unique) order preserving bijection $\alpha : [m, 0] \mapsto [m', 0]$ such that $\alpha \circ \ell = \ell'$ on $\ell^{-1}(m, 0)_t$.

This gives rise to an equivalence relation on the set T of the rooted level trees. We denote by $[t]$ the equivalence class containing $t \in T$ and by

$$\bar{T} := \{ [t] : t \in T \}$$

the set of such equivalence classes.

Given $[t], [t'] \in \bar{T}$, we set

$$(2.7) \quad [t'] < [t] \iff \exists \ J \subset I(t') \ s.t. \ \ell' \neq \emptyset, \ [\ell'(J)] = [t].$$

This gives rise to a partial order on \bar{T}. Notice that $[t'] < [t]$ implies that $\gamma_{[t']} \leq \gamma_{[t]}$.

2.2. Γ-stratification and Treelike structures. In this subsection, we describe the stacks to which the theory of stacks with twisted fields (STF) can be applied.

Recall that G denotes the set of connected graphs, which is endowed with a partial order given by the edge contractions. We say two graphs γ and γ' are isomorphic and write $\gamma \simeq \gamma'$ if there exists a bijection $\phi: \text{HE}(\gamma) \to \text{HE}(\gamma')$ satisfying

$$\text{Ver}(\gamma') = \{ (\phi(h) : h \in v) : v \in \text{Ver}(\gamma) \}, \quad \text{Edg}(\gamma') = \{ (\phi(h) : h \in e) : e \in \text{Edg}(\gamma) \}.$$

The graph isomorphism gives an equivalence relation on G that is compatible with the partial order on G. Also recall that τ_* denotes the (connected) edge-less rooted tree. For any topological space X, let $\pi_0(X)$ be the set of all connected components of X. We do not consider \emptyset as a connected space, thus we take $\pi_0(\emptyset) = \emptyset$.

Definition 2.13. Let $\Gamma \subset G$ be a nonempty subset and \mathcal{M} be a smooth algebraic stack. A stratification $\mathcal{M} = \bigsqcup_{\gamma \in \Gamma} \mathcal{M}_\gamma$ by substacks is called a Γ-stratification of \mathcal{M} if

- for every $\gamma \in \Gamma$, there exists a set \mathcal{M}_γ of affine smooth charts of \mathcal{M} satisfying $\mathcal{M}_\gamma \subset \bigcup_{\gamma' \in \Gamma} \mathcal{V}_{\gamma'}$ and
- for every $\gamma \in \Gamma$ and every $\mathcal{V} \in \mathcal{M}_\gamma$, there exists a subset $\{ \mathcal{V}_\gamma \} \in \text{Edg}(\gamma)$ of local parameters on \mathcal{V}, known as the modular parameters,

such that for every $\gamma, \gamma' \in \Gamma \setminus \{ \tau_* \}$ (i.e. $\text{Edg}(\gamma), \text{Edg}(\gamma') \neq \emptyset$) and every $\mathcal{V} \in \mathcal{M}_{\gamma'}$,

$$\mathcal{M}_\gamma \cap \mathcal{V} = \emptyset \quad \text{if } \gamma \not\simeq \gamma',$$

$$\pi_0(\mathcal{M}_\gamma \cap \mathcal{V}) \subset \{ (\mathcal{V}_\gamma = 0 \forall e \in \text{Edg}(\gamma)' \setminus E ; \mathcal{V}_\gamma' \neq 0 \forall e \in E) : E \subset \text{Edg}(\gamma'), \gamma'_E \simeq \gamma \} \quad \text{if } \gamma \simeq \gamma'.$$

In Definition 2.13, some strata \mathcal{M}_γ may be disconnected or empty. If $\mathcal{M}_\gamma \neq \emptyset$ and $\gamma \neq \tau_*$, then (2.8) implies that for every $x \in \mathcal{M}_\gamma$, there exists $\mathcal{V} \in \mathcal{M}_{\gamma'}$ containing x such that $\mathcal{M}_\gamma \cap \mathcal{V} = \{ \mathcal{V}_\gamma = 0 \forall e \in \text{Edg}(\gamma) \}$.

Remark 2.14. When we consider a Γ-stratification, it is often handy to allow isomorphic graphs $\gamma \simeq \gamma'$ to index the same stratum: $\mathcal{M}_\gamma = \mathcal{M}_{\gamma'}$. In such a situation, rigorously we should take Γ as a set of equivalence classes $[\gamma]$ of graphs $\gamma \in G$ with respect to graph isomorphism. However, writing the strata of \mathcal{M} as $\mathcal{M}_{[\gamma]}$ would make the notation in (3) and (4) too complicated, so by abuse of notation, we will still write $\mathcal{M} = \bigsqcup_{\gamma \in \Gamma} \mathcal{M}_\gamma$ even if the graphs in Γ are considered up to graph isomorphism. Similarly, when the context is clear, we will still write $\gamma' < \gamma$ even if the graphs $\gamma, \gamma' \in G$ are considered up to graph isomorphism.

For any subset $\mathcal{M} \subset \mathcal{M}$, we denote by

$$\text{Cl}_{\mathcal{M}}(\mathcal{M}) \subset \mathcal{M}$$

the closure of \mathcal{M} in \mathcal{M}. The lemma below follows directly from (2.8).

Lemma 2.15. Let Γ and \mathcal{M} be as in Definition 2.13. For every $\gamma, \gamma' \in \Gamma$ and every $\mathcal{M}_{\gamma'} \in \pi_0(\mathcal{M}_{\gamma'})$ such that $\text{Cl}_{\mathcal{M}}(\mathcal{M}_\gamma) \cap \mathcal{M}_{\gamma'} \neq \emptyset$, we have $\gamma' \preceq \gamma$ (up to graph isomorphism).

If \mathcal{M} is endowed with a Γ-stratification, we define the boundary of \mathcal{M} to be

$$\Delta := \bigsqcup_{\gamma \in \Gamma, |\text{Edg}(\gamma)| > 0} \mathcal{M}_\gamma.$$
By (2.8), Δ is of lower dimension. Thus, Γ must contain the connected edge-less graph τ_*, and

\[M = M_* \sqcup \Delta. \]

For every $M_\gamma \supset \Delta$, every $M_\gamma \in \pi_0(M_\gamma)$, and every $e \in E_{M_\gamma}$, we denote by

\[L_e \longrightarrow M_\gamma \]

the line bundle such that on each chart $V \in \mathcal{V}_\gamma$ with $M_\gamma \cap V \neq \emptyset$, the line bundle $L_e/(M_\gamma \cap V)$ is the restriction of normal bundle of the local divisor $\{ \zeta^\gamma = 0 \}$ to $M_\gamma \cap V$. As shown in [10, Lemma 3.1], the restriction of

\[\frac{\partial}{\partial \zeta^\gamma} := (d\zeta^\gamma)^\gamma \in \Gamma(V; TM) \]

to $M_\gamma \cap V$ gives a nowhere vanishing section of $L_e/(M_\gamma \cap V)$. In (2.14), the line bundles (2.10) will be “twisted” in (2.14) to define the twisted fields in Theorem 2.18.

Definition 2.16. Let Γ and M be as in Definition 2.13. We call the indexed family

\[\Lambda = \Lambda(M, \Gamma) := \{ (\mathcal{T}_{\mathcal{M}_\gamma}, \gamma \in \gamma \in \Gamma; \mathcal{M}_\gamma \in \pi_0(M_\gamma) \}
\]

a treelike structure on (M, Γ) if it assigns to each pair $(\gamma \in \Gamma; \mathcal{M}_\gamma \in \pi_0(M_\gamma))$ a unique tuple $\mathcal{T}_{\mathcal{M}_\gamma}$ consisting of

- a rooted tree $\mathcal{T}_{\mathcal{M}_\gamma}$ with the root \mathcal{M}_γ,
- a subset $E_{\mathcal{M}_\gamma} \subset \text{Edg}(\gamma)$,
- a bijection $\beta_{\mathcal{M}_\gamma} : \text{Edg}(\mathcal{T}_{\mathcal{M}_\gamma}) \longrightarrow E_{\mathcal{M}_\gamma}$ (which induces a bijection $\beta_{\mathcal{M}_\gamma} : \text{HE}(\mathcal{T}_{\mathcal{M}_\gamma}) \longrightarrow \text{HE}(E_{\mathcal{M}_\gamma})$)

such that for every $\gamma \in \Gamma$ and every $\mathcal{M}_\gamma \in \pi_0(M_\gamma)$, all of the following conditions hold.

(a) For every $\gamma \in \Gamma$ and every $\mathcal{M}_\gamma \in \pi_0(M_\gamma)$, if $\text{Cl}_{\mathcal{M}_\gamma}(\mathcal{M}_\gamma) \cap \mathcal{M}_\gamma \neq \emptyset$, then $\mathcal{T}_{\mathcal{M}_\gamma}$ is not empty.

(b) If $\text{Cl}_{\mathcal{M}_\gamma}(\mathcal{M}_\gamma) \cap \mathcal{M}_\gamma \neq \emptyset$, then for every $e \in \text{Edg}(\mathcal{M}_\gamma)$,

- if $e \notin \text{Edg}(\gamma)$,
- if $e \in \text{Edg}(\gamma)$, then for every $e \in \text{Edg}(\gamma)$,

(b1) if $e \notin \text{Edg}(\gamma)$, then for every $e \in \text{Edg}(\gamma)$,

- if $e \notin \text{Edg}(\gamma)$,
- if $e \in \text{Edg}(\gamma)$

such that for every $\gamma \in \Gamma$ and every $\mathcal{M}_\gamma \in \pi_0(M_\gamma)$, all of the following conditions hold.

(a) For every $\gamma \in \Gamma$ and every $\mathcal{M}_\gamma \in \pi_0(M_\gamma)$, if $\text{Cl}_{\mathcal{M}_\gamma}(\mathcal{M}_\gamma) \cap \mathcal{M}_\gamma \neq \emptyset$, then $\mathcal{T}_{\mathcal{M}_\gamma}$ is not empty.

(b) If $\text{Cl}_{\mathcal{M}_\gamma}(\mathcal{M}_\gamma) \cap \mathcal{M}_\gamma \neq \emptyset$, then for every $e \in \text{Edg}(\gamma)$,

- if $e \notin \text{Edg}(\gamma)$,
- if $e \in \text{Edg}(\gamma)$,

such that for every $\gamma \in \Gamma$ and every $\mathcal{M}_\gamma \in \pi_0(M_\gamma)$, all of the following conditions hold.

We remark that in Definition 2.16, if e is a minimal edge of $\mathcal{T}_{\mathcal{M}_\gamma}$, then $(\mathcal{T}_{\mathcal{M}_\gamma}, e)$ that is obtained from $\mathcal{T}_{\mathcal{M}_\gamma}$ by contracting all the edges “below” the vertex $v(h^+_i)$ can equivalently be obtained by dissolving the vertex $v(h^+_i)$ and then taking the connected component containing the root of $\mathcal{T}_{\mathcal{M}_\gamma}$.

Given $\gamma \in \Gamma$ and $E = \{ e_1, \ldots, e_n \} \subset \text{Edg}(\gamma)$, contracting the edges of E one by one in any order

\[e_1, e_2, \ldots, e_n \]
yields the same graph $\gamma := \gamma(E)$. If $\gamma \in \Gamma$, then for all $\mathcal{N}_\gamma \in \pi_0(\mathcal{M}_\gamma)$ and $\mathcal{N}_\gamma \in \pi_0(\mathcal{M}_\gamma)$ with $C_{\mathcal{N}_1(\mathcal{R}_1) \cap \mathcal{N}_\gamma} \neq \emptyset$, we can follow Definition 2.16 and obtain a new tuple, which is exactly $\mathcal{T}_{\mathcal{R}_1}$, from $\mathcal{T}_{\mathcal{R}_1}$ by contracting e_1, \ldots, e_n with respect to the order (2.12). The tuple $\mathcal{T}_{\mathcal{R}_1}$, however, is independent of the choice of the order (2.12).

\textbf{Example 2.17.} Introduced in [8] and further studied in [10], the smooth stack $\mathcal{M}_1^{\text{wt}}$ of genus 1 stable weighted curves has a natural treelike structure. Recall that $\mathcal{M}_1^{\text{wt}}$ consists of the pairs (C, w) of genus 1 nodal curves C and weights $w \in \mathbb{P} H^2(C, \mathbb{Z})$ satisfying $w(\Sigma) \geq 0$ for all irreducible $\Sigma \subset C$. A pair (C, w) is stable if every rational irreducible component of C with weight 0 contains at least three nodal points. Let $\Gamma = \{\gamma \in \mathcal{G} : b_1(\gamma) \leq 1\}$. The stack $\mathcal{M}_1^{\text{wt}}$ has a natural Γ-stratification by dual graphs (c.f. Definition 4.5). Given $\gamma \in \Gamma$, the connected components \mathcal{N}_γ of the stratum $\mathcal{M}_1^{\text{wt}}$ are indexed by the distribution of the weights on the irreducible components (or equivalently on the vertices of γ).

To each \mathcal{N}_γ, we assign a rooted tree $\tau_{\mathcal{N}_\gamma}$ that is obtained from γ by

\begin{itemize}
 \item contracting all the edges in the smallest connected genus 1 subgraph γ_{cor} of γ,
 \item then dissolving all the vertices with $w(v) > 0$, and
 \item finally taking the connected component containing the vertex that is the image of γ_{cor}.
\end{itemize}

Obviously, the edges of $\tau_{\mathcal{N}_\gamma}$ form a subset $E_{\mathcal{N}_\gamma}$ of $\operatorname{Edg}(\gamma)$, so $\beta_{\mathcal{N}_\gamma}$ is simply the inclusion. We remark that $\tau_{\mathcal{N}_\gamma}$ is the so-called \emph{weighted dual tree of \mathcal{N}_γ} in [10, §2.2].

The above construction of $\tau_{\mathcal{N}_\gamma}$, $E_{\mathcal{N}_\gamma}$, and $\beta_{\mathcal{N}_\gamma}$ gives rise to a treelike structure on $(\mathcal{M}_1^{\text{wt}}, \Gamma)$. In fact, it is straightforward to verify that $\tau_{\mathcal{N}_\gamma}$ is a rooted tree satisfying the condition (a) of Definition 2.16 and that the graph $\gamma(e)$ is in Γ for every edge e. It is also straightforward that for every $\gamma' \preceq \gamma$ and every chart $\mathcal{V} \to \mathcal{M}_1^{\text{wt}}$ centered at a point of $\mathcal{M}_1^{\text{wt}}_{1, \gamma'}$,

$$\mathcal{M}_1^{\text{wt}}_{1, \gamma} \cap \mathcal{V} = \bigcup_{E \in \operatorname{Edg}(\gamma' \preceq \gamma)} \{\zeta_e = 0 \forall e \in \operatorname{Edg}(\gamma' \preceq \gamma) \setminus E; \zeta_e \neq 0 \forall e \in E\},$$

where each ζ_e is a parameter corresponding to the smoothing of the node labeled by e. If $E_{\mathcal{N}_\gamma} \neq \emptyset$, let $\mathcal{N}_{\gamma(e)}$ be a connected component of $\mathcal{M}_1^{\text{wt}}_{1, \gamma(e)}$ satisfying $C_{\mathcal{M}_1^{\text{wt}}(\mathcal{N}_{\gamma(e)}) \cap \mathcal{N}_\gamma} \neq \emptyset$; such $\mathcal{N}_{\gamma(e)}$ exists by the deformation of nodal curves. If e is not an edge of $\tau_{\mathcal{N}_\gamma}$, then obviously $\tau_{\mathcal{N}_{\gamma(e)}} = \tau_{\mathcal{N}_\gamma}$. If an edge e of $\tau_{\mathcal{N}_\gamma}$ is not minimal, then the two endpoints of e are both of weight 0, hence their image in $\gamma(e)$ is of weight 0, which implies $\tau_{\mathcal{N}_{\gamma(e)}} = (\tau_{\mathcal{N}_\gamma})(e)$. If an edge e of $\tau_{\mathcal{N}_\gamma}$ is minimal, the construction of $\tau_{\mathcal{N}_\gamma}$ implies that $v(h^e)$ is positively weighted and so is its image $v(e)$ in $\gamma(e)$. Therefore, $v(e)$ is a minimal vertex of $\tau_{\mathcal{N}_{\gamma(e)}}$. Every vertex v' of $\tau_{\mathcal{N}_\gamma}$ with $v' < v(h^e)$ is thus not in $\tau_{\mathcal{N}_{\gamma(e)}}$. In sum, the conditions of Definition 2.16 are all satisfied.

After choosing this treelike structure, we can construct the stack with twisted fields \mathcal{M}_1^f as in Theorem 2.18(b1) below, which is the same as that in [10, (2.13)].

\textbf{2.3. Stacks with twisted fields.} We are ready to present the main statement of the STF theory. Given a direct sum of line bundles $V = \bigoplus_i L_i$ (over an arbitrary base), we write

$$\mathbb{P}(V) = \{(x, [v_i]) \in \mathbb{P}(V) : v_i \neq 0 \forall i\}.$$

Given $k \in \mathbb{Z}_{>0}$ and morphisms $M_i \to S$ with $1 \leq i \leq k$, we write

$$\prod_{1 \leq i \leq k} (M_i/S) := M_1 \times_S M_2 \times_S \cdots \times_S M_k.$$

Let Γ, \mathcal{M}, and Λ be as in Definition 2.16. Given $\gamma \in \Gamma$ and $\mathcal{N}_\gamma \in \pi_0(\mathcal{M}_\gamma)$, there exists a unique tuple $(\tau_{\mathcal{N}_\gamma}, E_{\mathcal{N}_\gamma}, \beta_{\mathcal{N}_\gamma}) \in \Lambda$, which in turn determines a subset of \mathbb{T}:

\begin{equation}
(2.13) \quad \Lambda_{\mathcal{N}_\gamma} := \{[\ell] = [\tau_1, \ell] \in \mathbb{T} : \tau_1 = \tau_{\mathcal{N}_\gamma}\}.
\end{equation}
For every \(e \in \text{Edg}(\tau_{\Omega_{\gamma}}) \), let
\begin{equation}
L_{\geq \Omega_{\gamma}, e} := \bigotimes_{e' \geq \Omega_{\gamma}, e} L_{\beta_{\Omega_{\gamma}}(e')} \rightarrow \mathcal{N}_{\gamma},
\end{equation}
where \(L_e \) are the line bundles as in (2.10) and \(\geq_{\Omega_{\gamma}} \) is the tree order on \(\tau_{\Omega_{\gamma}} \).

