
Anderson Acceleration for Geometry Optimization and Physics
Simulation

YUE PENG, University of Science and Technology of China
BAILIN DENG, Cardiff University
JUYONG ZHANG∗, University of Science and Technology of China
FANYU GENG, University of Science and Technology of China
WENJIE QIN, University of Science and Technology of China
LIGANG LIU, University of Science and Technology of China

0.35 0

60483624120

10 -10

10 -5

10 0

1000080006000400020000

10 -10

10 -5

10 0

Number of Iterations

R
el

at
iv

e
En

er
gy

Time (sec)

0.1

2520151050

Number of Iterations
1000080006000400020000

10 -10

10 -5

10 0

10 -10

10 -5

10 0

Time (sec)

00.1

Target

Initial Optimized Initial Optimized

Target

Shape-Up
Our Method

Shape-Up
Our MethodR

el
at

iv
e

En
er

gy

R
el

at
iv

e
En

er
gy

R
el

at
iv

e
En

er
gy

Fig. 1. Compared with the local-global solver from [Bouaziz et al. 2012], our method significantly reduces the computational time and iterations required for
an accurate solution to planar quad mesh optimization, as shown in the log-scale relive energy error graphs. The color coding shows the planarity error for
each face, computed as the max distance from its vertices and their best fitting plane, normalized by the average edge length of the mesh.

Many computer graphics problems require computing geometric shapes sub-

ject to certain constraints. This often results in non-linear and non-convex

optimization problems with globally coupled variables, which pose great

challenge for interactive applications. Local-global solvers developed in re-

cent years can quickly compute an approximate solution to such problems,

making them an attractive choice for applications that prioritize efficiency

over accuracy. However, these solvers suffer from lower convergence rate,

and may take a long time to compute an accurate result. In this paper, we

propose a simple and effective technique to accelerate the convergence of

such solvers. By treating each local-global step as a fixed-point iteration, we

apply Anderson acceleration, a well-established technique for fixed-point

solvers, to speed up the convergence of a local-global solver. To address

the stability issue of classical Anderson acceleration, we propose a simple

strategy to guarantee the decrease of target energy and ensure its global

∗
Corresponding author (juyong@ustc.edu.cn).

Authors’ addresses: {Yue Peng, Juyong Zhang, Fanyu Geng, Wenjie Qin, Ligang Liu},

University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026,

China; {echoyue@mail.ustc.edu.cn, juyong@ustc.edu.cn, gfy29110@mail.ustc.edu.cn,

darkqin@mail.ustc.edu.cn, lgliu@ustc.edu.cn}; Bailin Deng, Cardiff University, 5 The

Parade, Cardiff CF24 3AA, Wales, United Kingdom, DengB3@cardiff.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

0730-0301/2018/8-ART42 $15.00

https://doi.org/10.1145/3197517.3201290

convergence. In addition, we analyze the connection between Anderson

acceleration and quasi-Newton methods, and show that the canonical choice

of its mixing parameter is suitable for accelerating local-global solvers. More-

over, our technique is effective beyond classical local-global solvers, and can

be applied to iterative methods with a common structure. We evaluate the

performance of our technique on a variety of geometry optimization and

physics simulation problems. Our approach significantly reduces the num-

ber of iterations required to compute an accurate result, with only a slight

increase of computational cost per iteration. Its simplicity and effectiveness

makes it a promising tool for accelerating existing algorithms as well as

designing efficient new algorithms.

CCS Concepts: • Computing methodologies → Computer graphics;
Animation; • Theory of computation → Nonconvex optimization;

Additional Key Words and Phrases: Fixed-point iterations, numerical opti-

mization, parallel computing, projective dynamics, geometry processing

ACM Reference Format:
Yue Peng, Bailin Deng, Juyong Zhang, Fanyu Geng, Wenjie Qin, and Ligang

Liu. 2018. Anderson Acceleration for Geometry Optimization and Physics

Simulation. ACM Trans. Graph. 37, 4, Article 42 (August 2018), 14 pages.

https://doi.org/10.1145/3197517.3201290

1 INTRODUCTION
Many computer graphics problems require computing geometric

shapes whose elements are subject to certain constraints. In geomet-

ric modeling, such constraints can be related to aesthetics, perfor-

mance, or fabrication requirements of the shape. For example, for

freeform architectural design represented as quadrilateral meshes,

ACM Trans. Graph., Vol. 37, No. 4, Article 42. Publication date: August 2018.