Theorem 2.18. With notation as above, we have the following conclusions:

1. **(p1)** the following disjoint union of the fiber products over the strata of \(\mathcal{M} \):
 \[\mathcal{M}_{\Omega_{\gamma}}^{\text{lf}} = \mathcal{M}_{\Omega_{\gamma}}^{\text{lf}} = \bigcup_{\gamma \in \Gamma; \mathcal{N}_q \in \pi_{0}(\mathcal{M}_q)} \mathcal{N}_q^{\text{lf}} \bigg/ \mathcal{N}_q, \]
 where
 \[\mathcal{N}_q^{\text{lf}} = \left(\prod_{e \in (\mathcal{M}_q)_{\text{lf}}} \left(\left(\bigoplus_{e' \geq \Omega_{\gamma}, e} L_{\beta_{\Omega_{\gamma}}(e')} \right) / \mathcal{N}_q \right) \right) \xrightarrow{\varpi} \mathcal{N}_q, \]
 has a canonical smooth algebraic stack structure, known as the stack with twisted fields over \(\mathcal{M} \) with respect to \(\Lambda \), and determines a proper and birational morphism \(\varpi: \mathcal{M}_{\Omega_{\gamma}}^{\text{lf}} \rightarrow \mathcal{M} \) known as the forgetful morphism;

2. **(p2)** for any \([t] \in \mathcal{N}_q^{\text{lf}} \) and \(x \in \mathcal{M}_{\Omega_{\gamma}}^{\text{lf}}[t] \), there exist a smooth chart \(\mathcal{U}_x \rightarrow \mathcal{M}_{\Omega_{\gamma}}^{\text{lf}} \) containing \(x \), called a twisted chart, a set of special edges \(\{e_i \in \mathcal{E}_x^{\perp}(t)\}_{i \in [m], 0} \) and a subset of local parameters called the twisted parameters:
 \[\zeta_{s,s}^{x}, \quad s \in \tilde{\mathbb{I}}(t) := \mathbb{I}(t) \cup \left(\mathcal{E}_x^{\perp}(t) \backslash \{e_i\}_{i \in [m], 0} \right), \]
 centered at \(x \) such that
 \[\zeta_{s,s}^{x} \in \Gamma(\mathcal{O}_{\Omega_{\gamma}}) \quad \forall s \in \mathcal{E}_x^{\perp}(t) \backslash \{e_i\}_{i \in [m], 0}, \quad (\mathcal{N}_q)^{\text{lf}}[t] \cap \mathcal{U}_x = \{ \zeta_{s,s}^{x} = 0 \ \forall s \in \mathbb{I}(t) \} ; \]
 moreover, for every \(\gamma' \in \Gamma \), every \(\mathcal{N}_{q'} \in \pi_{0}(\mathcal{M}_{\gamma'}) \), and every \([t'] \in \mathcal{N}_{q', \gamma'} \),

 - if \([t'] \geq [t] \) and \(\text{Cl}_{0}(\mathcal{N}_{q'}) \cap \mathcal{N}_q \neq \emptyset \), then \(\pi_{0}(\mathcal{M}_{\gamma'})^{\text{lf}}[t'] \cap \mathcal{U}_x \) is a subset of
 \[\{ \zeta_{s,s}^{x} = 0 \ \forall s \in \mathbb{I}(t') ; \quad \zeta_{s,s}^{x} = 0 \ \forall s \in \mathcal{E}_x^{\perp}(t) ; \quad \prod_{e \in \text{Edg}(\gamma) \backslash \mathcal{E}_x^{\perp}(t)} = \mathcal{E}_{x}^{\perp}(t) \}
 \]

 - if \([t'] \neq [t] \) or \(\text{Cl}_{0}(\mathcal{N}_{q'}) \cap \mathcal{N}_q = \emptyset \), then \((\mathcal{N}_q)^{\text{lf}}[t] \cap \mathcal{U}_x = \emptyset ; \)

3. **(p3)** with notation as in (p2), if the set of modular parameters \(\{\xi_{e}^{x}\} \) on \(\mathcal{V} \) centered at \(\varpi(x) \) extends to a set of local parameters on \(\mathcal{V} \) centered at \(\varpi(x) \):
 \[\{\xi_{e}^{x}\}_{e \in \text{Edg}(\gamma)} \cup \{\xi_{x}^{x}\}_{x \in \mathcal{J}} \]

 for some index set \(\mathcal{J} \), then
 \[\{\xi_{s,s}^{x}\}_{s \in \mathcal{I}(t)} \cup \{\varpi^{x}\xi_{x}^{x}\}_{e \in \text{Edg}(\gamma) \backslash \mathcal{E}_{x}^{\perp}(t)} \cup \{\varpi^{x}\xi_{x}^{x}\}_{x \in \mathcal{J}} \]
 is a set of local parameters on \(\mathcal{U}_x \) centered at \(x \);

4. **(p4)** for any \([t] \in \mathcal{N}_{q}, \ x \in (\mathcal{M}_{\Omega_{\gamma}}^{\text{lf}})[t] \), \(\mathcal{N}_{\gamma} \cap \mathcal{U}_{x} \) containing \(\varpi(x) \), and \(e \in \mathcal{E}_{x}^{\perp}(t) \), we have
 \[\varpi^{x} = \left(\prod_{e' \geq \Omega_{\gamma}, e} \xi_{\beta_{\Omega_{\gamma}}(e')} \right) = u_{e} \cdot \prod_{i \in [m], 0} \xi_{s,s}^{x}, \]
 where \(u_{e} \in \Gamma(\mathcal{O}_{\Omega_{\gamma}}) \) is a unit if \(e \in \mathcal{E}_{x}^{\perp}(t) \) and is equal to \(\xi_{e}^{x} \) (up to a unit) if \(e \in \mathcal{E}_{x}^{\perp}(t) \) \((= \mathcal{E}_{x}^{\perp}(t) \backslash \mathcal{E}_{x}^{\perp}(t)). \)
We will show that for any ψ see the display below \cite[(3.15)]{10}. As proved in \cite[Corollary 3.7]{10}, these Φ\cite[(3.9)]{10}. The local expressions of the strata of respectively, we see that Δ and its the pullback are of lower dimension in ϖ function, hence ϖ as stated in \cite[(2.14)]{10}. Such Φ\cite[(2.15)]{10} also implies that $\mathfrak{V}_{1,\varpi} := \{ \zeta^\varpi_\beta_{\varpi,1}(\epsilon) \neq 0 \ \forall \epsilon \in \text{Edg}(\varpi) \} \implies \bigcup_{E \subseteq \text{Edg}(\varpi), \ E \cap E_{\varpi,1 \neq \beta_{\varpi,1}}(\mathfrak{V}_{1,\varpi})} \mathfrak{M}_{\gamma(E)}$ ($\subseteq \mathfrak{M}$), which is the analogue of \cite[(3.2)]{10}. Definition \ref{D:16}(b) also implies that $\mathfrak{T}_{\mathfrak{M}_{\gamma(E)}} := \{ \tau_{\mathfrak{V}}, \ E_{\mathfrak{M}_{\gamma}} \backslash E_{\mathfrak{M}_{\gamma}, \text{Edg}(\varpi)} \}$ $\forall E \subseteq \text{Edg}(\gamma), \ \mathfrak{M}_{\gamma(E)} \in \pi_0(\mathfrak{M')_\gamma(E)}$ with $E \cap E_{\varpi,1 \neq \beta_{\varpi,1}(\mathfrak{V}_{1,\varpi})}, \ Cl_{\mathfrak{M}}(\mathfrak{M}_{\gamma(E)}) \cap \mathfrak{M}_\gamma \neq \emptyset$. Thus, we can define the locus $\mathfrak{U}_{x[1,\varpi]} \subset \mathfrak{U}_x \subset \mathfrak{A}(t)$ mimicking the paragraph containing \cite[(3.10)]{10}, and define the morphism $\Phi_{x[\varpi]} : \mathfrak{U}_{x[1,\varpi]} \rightarrow \mathfrak{V}_{1,\varpi} \times_{\mathfrak{M}} \mathfrak{M}_{\varpi}$ as in \cite[(3.14)]{10}. Such $\Phi_{x[\varpi]}$ can also be defined for $\varpi \subset I(t)$ that does not satisfy \cite[(2.15)]{10} and for $\mathfrak{V}_{1,\varpi} \in \pi_0(\mathfrak{M')_\gamma}$ with $\tau_{\mathfrak{V}_{1,\varpi}} = \tau_1$, because no twisted field is added to these strata by Definition \ref{D:16}(a) and \cite[(b)]{10}. Therefore, the above morphisms $\Phi_{x[\varpi]}$ together give rise to a map $\Phi_x : \mathfrak{U}_x \rightarrow \mathfrak{M}_{\varpi}$; see the display below \cite[(3.15)]{10}. As proved in \cite[Corollary 3.7]{10}, these Φ_x form smooth charts of the algebraic stack \mathfrak{M}_{ϖ}. The twisted parameters in \cite[(p2)]{10} are written as ε_i, u_e, and v_e in \cite[(3.9)]{10}. The local expressions of the strata of \mathfrak{M}_{ϖ} in \cite[(p2)]{10} follow from \cite[(3.10) & Lemma 3.2]{10}. The last and the first equations in \cite[(3.12)]{10} imply \cite[(p3) and (p4)]{10} respectively; see also \cite[Remark 3.8]{10} for \cite[(p4)]{10}.

In the remainder of the proof of Theorem \ref{T:2.16} we will show that ϖ is birational and proper, as stated in \cite[(p1)]{10}. Notice that the only level map on the connected edge-less graph τ_1 is the empty function, hence ϖ restricts to the identity map on the pullback of $\mathfrak{M}_{\tau_1} = \mathfrak{M} \backslash \Delta$, where Δ is the boundary of \mathfrak{M} as in \cite[(2.9)]{10}. By the local expressions of the strata of \mathfrak{M} and \mathfrak{M}_{τ_1} in \cite[(p2)]{10} respectively, we see that Δ and its the pullback are of lower dimension in \mathfrak{M} and \mathfrak{M}_{τ_1}, respectively. Thus, ϖ is birational.

It is straightforward that ϖ is of finite type. To establish the properness of ϖ, let $(D, 0)$ be a nonsingular pointed curve with the complement and the inclusion respectively denoted by $D^\circ := D \setminus \{0\} \hookrightarrow D$.

We will show that for any $f : D \rightarrow \mathfrak{M}$ and any $F : D^\circ \rightarrow \mathfrak{M}_{\tau_1}$ with $\varpi \circ F = f \circ I$, there exists a unique $\psi : D \rightarrow \mathfrak{M}_{\tau_1}$ so that the following diagram commutes:
Deleting a discrete subset of D^* if necessary, we assume that there exist $\gamma, \gamma' \in \Gamma$, $\mathcal{N}_\gamma \in \pi_0(\mathcal{M}_\gamma)$, and $\mathcal{N}_{\gamma'} \in \pi_0(\mathcal{M}_{\gamma'})$ such that

$$f(t) \in \mathcal{N}_\gamma \quad \forall \ t \in D^*; \quad f(0) \in \mathcal{N}_{\gamma'}.$$

This implies $\mathrm{Cl}_{\mathcal{M}}(\mathcal{N}_\gamma) \cap \mathcal{N}_{\gamma'} \neq \emptyset$, hence by Lemma 2.15 we see that $\gamma' \leq \gamma$. There thus exists $E \subset \mathrm{Edg}(\gamma')$ with $\gamma \simeq \gamma'(E)$.

The treelike structure Λ on (\mathcal{M}, Γ) then determines the tuples

$$\begin{align*}
\tau := \tau_{\mathcal{N}_\gamma}, & \quad E := E_{\mathcal{N}_\gamma} \subset \mathrm{Edg}(\gamma), \quad \beta := \beta_{\mathcal{N}_\gamma} : \mathrm{Edg}(\tau) \rightarrow E \\
\tau' := \tau_{\mathcal{N}_{\gamma'}}, & \quad E' := E_{\mathcal{N}_{\gamma'}} \subset \mathrm{Edg}(\gamma'), \quad \beta' := \beta_{\mathcal{N}_{\gamma'}} : \mathrm{Edg}(\tau') \rightarrow E'
\end{align*}$$

as in Definition 2.16. Let

$$E^{\text{ctr}} := E' \cap E = E \setminus E', \quad E^{\text{ctr}} := (\beta')^{-1}(E^{\text{ctr}}) = \mathrm{Edg}(\tau') \setminus \mathrm{Edg}(\tau).$$

Deleting a discrete subset of D^* again if necessary, we further assume that there exists a fixed $[t] = [\tau_{\mathcal{N}_\gamma}, \ell] \in \mathcal{X}_{\mathcal{N}_\gamma}$ such that $F(t) = \{ f(t) : ([\mu(t)]_{e \in \mathcal{E}^+_{\mathcal{N}_\gamma}(t)}_{i \in [m,0]_i}) \in (\mathcal{N}_{\gamma'})_{[t]} \} \quad \forall \ t \in D^*$.

Here we fix a rooted level tree t representing $[t]$.

With notation as in Definition 2.13, let $V \in \mathcal{X}_{\mathcal{N}_{\gamma}}$ be a chart containing $f(0)$ and $\{ \zeta_e = \zeta_{e'}^{V} \}_{e \in \mathrm{Edg}(\gamma')}$ be modular parameters on V centered at $f(0)$. For every $e \in E^{\text{ctr}}$, there exist a unique integer $n_e \in \mathbb{Z}_{>0}$ and a unique nowhere vanishing function a_{e} on $D \cap f^{-1}(V)$ so that

$$\zeta_e(F(t)) = t^{n_e}a_e(t) \quad \forall \ t \in D \cap f^{-1}(V).$$

Similarly, for every level $i \in [m,0]_i$, we can choose an edge $e_i \in \mathcal{E}^+_{\mathcal{N}_\gamma}(t)$ such that for every $e \in \mathcal{E}^+_{\mathcal{N}_\gamma}(t)$, the specialization of μ_e/μ_a at $t=0$ exists. There thus exist a unique integer $n_e \in \mathbb{Z}_{>0}$ and a unique nowhere vanishing function a_e on the whole $D \cap f^{-1}(V)$ satisfying $n_e = 0$, $a_e = 1$, and the level-i twisted fields of $F(t)$ can be written as

$$\mu_e(t) |_{e \in \mathcal{E}^+_{\mathcal{N}_\gamma}(t)} = \left[t^{n_e}a_e(t) \bigotimes_{e' \geq e} \zeta_{e'}(f(t)) \right] |_{e \in \mathcal{E}^+_{\mathcal{N}_\gamma}(t)} \quad \forall \ t \in D^* \cap f^{-1}(V).$$

Since $\mathcal{E}_{\succ m}(t) = \bigsqcup_{i \in [m,0]_i} \mathcal{E}^+_{\mathcal{N}_\gamma}(t)$, we have assigned to each $e \in \mathcal{E}_{\succ m}(t) \cup E^{\text{ctr}}$ an integer n_e and a nowhere vanishing function a_e on $D \cap f^{-1}(V)$ via (2.16) and (2.17). Let

$$s_e := n_e \quad \forall \ e \in \mathcal{E}_{\succ m}(t) \cup E^{\text{ctr}} \left(\subset \mathrm{Edg}(\tau') \right).$$

Note that each s_e is non-positive, so they can be used to define levels on τ' as follows.

By (2.16) and (2.17), there exists a rooted level tree $\ell' = (\tau', \ell')$, unique up to equivalence, satisfying

$$\ell' \leq [t], \quad (\mathcal{E}_{\succ m}(t) \subset) \quad \mathcal{E}_{\succ m}(\ell') \subset \mathcal{E}_{\succ m}(t) \cup E^{\text{ctr}} \left(\subset \mathrm{Edg}(\tau') \right),$$

$$\ell'(h_e^-) = s_e \quad \forall \ e \in \mathcal{E}_{\succ m}(\ell') \left(\subset \mathrm{Edg}(\tau') \right).$$
where $\mathbf{m}' = \mathbf{m}(t')$. Since the underlying rooted tree of t' is $\tau' = (\gamma_{\mathcal{M}'}, 0)$, we have
\[[t'] \in \mathcal{L}_{\mathcal{M}', 0}. \]
We next show that there exists a unique twisted field
\[
\eta := \left[f(0); \left(\left\{ \lambda_{e'} \otimes \varepsilon_{e'} \right\} \big| f(0) \big|_{e' \in \mathcal{V}(t')} \right) \bigg|_{e \in [\mathbf{m'}, 0_\mathcal{V}]} \right] \in (\mathcal{M}'_{\tau'})_{[t']} \bigg| f(0)
\]
over $f(0)$ such that $F(t) \leadsto \eta$. Here we write $z \leadsto z_0$ if z specializes to z_0 for any scheme S and any points z and z_0 of S.

Fix a twisted field η over $f(0)$. Since $[t'] \leq [t]$, there exists a subset $\mathcal{J} \subset \mathcal{V}(t')$ such that $[t'] \leq [t]$; see (2.7). Let \mathcal{M}_s be the twisted chart with the twisted parameters $\xi_s := \xi_{s_0}$ as in (2.22) and set
\[
\xi_j \equiv 1 \quad \forall j \in [\mathbf{m'}, 0_\mathcal{V}].
\]
Then, ξ_s is defined for all $s \in [\mathbf{m'}, 0_\mathcal{V}]$. Let
\[
\Psi_{\eta; \mathcal{J}} : \mathcal{M}_s \rightarrow \mathcal{M}_s \cap \{ \xi_s \neq 0 \forall s \in \mathcal{J} \}
\]
be the isomorphism constructed in [10, (3.17)], where \mathcal{M}_s is an open subset of $\mathcal{M}_{t'}$, containing the image $F(\mathcal{D} \cap f^{-1}(\mathcal{V}))$. Let
\[
\varepsilon_j(t) := \xi_j \left(\Psi_{\eta; \mathcal{J}}(F(t)) \right) \quad \forall j \in [\mathbf{m'}, 0_\mathcal{V}] ; \quad u_e(t) := \xi_e \left(\Psi_{\eta; \mathcal{J}}(F(t)) \right) \quad \forall e \in [\mathbf{m'}, 0_\mathcal{V}].
\]
Then, $F(t) \leadsto \eta$ if and only if
\[
\left((\varepsilon_j(t))_{e \in [\mathbf{m'}, 0_\mathcal{V}]}, (u_e(t))_{e \in [\mathbf{m'}, 0_\mathcal{V}]}, (u_e(t))_{e \in E_{\mathbf{m'}}(t')} \right) \leadsto \left((0, (\lambda_e)_{e \in [\mathbf{m'}, 0_\mathcal{V}]}), (0) \right),
\]
where $0 = (0, \ldots, 0)$, $\lambda_e = 1 \quad \forall j \in [\mathbf{m'}, 0_\mathcal{V}].$

Indeed, by [10, (3.21)] and Cases 1-3 of the proof of [10, Lemma 3.2], as well as the assumption (2.19) above, we conclude inductively over the levels of t' in the descending order that there exist nowhere vanishing functions $b_j(t), \; j \in \mathcal{J} \cap [\mathbf{m'}, 0_\mathcal{V}],$ on $\mathcal{D} \cap f^{-1}(\mathcal{V})$ such that
\[
\varepsilon_j(t) = \left\{ \begin{array}{ll}
\ell^{j-j} b_j(t) & \text{if } j \in \mathcal{J} ; \\
0 & \text{if } j \notin \mathcal{J}.
\end{array} \right.
\]
Similarly, by [10, (3.22)] and Cases A and B of the proof of [10, Lemma 3.2], as well as (2.19) and (2.24), we conclude inductively over the levels of t' in the descending order that there exist nowhere vanishing functions $b_e(t), \; e \in [\mathbf{m'}, 0_\mathcal{V}],$ on $\mathcal{D} \cap f^{-1}(\mathcal{V})$ such that
\[
\varepsilon_j(t) = \left\{ \begin{array}{ll}
b_e(t) & \text{if } e \in [\mathbf{m'}, 0_\mathcal{V}] ; \\
\ell^{(\mathbf{m'}-s_e)} b_e(t) & \text{if } e \in E_{\mathbf{m'}}(t').
\end{array} \right.
\]
We set
\[
\lambda_e := b_e(0) \quad \forall e \in [\mathbf{m'}, 0_\mathcal{V}].
\]
Since the functions b_e are all nowhere vanishing, all λ_e are nonzero. Moreover, by (2.21), the second equation in (2.22), (2.25), and (2.26), we obtain $\lambda_e = 1$ for all $j \in [\mathbf{m'}, 0_\mathcal{V}]$. Thus, λ_e can be used to define η in (2.20).

Since j^2 stands for the level of t' immediately above j, we have
\[
\ell^j - j > 0 \quad \forall j \in \mathcal{J}.
\]
Similarly, by (2.4) and (2.19), we have
\[
\mathbf{m'} - s_e > 0 \quad \forall e \in E_{\mathbf{m'}}(t').
\]
Thus, by (2.24), (2.25), and (2.26), we see that $F : D^* \longrightarrow M^{tf}$ extends to $\psi : D \longrightarrow M$ with $\psi(0) = \eta$ as in (2.20).

It remains to prove the uniqueness of ψ. Mimicking the proof of [10, Lemma 3.2], we conclude that for any $[t^i] = [r^i, \ell^i] \in \mathcal{X}_{\mathcal{M}_e} \setminus \{0\}$, at least one of (2.24) and (2.25) no longer holds for t_i. Hence by (2.23), $F(t)$ cannot specialize to η^i. Consequently, every possible specialization of $F(t)$ at $t = 0$ must be in $(M_{\eta^i})_{[t]}|_{f(0)}$. Since the functions $u_\eta(t)$ in (2.25) are uniquely determined by [10] (3.22), (3.27), & (3.28) as well as the expressions (2.16), (2.17), and (2.24), so are the functions $b_\eta(t)$. This establishes the uniqueness of η in (2.20) and hence the uniqueness of ψ. □

The following proposition is a restatement of [10, Proposition 3.9] under the current setup.

Proposition 2.19. Let Γ, M, and Λ be as in Theorem 2.18. Assume that $\pi : C \longrightarrow M$ is the universal family of M. Then, the Γ-stratification of M in Definition 2.13 induces a stratification $C = \bigsqcup_{\gamma \in \Gamma} C_\gamma$ such that the union

$$C^{tf} := \bigsqcup_{\gamma \in \Gamma; \mathcal{N}_\gamma \in \pi_0(M_\gamma)} (N_\gamma)_{[t]}^{tf}$$

where

$$(N_\gamma)_{[t]}^{tf} := \left(\prod_{i \in [\mathbf{m}_0], \epsilon} \left(\mathcal{P}\left(\bigoplus_{\epsilon \in \epsilon_i} \gamma \pi^* L_{\gamma \epsilon} \right) \right) \bigg/ \mathcal{N}_\gamma \right) \longrightarrow \mathcal{N}_\gamma := \pi^{-1}(\mathcal{N}_\gamma),$$

has a canonical smooth algebraic stack structure, and the projection

$$\pi^{tf} : C^{tf} \longrightarrow M^{tf}$$

induced by π gives the universal family of M^{tf}.

On the conclusion of this section, we remark that in [10], the properness of the forgetful morphism $M^{tf}_1 \longrightarrow M^{tf}_1$ (see Example 2.17 for notation) was established via the isomorphism $M^{tf}_1 \longrightarrow \mathcal{M}^{wt}_1$ to the blowup stack \mathcal{M}^{wt}_1 in [8], as well as the properness of the blowing up $\mathcal{M}^{wt}_1 \longrightarrow \mathcal{M}^{tf}_1$. In this paper, Theorem 2.18 provides a more direct approach to the properness, with a broader setup that includes the genus one case as a special case, yet without involving the comparison with the blowups. This could be an advantage of the STF theory in the higher genera cases.

3. Recursive constructions

Theorem 2.18 and Proposition 2.19 suggest the possibility of adding twisted fields recursively:

$$\ldots \longrightarrow (M^{tf})^{tf} \longrightarrow M^{tf} \longrightarrow M.$$

The tricky part is choosing appropriate stratification Γ' and treelike structure Λ' in each step. Given a Γ-stratification on M and a treelike structure Λ on (M, Γ), we provide a possible stratification known as the **derived stratification** on M^{tf} and another possible stratification on M known as a **grafted stratification**, respectively in this section. They will be used in the description of \mathcal{P}^{tf}_2 and $M_d(\mathbb{P}^n, d)^{tf}$ of Theorem 1.2.

3.1. Derived stratification

Recall G denotes the set of connected graphs. Let M be a smooth stack endowed with a Γ-stratification $M = \bigsqcup_{\eta \in \Gamma} M_\gamma$ as in Definition 2.13 and a treelike structure Λ as in Definition 2.16 that assigns to every pair $(\eta \in \Gamma, \mathcal{N}_\eta \in \pi_0(M_\eta))$ a unique tuple

$$(\tau, \mathbf{E}, \beta) := (\mathcal{P}_{\mathcal{N}_\gamma}, \mathbf{E}_{\mathcal{N}_\gamma}, \beta_{\mathcal{N}_\gamma}).$$

Given a rooted level tree $t = (t, \ell) \in [t] \in \mathcal{X}_{\mathcal{M}_e}$, and a level $i \in \text{Im}(\ell)$, recall that i^* and i^h stand for the levels immediately above and below i (if they exist), respectively. We also recall that
\[(E_{m;\min})^\tau\] denotes the set of the edges of the paths of \(\tau\) from the root \(o\) to the level \(m = m(t)\) minimal vertices; see (2.4).

Definition 3.1. Let \(\Gamma, M\), and \(L\) be as in Definition 2.16. For every \(\gamma \in \Gamma, M, \in \pi_0(M_{\gamma}), \) and \([t] \in \overline{M}_{\gamma}\), we construct the **derived graph of \(\gamma\) with respect to \([t]\):**

\[\rho_{\gamma}[t] \in G\]

as follows. For an arbitrary \(t\) representing \([t]\),

1. firstly, we replace every \(e = \{h_e^+, h_e^-\} \subseteq \text{Edg}(t)\) with a new list of half-edges

 \[h_e^+: \ e; (h_e^+)_{e; (h_e^+)\gamma}, h_e^+: \ e; (h_e^+)_{e; (h_e^+)\gamma}, \ldots, h_e^-: \ e; (h_e^-)_{e; (h_e^-t)}, h_e^+: \ e; (h_e^-)_{e; (h_e^-t)}; h_e^-: \ e; (h_e^-)_{e; (h_e^-t)};\]

2. then, for each \(j \in [m, 0]_t\) and \(\bullet = +, -\), we set

 \[h_j^\bullet := \{\beta(h_{e_j}^\bullet) : e \subseteq E_j \cap (E_{m;\min})^\tau\} \quad (\subseteq \text{HE}(E) \subseteq \text{HE}(\gamma))\]

 and consider the sets \(h_j^\bullet\) as new half-edges;

3. next, we set

 \[e_i := \{h_i^+; h_i^+\} \quad \forall \ i \in [m, 0]_t, \]

 \[v_i := \{h_i-, h_i^+\} \cup \bigcup_{e \subseteq E_i \cap (E_{m;\min})^\tau} \{v(\beta(h_i^-)) \setminus (h_i^- \cup h_i^+)\} \quad \forall \ i \in [m, 0]_t, \]

 \[v_m := \{h_m^+\} \cup \bigcup_{e \subseteq E_m \cap (E_{m;\min})^\tau} \{v(\beta(h_m^-)) \setminus h_m^+\}, \quad v_0 := \{h_0^-\} \cup \bigcup_{e \subseteq E_0 \cap (E_{m;\min})^\tau} \{v(\beta(h_0^+)) \setminus h_0^+\}\]

 and take \(\rho'_{\gamma}[t]\) to be the graph satisfying

 \[\text{HE}(\rho'_{\gamma}[t]) = \text{HE}(\text{Edg}(\gamma) \setminus \beta((E_{m;\min})^\tau)) \cup \{h_i^+ : i \in [m, 0]_t\},\]

 \[\text{Edg}(\rho'_{\gamma}[t]) = (\text{Edg}(\gamma) \setminus \beta((E_{m;\min})^\tau)) \cup \{e_i : i \in [m, 0]_t\},\]

 \[\text{Ver}(\rho'_{\gamma}[t]) = (\text{Ver}(\gamma) \setminus \{v(\beta(h)) : h \in \text{HE}((E_{m;\min})^\tau)\}) \cup \{v_i : i \in [m, 0]_t\};\]

4. finally, we define \(\rho_{\gamma}[t]\) via edge contraction:

 \[\rho_{\gamma}[t] := (\rho'_{\gamma}[t])_{\beta((E_{m;\min})^\tau)}^\tau.\]

Obviously, the construction of \(\rho_{\gamma}[t]\) is independent of the choice of \(t\) representing \([t]\). By Definition 3.1, we observe that if \(m = 0\) (i.e. \(t\) is edge-less), then \(\rho_{\gamma}[t] = \gamma\). If \(m < 0\), then

\[\text{HE}(\rho_{\gamma}[t]) = \text{HE}(\text{Edg}(\gamma) \setminus \beta((E_{m;\min})^\tau)) \cup \{h_i^+ : i \in [m, 0]_t\},\]

\[\text{Edg}(\rho_{\gamma}[t]) = (\text{Edg}(\gamma) \setminus \beta((E_{m;\min})^\tau)) \cup \{e_i : i \in [m, 0]_t\},\]

\[\text{Ver}(\rho_{\gamma}[t]) = (\text{Ver}(\gamma) \setminus \{v(\beta(h)) : h \in \text{HE}((E_{m;\min})^\tau)\}) \cup \{v_i : i \in [m, 0]_t\}\]

where the vertices \(v_i\) are the images of \(v_i\), i.e. they are determined by

\[v_0 \ni h_0^+; \quad v_i \ni h_i^- \quad \forall \ i \in [m, 0]_t.\]

The new edges \(e_i\) and vertices \(v_i\) (if exist) are called the **exceptional edges and vertices**, respectively.

With notation as above, let

\[\Gamma^\text{der}_\Lambda = \{\rho_{\gamma}[t] : \gamma \in \Gamma, M, \in \pi_0(M_{\gamma}), [t] \in \overline{M}_{\gamma}\} \quad (\subseteq G).\]

An example of derive graphs is illustrated in Figure 3.
Corollary 3.2. Let Γ, \mathcal{M}, Λ, and \mathcal{M}_{der} be as in Theorem 2.18. Assume that for every $\gamma \in \Gamma$ and every $\mathcal{M}_\gamma \in \pi_0(\mathcal{M}_\gamma)$, we have $E_{\mathcal{M}_\gamma} = \text{Edg}(\gamma')$ for some connected subgraph γ' of γ. Then,

\begin{equation}
\mathcal{M} = \bigsqcup_{\gamma \in \Gamma} \mathcal{M}_{\gamma},
\end{equation}

where $\mathcal{M}_{\gamma} = \bigsqcup_{\gamma \in \Gamma} \mathcal{M}_{\gamma}$, is a Γ_{der}-stratification of \mathcal{M}, known as the derived stratification of \mathcal{M}. Moreover, for any $\gamma' \in \Gamma_{\text{der}}$, the connected components of $\mathcal{M}_{\gamma'}$ are given by the RHS of (3.4).

Proof. It is direct to verify the statements using the sets

$\tau = \{ \tau_x : x \in \mathcal{M}_{\gamma} \}$, \quad $\gamma' \in \Gamma_{\text{der}}$

of affine smooth charts of \mathcal{M}, the subsets

$\{ \xi_s : i \in \ell(t) = [\mathcal{M}, 0] \cup E_{\mathcal{M}}(t), \quad \gamma' \in \Gamma_{\text{der}}, \quad \tau_x \in \tau, \}$

of local parameters, and the local equations of $(\mathcal{M}_{\gamma})_{\text{der}}$ as in Theorem 2.18. The assumption that each $\tau_{\mathcal{M}}$ is identified with a connected subgraph of γ via the bijection $\beta_{\mathcal{M}}$ guarantees that for any derived graph $\rho_{\gamma',[t]} \in \Gamma_{\text{der}}$, contracting any special edges ξ_i from $\rho_{\gamma',[t]}$ does not create graphs that are not in Γ_{der}. \hfill \square

3.2. Grafted stratification. For every graph γ and every vertex $v \in \text{Ver}(\gamma)$, let $(\gamma, v)_{\text{gr}}$ be the graph defined by

$\text{HE}((\gamma, v)_{\text{gr}}) = \text{HE}(\gamma) \cup \{ h^+_{\text{gr}}, h^-_{\text{gr}} \}$, \quad $\text{Edg}((\gamma, v)_{\text{gr}}) = \text{Edg}(\gamma) \cup \{ e_{\text{gr}} = \{ h^+_{\text{gr}}, h^-_{\text{gr}} \} \}$

$\text{Ver}((\gamma, v)_{\text{gr}}) = \{ v \cup \{ h^+_{\text{gr}} \} \cup \{ v_{\text{gr}} := \{ h^-_{\text{gr}} \} \} \cup \{ v \}$

Intuitively, $(\gamma, v)_{\text{gr}}$ is obtained from γ by grafting an extra vertex v_{gr} onto the chosen vertex v via an extra edge e_{gr}. If $\tau = (\tau, o)$ is a rooted tree, then we write $\tau_{\text{gr}} := (\tau, o)_{\text{gr}}$.

We continue with the setup in the first paragraph of §3.1. Recall that τ_{gr} denotes the single-vertex rooted tree.

Corollary 3.3. Let Γ, \mathcal{M}, Λ be as in Definition 2.16 so that (\mathcal{M}, Γ) is endowed with a treelike structure Λ, and $\Delta \sqsubset \mathcal{M}$ be the boundary of \mathcal{M}, $w.r.t. \Gamma$. Assume that

- there exists $K \subset \Delta(\mathcal{M})$ satisfying that for every $\gamma \in \Gamma \setminus \{ \tau_{\text{gr}} \}$, $\mathcal{M}_\gamma \in \pi_0(\mathcal{M}_\gamma)$, and $\mathcal{V} \in \mathcal{M}_{\gamma}$, there exists $\kappa' \in \Gamma(\mathcal{M}_\gamma)$ such that $\{ \kappa' \}_{\text{Ver}(\gamma)} \cup \{ \kappa' \}$ is a subset of local parameters on \mathcal{V} and $K \cap \mathcal{M}_{\gamma} \cap \mathcal{V}$ is either $\{ \kappa' = 0 \} \cap \mathcal{M}_{\gamma} \cap \mathcal{V}$ or \emptyset \quad $\forall \gamma' \in \Gamma$, $\mathcal{M}_{\gamma'} \in \pi_0(\mathcal{M}_{\gamma'})$;

- for every $\gamma \in \Gamma$ and every $\mathcal{M}_\gamma \in \pi_0(\mathcal{M}_\gamma)$, the bijection $\beta_{\mathcal{M}} : \text{HE}(\mathcal{M}_\gamma) \longrightarrow \text{HE}(E_{\mathcal{M}})$ (in $\text{HE}(\gamma)$) identifies $\tau_{\mathcal{M}_\gamma}$ with a connected subgraph of γ.

Figure 3. An example of derived graphs
Proof of Corollary 3.3. For every \(\gamma \in \Gamma \), every nonempty \((\mathcal{M}_\gamma)_\text{gft} \in \pi_0((\mathcal{M}_\text{gft})_{\gamma'})\) and every \(\tau \in (\mathcal{M}_\text{gft})_{\gamma'} \), we take the subset of local parameters
\[
\zeta_{\gamma'}^x, \quad \epsilon \in \text{Edg}(\gamma) \quad \text{and} \quad \zeta_{e\text{gft}}^x := \kappa_{\gamma'}^x.
\]
Using these charts and local parameters, we see that the last equation in (3.5) gives a \(\Gamma_{\text{gft}} \)-stratification of \(\mathcal{M} \). The connected components of each \((\mathcal{M}_\text{gft})_{\gamma'}\) are described in the first equation of the last line of (3.5).

It remains to show that \(\Lambda_{\text{gft}} \) is a treelike structure on \((\mathcal{M}, \Gamma_{\text{gft}})\) if (3.6) holds. Notice that for every \(\gamma' \in \Gamma_{\text{gft}} \) and every \(\tau \in \pi_0((\mathcal{M}_\text{gft})_{\gamma'}) \) with \(\tau_{\mathcal{M}_{\gamma'}} \neq \tau_{\mathcal{M}_{\gamma'}} \), the edge \(e_{\text{gft}} \) is both maximal and minimal in \(\text{Edg}(\tau_{\mathcal{M}_{\gamma'}}) \). Thus, for every \(E \in \text{Edg}(\gamma') \) containing \(e_{\text{gft}} \) such that \(\gamma' := \gamma'_{E} \) belongs to \(\Gamma_{\text{gft}} \), the first line of (3.5) implies \(\gamma' = \tau_{\mathcal{M}_{\gamma'}} \), hence \(\tau_{\mathcal{M}_{\gamma'}} = \tau_{\mathcal{M}_{\gamma'}} \) for any \(\gamma' \in \pi_0((\mathcal{M}_\text{gft})_{\gamma'}) \). This confirms the condition (b2) of Definition 2.16. The conditions (a) and (b1) of Definition 2.16 follow directly from the assumption that \(\Lambda \) is a treelike structure on \((\mathcal{M}, \Gamma)\).

Remark 3.4. The connected components of each \((\mathcal{M}_\text{gft})_{\gamma'}\) are described in the first equation of the last line of (3.5).
4. Applications of the STF theory to \mathcal{P}_2 and $\overline{M}_2(\mathbb{P}^n, d)$

Let \mathcal{P}_g be the genus g relative Picard stack of the stable pairs (C, L) where C is a genus g nodal curve and L is a line bundle over C. A pair (C, L) is said to be stable if every rational irreducible component $\Sigma \subset C$ with L/Σ as a trivial line bundle contains at least three nodal points. It is a well-known fact that \mathcal{P}_g is a smooth algebraic stack.

In §4.2-4.9 we apply the STF theory to \mathcal{P}_2 recursively eight times and obtain \mathcal{P}_2^tf, which in turn gives rise to the resolution $\overline{M}_2^\text{tf}(\mathbb{P}^n, d)$ of $\overline{M}_2(\mathbb{P}^n, d)$ as in Theorem 4.4. The proof of the properties (1)-(4) of Theorem 4.4 is provided in §4.10.

As stated in §4.1 the stack \mathcal{P}_2^tf may not be isomorphic to the blowup stack $\hat{\mathcal{P}}_2$ of [9]. The eight-step construction of \mathcal{P}_2^tf in §4.1 corresponds to the blowup construction of [9] as follows:

\[
\begin{align*}
3 \rightarrow 2 & \rightarrow 1 & \rightarrow 0 & \rightarrow 2 & \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9.
\end{align*}
\]

In fact, several blowups in [9] can be performed in various orders and should generally give rise to different resolutions of $\overline{M}_2(\mathbb{P}^n, d)$.