mailto:juyong@ustc.edu.cn
https://doi.org/10.1145/3197517.3201290
https://doi.org/10.1145/3197517.3201290

42:2 • Peng, Deng, Zhang, Geng, Qin, and Liu

it is often desirable that each face is planar such that the panel can

be easily constructed [Liu et al. 2006]. In physics simulation, geo-

metric constraints can be used for defining potential energies that

determine the deformation behavior of an object. For example, the

elastic potential energy of a spring can be defined via a constraint

on its length [Liu et al. 2013]. In this paper, we focus on shapes that

are represented using a discrete set of points, such as the vertices

of a mesh or the nodes of a physical system. When dealing with

such shapes subject to geometric constraints, a common task is to

determine the shape that best satisfies the constraints, by solving

an optimization problem about its point positions Q

min

Q
=
∑
i
Ei (Q), (1)

where functions Ei measures the violation of the constraints. For

many computer graphics problems, the constraints are non-linear,

and each point among Q is involved in multiple constraints. Conse-

quently, the optimization problem is often non-convex, with globally

coupled variables. For interactive applications such as shape explo-

ration and physics simulation, the optimization needs to be done

repeatedly according to the user input or the current state of the

physical system, and the solution needs to be computed efficiently

in order to provide real-time feedback for the user. Such require-

ment of efficiency poses great challenges to traditional Newton-type

solvers, because in each iteration these solvers need to evaluate the

gradient and the Hessian of the target function, and solve a linear

system to update the variables; both steps can be time-consuming,

especially for large-scale problems [Nocedal and Wright 2006].

In recent years, first-order methods have become an increasingly

popular choice for solving large-scale optimization problems. These

methods utilize information on the value or gradient of the target

function but not the Hessian, to reduce the computational cost

per iteration [Beck 2017]. Within computer graphics, first-order

methods have been developed for optimization problems in the form

of (1) that arise in geometry processing [Bouaziz et al. 2012] and

physics simulation [Bouaziz et al. 2014]. The main idea of [Bouaziz

et al. 2012] and [Bouaziz et al. 2014] is to reformulate the target

function using auxiliary variables that represent the projections of

point positions onto the feasible sets of geometric constraints, and

to minimize the target function in a local-global manner: the local

step fixes the point positions and updates the auxiliary variables,

and reduces to evaluating closed-form projection operators for the

constraints; the global step fixes the auxiliary variables and updates

the point positions, which amounts to solving a sparse positive

definite linear system with a fixed matrix. The main strength of

such local-global solvers is their efficiency and robustness. Both the

local and the global steps have a simple form that can be efficiently

solved and allows for parallelization, and guarantee decrease of the

target energy unless a local minimum has been reached. Moreover,

the solver rapidly decreases the target energy within the initial

iterations, and quickly produces an approximate solution. These

properties make them well suited for interactive applications where

efficiency and stability are prioritized.

On the other hand, the efficiency of local-global solvers comes

at the cost of accuracy. Although they are efficient to produce an

approximate solution, it can take a very long time to compute an

accurate result [Garg et al. 2014], because their convergence rate

is sublinear in general [Beck and Tetruashvili 2013]. In this paper,

we propose a simple method to accelerate the convergence of these

solvers, while retaining the computational efficiency that makes

them attractive for interactive applications. Our key idea is to treat

the sequence generated by these solvers as fixed-point iteration,

and to speed up their convergence using Anderson acceleration,

a well-established technique for fixed-point solvers [Walker and

Ni 2011]. Originally proposed for solving nonlinear integral equa-

tions [Anderson 1965], Anderson acceleration has achieved great

success in computational chemistry [Pulay 1980, 1982] and become a

standard procedure for accelerating electronic structure calculation

algorithms [Rohwedder and Schneider 2011]. The past few years

have seen revived research interest from the numerical analysis

community on the theory and applications of Anderson accelera-

tion [Fang and Saad 2009; Higham and Strabić 2016; Lipnikov et al.

2013; Toth et al. 2017; Toth and Kelley 2015; Walker and Ni 2011],

as well as its growing applications in other domains such as com-

putational physics [An et al. 2017; Pratapa et al. 2016; Willert et al.