4.1. Notation. The following notation and terminology will be used repeatedly in the recursive construction.

Definition 4.1. We call a tuple

\[\gamma^* = (\gamma, p_g : \text{Ver}(\gamma) \to \mathbb{Z}_{\geq 0}, \text{w} : \text{Ver}(\gamma) \to \mathbb{Z}_{\geq 0})\]

of a connected graph γ and two functions p_g and w a **connected decorated graph**, or simply a **decorated graph** when the context is clear. The **arithmetic genus** p_a of a decorated graph is

\[p_a(\gamma, p_g, \text{w}) := b_1(\gamma) + \sum_{v \in \text{Ver}(\gamma)} p_g(v).\]

We denote by G^s the set of all connected decorated graphs. For $k \in \mathbb{Z}_{\geq 0}$, let

\[G_k^s := \{ \gamma^* \in G^s : p_a(\gamma^*) = k\}.\]

With γ^* as above, for every subgraph γ' of γ, we write

\[\text{w}(\gamma') := \sum_{v \in \text{Ver}(\gamma')} \text{w}(v).\]

(4.1)

Here we identify $v \in \text{Ver}(\gamma')$ with its image in γ; see Definition 2.2.

We say two decorated graphs γ^* and $(\gamma')^*$ are isomorphic and write

\[\gamma^* \simeq (\gamma')^*\]

if $\gamma \simeq \gamma'$ and the graph isomorphism is compatible with the corresponding p_g, p'_g, w, and w'.

Given $\gamma \in G$ and $E \subset \text{Edg}(\gamma)$, recall that γ_E denotes the graph obtained from γ via edge contraction; see Definition 2.5. The subset E determines a subgraph γ' of γ with $\text{Edg}(\gamma') = E$. Let $\{\gamma'_1, \ldots, \gamma'_k\}$ be the set of the connected components of γ', which are contracted to distinct vertices v_1, \ldots, v_k in γ_E. Thus, there exists a surjection

\[\pi_{\text{Ver}(E)} : \text{Ver}(\gamma) \twoheadrightarrow \text{Ver}(\gamma_E), \quad v \mapsto \begin{cases} v & \text{if } v \notin \text{Ver}(\gamma'); \\ v_i & \text{if } v \in \text{Ver}(\gamma'_i), i = 1, \ldots, k. \end{cases}\]
Definition 4.2. Every decoration γ^* of γ determines a decoration γ^*_E of $\gamma(E)$ by setting
\[p_g(\overline{v}_i) = b_1(\gamma^*_E) + \sum_{v \in \pi^{-1}_{\text{ver}(E)}(\overline{v}_i)} p_g(v), \quad w(\overline{v}_i) = \sum_{v \in \pi^{-1}_{\text{ver}(E)}(\overline{v}_i)} w(v), \quad \forall \ i = 1, \ldots, k, \]
which is called the induced decoration of $\gamma(E)$.

Definition 4.3. Let γ^* be a decorated graph. The core γ^*_{core} is the smallest connected subgraph of γ^* with $p_a(\gamma^*_{\text{core}}) = p_a(\gamma^*)$, together with the restrictions of p_g and w to $\text{Ver}(\gamma^*)$.

Let Γ, \mathfrak{M}, and A be as in Definition 2.16. Given $\gamma \in \Gamma$, $\mathfrak{M}_\gamma \in \pi_0(\mathfrak{M}_\gamma)$, and $[t] \in \mathfrak{M}_\gamma$, let $\rho_{\gamma,[t]}$ be the derived graph as in Definition 3.1.

Definition 4.4. A decoration γ^* of γ determines a decoration $\rho_{\gamma,[t]}^*$ of $\rho_{\gamma,[t]}$, called the induced decoration of $\rho_{\gamma,[t]}$, such that:
\begin{itemize}
 \item if $\mathbf{m}(t) = 0$ (i.e. t is edge-less), then $\rho_{\gamma,[t]}^* = \gamma$, so we set $\rho_{\gamma,[t]}^* = \gamma^*$;
 \item if $\mathbf{m}(t) < 0$, then with $v_i \in \text{Ver}(\rho_{\gamma,[t]})$, $i \in [\mathbf{m}, 0]$, denoting the exceptional vertices as in (3.2), let
\end{itemize}
\[p_g(v_0) = \sum_{v \in \{v(\beta(h)): h \in \text{HE}(\mathfrak{G}_{\mathfrak{M}_\gamma})\}} p_g(v), \quad w(v_0) = \sum_{v \in \{v(\beta(h)): h \in \text{HE}(\mathfrak{G}_{\mathfrak{M}_\gamma})\}} w(v), \quad p_g(v_i) = w(v_i) = 0 \quad \forall \ i \in [\mathbf{m}, 0], \]
and let the restrictions of p_g and w to $\text{Ver}(\rho_{\gamma,[t]}) \setminus \{v_i: i \in [\mathbf{m}, 0]\}$ be determined by γ^*.

Definition 4.5. Let C be a nodal curve. The dual graph γ_C of C is the graph whose vertices v and edges e correspond to the irreducible components C_v and the nodes q_e of C, respectively.

Definition 4.6. Given $(C,L) \in \mathfrak{P}_g$, its decorated dual graph is a tuple
\[\gamma_{C,L} := (\gamma_C, p_g: \text{Ver}(\gamma_C) \to \mathbb{Z}_{\geq 0}, w: \text{Ver}(\gamma) \to \mathbb{Z}_{\geq 0}) \]
such that p_g and w assign to each $v \in \text{Ver}(\gamma_C)$ the geometric genus of the irreducible component C_v and the degree of L/C_v, respectively.

4.2. The first step of the recursive construction. The initial package of our recursive construction is given by
\[\mathfrak{M}^1 = \mathfrak{P}_g, \quad \Gamma^1 = \{ [\gamma]: \gamma \in \mathfrak{G}, b_1(\gamma) \leq 2 \}, \]
where the first Betti number $b_1(\gamma)$ of a connected graph γ is described in Definition 2.5 and the equivalence class is given by the graph isomorphism (see the paragraph before Definition 2.13). As explained in Remark 2.14, it is convenient to fix a representative of each element of Γ^1 and write $\gamma \in \Gamma^1$ instead of $[\gamma] \in \Gamma^1$.

For any $(C,L) \in \mathfrak{M}^1$, we take an affine smooth chart
\[(C,L) \in \mathcal{V}_{C,L} \to \mathfrak{M}^1. \]
As in [8] §4.3 and [10] §3.1, there exists a set of regular functions $\{\zeta_e^\gamma\}_{e \in \text{Edg}(\gamma_C)}$ so that for each $e \in \text{Edg}(\gamma_C)$, the locus
\[(4.2) \quad \{ \zeta_e^\gamma = 0 \} \subset \mathcal{V}_{C,L} \]
is where the node labeled by e is not smoothed out.

Lemma 4.7. With notation as above, there exists a Γ^1-stratification of \mathfrak{M}^1 given by
\[\mathfrak{M}^1 = \bigsqcup_{\gamma \in \Gamma^1} \mathfrak{M}^1_\gamma := \bigsqcup_{\gamma \in \Gamma^1} \{ (C,L) \in \mathfrak{M}^1 : \gamma_C \simeq \gamma \}. \]
Proof. Consider the aforementioned charts of \mathcal{M}^1 and the subsets of local parameters:

\begin{equation}
\mathcal{M}_\gamma := \{ V_C, L : \gamma_C \simeq \gamma \}, \quad \gamma \in \Gamma^1; \quad \{ \mathcal{C}_e^\gamma : e \in \operatorname{Edg}(\gamma) \}, \quad \gamma \in \Gamma^1, \quad \nu \in \mathcal{M}_\gamma,
\end{equation}

respectively. By the deformation of the nodal curves, we know that

\[
\operatorname{Cl}_{\mathcal{M}^1}(\mathcal{M}_\gamma^1) = \bigcup_{\gamma \in \Gamma^1, \gamma_1 \preceq \gamma} \mathcal{M}_\gamma^1 \quad \forall \gamma \in \Gamma^1.
\]

Notice that $\gamma_1 \leq \gamma$ above is also up to graph isomorphism. Therefore,

\begin{equation}
\bigcup_{\gamma \in \Gamma^1, \gamma_1 \preceq \gamma} \mathcal{M}_\gamma^1 = \bigcup_{\gamma \in \Gamma^1, \gamma' \preceq \gamma} \operatorname{Cl}_{\mathcal{M}^1}(\mathcal{M}_\gamma^1) \quad \forall \gamma' \in \Gamma^1.
\end{equation}

By the deformation of $(C, L) \in \mathcal{M}^1 = \mathcal{P}_2$, we also know that $\sum_{v \in \operatorname{Ver}(\gamma_C)} c_1(L/C_v)$ is constant within each connected component of \mathcal{P}_2. Taking the stability of \mathcal{P}_2 into account, we see that for every $\mathcal{M} \in \pi_0(\mathcal{P}_2)$, there exist only finitely many $\gamma \in \Gamma^1$ such that $\mathcal{M}_\gamma^1 \cap \mathcal{M} \neq \emptyset$. Thus, the RHS of (4.5) is a finite union in each connected component of \mathcal{M}^1, hence

\[
\bigcup_{\gamma \in \Gamma^1, \gamma \preceq \gamma'} \mathcal{M}_\gamma^1 \text{ is closed in } \mathcal{M}^1.
\]

Consequently, we may shrink the charts in (4.3) if necessary so that

\begin{equation}
\mathcal{M}_\gamma^1 \cap \nu = \emptyset \quad \forall \gamma, \gamma' \in \Gamma^1 \text{ with } \gamma \preceq \gamma' \text{ and } \nu \in \mathcal{M}_\nu.
\end{equation}

In addition, since the local parameters \mathcal{C}_e^ν correspond to the smoothing of the nodes, we conclude that for every $\gamma, \gamma' \in \Gamma^1$ with $\gamma \preceq \gamma'$ and every chart $\nu \in \mathcal{M}_\nu$,

\begin{equation}
\mathcal{M}_\gamma^1 \cap \nu = \bigcup_{E \in \operatorname{Edg}(\gamma), \gamma(E) \simeq \gamma} \{ \mathcal{C}_e^\gamma = 0 \quad \forall e \in \operatorname{Edg}(\gamma) \cap E, \quad \mathcal{C}_e^\gamma \neq 0 \quad \forall e \in E \}.
\end{equation}

Lemma 4.7 then follows from (4.5), (4.6), and Definition 2.13. \hfill \square

One can mimic Example 2.17 and construct a treelike structure Λ' on $(\mathcal{M}^1, \Gamma^1)$ likewise, which gives rise to a stack with twisted fields $\mathcal{M}^1_{\Lambda'}$. However, such $(\mathcal{M}^1, \Gamma^1, \Lambda')$ does not satisfy the hypothesis of Corollary 3.2, so the derived stratification of $\mathcal{M}^1_{\Lambda'}$ with respect to $(\mathcal{M}^1, \Gamma^1, \Lambda')$ does not exist, and the proposed recursive construction cannot proceed further. Thus, we introduce a slightly different stratification on \mathcal{M}^2 as follows.

For every decoration $\gamma^* \in \Gamma^1$, we denote by

\[
\gamma_{\operatorname{vic}} = \gamma_{\operatorname{Ver}(\gamma^*_{\operatorname{cor}})} \in \mathcal{G}
\]

the (connected) graph obtained from γ by applying the vertex identification to $\operatorname{Ver}(\gamma^*_{\operatorname{cor}})$; see Definitions 2.7 and 4.3 for terminology. The image of the vertices of $\gamma^*_{\operatorname{cor}}$ in $\gamma_{\operatorname{vic}}$ is denoted by $o_{\gamma_{\operatorname{vic}}}$.

The decoration γ^* of $\gamma \in \Gamma^1$, further induces a (unique) decoration $\gamma^*_{\operatorname{vic}}$ of $\gamma_{\operatorname{vic}}$ by setting

\begin{equation}
p_g(o_{\gamma_{\operatorname{vic}}}) = \sum_{v \in \operatorname{Ver}(\gamma^*_{\operatorname{cor}})} p_g(v) \quad \text{and} \quad w(o_{\gamma_{\operatorname{vic}}}) = \sum_{v \in \operatorname{Ver}(\gamma^*_{\operatorname{cor}})} w(v)
\end{equation}

while leaving the decorations of the vertices of $\operatorname{Ver}(\gamma^*_{\operatorname{vic}}) \setminus \{ o_{\gamma_{\operatorname{vic}}} \} = \operatorname{Ver}(\gamma) \setminus \operatorname{Ver}(\gamma^*_{\operatorname{cor}})$ unchanged.

The above description of $\gamma_{\operatorname{vic}}$ implies

\begin{equation}
\operatorname{Edg}(\gamma_{\operatorname{vic}}) = \operatorname{Edg}(\gamma); \quad \operatorname{Edg}(\gamma^*_{\operatorname{cor}}) = \operatorname{Edg}(\gamma^*_{\operatorname{vic}}); \quad (\gamma_{\operatorname{vic}})_{\operatorname{vic}} = (\gamma_{\operatorname{vic}})(E) \quad \forall E \subseteq \operatorname{Edg}(\gamma).
\end{equation}

Let

\[
\Gamma^1_{\operatorname{vic}} = \{ \gamma_{\operatorname{vic}} : \gamma^* = (\gamma, p_g, w) \in \mathcal{G}_2^*, \gamma \in \Gamma^1 \}.
\]

The following statement follows immediately from (4.8) and Lemma 4.7.
Corollary 4.8. The Γ^2-stratification of M^2 in Lemma 4.7 determines a $\Gamma^\text{vic}_{\gamma^*}$-stratification:
$$M^2 = \bigsqcup_{\gamma^* \in G^*_{\text{vic}}} M^2_{\gamma^*} := \bigsqcup_{\gamma^* \in G^*_{\text{vic}}} \{(C, L) \in \mathcal{M}^2 : (\gamma^*_{C, L})_{\text{vic}} \simeq \gamma^* \}.$$

For every $\gamma^* \in G^*_{\text{vic}}$, let
$$\mathcal{M}^2_{\gamma^*} := \{(C, L) \in \mathcal{M}^2 : (\gamma^*_{C, L})_{\text{vic}} \simeq \gamma^* \} \subseteq \mathcal{M}^2.$$
Then, for every $\gamma' \in \Gamma^\text{vic}$, we have
$$\pi_0(M^2_{\gamma^*}) = \{(C, L) \in \mathcal{M}^2 : (\gamma^*_{C, L})_{\text{vic}} \simeq \gamma' \}.$$

Fix a graph $\gamma \in \Gamma^1$ and a decoration γ^* of γ. Let
$$(4.9) \quad M^1 := M^2_{\gamma^*} \in \pi_0(M^2_{\gamma^*})$$

We will describe the tuple $(\tau_{\gamma^1}, E_{\gamma^1}, \beta_{\gamma^1})$ to provide the proposed treelike structure Λ^1 on $(M^1, \Gamma^1_{\gamma^1})$. Let γ_{corr} be the core of γ^* as in Definition 4.3 and $w(\gamma_{\text{corr}})$ be as in (4.1).

- If $w(\gamma_{\text{corr}}) > 0$, we set $\tau_{\gamma^1} = \tau_*$ and $o_{\gamma^1} = o_{\gamma^*}$.
- If $w(\gamma_{\text{corr}}) = 0$, let $\gamma_{\text{ctr}} = (\gamma_{\text{vic}})((E_{\gamma^*(\gamma_{\text{corr}})}) = \gamma(E_{\gamma^*(\gamma_{\text{corr}})})$ be the graph obtained via edge contraction; the second equality above follows from (4.8). We then dissolve all $v \in \text{Ver}(\gamma_{\text{ctr}})$ satisfying $w(v) > 0$ (see Definition 2.6 for terminology) and take τ_{γ^1} to be the unique connected component that contains o_{γ^*}. Thus, τ_{γ^1} is a rooted tree with the root o_{γ^*}.

Since τ_{γ^1} is obtained via contraction of the edges in γ_{corr}, dissolution of vertices not in γ_{corr}, and/or taking a connected component of a graph, we conclude that τ_{γ^1} is a connected subgraph of γ_{vic}. In particular,
$$(4.10) \quad \text{Edg}(\tau_{\gamma^1}) \subseteq \text{Edg}(\gamma) \setminus \text{Edg}(\gamma_{\text{corr}}) = \text{Edg}(\gamma_{\text{vic}}) \setminus \text{Edg}(\gamma_{\text{corr}}).$$

Let
$$\Lambda^1 = \left((\tau_{\gamma^1}, E_{\gamma^1} := \text{Edg}(\tau_{\gamma^1}), \text{Id}) \right)_{\gamma^* \in \pi_0(M^2_{\gamma^*})}.$$

Lemma 4.9. The set Λ^1 give a treelike structure on $(M^1, \Gamma^1_{\gamma^1})$ as in Definition 2.16.

Proof. The proof is parallel to its genus 1 counterpart that is studied in Example 2.17, with M^1 replaced by \mathbb{P}_2. The key point is that the positively weighted vertices of τ_{γ^1} are and only are the minimal vertices (i.e. leaves), which is the same as in the genus 1 case. We omit further details.

Corollary 4.8, Lemma 4.9, and Theorem 2.18 together imply the following:

Corollary 4.10. Let $(M^1)^{tf}_{\Lambda^1}$ be constructed as in Theorem 2.18. Then, $(M^1)^{tf}_{\Lambda^1}$ is a smooth algebraic stack and the forgetful morphism $(M^1)^{tf}_{\Lambda^1} \rightarrow M^1 = \mathbb{P}_2$ is proper and birational.

4.3. The second step of the recursive construction. In this step, we take
$$M^2 = (M^1)^{tf}_{\Lambda^1}, \quad \Gamma^2_{\gamma^*} = (\Gamma^1_{\gamma^*})^{\text{der}}_{\Lambda^1},$$
where $(\Gamma^1_{\gamma^*})^{\text{der}}_{\Lambda^1}$ is the set of the derived graphs of $\Gamma^1_{\gamma^*}$ with respect to the rooted level trees given by the treelike structure Λ^1; see (3.3). Since for every $\gamma' \in \Gamma^1_{\gamma^*}$ and every $\mathcal{M}^2 \in \pi_0(M^2_{\gamma^*})$, the rooted tree τ_{γ^1} is a connected subgraph of γ', Corollary 3.2 thus gives rise to the following statement.