2014]. Within the computer graphics community, Anderson acceler-

ation has been unknown and unexplored. In this paper, we show

its effectiveness on accelerating local-global solvers in geometry

optimization and physics simulation, as well as other solvers that

share a similar structure.

Although Anderson acceleration has been successful for a variety

of problems in different domains, there are a few known challenges

that wemust overcome in order to apply it to the local-global solvers.

First, despite a recent proof of its local convergence, Anderson ac-

celeration lacks guarantee of global convergence, and may stagnate

when started from a point far from the solution [Potra and Engler

2013]. To improve its robustness, within each iteration we revert to

the local-global iterate if the accelerated iterate increase the target

energy. Such strategy guarantees monotonic decrease of the energy,

with only slight increase of computational cost per iteration.

Another challenge is that Anderson acceleration relies on a mix-

ing parameter β which can impact its performance. Its optimal value

is problem dependent [Fang and Saad 2009], and existing works

simply set this parameter to an empirical value. We analyze the con-

nection between Anderson acceleration and quasi-Newton methods,

and show that the canonical choice β = 1 is suitable for the problems

considered in this paper. In particular, we show that Anderson ac-

celeration is closely related to the L-BFGS method proposed in [Liu

et al. 2017] for accelerating physics simulation: in each iteration,

both methods start with an equivalent choice of approximate Hes-

sian, but use different strategies of adapting it to a limited amount

of previous iterations.

We test the performance of our algorithm on a variety of geometry

processing and physics simulation problems. Our experiments show

that it significantly reduces the number of iterations required to

compute a high-accuracy solution, with only slightly increased

computational cost per iteration compared to the local-global solvers.

As a result, the technique can be applied to increase the solution

accuracy within the same computational time budget, or to reduce

the computational cost for a solution with the same accuracy.

ACM Trans. Graph., Vol. 37, No. 4, Article 42. Publication date: August 2018.

Anderson Acceleration for Geometry Optimization and Physics Simulation • 42:3

Beyond local-global solvers, Anderson acceleration is applicable

for other iterative solvers, as long as each iteration deceases the tar-

get energy and two consecutive iterates are related by well-defined

mappings. We propose a general procedure for applying Anderson

acceleration to such solvers, and showcase its effectiveness on two

geometric computing algorithms. Given the popularity of fixed-

point iterations in computer graphics, Anderson acceleration can

be a promising tool for speeding up existing algorithms, as well as

designing efficient new algorithms.

To summarize, our main contributions include:

• We adapt Anderson acceleration to speed up the convergence

of local-global solvers for geometry optimization and physics

simulation. We propose a simple and effective strategy to guaran-

tee the monotonic decrease and global convergence of the target

energy, with low computational overhead.

• We analyze the relation between Anderson acceleration and other

quasi-Newton methods such as L-BFGS, and show the effective-

ness of the canonical mixing parameter for our target problems.

• We analyze the effectiveness of Anderson acceleration beyond

local-global solvers, and propose a general approach for applying

it to the applicable solvers.

2 RELATED WORK
Local-global solvers. Due to the efficiency for computing an ap-

proximate solution, local-global solvers have been applied to various

computer graphics problems from shape modeling to physics sim-

ulation. Sorkine and Alexa [2007] performed as-rigid-as-possible

(ARAP) surface modeling by minimizing a target energy that mea-

sures local rigidity of the surface; using auxiliary variables to repre-

sent the closest rigid deformation for each local element, the energy

is minimized in a local-global manner. Liu et al. [2008] adapted this

approach to compute conformal or isometric parameterization for

triangle meshes in a least-squares manner. Bouaziz et al. [2012] pro-

posed a unified local-global optimization framework for geometric

constraints, by formulating a target function that is the weighted

sum of squared distance from the constrained elements to their feasi-

ble shapes, with auxiliary variables representing the closest feasible

configurations. Liu et al. [2013] adopted local-global formulation

for implicit Euler integration of mass-spring simulation, resulting

in much faster results that are visually close to the true solutions.

Bouaziz et al. [2014] extended this approach to projective dynamics, a
general framework for implicit time integration of physical systems,

by using geometric constraints to define potential energies.

Local-global solvers may take a long time to converge to a high-

accuracy solution. Different techniques have been proposed recently

to address this issue. Based on the similarity between projective

dynamics and iterative linear system solving, Wang [2015] proposed

to use the Cheybysheve semi-iterative method to speed up the con-

vergence of projective dynamics. The technique was later improved

in [Wang and Yang 2016] to derive a preconditioned gradient de-

scent method suitable for GPU implementation. Liu et al. [2017]

applied L-BFGS to minimize the projective dynamics target energy,

resulting in faster convergence than the local-global solver.