Lemma 4.11. The stack M^2 comes equipped with a $\Gamma^\text{vic}_{\gamma^*}$-stratification, which is the derived stratification of M^2 with respect to $(M^1, \Gamma^1_{\gamma^*}, \Lambda^1)$.
The graphs of Γ^2_{vic} are in the form

\[(4.11) \quad \gamma^2 := \rho_{\gamma_{\text{vic}}, t^i} \in \Gamma^2_{\text{vic}}, \quad \text{where} \quad \gamma_{\text{vic}} \in \Gamma^1_{\text{vic}}, \quad [t^i] \in [\mathfrak{M}]_{\text{vic}}, \quad \mathfrak{M} \in \pi_0(\mathfrak{M}^2_{\text{vic}});\]

see (4.9) for \mathfrak{M}. The vertex that is the image of $\rho_{\gamma_{\text{vic}}, t^i}$ in γ^2 is denoted by γ_{vic}. The decoration γ^*_{vic} of γ_{vic} induces the decoration $(\gamma^2)^*$ of γ^2 as in Definition 4.4. By Corollary 3.2 the connected components of $\mathfrak{M}^2_{\gamma^2}$ are in the form

\[(4.12) \quad \mathfrak{M}^2 := (\mathfrak{M}^2)^{tf}_{[t^i]} \in \pi_0(\mathfrak{M}^2_{\gamma^2}).\]

For each \mathfrak{M}^2 as above, we will describe the tuple $(\tau_{\mathfrak{M}^2}, E_{\mathfrak{M}^2}, \beta_{\mathfrak{M}^2})$ to provide the proposed treelike structure Λ^2 on $(\mathfrak{M}^2, \Gamma^2_{\text{vic}})$.

Let

\[(4.13) \quad E^1 := E^{\perp}_{\mathfrak{M}}(t^i) \subset \text{Edg}(\tau_{\mathfrak{M}^1}) = E_{\mathfrak{M}^1} \subset \text{Edg}(\gamma) \setminus \text{Edg}(\gamma^*_{\text{vic}}) \setminus \text{Edg}(\gamma^*_{\text{vic}});\]

which follows from (4.10). Consider the graph $\gamma(E^1)$ obtained from γ via edge contraction, which is endowed with the induced decoration $\gamma^*_{(E^1)}$ from γ^* as in Definition 4.2. Then,

\[(4.14) \quad \text{Edg}(\gamma(E^1)) \subset \text{Edg}(\gamma^2), \quad \text{Edg}(\gamma^*_{(E^1);\text{cor}}) = \text{Edg}(\gamma^*_{\text{vic}}), \quad w(\gamma(E^1);\text{cor}) = w(\gamma^2) \geq 1.\]

The first two relations follow from (3.1) and (4.13), and the last equality follows from the choice of $\mathfrak{M}(t^i)$ and Definitions 4.2 and 4.4. Further, by the construction of $\tau_{\mathfrak{M}^1}$ in (4.2), we see that $\gamma^*_{(E^1)}$ contains at most one pair of the smallest disjoint connected decorated subgraphs $\gamma^*_{(E^1);\pm}$ satisfying

\[(4.15) \quad p_{\alpha}(\gamma^*_{(E^1);\pm}) = 1, \quad w(\gamma^*_{(E^1);\pm}) = 0.\]

We are ready to construct $\tau_{\mathfrak{M}^2}$.

- If $\gamma^*_{(E^1)}$ does not contain two disjoint connected decorated subgraphs $\gamma^*_{(E^1);\pm}$ satisfying (4.15), then we set $\tau_{\mathfrak{M}^2} = \tau_{\gamma}$ and $\phi_{\mathfrak{M}^2} = \phi_{\gamma}$.
- If $\gamma^*_{(E^1)}$ contains a unique pair of disjoint connected decorated subgraphs $\gamma^*_{(E^1);\pm}$ satisfying (4.15), then they are decorated subgraphs of $\gamma^*_{(E^1);\text{cor}}$, and the (shortest) path in $\gamma(E^1)$ connecting $\gamma^*_{(E^1);+}$ and $\gamma^*_{(E^1);-}$ must contain a vertex with $w(v) > 0$ by the last inequality in (4.14).
 - First, let $\gamma(E^1)_{;\text{ctr}}$ be the graph obtained from $\gamma(E^1)$ by contracting the edges of $\gamma^*_{(E^1);\pm}$ into two distinct vertices $o_{\text{ctr}, +}$ and $o_{\text{ctr}, -}$, respectively;
 - then, let $\hat{\gamma}(E^1)_{;\text{ctr}}$ be the graph obtained from $\gamma(E^1)_{;\text{ctr}}$ by identifying the vertices $o_{\text{ctr}, +}$ and $o_{\text{ctr}, -}$ as a same vertex \hat{o}_{ctr};
 - finally, we dissolve all $v \in \text{Ver}(\hat{\gamma}(E^1)_{;\text{ctr}})$ satisfying $w(v) > 0$ and take $\tau_{\mathfrak{M}^2}$ to be the unique connected component that contains \hat{o}_{ctr}.

In this way, we see that $\tau_{\mathfrak{M}^2}$ is a rooted tree with the root $o_{\mathfrak{M}^2} = \hat{o}_{\text{ctr}}$. Notice that $\tau_{\mathfrak{M}^2}$ is obtained via contraction of the edges of $(\gamma^2)_{\text{cor}}$ by (4.14), identification of vertices of $(\gamma(E^1))_{;\text{cor}}$, vertex dissolution, and taking a connected component of a graph, thus

\[(4.16) \quad \text{Edg}(\tau_{\mathfrak{M}^2}) \subset \text{Edg}(\gamma(E^1)) = \text{Edg}(\gamma^2) \setminus \{e_i^*: i \in \mathfrak{M}, j \neq t^i\} \subset \text{Edg}(\gamma^2),\]

and moreover, $\text{Edg}(\tau_{\mathfrak{M}^2})$ is the set of the edges of a connected subgraph $\tau'_{\mathfrak{M}^2}$ of γ^2 that satisfies

\[\phi_{\mathfrak{M}^2} \subset o_{\gamma} \in \text{Ver}(\tau'_{\mathfrak{M}^2})\]

(recall that every vertex is a set of half-edges). We set

\[\Lambda^2 \equiv (\tau_{\mathfrak{M}^2}, E_{\mathfrak{M}^2} := \text{Edg}(\tau_{\mathfrak{M}^2}), Id)_{\gamma^2 \in \Gamma^2_{\text{vic}}, \mathfrak{M} \in \pi_0(\mathfrak{M}^2_{\gamma^2})}.\]

The following lemma is the analogue of Lemma 4.3 in this step.
Lemma 4.12. The set Λ^2 gives a treelike structure on $(\mathcal{M}^2, \Gamma^2_{\text{vic}})$ as in Definition 2.16

Lemmas 4.11 and 4.12 along with Theorem 2.18 give rise to the following statement.

Corollary 4.13. Let $(\mathcal{M}^3)^{tf}_{\Lambda^2}$ be constructed as in Theorem 2.18 (p1). Then, $(\mathcal{M}^3)^{tf}_{\Lambda^2}$ is a smooth algebraic stack and the composite forgetful morphism $(\mathcal{M}^3)^{tf}_{\Lambda^2} \to \mathcal{M}^3 = \mathcal{P}_2$ is proper and birational.

4.4. The third step of the recursive construction. In this step, we take

$$\mathcal{M}^3 = (\mathcal{M}^3)^{tf}_{\Lambda^2}, \quad \Gamma^3_{\text{vic}} = (\Gamma^2_{\text{vic}})^{\text{der}}.$$

Analogous to Lemma 4.11, we have the following statement.

Lemma 4.14. The stack \mathcal{M}^3 comes equipped with a Γ^3_{vic}-stratification, which is the derived stratification of \mathcal{M}^3 with respect to $(\mathcal{M}^2, \Gamma^2_{\text{vic}}, \Lambda^2)$.

The graphs of Γ^3_{vic} are in the form

$$(4.17) \quad \gamma^3 := \rho_{\gamma^3}[tv] \in \Gamma^3_{\text{vic}}, \quad \text{where } \gamma^2 \in \Gamma^2_{\text{vic}}, \quad [tv] \in X^2_{\text{vic}}, \quad \mathcal{M}^2 \in \pi_0(\mathcal{M}^2_{\gamma^2});$$

see (4.11) for γ^2 and (4.12) for \mathcal{M}^2. The vertex that is the image of v_{γ^2} in γ^3 is denoted by o_{γ^3}. The decoration γ^3 induces the decoration γ^3 of γ^3 in Definition 4.4. By Corollary 3.2 for every γ^3 as in (4.17), the connected components of $\mathcal{M}^3_{\gamma^3}$ are in the form

$$(4.18) \quad \mathcal{M}^3 := (\mathcal{M}^3)^{tf}_{\gamma^3} \in \pi_0(\mathcal{M}^3_{\gamma^3}).$$

For each \mathcal{M}^3 as above, we will describe the tuple $(\tau_{\mathcal{M}^3}, E_{\mathcal{M}^3}, \beta_{\mathcal{M}^3})$ to provide the proposed treelike structure Λ^3 on $(\mathcal{M}^3, \Gamma^3_{\text{vic}}, \Lambda^3)$.

Let

$$(4.19) \quad E^2 := E_{\mathcal{M}^3}^1 \subset \text{Edg}(\tau_{\mathcal{M}^3}) = E_{\mathcal{M}^3}^2 \subset \text{Edg}(\gamma(E^1)) = \text{Edg}(\gamma^2) \setminus \{e_i^1 : i \in [1, 0, 1] \} \subset \text{Edg}(\gamma^2),$$

which follows from (4.16). Consider the graph and its induced decoration

$$\gamma(E^1) := (\gamma(E^1))(E^1) = \gamma^3_{\gamma(E^1)} \quad \text{and} \quad \gamma^3_{(E^1)},$$

respectively. Analogous to (4.14), we have

$$(4.20) \quad \text{Edg}(\gamma(E^2) \subset \text{Edg}(\gamma^3), \quad \text{Edg}(\gamma^3_{(E^2)}) = \text{Edg}(\gamma^3_{(E^2)}), \quad \text{w}(\gamma^3_{(E^2)}) = \text{w}(o_{\gamma^3}) \geq 1.)$$

In addition, by the construction of $\tau_{\mathcal{M}^3}$ in 4.3, we see that $\gamma^3(E^2)$ contains at most one smallest connected decorated subgraph

$$(4.21) \quad \gamma^3_{(E^2)} + \quad \text{with} \quad \text{p}_a(\gamma^3_{(E^2)} +) = 1, \quad \text{w}(\gamma^3_{(E^2)} +) = 0.$$

We are ready to construct the rooted tree $\tau_{\mathcal{M}^3}$.

- If $\gamma^3(E^2)$ does not contain any connected decorated subgraph $\gamma^3_{(E^2)}$ satisfying (4.21), then we set $\tau_{\mathcal{M}^3} = \tau_e$ and $o_{\mathcal{M}^3} = o_{\gamma^3}$.
- If $\gamma^3(E^2)$ contains a unique smallest connected decorated subgraph $\gamma^3_{(E^2)}$ satisfying (4.21), it is a subgraph of $\gamma^3_{(E^2)}$ by Definition 4.3. We contract the edges of $\gamma^3_{(E^2)}$ from γ^3 into one vertex $o_{\mathcal{M}^3}$, then dissolve the vertices v with $\text{w}(v) > 0$ and take $\tau_{\mathcal{M}^3}$ to be the unique connected component that contains $o_{\mathcal{M}^3}$. In this way, we see that $\tau_{\mathcal{M}^3}$ is a rooted tree with the root $o_{\mathcal{M}^3} = o_{\mathcal{M}^3}$.

Notice that τ_{γ^3} is obtained via contraction of the edges of
\[
\text{Edg}(\gamma^{*}_{(\mathcal{E})_{\mathcal{E}}}^\mathcal{E}) \subseteq \text{Edg}(\gamma_{(\mathcal{E})_{\mathcal{E}}}^\mathcal{E}) = \text{Edg}(\gamma^*_{\mathcal{E}})
\]
(the last expression follows from (4.20)), vertex dissolution, and taking a connected component of a graph, thus
\[
\text{Edg}(\tau_{\gamma^3}) \subseteq \text{Edg}(\gamma^3) \setminus \{e^i_k : k = 1, 2; i \in [m, 0]_{\mathcal{E}} \} \subseteq \text{Edg}(\gamma^3),
\]
and moreover, Edg(τ_{γ^3}) is the set of the edges of a connected subgraph τ_{γ^3} of γ^3 that satisfies $o_{\gamma^3} \subset o_{\gamma^3} \in \text{Ver}(\tau_{\gamma^3})$.

We set
\[
\Lambda^3 = \left\{ (\tau_{\gamma^3}, \text{Edg}(\tau_{\gamma^3}), \text{Id}) \bigg| \gamma^3 \in \Gamma^3_{\text{vic}}, m \in \pi_0(\mathcal{M}^3_{\gamma^3}) \right\}.
\]

The following lemma is the analogue of Lemma 4.3 in this step.

Lemma 4.15. The set Λ^3 gives a treelike structure on $(\mathcal{M}^3, \Gamma^3_{\text{vic}})$ as in Definition 2.16.

Lemmas 4.14 and 4.15 along with Theorem 2.18 give rise to the following statement.

Corollary 4.16. Let $(\mathcal{M}^3)^{tf}_{\Lambda^3}$ be constructed as in Theorem 2.18. Then, $(\mathcal{M}^3)^{tf}_{\Lambda^3}$ is a smooth algebraic stack and the composite forgetful morphism $(\mathcal{M}^3)^{tf}_{\Lambda^3} \longrightarrow \mathcal{M}^2 = \mathcal{M}_2$ is proper and birational.

4.5. **The fourth step of the recursive construction.** In this step, we take
\[
\mathcal{M}^4 = (\mathcal{M}^3)^{tf}_{\Lambda^3}, \quad \Gamma^4_{\text{vic}} = (\Gamma^3_{\text{vic}})^{\text{der}}_{\Lambda^3}.
\]

Similar to Lemma 4.17, we have the following statement.

Lemma 4.17. The stack \mathcal{M}^4 comes equipped with a Γ^4_{vic}-stratification, which is the derived stratification of \mathcal{M}^4 with respect to $(\mathcal{M}^3, \Gamma^3_{\text{vic}}, \Lambda^3)$.

The graphs of Γ^4_{vic} are in the form
\[
\gamma^4 := \rho_{\gamma^3, [t^3]} \in \Gamma^4_{\text{vic}}, \quad \text{where } \gamma^3 \in \Gamma^3_{\text{vic}}, \ [t^3] \in \mathcal{X}^3_{\gamma^3}, \ M^3 \in \pi(\mathcal{M}^3_{\gamma^3});
\]
see (4.17) for γ^3 and (4.18) for \mathcal{M}^3. Let o_{γ^4} be the image of o_{γ^3} in γ^4, $(\gamma^4)^*_{\text{cor}}$ be the induced decoration, and
\[
\gamma^4_{\text{vic}} \in \Gamma
\]
be the graph obtained from γ^4 by identifying the vertices:
\[
o_{\gamma^4} \quad \text{and} \quad o_{\gamma^4}^k, \quad i \in [m, 0]_{\mathcal{E}}, \quad k = 1, 2, 3;
\]
the new vertex is denoted by o_{γ^4}. The decoration $(\gamma^4)^*_{\text{cor}}$ further induces the decoration $(\gamma^4_{\text{vic}})^*_{\text{cor}}$ of γ^4_{vic} as in (4.7). Then,
\[
\text{Edg}(\gamma^4) = \text{Edg}(\gamma^4_{\text{vic}}); \quad \text{Edg}((\gamma^4)^*_{\text{cor}}) \subseteq \text{Edg}((\gamma^4_{\text{vic}})^*_{\text{cor}}); \quad (\gamma^4_{(\mathcal{E})})_{\text{vic}} = (\gamma^4_{(\mathcal{E})})_{\text{vic}} \forall E \subseteq \text{Edg}(\gamma^4).
\]
We take
\[
\Gamma^4_{\text{vic}} = \{ \gamma^4_{\text{vic}} : \gamma^4 \in \Gamma^4_{\text{vic}} \}.
\]
The following statement follows from Lemma 4.17 and the properties of Edg(γ^4_{vic}) above.

Corollary 4.18. The Γ^4_{vic}-stratification of \mathcal{M}^4 in Lemma 4.17 determines a Γ^4_{vic}-stratification:
\[
\mathcal{M}^4 = \bigsqcup_{\gamma^4 \in \Gamma^4_{\text{vic}}} \mathcal{M}^4_{\gamma^4}, \quad \text{where } \mathcal{M}^4_{\gamma^4} = \bigsqcup_{\gamma^3 \in \Gamma^4_{\text{vic}}, \gamma^4_{\text{vic}} = \gamma^4} \mathcal{M}^4_{\gamma^3}.
\]
By Corollary 3.2 for every $\gamma^4 \in \Gamma^4_{\text{vic}}$ and the corresponding γ^4_{vi3}, the connected components of $\mathcal{M}^4_{\gamma^4}$ and $\mathcal{M}^4_{\gamma^4_{\text{vi3}}}$ are in the form
\begin{equation}
\mathcal{N}^4 := (\mathcal{N}^3)^{\text{tf}}_{\gamma^4_{\text{vi3}}} \in \pi_0(\mathcal{M}^4_{\gamma^4}) \cap \pi_0(\mathcal{M}^4_{\gamma^4_{\text{vi3}}}) \, .
\end{equation}
For each \mathcal{N}^4, we will describe the tuple $(\tau_{\mathcal{N}^4}, E_{\mathcal{N}^4}, \beta_{\mathcal{N}^4})$ to provide Λ^4 on $(\mathcal{M}^4, \Gamma^4_{\text{vi3}})$.

Let
\begin{equation}
E^3 := E_{\geq m}(1) \subset \text{Edg}(\tau_{\mathcal{N}^4}) = E_{\mathcal{N}^4}
\end{equation}
and
\begin{equation}
\text{Edg}(\gamma(\mathcal{E}^3)) = \text{Edg}(\gamma^4) \cap \{ e_i : i \in [m, 0]_{i^k}, k = 1, 2 \} \subset \text{Edg}(\gamma^3),
\end{equation}
which follows from (4.22). Consider the graph and its induced decoration
\begin{equation}
\gamma(\mathcal{E}^3) := (\gamma(\mathcal{E}^3))(\mathcal{E}^3) = \gamma(\mathcal{E}^3) \cup E_{\mathcal{N}^4} \cup \mathcal{E}^3
\end{equation}
and
\begin{equation}
\gamma^3 := (\gamma^3)(\mathcal{E}^3) = (\gamma^3)(\mathcal{E}^3) \cup \mathcal{E}^3,
\end{equation}
respectively. Analogous to (4.26) and (4.28), we have
\begin{equation}
\text{Edg}(\gamma(\mathcal{E}^3)) \subset \text{Edg}(\gamma^4) = \text{Edg}(\gamma^4_{\text{vi3}}),
\end{equation}
and
\begin{equation}
\text{Edg}(\gamma(\mathcal{E}^3)) \subset \text{Edg}(\gamma^4_{\text{vi3}}) = \text{Edg}(\gamma^4_{\text{vi3}}) \subset \text{Edg}(\gamma^4_{\text{vi3}}),
\end{equation}
respectively.

The last equality above holds because $w(v^i_k) = 0$ for all $i \in [m, 0]_{i^k}$ and all $k = 1, 2, 3$; see Definition 4.4.

We are ready to construct the rooted tree $\tau_{\mathcal{N}^4}$.