Fast geometry optimization. Besides local-global solvers and their
accelerated versions, there are other fast solvers for geometric op-

timization. Tang et al. [2014] formulated various geometric con-

straints as quadratic equations, which are solved via non-linear least

squares optimization using the Gauss-Newton algorithm. Kovalsky

et al. [2016] accelerate the optimization of geometric energies by

minimizing a local convex quadratic proxy function to achieve pre-

conditioning effects, combined with an acceleration similar to Nes-

terov’s accelerationmethod [Nesterov 1983]. Rabinovich et.al. [2017]

presented a scalable approach for optimizing flip-preventing ener-

gies, using a reweighted proxy function in each iteration. Shtengel

et al. [2017] derived convex majorizers of composite energies via

convex-concave decompositions, which are repeatedly updated and

minimized to obtain a minimum of the target energy.

Anderson acceleration. In the past, Anderson acceleration has

been independently developed by different authors, and success-

fully applied in various problem domains for improving convergence

of iterative solvers. It was originally proposed by D. G. Anderson in

1965 for iterative solution of nonlinear integral equations [Ander-

son 1965]. Later, Pulay [1980; 1982] introduced the same technique

for stabilizing and accelerating the convergence of self-consistent

field method in quantum chemistry computation. Pulay’s method,

often called direct inversion in the iterative subspace (DIIS) or Pulay
mixing, proves to be effective for a much broader range of itera-

tive solvers used in electronic structure calculations, and has been

a standard practice for accelerating these algorithms [Rohwedder

and Schneider 2011]. Anderson acceleration has also been proposed

as a Krylov subspace acceleration technique, for solving nonlinear

partial differential equations [Oosterlee and Washio 2000; Washio

and Oosterlee 1997]. In recent years, there is emerging interest from

the numerical analysis community in the theories and applications

of Anderson acceleration. From a theoretical perspective, Ander-

son acceleration is shown to be a kind of quasi-Newton method

for solving the nonlinear equations, which utilizes the previousm
iterates to approximate the inverse Jacobian [Eyert 1996; Fang and

Saad 2009; Rohwedder and Schneider 2011]. Toth and Kelley [2015]

proved the local convergence of Anderson acceleration for con-

tractive fixed-point iterations. The convergence result was later

extended to fixed-point maps corrupted with errors [Toth et al.

2017]. In terms of applications, Walker and Ni [2011] showcase its

effectiveness for various numerical problems such statistical estima-

tion, nonnegative matrix factorization, and domain decomposition.

It is also used by Lipnikov et al. [2013] to accelerate the numerical

solving of advection-diffusion problems. Other applications include

low-rank tensor approximation [Sterck 2012], solving large sparse

linear systems [Pratapa et al. 2016; Suryanarayana et al. 2016], and

fluid dynamics [Ho et al. 2017], just to name a few.

3 BACKGROUND
In this section, we review the local-global solvers for geometry

optimization and physics simulation, to prepare for the discussion

of their acceleration in Section 4.

ACM Trans. Graph., Vol. 37, No. 4, Article 42. Publication date: August 2018.

42:4 • Peng, Deng, Zhang, Geng, Qin, and Liu

3.1 Geometry optimization

Given a shape represented with points q1, . . . , qn ∈ Rd subject to a

set of geometric constraints, Bouaziz et al. [2012] compute the shape

that best satisfies the constraints by optimizing the point positions

min

Q, {Pi }

∑
i

wi
2

∥AiQ − Pi ∥2F + σi (Pi). (2)

Here matrix Q ∈ Rn×d stacks all the point positions. Matrix Ai ∈

Rki×n selects the relevant points for constraint i and applies linear

transformation to derive an appropriate representation; for example,

Ai can represent subtracting the mean position from the relevant

points for a translation-invariant constraint, to achieve faster conver-

gence for the solver [Bouaziz et al. 2012]. Pi ∈ Rki×d are auxiliary

variables representing the closest projection of AiQ onto the fea-

sible set Ci of constraint i . Thus ∥AiQ − Pi ∥2F is a shape proximity
function that measures the distance from constrained elements to

their closest feasible configuration, with a weightwi specified by

the user to control its importance. σi is an indicator function for

feasible set Ci to ensure Pi satisfies the constraint:

σi (Pi) =
{

0 if Pi ∈ Ci ,
+∞ otherwise.

This formulation allows us to write other regularization energies in

a unified way. For example, the Laplacian energy can be represented

by setting Ai to a row of the Laplacian matrix, with Ci = {0}.
The optimization problem is solved using block coordinate de-

scent, by alternating between two steps:

• In the local step, the target energy is minimized with respect to

{Pi } while fixing Q. This reduces to independent sub-problems of

projecting each AiQ onto feasible set Ci , which can be solved in

parallel. Moreover, for many geometric constraints, the projection

operator has closed-form representation that can be efficiently

evaluated [Bouaziz et al. 2012].

• In the global step, we fix {Pi } and minimize the energy with

respect to Q. This reduces to solving a sparse symmetric positive

definite system with d right-hand-sides:

*
,

∑
i
wiAT

i Ai+
-
Q =
∑
i
wiATi Pi . (3)

Since the system matrix is fixed for all iterations, we can pre-

compute its Cholesky factorization and efficiently solve for each

right-hand-sides in parallel.

Both steps are highly efficient with parallelization. In addition, each

step is guaranteed to lower the target energy unless a local mini-

mum has been reached, thus the solver is guaranteed to converge.

Furthermore, within a small number of iterations, the solver rapidly

decreases the target energy and produces an approximate solu-

tion. Such properties make it an attractive choice for applications

where efficiency is prioritized over high accuracy, such as interactive

constraint-based modeling.

3.2 Physics simulation
The local-global solving strategy has also been applied for physics

simulation [Bouaziz et al. 2014; Liu et al. 2013]. In particular, pro-

jective dynamics [Bouaziz et al. 2014] performs implicit time inte-

gration by solving an optimization problem similar to (2). Given a

physical system consisting of n nodes with positions Q ∈ Rn×3 and
velocities V ∈ Rn×3 at time instance t , the node positions Q at time

t + h are computed by solving

min

Q, {Pi }

1

2h2
∥M

1

2 (Q − R)∥2F +
∑
i

wi
2

∥AiQ − Pi ∥2F + σi (Pi). (4)

Here M ∈ Rn×n is the mass matrix, and R = Q + hV + h2M−1Fext
is a momentum term where Fext ∈ Rn×3 stores the external forces.
The remaining terms

wi
2
∥AiQ − Pi ∥2F + σi (Pi) are the same as in

Equation (2), for measuring the squared distance to feasible sets of

geometric constraints. With appropriate geometric constraints and

weights, each term
wi
2
∥AiSiQ − Pi ∥2F defines a potential energy

whose gradient equals to the induced internal forces for the relevant

nodes. For example, for a spring between two nodes qi1 , qi2 , the
potential energy is defined using length constraint ∥qi − qj ∥ = L
where L is the rest length of the spring, with the weightwi being the

spring stiffness [Liu et al. 2013]. Similar to geometry optimization,

the problem (4) is solved via block coordinate descent, with the local

step updating {Pi } via projection, and the global step updating Q
by solving a sparse SPD linear system [Bouaziz et al. 2014]:

*
,

1

h2
M +
∑
i
wiATi Ai+

-
Q =

1

h2
MR +

∑
i
wiATi Pi . (5)

Then the velocities at time t + h are computed as V = (Q − Q)/h.

4 OUR METHOD
Despite the fast convergence of local-global solvers to an approxi-

mate solution, it can take a much longer time to produce an accurate

solution. This is because in general the target function is nonconvex,

and for such problems the convergence rate of block coordinate

descent is only sublinear [Beck and Tetruashvili 2013]. In the past,

different approaches have been proposed to speed up the conver-

gence of local-global solvers [Liu et al. 2017; Wang 2015]. In this

section, we present a new approach based on Anderson acceleration,

analyze its performance, and compare it with existing approaches.

4.1 Anderson acceleration
To accelerate the convergence of the local-global solvers, we first

note that in the local step, the updated projection Pi is a function
of the current positions Q. Therefore, the local step and the global

step can be combined into a fixed-point iteration

Qk
LG
= G (Qk−1). (6)

For example, for the geometry optimization problem (2), the map-

ping G becomes

G (·) = *
,

∑
i
wiAT

i Ai+
-

−1∑
i
wiATi Pi (·)

This perspective enables us to apply Anderson Acceleration [An-

derson 1965], a well-established technique for fixed-point iterations,

ACM Trans. Graph., Vol. 37, No. 4, Article 42. Publication date: August 2018.