- If $w(\gamma(\mathcal{E}^3)_[\text{cor}]) > 1$, then we set $\tau_{\mathcal{N}^4} = \tau^*$, and $o_{\mathcal{N}^4} = o^4_{\text{vi3}}$.
- If $w(\gamma(\mathcal{E}^3)_[\text{cor}]) = 1$, we contract the edges of γ^4_{vi3} into one vertex o_{ctr}, then dissolve the vertices $v \neq o_{\text{ctr}}$ with $w(v) > 0$ and take $\tau_{\mathcal{N}^4}$ to be the unique connected component that contains o_{ctr}. In this way, we see that $\tau_{\mathcal{N}^4}$ is a rooted tree with the root $o_{\mathcal{N}^4} = o_{\text{ctr}}$.

Notice that $\tau_{\mathcal{N}^4}$ is obtained via contraction of the edges of
\begin{equation}
\text{Edg}(\gamma(\mathcal{E}^3)) \subset \text{Edg}(\gamma^4) = \text{Edg}(\gamma^4_{\text{vi3}})
\end{equation}
(by 4.26), vertex dissolution, and taking a connected component of a graph, thus
\begin{equation}
\text{Edg}(\tau_{\mathcal{N}^4}) \subset \text{Edg}(\gamma(\mathcal{E}^3) = \text{Edg}(\gamma^4) \cap \{ e_i : k = 1, 2, 3 ; i \in [m, 0]_{i^k} \} \subset \text{Edg}(\gamma^3),
\end{equation}
and moreover, $\text{Edg}(\tau_{\mathcal{N}^4})$ is the set of the edges of a connected subgraph $\tau'_{\mathcal{N}^4}$ of γ^4_{vi3} that satisfies
\begin{equation}
o_{\mathcal{N}^4} \subset o^4_{\text{vi3}} \in \text{Ver}(\tau_{\mathcal{N}^4}).
\end{equation}
We set
\begin{equation}
\Lambda^4 = ((\tau_{\mathcal{N}^4}, E_{\mathcal{N}^4} := \text{Edg}(\tau_{\mathcal{N}^4}), \text{Id}))_{\mathcal{N}^4 \in \pi_0(\mathcal{M}^4_{\gamma^4_{\text{vi3}}})}.
\end{equation}

The following lemma is the analogue of Lemma 4.9 in this step. Notice that the core of γ^*_{vi3} is postively weighted in the current situation, which seems to be different from Lemma 4.9 (or Example 2.17). However, by Definition 4.2 if we contract an edge of $\tau_{\mathcal{N}^4}$ that is both maximal and minimal, then the weight of the new vertex is greater than one, hence the corresponding rooted tree given by Λ^4 is τ^*, which is exactly the same as in the proof of Lemma 4.9.

Lemma 4.19. The set Λ^4 gives a treelike structure on $(\mathcal{M}^4, \Gamma^4_{\text{vi3}})$ as in Definition 2.16.

Lemmas 4.17 and 4.19 along with Theorem 2.18 give rise to the following statement.

Corollary 4.20. Let $(\mathcal{M}^4)^{\text{tf}}_{\Lambda^4}$ be constructed as in Theorem 2.18. Then, $(\mathcal{M}^4)^{\text{tf}}_{\Lambda^4}$ is a smooth algebraic stack and the composite forgetful morphism $(\mathcal{M}^4)^{\text{tf}}_{\Lambda^4} \longrightarrow \mathcal{M}^2 = \mathcal{P}^2$ is proper and birational.
4.6. **The fifth step of the recursive construction.** In this step, we take

\[\mathcal{M}^5 = (\mathcal{M}^4)_\Lambda^4, \quad \Gamma^5_{\text{vi3}} = (\Gamma^4_{\text{vi3}})_{\text{der}}. \]

Analogous to Lemma 4.11 we have the following statement.

Lemma 4.21. The stack \(\mathcal{M}^5 \) comes equipped with a \(\Gamma^5_{\text{vi3}} \)-stratification, which is the derived stratification of \(\mathcal{M}^5 \) with respect to \((\mathcal{M}^4, \Gamma^4_{\text{vi3}}, \Lambda^4) \).

The graphs of \(\Gamma^5_{\text{vi3}} \) are in the form

\[(4.28) \quad \gamma^5 = \rho_{\gamma_{\text{vi3}}}^*[t^4] \in \Gamma^5_{\text{vi3}}, \quad \text{where } \gamma^4_{\text{vi3}} \in \Gamma^4_{\text{vi3}}, \quad [t^4] \in \overline{\Lambda}^4_{\mathcal{M}^4}, \quad \mathcal{M}^4 \in \pi_0(\mathcal{M}^4_{\gamma_{\text{vi3}}}). \]

see (4.23) for \(\gamma^4 \) (and the succeeding display for \(\gamma^4_{\text{vi3}} \)) and (4.24) for \(\mathcal{M}^4 \). Let \(o_{\gamma^5} \) be the image of \(o_{\gamma^4} \) in \(\gamma^5 \) and \((\gamma^5)^* \) be the derived decoration. By Corollary 3.2, for every \(\gamma^5 \) as in (4.28), the connected components of \(\mathcal{M}^5_{\gamma^5} \) are in the form

\[(4.29) \quad \mathcal{M}^5 := (\mathcal{M}^4)[t^4] \in \pi_0(\mathcal{M}^5_{\gamma^5}). \]

For each \(\mathcal{M}^5 \), we will describe the tuple \((\tau_{\mathcal{M}^5}, E_{\mathcal{M}^5}, \beta_{\mathcal{M}^5}) \) to provide \(\Lambda^5 \) on \((\mathcal{M}^5, \Gamma^5_{\text{vi3}}) \).

Let

\[E^4 := \mathcal{E}^4_{\mathcal{M}^4}([t^4]) \subseteq \text{Edg}(\tau_{\mathcal{M}^4}) = \mathcal{E}^4_{\mathcal{M}^4}, \]

\[\text{Edg}(\gamma_{\mathcal{E}^4}) = \text{Edg}(\gamma^4) \setminus \{ e^k_i : i \in [\mathcal{M}, 0]_{\mu}, k = 1, 2, 3 \} \subseteq \text{Edg}(\gamma^4), \]

which follows from (4.27). With \(\gamma \in \Gamma^1 \) and \([t^4] \in \overline{\Lambda}^4_{\mathcal{M}^4} \), as in (4.2), consider the derived graph of \(\gamma \) with respect to \([t^4] \) and its induced decoration

\[\tilde{\gamma}^2 := \rho_{\gamma}^*[t^4] \quad \text{and} \quad (\tilde{\gamma}^2)^*, \]

respectively. By (3.1) and (4.13), we have

\[\text{Edg}(\gamma_{\mathcal{E}^4}) \subseteq \text{Edg}(\tilde{\gamma}^2). \]

Thus by (4.19), (4.25), and (4.30),

\[(4.31) \quad E^k \subseteq \text{Edg}(\tilde{\gamma}^2), \quad k = 2, 3, 4. \]

Let

\[\tilde{\gamma}^2_{(\mathcal{E}^4)} := \tilde{\gamma}^2_{(E^2 \cup E^3 \cup E^4)} \]

and \((\tilde{\gamma}^2_{(\mathcal{E}^4)})^* \) be its induced decoration. Let

\[\tilde{\tau}^5 \quad \text{and} \quad (\tilde{\tau}^5)^* \]

be the rooted tree obtained from \(\tilde{\gamma}^2_{(\mathcal{E}^4)} \) by contracting the edges of \((\tilde{\gamma}^2_{(\mathcal{E}^4)})^* \) into the root \(o_{\tau^5} \) and its induced decoration, respectively. Analogous to (4.14), (4.20), and (4.26), we have

\[(4.32) \quad \text{Edg}(\tilde{\tau}^5) \subseteq \text{Edg}(\gamma^5), \quad o_{\tilde{\tau}^5} \subseteq o_{\gamma^5}. \]

We are ready to construct \(\tau_{\mathcal{M}^5} \). Recall that \(n_1(t^4) \in [\mathcal{M}, 0]_{\mu} \) as in (2.5) is the lowest level of \(t^4 \) on which there exists a unique vertex \(v \in \text{Ver}(t^4) \) satisfying \(\forall v \geq v' \) for all level \(\mathcal{M} \) minimal vertices \(v' \) of \(t^4 \).

- If \(n_1(t^4) = 0 \) or \(n_1(t^4) < 0 \) but \(w((\tilde{\gamma}^2)^*_{(\mathcal{E}^4)}) < w(o_{\tau^5}) \), we set \(\tau_{\mathcal{M}^5} = \tau \) and \(o_{\mathcal{M}^5} = o_{\gamma^5} \).
- If \(n_1(t^4) < 0 \) and \(w((\tilde{\gamma}^2)^*_{(\mathcal{E}^4)}) = w(o_{\tau^5}) \), we dissolve \(v_{n_1(t^4)} \) and all the vertices \(v \neq o_{\tau^5} \) with \(w(v) > 0 \) in \(\tau^5 \) and take \(\tau_{\mathcal{M}^5} \) to be the unique connected component that contains \(o_{\tau^5} \). Thus, \(\tau_{\mathcal{M}^5} \) is a rooted tree with \(o_{\mathcal{M}^5} = o_{\tau^5} \).
Notice that the above construction of \(\tau_{\mathfrak{N}^5} \) is independent of the choice of \(t^i \) representing \([t^i]\). By (4.32), we have
\begin{equation}
(4.33) \quad \text{Edg}(\tau_{\mathfrak{N}^5}) \subset \text{Edg}(\gamma^5) \subset \text{Edg}(\gamma^5) \setminus \{e^k_i : k = 2, 3, 4; i \in [\mathfrak{m}], 0\} \subset \text{Edg}(\gamma^5),
\end{equation}
and moreover, Edg(\(\tau_{\mathfrak{N}^5} \)) is the set of the edges of a connected subgraph \(\tau'_{\mathfrak{N}^5} \) of \(\gamma^5 \) that satisfies
\[o_{\mathfrak{N}^5} \subset o_{\gamma^5} \in \text{Ver}(\tau'_{\mathfrak{N}^5}). \]

We set
\[\Lambda^5 = \left((\tau_{\mathfrak{N}^5}, E_{\mathfrak{N}^5} := \text{Edg}(\tau_{\mathfrak{N}^5}), \text{Id}) \right)_{\gamma^5 \in \Gamma^5_{\text{vic}}}. \]

Lemma 4.22. The set \(\Lambda^5 \) gives a treelike structure on \((\mathfrak{N}^5, \Gamma^5_{\text{vic}})\) as in Definition 2.16.

Proof. The proof of Lemma 4.22 is still parallel to that of Lemma 4.9. The only part that needs attention is the minimal vertex \(v^i_{n_{n_{(t^i)}}} \) of \(\tau_{\mathfrak{N}^5} \) is not positively weighted whenever \(n_{n_{(t^i)}} < 0 \); see Definition 4.4. Nonetheless, if we contract the minimal edge \(e^i_{n_{n_{(t^i)}}} \) of \(\tau_{\mathfrak{N}^5} \), it is a direct check that there exists a unique list
\begin{equation}
(4.34) \quad \tilde{\gamma}^i = \gamma^5_{(e^i_{n_{n_{(t^i)}}})}, \quad \text{Cl}_{\mathfrak{N}^5} \tilde{\gamma}^5 \cap \mathfrak{N}^5 \neq \varnothing, \quad \text{and } n_{1}(t^i) = (n_1(t^i))^i; \text{ see } (2.3) \text{ for notation. Thus, } v^i_{n_{n_{(t^i)}}} \text{ is a minimal vertex of } \tau_{\mathfrak{N}^5} \text{ in this case. Similarly, if we contract a non-exceptional minimal edge } e \text{ of } \tau_{\mathfrak{N}^5} \text{ that is directly attached to an exceptional vertex } v^i, \quad i \in [n_1(t^i)], 0, \text{ then it is a direct check that there exists a unique list as in } (4.34) \text{ such that } \tilde{\gamma}^i = \gamma^5_{(e)}; \text{ Cl}_{\mathfrak{N}^5} \tilde{\gamma}^5 \cap \mathfrak{N}^5 \neq \varnothing, \quad \text{and } n_{1}(t^i) = i. \text{ Thus, } v^i_{e} \text{ is a minimal vertex of } \tau_{\mathfrak{N}^5} \text{ in this case. The verification of the rest of the conditions in Definition } 2.16 \text{ is analogous to Lemma } 4.9 \text{ and Example } 2.17, \text{ hence is omitted.} \]

Lemmas 4.21 and 4.22 along with Theorem 2.18 give rise to the following statement.

Corollary 4.23. Let \((\mathfrak{N}^5)_{\Lambda^5}^F\) be constructed as in Theorem 2.18. Then, \((\mathfrak{N}^5)_{\Lambda^5}^F\) is a smooth algebraic stack and the composite forgetful morphism \((\mathfrak{N}^5)_{\Lambda^5}^F \to \mathfrak{N}^5 = \mathfrak{P}^2\) is proper and birational.

4.7. **The sixth step of the recursive construction.** In this step, we take
\[\mathfrak{M}^6 = (\mathfrak{N}^5)_{\Lambda^5}^F, \quad \Gamma^6_{\text{vic}} = (\Gamma^5_{\text{vic}}/\Lambda^5)^{\text{der}}. \]

Similar to Lemma 4.11, we have the following statement.

Lemma 4.24. The stack \(\mathfrak{M}^6 \) comes equipped with a \(\Gamma^6_{\text{vic}} \)-stratification that is the derived stratification of \(\mathfrak{M}^6 \) with respect to \((\mathfrak{M}^5, \Gamma^5_{\text{vic}}/\Lambda^5)\).

Hereafter, the recursive construction becomes a bit different, which is due to the expressions of the structural homomorphism in [9, §2] that are related to the conjugate and Weierstrass points. In Step 6, the strategy is as follows.

1. We first describe a substack \(K \) of the boundary \(\Delta^6 \) of \(\mathfrak{M}^6 \) that is related to the conjugate and Weierstrass points and satisfies the first assumption of Corollary 3.3.
2. We then construct a treelike structure \(\Lambda^6 \) satisfying the second assumption and (3.6) of Corollary 3.3.
3. Finally, we apply Corollary 3.3 to obtain the grafted stratification \(\Gamma^6_{\text{gft}} \) with respect to \(K \) and the induced treelike structure \(\Lambda^6_{\text{gft}}. \)
We start with the substack K. The graphs of Γ_{vi3} are in the form

\[(4.35) \quad \gamma^6 := p_{\gamma}[(vi) \in \Gamma^6_{vi3}, \quad \text{where} \quad \gamma^5 \in \Gamma^5_{vi3}, \quad [t^5] \in N_{\gamma^5}, \quad N_{\gamma^5} \in \pi_0(M^5_{\gamma^5}); \]

see (4.28) for γ^5 and (4.29) for \mathcal{M}^5. The vertex that is the image of o_{γ} in γ^6 is denoted by o_{γ^6}. The decoration $(\gamma^6)_*^\circ$ of γ^5 induces the decoration $(\gamma^6)_*^\circ$ of γ^6. Notice that $w((\gamma^6)_*^\circ) \geq 2$.

By Corollary 3.2, for every $\gamma^6 \in \Gamma^6_{vi3}$, the connected components of $\mathcal{M}^6_{\gamma^6}$ are in the form

\[(4.36) \quad \mathcal{N}^6 := (\mathcal{M}^6)^{tf}_{[t^6]} \in \pi_0(\mathcal{M}^6_{\gamma^6}). \]

Recall that $n_j(t^k)$ denotes the lowest level of t^k on which there are at most j vertices that are contained in the paths from the root to the minimal vertices on the $m(t^k)$-th level; see (2.5).

Consider the following sets of the connected components of the strata of \mathcal{M}^6:

- $N^6_{a,1} = \{ \gamma^6 \in \pi_0(\mathcal{M}^6_{\gamma^6}) : \gamma^6 \in \Gamma^6_{vi3}; \quad n_2(t^6) < n_1(t^6) = 0; \quad w((\gamma^6)_*^\circ) = w((\gamma^5)_*^\circ) \}$,
- $N^6_{a,2} = \{ \gamma^6 \in \pi_0(\mathcal{M}^6_{\gamma^6}) : \gamma^6 \in \Gamma^6_{vi3}; \quad n_1(t^6), n_1(t^6) < 0; \quad w((\gamma^6)_*^\circ) < w((\gamma^3)_*^\circ) = w((\gamma^5)_*^\circ) \}$,
- $N^6_{a,3} = \{ \gamma^6 \in \pi_0(\mathcal{M}^6_{\gamma^6}) : \gamma^6 \in \Gamma^6_{vi3}; \quad n_1(t^6), n_1(t^6) < 0; \quad w((\gamma^6)_*^\circ) = w((\gamma^5)_*^\circ) \}.$

We take

\[N^6 \cap \bigcup_{1 \leq s \leq 3} N^6_{a,1} \cup N^6_{a,2} \cup N^6_{a,3} \cup N^6_{b} \cup N^6_{c} \cup N^6_{d}; \quad \mathcal{M}^6 = \bigcup_{\gamma^6 \in N^6} \mathcal{N}^6 \subset \mathcal{M}^6. \]

The condition $\gamma_{vic} \neq \tau_\bullet$ in N^6_{c} excludes the stratum consisting of smooth genus two curves and degree 2 line bundles, which is a connected component of $\mathcal{M}^6_{\gamma^6}$. Thus, \mathcal{M}^6 is a substack of the boundary Δ^6 of \mathcal{M}^6. In addition, we have the following:

Lemma 4.25. The substack \mathcal{M}^6 is closed.

Proof. Fix $\gamma^6 \in N^6$. By Lemma 2.15, for every $\tilde{\gamma}^6 \in \Gamma^6_{vi3}$ and $\tilde{\gamma}^6 \in \pi_0(\mathcal{M}^6_{\gamma^6})$, if $\text{Cl}_{\gamma^6} \mathcal{M}^6 \cap \tilde{\gamma}^6 \neq \emptyset$, then $\tilde{\gamma}^6 \leq \gamma^6$. Here the notation $\tilde{\gamma}$ is to distinguish $\tilde{\gamma}^6$ from γ^6. Analyzing the possible graphs γ^6 with $\tilde{\gamma}^6 \leq \gamma^6$ and keeping track of the weights $w((\tilde{\gamma}^s)_*^\circ)$, $2 \leq s \leq 6$, we observe that

\[(4.37) \quad \text{Cl}_{\gamma^6} \mathcal{M}^6 \subset \bigcup_{\gamma^6 \in N^6_{a,1}} \mathcal{M}^6_{\Gamma^7_{\gamma^6};} \quad \text{if} \quad \gamma^6 \in N^6_{a,1}, \]

\[\bigcup_{\gamma^6 \in N^6_{a,2}} \mathcal{M}^6_{\Gamma^7_{\gamma^6}} \quad \text{if} \quad \gamma^6 \in N^6_{a,2}, \quad s = 2, 3; \]

\[\bigcup_{\gamma^6 \in N^6_{b}} \mathcal{M}^6_{\Gamma^7_{\gamma^6}} \quad \text{if} \quad \gamma^6 \in N^6_{b}. \]

Therefore, \mathcal{M}^6 is closed. \(\square\)

To construct $K \subset \mathcal{M}^6 \subset \Delta^6$, we consider the algebraic stack \mathcal{D}_2 of the stable pairs (C, D), where C are genus 2 nodal curves and D are effective divisors on C. A pair (C, D) in \mathcal{D}_2 is said to be stable if every rational irreducible component without any divisoral marking contains at least three nodal points. It is known that \mathcal{D}_2 is smooth and there exists a smooth morphism

\[\mathcal{D}_2 \twoheadrightarrow \mathcal{P}_2, \quad (C, D) \mapsto (C, \mathcal{O}_C(D)). \]

Thus, every smooth chart $\mathcal{V} \to \mathcal{D}_2$ gives a smooth chart $\mathcal{V} \to \mathcal{P}_2$.
Fix $\tilde{x}\in \mathcal{M}_{g,6}^6$. Let

$$x = (C, L) \in \mathcal{M}^5 = \mathcal{P}_2$$

be the image of \tilde{x} under the forgetful morphism $\pi: \mathcal{M}_g^6 \to \mathcal{M}_g^4$ and let $(C, D) \in \mathcal{D}_2$ be such that $\mathcal{D}_C(D) = L$. We take $\mathcal{V} \to \mathcal{D}_2(\to \mathcal{M}_g^4)$ to be a smooth chart containing (C, D) (and hence x). Let $(\mathcal{C}, \mathcal{D})/\mathcal{V}$ be the universal family. W.l.o.g. we assume that

$$\mathcal{D} = D_1 + \ldots + D_m,$$

where the sections $D_i \in \Gamma(C/\mathcal{V})$ are disjoint.

Assume that $\tilde{x} \in \mathcal{M}_g^6 \in N^\dagger$. We shall make the following choices on D_1 and D_2. If $\mathcal{N}_g^6 \in N_{a;1}$, the normalization at the two nodes corresponding to $\mathcal{C}_n \left(U(t^i) \cap (\mathcal{C}_n) \right)^2(t^i)$ yields two (possibly nodal) rational sub-curves of C; w.l.o.g. we assume that $D_1(x)$ and $D_2(x)$ are on each of them, respectively. Similarly, if $\mathcal{N}_g^6 \in N_{a;2} \cup N_{a;3} \cup N_6^5$, we take $D_1(x)$ and $D_2(x)$ to be on each of the two rational sub-curves of C obtained from the normalization at the two nodes corresponding to $\mathcal{C}_n \left(U(t^i) \cap (\mathcal{C}_n) \right)^2(t^i)$ and $\mathcal{C}_n \left(U(t^i) \cap (\mathcal{C}_n) \right)^2(t^i)$ $(s = 2, 3, 5)$, respectively. If $\mathcal{N}_g^6 \in N_6^5$, then $\mathcal{D}(\mathcal{C}_n)^2(t^i)$, which we assume to come from $\mathcal{D}_1(x)$ and $D_2(x)$. If $\mathcal{N}_g^6 \in N_6^5$, then $\mathcal{D}(\mathcal{C}_n)^2(t^i)$, which we assume to come from $\mathcal{D}_1(x)$; we then take $D_2(x)$ to be on the rational subcurve of C obtained from the normalization at the node corresponding to $\mathcal{C}_n \left(U(t^i) \cap (\mathcal{C}_n) \right)^2(t^i)$.

Let $K_1^y \subset \mathcal{V} \to \mathcal{D}_2$ be the locus on which D_1 and D_2 are conjugate. Shrinking \mathcal{V} if necessary, we can further assume that $K_1^y = \emptyset$ if $D_1(x)$ and $D_2(x)$ are not conjugate. By [9, Lemma 2.8.2], K_1^y is a Cartier divisor of \mathcal{V}, hence there exists $\kappa_1^y \in \Gamma(\mathcal{D}_1)$ such that

$$K_1^y = \{\kappa_1^y = 0\}.$$

Let $\mathcal{U} = \mathcal{U}_y \to \mathcal{M}_g^6$ be a twisted chart that is centered at \tilde{x} and satisfies $\mathcal{V}(\mathcal{U}) \subset \mathcal{V}$, and \mathcal{U}^\dagger, be the twisted parameters on \mathcal{U}; see Theorem 2.18 for notation. We denote by K_1^y the proper transform of K_1^y in \mathcal{U}, which is still a Cartier divisor, hence there exists $\kappa_1^y \in \Gamma(\mathcal{D}_1)$ such that

$$K_1^y = \{\kappa_1^y = 0\}.$$

Lemma 4.26. With notation as above, the function κ_1^y can be taken so that $\{\kappa_1^y \subset \mathcal{U} \}$ is a subset of local parameters on \mathcal{U}. Moreover, for any $y \in \mathcal{U}$ and any twisted chart $\mathcal{U} = \mathcal{U}_y$ centered at y, we have

$$\tilde{K}_1^y \cap \mathcal{M}_g^1 \cap \mathcal{U} = \tilde{K}_1^y \cap \mathcal{M}_g^1 \cap \mathcal{U},$$

hence the local substacks $\tilde{K}_1^y \cap \mathcal{M}_g^1 \cap \mathcal{U} = \tilde{K}_1^y \cap \mathcal{M}_g^1 \cap \mathcal{U}$ can be glued together to form a substack $K \subset \mathcal{M}_g^1$.

Proof. Assume that $\tilde{x} \in \mathcal{M}_g^6 \in N^\dagger$. Let K_1^y be as in (4.38) and $x = (C, L) \in \mathcal{P}_2$ be the image of \tilde{x}. We denote by C_{cor} the smallest connected genus 2 subcurve of C and by $\langle \delta_1 \rangle$ and $\langle \delta_2 \rangle$ respectively the images of $D_1(x)$ and $D_2(x)$ on C_{cor} after contracting all the irreducible components of C that are away from C_{cor}. It is possible that $\langle \delta_1 \rangle = \langle \delta_2 \rangle$.

According to [9, §2.2 & Lemma 2.8.2], there are two possible situations for K_1^y: either K_1^y is smooth and transverse to every local divisor $\{c = 0\}$ as in (4.2), or $\langle \delta_1 \rangle$ and $\langle \delta_2 \rangle$ belong to a non-separating bridge B, i.e. a chain of rational irreducible components whose complement in C_{cor} is connected.

In the former situation, κ_1^y can simply be taken as the pullback of κ_1^y to \mathcal{U} so that the first statement of Lemma 4.26 holds; see Theorem 2.18.

In the latter situation, w.l.o.g. we assume that B is the largest non-separating bridge containing $\langle \delta_1 \rangle$ and $\langle \delta_2 \rangle$. The nodes where B is attached to a connected genus 1 subcurve C_1 of C_{cor} are denoted by η_{a_1} and η_{a_2}. For $i = 1, 2$, let $E_i \subset \text{Edg}(\gamma_{C_{\text{cor}}})$ index the nodes between C_1 and $\langle \delta_i \rangle$, satisfying that E_1 and E_2 are disjoint. The positions of $\langle \delta_1 \rangle$ and $\langle \delta_2 \rangle$ imply that

$$\mathcal{N}_g^6 \in N_{a;1} \cup N_{a;3} \cup N_6^5 \cup N_d^6, \quad E_1 \cup E_2 \subset \text{Edg}(\gamma_{C_{\text{cor}}}), \quad \ell_V(h^+_1) = \ell_V(h^+_2) = l_0.$$
The edges ϵ_1 and ϵ_2 labeling the nodes q_{i1} and q_{i2} are respectively the maximal elements of E_1 and E_2 (relative to the tree order on τ_{q_1}); their minimal elements are respectively denoted by ϵ'_1 and ϵ'_2; see Figure 5 for illustration.

By $[9, \S 2.2 \& \text{Lemma 2.8.2}]$, the parameters ζ_e on V can be chosen such that

$$\kappa_{12}^V = \prod_{e \in E_1} \zeta_e + \prod_{e \in E_2} \zeta_e.$$

Let $\varpi_{4,6} : \mathcal{M}_e \to \mathcal{M}_4$ be the composite forgetful morphism, $\tilde{x}^4 = \varpi_{4,6} (\tilde{x})$, and \mathcal{M}_1 be a twisted chart of \mathcal{M}_4 centered at \tilde{x}^4.

If $\mathcal{M}_e \in N^6_{a,1} \cup N^6_{a,3}$, then $\ell_{(i_{1})}(h_{e_1}^7) \leq \mathbf{m}(i^3)$ and $\ell_{(i_{2})}(h_{e_2}^7) = \mathbf{m}(i^3)$. By Theorem 2.18 (p4) the products $\prod_{e \in E_1} \zeta_e$ and $\prod_{e \in E_2} \zeta_e$ respectively pull back to

$$\prod_{e \in [m, l_0]_{13}} \varpi^*_{4,6} \xi_1^4 \prod_{e \in E_1} \varpi^*_{4,6} \xi_1^4 \text{ and } \prod_{e \in [m, l_0]_{13}} \varpi^*_{4,6} \xi_1^4 \prod_{e \in E_2} \varpi^*_{4,6} \xi_1^4,$$

where $\xi_e^{i^4} = 1$ whenever e is one of the special edges e_i of i^3 as in Theorem 2.18 (p2). We observe that $\prod_{e \in E_1} \varpi^*_{4,6} \xi_e^{i^4}$ and $\prod_{e \in E_2} \varpi^*_{4,6} \xi_e^{i^4}$ are products of pairwise distinct local parameters on \mathcal{M}_1. Moreover, $\prod_{e \in E_2} \varpi^*_{4,6} \xi_e^{i^4}$ is a unit on \mathcal{M}_1. Thus,

$$\kappa_{12}^{i^1} = \prod_{e \in E_1} \varpi^*_{4,6} \xi_e^{i^4} + \prod_{e \in E_2} \varpi^*_{4,6} \xi_e^{i^4}$$

is a local parameter on \mathcal{M}_1 that defines $\kappa_{12}^{i^1}$. The construction of the rooted tree τ_{q_1} that determines the twisted parameters on $\xi_{s}^{i^4}$ implies that $\{\xi_{s}^{i^4}\}_{s \in i^4(15)} \cup \{\kappa_{12}^{i^1}\}$ is a subset of local parameters on \mathcal{M}_1.

If $\mathcal{M}_e \in N^6_{a,1} \cup N^6_{a,3}$, the argument is analogous to the last paragraph, possibly with a new situation when $\ell_{(i_{1})}(h_{e_1}^7) \leq \mathbf{m}(i^3)$ but $\ell_{(i_2)}(h_{e_2}^7) > \mathbf{m}(i^3)$. In that case, the products $\prod_{e \in E_1} \zeta_e$ and $\prod_{e \in E_2} \zeta_e$ respectively pull back to

$$\prod_{e \in [m, l_0]_{13}} \varpi^*_{4,6} \xi_{s}^{i^4} \prod_{e \in E_1} \varpi^*_{4,6} \xi_{s}^{i^4} \text{ and } \prod_{e \in [l_0(h_{e_2}^7), l_0]_{13}} \varpi^*_{4,6} \xi_{s}^{i^4} \prod_{e \in E_2} \varpi^*_{4,6} \xi_{s}^{i^4},$$

and $\prod_{e \in E_2} \varpi^*_{4,6} \xi_{s}^{i^4}$ is a unit on \mathcal{M}_1. Thus,

$$\kappa_{12}^{i^1} = \prod_{e \in [m, l_0(h_{e_2}^7), l_0]_{13}} \varpi^*_{4,6} \xi_{s}^{i^4} \prod_{e \in E_1} \varpi^*_{4,6} \xi_{s}^{i^4} + \prod_{e \in E_2} \varpi^*_{4,6} \xi_{s}^{i^4}$$

is a local parameter on \mathcal{M}_1 that defines $\kappa_{12}^{i^1}$, which together with $\{\xi_{s}^{i^4}\}_{s \in i^4(15)}$ still form a subset of local parameters on \mathcal{M}_1. This establishes the first statement of Lemma 4.26.

The second statement of Lemma 4.26 follows from a direct check. The key fact is that for every $x \in \mathcal{M}_e \in N^1$, the choices of $D_1, D_2 \in \Gamma(C/V)$ described in the paragraph above (4.38) may not be unique. For instance, in Figure 5 we may choose the sections D_i such that $D_1(x)$ (resp. $D_2(x)$)
is the other marked point on the same irreducible component. Nonetheless, we observe that K_{iv}^6 is independent of such choices (even though K_{iv}^6 is). This, along with (4.37), gives rise to the second statement of Lemma 4.26.

Next, we construct a treelike structure Λ^6 on $(\mathfrak{M}^6, \Gamma^6_{vi})$ satisfying the second assumption and (3.6) of Corollary 3.3. For each \mathfrak{M}^6 as in (4.36), we describe the tuple $(\tau_{\mathfrak{M}^6}, E_{\mathfrak{M}^6}, \beta_{\mathfrak{M}^6})$ as follows.

Let $\tilde{\tau}^5$ be as above (4.32). Then by (4.33),

$$\text{Edg}(\tau_{\mathfrak{M}^6}) = E_{\mathfrak{M}^6} \subseteq \text{Edg}(\tilde{\tau}^5) \subseteq \text{Edg}(\gamma^5) \setminus \{e^k_i : k = 2, 3, 4\} \subseteq \text{Edg}(\gamma^5).$$

We can thus take $\tilde{\gamma}^6 := \rho_{\tau_{\mathfrak{M}^6},[5]}$, and let $(\tilde{\gamma}^6)^*$ be the induced decoration of $\tilde{\gamma}^6$. Since $\tilde{\tau}^5$ is a rooted tree, so is $\tilde{\gamma}^6$. Analogous to (4.32),

$$\text{Edg}(\tilde{\gamma}^6) \subseteq \text{Edg}(\gamma^6) \setminus \{e^k_i : k = 2, 3, 4; i \in [m, 0]_{\mathfrak{M}^6} \} \subseteq \text{Edg}(\gamma^6), \quad o_{\tilde{\gamma}^6} \subseteq o_{\gamma^6}.$$

We are ready to construct $\tau_{\mathfrak{M}^6}$.

- If $\mathfrak{M}^6 \in N^6_{vi}$, we dissolve the image of $\nu^4_{n^4_{(t^4)}}$ in $\tilde{\gamma}^6$ as well as all the non-root vertices v of $\tilde{\gamma}^6$ with $w(v) > 0$, and take $\tau_{\mathfrak{M}^6}$ to be the unique connected component that contains $o_{\tilde{\gamma}^6}$.

- If $\mathfrak{M}^6 \in N^6_{vi}$ (which implies $n^4_{(t^4)} \leq n^4_{(t^4)} < 0$), consider the following two sub-cases:
 - if $(C_{\mathfrak{M}^6}^{\perp}(t^5))^\tau = \{e^k_i : i \in [m_1(t^4), 0]_{\mathfrak{M}^6}\}$, then we dissolve the image of $\nu^4_{n^4_{(t^4)}}$ in $\tilde{\gamma}^6$ as well as all the non-root vertices v of $\tilde{\gamma}^6$ with $w(v) > 0$ and take $\tau_{\mathfrak{M}^6}$ to be the unique connected component that contains $o_{\tilde{\gamma}^6}$;
 - otherwise, we first dissolve the image of $\nu^4_{n^4_{(t^4)}}$ in $\tilde{\gamma}^6$ as well as all the non-root vertices v of $\tilde{\gamma}^6$ with $w(v) > 0$, then contract the edges in
 $$\{e^k_i : i \in [m_1(t^5), 0]_{\mathfrak{M}^6}, \lambda := \min \{\ell_{i}(v^k_5) : e^k_i \in (C_{\mathfrak{M}^6}^{\perp}(t^5))^\tau \cup \{0\}\}\}$$
 and finally take $\tau_{\mathfrak{M}^6}$ to be the unique connected component that contains $o_{\tilde{\gamma}^6}$.

- If $\mathfrak{M}^6 \in N^6_{vi} \cup N^6_{vi} \cup N^6_{vi} \cup N^6_{vi}$, we dissolve the image of $\nu^4_{n^4_{(t^4)}}$ in $\tilde{\gamma}^6$ as well as all the non-root vertices v of $\tilde{\gamma}^6$ with $w(v) > 0$, and take $\tau_{\mathfrak{M}^6}$ to be the unique connected component that contains $o_{\tilde{\gamma}^6}$.

- For other \mathfrak{M}^6, we set $\tau_{\mathfrak{M}^6} = \tau_\bullet$ and $o_{\mathfrak{M}^6} = o_{\gamma^6}$.

By (4.41), we have

$$\text{Edg}(\tau_{\mathfrak{M}^6}) \subseteq \text{Edg}(\tilde{\gamma}^6) \subseteq \text{Edg}(\gamma^6) \setminus \{e^k_i : k = 2, \cdots, 5; i \in [m, 0]_{\mathfrak{M}^6} \} \subseteq \text{Edg}(\gamma^6),$$

and moreover, $\text{Edg}(\tau_{\mathfrak{M}^6})$ is the set of the edges of a connected subgraph $\tau'_{\mathfrak{M}^6}$ of γ^6 that satisfies

$$o_{\mathfrak{M}^6} \subseteq o_{\gamma^6} \in \text{Ver}(\tau'_{\mathfrak{M}^6}).$$

We set

$$\Lambda^6 = (\tau_{\mathfrak{M}^6}, E_{\mathfrak{M}^6} := \text{Edg}(\tau_{\mathfrak{M}^6}), \text{Id})_{\mathfrak{M}^6 \in \Gamma^6_{vi} \setminus \text{Edg}(\gamma^6) \setminus \text{Edg}(\gamma^5).}$$

Mimicking the proof of Lemma 4.22 and taking Lemma 4.25 into consideration, we obtain the following statement.

Lemma 4.27. The set Λ^6 gives a treelike structure on $(\mathfrak{M}^6, \Gamma^6_{vi})$ as in Definition 2.16.

Notice that $\mathfrak{M}^6 \in N^6_{vi}$ whenever $\tau_{\mathfrak{M}^6} \neq \tau_\bullet$. Corollary 3.3, Lemmas 4.26 and 4.27, and Theorem 2.18 together lead to the following statement.
Corollary 4.28. The stack \(\mathcal{M}^6 \) has a \(\Gamma^6_{\text{gft}} \)-stratification

\[
\mathcal{M}^6 = \bigsqcup_{\gamma' \in \Gamma^6_{\text{gft}}} (\mathcal{M}^6_{\text{gft}})_{\gamma'}, \quad \text{where} \quad \Gamma^6_{\text{gft}} = (\Gamma^6_{\text{vi3}})_{\text{gft}},
\]

which is the grafted stratification with respect to \((\mathcal{M}^6, \Gamma^6_{\text{vi3}}, \Lambda^6) \), along with the induced treelike structure \(\Lambda^6_{\text{gft}} \) as in Corollary 3.3. Furthermore, the stack \((\mathcal{M}^6)_{\text{gft}}^{\text{tf}} \) as in Theorem 2.18 (p1) is a smooth algebraic stack and the composite forgetful morphism \((\mathcal{M}^6)_{\text{gft}}^{\text{tf}} \to \mathcal{M}^1 = \mathcal{M}_2 \) is proper and birational.