Anderson Acceleration for Geometry Optimization and Physics Simulation • 42:5

to speed up the convergence. Note that for a solution Q∗ to the

fixed-point iteration (6), the residual

F (Q) = G (Q) − Q (7)

must vanish. The key idea of Anderson Acceleration is to utilize the

current iterateQk
aswell as the previousm iteratesQk−1, . . . ,Qk−m

,

to derive a new iterate Qk+1
AA

that decreases the residual norm as

much as possible. Specifically, Qk ,Qk−1, . . . ,Qk−m
span an affine

subspace where each point can be written as

Q(α) = Qk +

m∑
j=1

α j (Qk−j − Qk),

with α = (α1, . . . ,αm) being its affine coordinates. Within this

subspace, we derive an approximation G̃ of the mapping G via

barycentric interpolation:

G̃ (Q(α)) = G (Qk) +
m∑
j=1

α j
(
G (Qk−j) −G (Qk)

)
. (8)

Using this model, we can find the point Q (α ∗) with the smallest

residual norm, by solving a linear least-squares problem

α ∗ = argmin

α

G̃ (Q(α)) − Q(α)
2

= argmin

α

Fk +

m∑
j=1

α j (F
k−j − Fk)

2

, (9)

where Fk = G (Qk) −Qk
is the residual at iteration k . Then the new

iterate is computed by combining Q (α ∗) and G̃ (Q(α ∗)):

Qk+1
AA
= (1 − β)Q (α ∗) + βG̃ (Q(α ∗)), (10)

where β ∈ (0, 1] is a mixing parameter. The majority of existing

work simply choose β = 1, and we will follow this convention in the

current paper. Later in Section 4.4 we will show that this is indeed a

suitable choice for the considered problems. The valuem is typically

no larger than 6 (see Sec. 4.3 for discussion on the choice of m).

By taking the previousm iterates into account, the local model G̃
captures the variation ofG around the current iterate, which results

in better convergence behavior. Figure 2 shows an example, where

Anderson acceleration significantly speed up the convergence of

planar quad mesh optimization.

Anderson acceleration can be considered as a multi-dimensional

generalization of the secant method for root-finding ([Kelley 1995],

Section 5.4.5). In each iteration, the secant method approximates a

univariate function graph using the line between two points on the

graph that are evaluated at the latest two iterates, and intersect, and

finds the root of this line as the next iterate. Despite this seemingly

poor approximation, the secant method achieves local super-linear

convergence [Kelley 1995]. Similarly, Anderson acceleration finds

the root of a multivariate function F (Q) = G (Q) −Q , by iteratively

approximating the graph (Q, F (Q)) using the affine space spanned

by multiple points evaluated at the latestm iterates, which is equiv-

alent to the barycentric interpolation (8). For this reason, it is called

a multisecant method by some authors [Fang and Saad 2009].

Note that solving the problem (9) requires recomputing the differ-

ences between Fk and allm previous residuals to update the whole

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10-5

10-4

10-3

10-2

10-1

100

Number of iterations0 0.5 1 1.5 2 2.5 3 3.5
10-5

10-4

10-3

10-2

10-1

100

Time

R
el

at
iv

e
En

er
gy

 E
rr

or
 (l

og
)

R
el

at
iv

e
En

er
gy

 E
rr

or
 (l

og
) Shape-Up

No energy check
Check with local-global iterate
Check with previous iterate

Fig. 2. Comparison of target energy decrease between different energy
checking strategies for selecting the next iterate, for a PQmesh optimization
problem (18).

least-squares system matrix in each iteration. For better efficiency,

we solve an equivalent problem instead [Fang and Saad 2009]:

(θ∗
1
, . . . ,θ∗m) = argmin

θ1, ...,θm

Fk −

m∑
j=1

θ j∆F
k−j

2

, (11)

where ∆F i = F i+1 − F i . Accordingly, the new iterate becomes

Qk+1
AA
= G (Qk) −

m∑
j=1

θ∗j ∆G
k−j , (12)

where ∆Gk−j = G (Qk−j+1) − G (Qk−j). To account for potential

linear dependence between {∆Fk−j }, we solve the least-squares

problem (11) by constructing the normal equations(
DTD

)
θ = DT Fk

where D = [∆Fk−1, . . . ,∆Fk−m], and computing its minimum-

norm solution using complete orthogonal decomposition. In this

way, the cost of determiningQk+1
AA

amounts to: (i) computing the lat-

est difference vectors∆Fk−1,∆Gk−1
; (ii) updating thematrix and the

right-hand-side of the normal equation system using 2m inner prod-

ucts; and (iii) solving a smallm ×m linear system for (θ∗
1
, . . . ,θ∗m)

and applying the result to Equation (12). This is typically a small

cost compared with the local and global steps.

4.2 Improving stability
It has been proved [Toth et al. 2017; Toth and Kelley 2015] that when

started from a point close to the solution, Anderson acceleration

is convergent under mild conditions. On the other hand, when the

iterates are far away from the solution, Anderson acceleration can

become unstable, and may lead to slow convergence or stagnation

at a wrong solution [Potra and Engler 2013; Walker and Ni 2011].

One example is shown in Figure 2, where Anderson acceleration

results in oscillation and slow decrease of the target energy when

started at a point far from the solution.

To improve stability, we note that without acceleration, the local-

global solver produces an iterateQk+1
LG

that is guaranteed to decrease

the target energy. Therefore, we can compare the target energy val-

ues between the accelerated iterate Qk+1
AA

with the unaccelerated

one Qk+1
LG

, and choose the one with the smaller energy as the next

iterate. With this strategy, each iteration decreases the target energy

at least as much as the original local-global solver, and the sequence

ACM Trans. Graph., Vol. 37, No. 4, Article 42. Publication date: August 2018.

42:6 • Peng, Deng, Zhang, Geng, Qin, and Liu

Algorithm 1: Anderson acceleration for the local-global solver.

Data: Q0
: initial node positions;

Local-Step (·): local step of projection onto feasible sets;

Global-Step (·): global step of updating node positions;

G: the mapping combining the local and global steps;

E: the target energy function;

m: number of previous iterates used for acceleration.

Result: A sequence {Qk } converging to a local minimum of E.

1 Q1 = G (Q0); F 0 = Q1 − Q0
; Eprev = +∞;

2 for k = 1, 2, . . . do
// Make sure Qk decreases the energy

3 P = Local-Step (Qk);

4 if E (Qk , P) ≥ Eprev then
5 Qk = QLG; P = Local-Step (QLG);

6 end
7 Eprev = E (Qk , P);

// Anderson acceleration

8 QLG = Global-Step (P);
9 Gk = QLG; F

k = Gk − Qk
; mk = min(m,k);

10 (θ∗
1
, . . . ,θ∗mk

) = argmin ∥Fk −
∑mk
j=1 θ j∆F

k−j ∥2;

11 Qk+1 = Gk −
∑mk
j=1 θ

∗
j ∆G

k−j
;

12 end

is guaranteed to converge to a local minimum since the target en-

ergy is bounded from below. However, it requires two additional

evaluations of the target energy at each iteration. Since computing

the energy involves projecting the iterate onto all the feasible sets,

this can cause a noticeable increase of the computational cost of

each iteration. To balance the decrease of total iteration count and

the increase of per-iteration cost, we simply compare the target

energy of Qk+1
AA

with that of the previous iterate Qk
. If Qk+1

AA
de-

creases the energy, then it is chosen as the new iterate; otherwise,

we choose Qk+1
LG

. This strategy only requires one additional energy

evaluation if Qk+1
AA

decreases the energy, which is the case for the

majority of iterations in our experiments. Moreover, in this case

the projections computed for energy evaluation can be reused for

performing the global step. Thus the increased computational cost

for the selection boils down to evaluating the Euclidean distance

between Qk+1
AA

and the projections, which is often negligible. Fig-

ure 2 shows the performance of different selection strategies, using

the decrease of target energy with respective to the iteration count

and computational time. Within the same computational time, the

strategy of comparing with the previous iterate results in the faster

decrease of the energy, thanks to its low computational cost per

iteration. The full acceleration algorithm with this selection strategy

is shown in Algorithm 1.