4.8. The seventh step of the recursive reconstruction. In this step, we take

\[
\mathcal{M}^7 = (\mathcal{M}^6)_{\Lambda^6_{\text{gft}}}, \quad \Gamma^7 = (\Gamma^6_{\text{gft}})_{\text{der}}.
\]

Analogous to Lemma 4.11, we have the following statement.

Lemma 4.29. The stack \(\mathcal{M}^7 \) comes equipped with a \(\Gamma^7 \)-stratification that is the derived stratification of \(\mathcal{M}^7 \) with respect to \((\mathcal{M}^6, \Gamma^6_{\text{gft}}, \Lambda^6_{\text{gft}}) \).

The graphs of \(\Gamma^7 \) are in the form

\[
\gamma^7 := \rho_{\gamma^6} | [\mathcal{E}^6] \in \Gamma^7,
\]

where \(\gamma^6 := (\gamma^6, \alpha_{\gamma^6})_{\text{gft}} \in \Gamma^6_{\text{gft}}, \quad [\mathcal{E}^6] \in \Lambda^6_{\text{gft}}, \quad \mathcal{M}^6_{\text{gft}} := \mathcal{M}^6 \cap K \in \pi_0((\mathcal{M}^6_{\text{gft}})_{\gamma^6_{\text{gft}}}); \)

see (4.35) for \(\gamma^6 \), (4.36) for \(\mathcal{M}^6 \), and Lemma 4.26 for \(K \). Let \(o_{\gamma^6} \) be the image of \(o_{\gamma^6} \) in \(\gamma^5 \) and \((\gamma^7)^* \) be the derived decoration. By Corollary 3.2 for every \(\gamma^7 \in \Gamma^7 \) as in (4.43), the connected components of \(\mathcal{M}^7_{\gamma^7} \) are in the form

\[
\mathcal{M}^7 := (\mathcal{M}^6)_{\Lambda^6_{\text{gft}}}^{\text{tf}}, \quad \mathcal{M}^7_{\gamma^7} \in \pi_0((\mathcal{M}^6)_{\gamma^7_{\text{gft}}}).
\]

For each \(\mathcal{M}^7 \), we will describe the tuple \((\tau_{\mathcal{M}^7}, E_{\mathcal{M}^7}, \beta_{\mathcal{M}^7}) \) to provide \(\Lambda^7 \) on \((\mathcal{M}^7, \Gamma^7) \).

Let

\[
\mathcal{E}^6 := \mathcal{E}_{\mathcal{M}^6}^{\mathcal{M}}(\mathcal{E}^6) \subset \text{Edg}(\tau_{\mathcal{M}^6}) = E_{\mathcal{M}^6}_{\text{gft}}
\]

\[
\subset \text{Edg}(\tau_{\mathcal{M}^6}) = \text{Edg}(\gamma_{\text{gft}}^{\mathcal{M}}) \cup \{ \mathcal{E}^k : i \in [\mathcal{M}, 0], k = 2, 3, 4, 6 \} \subset \text{Edg}(\gamma_{\text{gft}}^{\mathcal{M}}),
\]

which follows from (4.42). Consider the rooted tree

\[
\tau_{\mathcal{M}^7} := (\tau_{\mathcal{M}^6})_{\{ \mathcal{E}^k : i \in [\mathcal{M}, 0], k = 1, 5 \}},
\]

whose induced decoration is denoted by \((\tau_{\mathcal{M}^7})^* \). By (4.45) and (4.46), we have

\[
\text{Edg}(\tau_{\mathcal{M}^7}) \subset \text{Edg}(\gamma_{\text{gft}}) \cup \{ \mathcal{E}^k : i \in [\mathcal{M}, 0], k = 1, \cdots, 6 \} \subset \text{Edg}(\gamma_{\text{gft}}).
\]

We are ready to construct \(\tau_{\mathcal{M}^7} \),

- If either \(w(o_{\tau_{\mathcal{M}^7}}) > 2 \), or \(w(o_{\tau_{\mathcal{M}^7}}) = 2 \) but \(e_{\text{gft}} \in \mathcal{E}^6 \), we set \(\tau_{\mathcal{M}^7} = \tau_{\mathcal{M}}, \) and \(o_{\mathcal{M}^7} = o_{\gamma_{\text{gft}}} \).
- If \(w(o_{\tau_{\mathcal{M}^7}}) = 2 \) and \(e_{\text{gft}} \notin \mathcal{E}^6 \), we dissolve all the non-root vertices \(v \) in \(\tau_{\mathcal{M}^7} \) satisfying \(w(v) > 0 \) and take \(\tau_{\mathcal{M}^7} \) to be the unique connected component that contains \(o_{\tau_{\mathcal{M}^7}} \). Thus, \(\tau_{\mathcal{M}^7} \) is also a rooted tree with \(o_{\mathcal{M}^7} = o_{\tau_{\mathcal{M}^7}} \).

By (4.47) and the above construction of \(\tau_{\mathcal{M}^7} \), we observe that

\[
\text{Edg}(\tau_{\mathcal{M}^7}) \subset \text{Edg}(\gamma_{\text{gft}}) \cup \{ \mathcal{E}^k : i \in [\mathcal{M}, 0], k = 1, \cdots, 6 \} \subset \text{Edg}(\gamma_{\text{gft}}),
\]

and moreover, \(\text{Edg}(\tau_{\mathcal{M}^7}) \) is the set of the edges of a connected subgraph \(\tau'_{\mathcal{M}^7} \) of \(\gamma^7 \) that satisfies

\[
o_{\mathcal{M}^7} \subset o_{\gamma_{\text{gft}}} \in \text{Ver}(\tau'_{\mathcal{M}^7}).
\]
We set
\[\Lambda^7 = \left((\rho_{\gamma^7}, \text{Edg}(\tau_{\gamma^7}), \text{Id}) \right)_{\gamma^7 \in \Gamma^7}, \pi_{\gamma^7}(\mathfrak{M}^7_{\gamma^7})}. \]

The following statement is the analogue of Lemmas 4.9 and 4.19 in this step.

Lemma 4.30. The set \(\Lambda^7 \) gives a treelike structure on \((\mathfrak{M}^7, \Gamma^7) \) as in Definition 2.16.

Lemma 4.30 along with Theorem 2.18 gives rise to the following statement.

Corollary 4.31. Let \((\mathfrak{M}^7)^{\text{tf}}_{\Lambda^7} \) be constructed as in Theorem 2.18. Then, \((\mathfrak{M}^7)^{\text{tf}}_{\Lambda^7} \) is a smooth algebraic stack and the composite forgetful morphism \((\mathfrak{M}^7)^{\text{tf}}_{\Lambda^7} \rightarrow \mathfrak{M}^7 = \mathfrak{M}_2 \) is proper and birational.

4.9. **The eighth step of the recursive construction.** In this step, we take
\[\mathfrak{M}^8 = (\mathfrak{M}^7)^{\text{tf}}_{\Lambda^7}, \quad \Gamma^8 = (\Gamma^7)^{\text{der}}_{\Lambda^7}. \]

Analogous to Lemma 4.11, we have the following statement.

Lemma 4.32. The stack \(\mathfrak{M}^8 \) comes equipped with a \(\Gamma^8 \)-stratification that is the derived stratification of \(\mathfrak{M}^8 \) with respect to \((\mathfrak{M}^7, \Gamma^7, \Lambda^7) \).

The graphs of \(\Gamma^8 \) are in the form
\[(4.49) \quad \gamma^8 := \rho_{\gamma^7}(t^7) \in \Gamma^8, \quad \text{where} \quad \gamma^7 \in \Gamma^7, \quad [t^7] \in (\Lambda^7)^{\text{tf} \mathfrak{M}^7}, \quad \pi_{\gamma^7}(\mathfrak{M}^7_{\gamma^7}) \]
see (4.43) for \(\gamma^7 \) and (4.44) for \(\mathfrak{M}^7 \). Let \(o_{\gamma^7} \) be the image of \(o_{\gamma^7} \) in \(\gamma^7 \) and \((\gamma^8)^* \) be the derived decoration. By Corollary 3.2, for every \(\gamma^8 \in \Gamma^8 \), the connected components of \(\mathfrak{M}^8_{\gamma^8} \) are in the form
\[(4.50) \quad \mathfrak{M}^8 := (\mathfrak{M}^7)^{\text{tf}}_{[t^7]} \in \pi_{\gamma^8}(\mathfrak{M}^8_{\gamma^8}). \]

For each \(\mathfrak{M}^8 \), we will describe the tuple \((\tau_{\mathfrak{M}^8}, \text{Edg}_{\mathfrak{M}^8}, \beta_{\mathfrak{M}^8}) \) to provide \(\Lambda^8 \) on \((\mathfrak{M}^8, \Gamma^8) \).

Let
\[(4.51) \quad E^7 = E^7_{\mathfrak{M}^8}(t^7) \subset \text{Edg}(\tau_{\mathfrak{M}^7}) = E_{\mathfrak{M}^7} \]
\[\subset \text{Edg}(\gamma^7) = \text{Edg}(\gamma^7) \setminus \{ e^k_i : i \in [m, 0], k = 1, \ldots, 6 \} \subset \text{Edg}(\gamma^7), \]
which follows from (4.48). By (4.31), the derived graph \(\tilde{\gamma}^4_{(E^4)} \) is well-defined and satisfies
\[E^4 \subset \text{Edg}(\tilde{\gamma}^4_{(E^4)}), \]
so we can consider the derived graph
\[\tilde{\gamma}^4 := \rho_{\tilde{\gamma}^4_{(E^4)}}(t^4) \]
and the derived decoration \((\tilde{\gamma}^4)^* \). Let
\[\tilde{\gamma}^5 \quad \text{and} \quad (\tilde{\gamma}^5)^* \]
be the rooted tree obtained from \(\tilde{\gamma}^4 \) by contracting the edges of \((\tilde{\gamma}^4)^* \) into the root \(o_{\tilde{\gamma}^5} \) and the induced decoration, respectively.

By (3.1), we have
\[\text{Edg}(\tilde{\gamma}^4_{(E^4)}) \subset \text{Edg}(\tilde{\gamma}^4) \quad \text{and} \quad \text{Edg}(\tilde{\gamma}^4_{(E^4),\text{cor}}) = \text{Edg}(\tilde{\gamma}^4_{(E^4),\text{cor}}). \]
Therefore,
\[\text{Edg}(\tilde{\gamma}^5) \subset \text{Edg}(\tilde{\gamma}^5). \]
Parallel to the constructions of \(\tilde{\gamma}^6 \) above (4.41) and \(\tilde{\gamma}^7 \) in (4.46), we define
\[(4.49) \quad \tilde{\gamma}^7 = \left((\rho_{\tilde{\gamma}^5}(v^5) \right)_{(E^7_{(E^7)} \cup \{ e^k_i : i \in [m, 0], k = 1, 5 \})} \]
and observe that
\[E^7 \subset \text{Edg}(\tilde{\gamma}^7) \subset \text{Edg}(\tilde{\gamma}^7) \subset \text{Edg}(\gamma^7). \]
Let $\bar{z}^8 := \bar{z}^7_{(E^8)}$, along with the induced decoration (\bar{z}^8)*. Then,

\[(4.52) \quad \text{Edg}(\bar{z}^8) \subset \text{Edg}(\gamma^8) \setminus \{e^k_i : i \in [\mathfrak{m}, 0]_k, k = 1, 2, 3, 5, 6, 7\} \subset \text{Edg}(\gamma^8).
\]

We are ready to construct $\tau_{\mathfrak{m}^8}$.

- If either $\mathfrak{m}^6 \notin N^6_d$, or $\mathfrak{m}^6 \in N^6_d$ but either $e_{\text{graf}} \in E^6 \sqcup E^7$ or $w((\gamma^6)_\text{cor}) < w((\gamma^6)_{\text{cor}})$, we set $\tau_{\mathfrak{m}^8} = \tau_*$ and $o_{\mathfrak{m}^8} = o_{\mathfrak{m}^8}$.
- If $\mathfrak{m}^6 \in N^6_d$, $e_{\text{graf}} \notin E^6 \sqcup E^7$, and $w((\gamma^6)_{\text{cor}}) = w((\gamma^6)_{\text{cor}})$, then we dissolve $\gamma^6_{m(t)}$ as well as all the non-root vertices v in \bar{z}^8 satisfying $w(v) > 0$, and take $\tau_{\mathfrak{m}^8}$ to be the unique connected component that contains $o_{\gamma^8}s$. Thus, $\tau_{\mathfrak{m}^8}$ is a rooted tree with $o_{\mathfrak{m}^8} = o_{\gamma^8}$.

By (4.52) and the above construction of $\tau_{\mathfrak{m}^8}$, we observe that

\[(4.53) \quad \text{Edg}(\tau_{\mathfrak{m}^8}) \subset \text{Edg}(\bar{z}^8) \subset \text{Edg}(\gamma^8) \setminus \{e^k_i : i \in [\mathfrak{m}, 0]_k, k = 1, 2, 3, 5, 6, 7\} \subset \text{Edg}(\gamma^8),
\]

and moreover, $\text{Edg}(\tau_{\mathfrak{m}^8})$ is the set of the edges of a connected subgraph $\tau'_{\mathfrak{m}^8}$ of γ^8 that satisfies

\[o_{\mathfrak{m}^8} \subset o_{\gamma^8} \in \text{Ver}(\tau_{\mathfrak{m}^8}).
\]

We set

\[\Lambda^8 = \left((\tau_{\mathfrak{m}^8}, E_{\mathfrak{m}^8} := \text{Edg}(\tau_{\mathfrak{m}^8}), \text{Id}) \right)_{\gamma^8 \in \Gamma^8, \mathfrak{m}^8 \in \pi_0(\mathfrak{m}^8)^\text{sgn}}.
\]

The following statement is the analogue of Lemma 4.32 in this step.

Lemma 4.33. The set Λ^8 gives a treelike structure on $(\mathfrak{m}^8, \Gamma^8)$ as in Definition 2.16.

Lemma 4.33, along with Theorem 2.18, gives rise to the following statement.

Corollary 4.34. Let $(\mathfrak{m}^8)^{\text{tf}}_{\Lambda^8}$ be constructed as in Theorem 2.18 (p. 1). Then,

\[\tilde{\mathfrak{m}}^8_{\text{tf}} := (\mathfrak{m}^8)^{\text{tf}}_{\Lambda^8}
\]

is a smooth algebraic stack and the composite forgetful morphism $\tilde{\mathfrak{m}}^8_{\text{tf}} \to \mathfrak{m}^2 = \mathfrak{m}^1 \to \mathfrak{m}^2$ is proper and birational.

4.10. Proof of Theorem 1.2

The properness of the forgetful morphism $\varpi : \tilde{\mathfrak{m}}^8_{\text{tf}} \to \mathfrak{m}^2$ established in Corollary 4.31 implies Theorem 1.2 (2). Moreover, $\varpi : \tilde{\mathfrak{m}}^8_{\text{tf}} \to \mathfrak{m}^2$ restricts to the identity map on the open subset $\varpi^{-1}(\mathfrak{m}^1)$, which gives rise to Theorem 1.2 (3).
where z_1 and z_2 are monomials in the pullbacks of the twisted parameters of $\mathcal{P}^t_{2\mathbb{A}}$, such that z_1 is a factor of z_2. Since this approach is parallel to the argument in [1 §5], we only provide the key steps below and omit further details in this paper.

To obtain (4.54), let $\psi^k : \mathcal{P}^t_{2\mathbb{A}} \to (\mathcal{M}^k)^{tr}_{\mathbb{A}}$, $1 \leq k \leq 8$, be the corresponding composite forgetful morphism, $\mathcal{U}^k := \mathcal{U}_{\psi^k}(x)$ be a twisted chart on $(\mathcal{M}^k)^{tr}_{\mathbb{A}}$ centered at $\psi^k(x)$, and ξ^{ik}_l be the twisted parameters on \mathcal{U}^k; see Theorem 2.18 (p2) for notation.

Let \mathcal{M} be the connected component of the stratum of the $(\Gamma^8)^{der}$-stratification of $\mathcal{P}^t_{2\mathbb{A}}$ that contains x. Following the recursive construction in §4.2.4.9, we see that \mathcal{M} is determined by a unique list:

$$\gamma \in \Gamma_{\text{vic}}^i, \ \mathcal{M}^i \in \pi_0(\mathcal{M}^i), \ [t^i] \in \mathcal{X}_{\mathcal{M}^i}, \ \ldots, \ [t^8] \in \mathcal{X}_{\mathcal{M}^8}, \ \gamma^0 \in (\Gamma^8)^{der}, \ \mathcal{M}^8 \in \pi_0(\mathcal{P}^t_{2\mathbb{A}})_{\gamma^0}.$$

Some of these rooted level trees t^i are possibly trivial (i.e. the underlying rooted tree is edgeless).

If t^i is trivial, we can find an entry in the first row of ψ corresponding to a vertex on the $m(t^i)$-th level in t^i, such that the pullback z_1 of this entry to $\mathcal{P}^t_{2\mathbb{A}}$, according to Theorem 2.18 (p4) is in the form $\prod_{i \in [m,0),j} (\psi^i)^{tr}_k$ up to multiplication by a unit. If t^i is not trivial, we can analogously find an entry in the first row of ψ corresponding to a vertex on the $m(t^i)$-th level in t^i, such that the pullback z_1 of this entry to $\mathcal{P}^t_{2\mathbb{A}}$ is in the form $\prod_{i=1,2; j \in [m,0),j} (\psi^i)^{tr}_k$ up to multiplication by a unit. In either situation, we observe that z_1 is a factor of any other entries in the first row of $\mathcal{P}^t_{2\mathbb{A}}$, thus after taking suitable trivialization, we obtain the first row as well as the leftmost 0 of the second row of (4.54).

Following the same idea, we can find an entry in the second row (excluding the first column) of ψ corresponding to a vertex on the $m(t^j)$-th level in t^j, where j is the last step of the recursive construction in which t^j is non-trivial (i.e. $m(t^j) \neq 0$). By considering all the possible treelike structures and $[t^j]$’s prior to the j-th step, we see that the pullback z_2 of this entry to $\mathcal{P}^t_{2\mathbb{A}}$ is in the form $\prod_{1 \leq k \leq j, i \in [m,0),i} (\psi^i)^{tr}_k$ up to multiplication by a unit and z_2 is a factor of any entries in the second row of $\mathcal{P}^t_{2\mathbb{A}}$.

In sum, we obtain (4.54) with

$$z_1 = \prod_{k=1,2; i \in [m,0),i} (\psi^i)^{tr}_k, \quad z_2 = \prod_{1 \leq k \leq 8, i \in [m,0),i} (\psi^i)^{tr}_k$$

up to multiplication by units.

The local expression (4.54) of $\mathcal{P}^t_{2\mathbb{A}}$ implies that its kernel admits at worst normal crossing singularities, which justifies the properties [1] and [4] of Theorem 1.2 simultaneously.

References

[5] T. Coates and C. Manolache, A splitting of the virtual class for genus one stablemaps, math/1809.04162

Department of Mathematics, University of Arizona, USA.

Email address: yhu@math.arizona.edu

Email address: jniu@math.arizona.edu