4.3 Choice ofm
The number of previous iterates used for the acceleration (the param-

eterm) has an influence on its performance. With a larger value ofm,

more information is utilized for approximating the inverse Jacobian,

0 80 160 240 320 400

10 -10

10 -5

10 0

Lo
g

En
er

gy

m=1
m=2
m=3
m=5
m=7
m=9

0 0.12 0.24 0.36 0.48 0.6

10 -10

10 -5

10 0

R
el

at
iv

e
En

er
gy

 E
rr

or
 (l

og
)

R
el

at
iv

e
En

er
gy

 E
rr

or
 (l

og
)

Time Number of Iterations

Fig. 3. Effect of different values ofm for a PQ mesh optimization problem.

which can lead to faster convergence. On the other hand, a largerm
increases the computational cost, and may suffer from overfitting

iterates that are far away. We observe that beyondm = 6, increasing

m brings limited improvement in convergence (Figure 3). This is

consistent with empirical evidence from the literature [Higham and

Strabić 2016]. Therefore, we choosem = 5 by default.

4.4 Analysis
In all examples so far, we observe significant speed-up from Ander-

son acceleration which sets it apart from first-order methods. In

fact, it has been shown [Eyert 1996; Fang and Saad 2009; Rohwedder

and Schneider 2011] that Anderson acceleration is a quasi-Newton

method for solving the nonlinear equation

F (Q) = G (Q) − Q = 0.

In particular, computing the accelerated iterate Qk+1
AA

according to

Equation (10) is equivalent to [Fang and Saad 2009]:

Qk+1
AA
= Qk + GkF (Q

k), (13)

where Gk is an approximation of the inverse Jacobian of F at Qk
,

and is the solution to the following problem

min

G
∥G + βI∥2F (14)

s.t. G∆F j = ∆Q j , j = k − 1, . . . ,k −m, (15)

where∆F j = F (Qj+1)−F (Qj),∆Qj = Qj+1−Qj
, and I is the identity

matrix. Note that the inverse Jacobian should map the differential

of F to the differential of Q. This condition is enforced using the

secant equations (15), where the differentials are approximated using

finite difference between previous iterates. The target function (14)

measures the difference between the inverse Jacobian and the matrix

−βI. Intuitively, this means we obtain Gk
by taking −βI as an initial

approximation of the inverse Jacobian, and applying minimummod-

ification to make it satisfy the secant equations and better capture

the variation F around the current iterate. Gk
is then utilized in a

Newton step (13) to bring the function F closer to zero.

This perspective not only explains the fast convergence we ob-

serve in the experiments, but also justifies our choice of mixing

parameter β = 1. In this case, the inverse Jacobian is initially approx-

imated by −I, which implies vanishing Jacobian of the fixed-point

mapping G at Qk
. This condition is met if the mapping between

node positions Q and projection variables P has vanishing Jacobian,

e.g. if we fix P at the projection of Qk
. This is the same assumption

made by the local-global solver to reduce the global step into a

ACM Trans. Graph., Vol. 37, No. 4, Article 42. Publication date: August 2018.

Anderson Acceleration for Geometry Optimization and Physics Simulation • 42:7

Our methodTarget Model

0 1200 2400 3600 4800 6000
Number of iterations

10-10

10-5

100

0 400 800 1200 1600 2000
Time (sec)

10-10

10-5

100

Lo
g

En
er

gy

0 1200 2400 3600 4800 6000 4000 800 1200 1600 2000

Number of iterations Time (sec)

10-5

100

10-10

10-5

100

10-10

R
el

at
iv

e
En

er
gy

 E
rr

or

Shape-Up Our method

Initial Shape Shape-Up

Fig. 4. Acceleration of wire mesh optimization (19), on a model with 230K vertices. The graphs show the relative error of target energy with respect to iterations
and computational time. The color-coded models show the distance from each vertex to the reference shape, normalized by the average edge length. The
models for Shape-Up and our method are the results after the same computational time, marked using circles on the bottom-right graph. Also shown are the
following error metrics: ξmax, ξmean: the maximum and average violation of target edge length, normalized using the target edge length; γmax, γmean: the
maximum and average violation of angle range constraint in degrees.

simple linear solve. Since the Jacobian of projection points indicates

the curvature of the feasible sets, our choice of β = 1means we start

from an inverse Jacobian approximation that has no prior knowl-

edge of the feasible sets, and then use the previous iterates to infer

and add in curvature information.

Indeed, the same strategy has been used in [Liu et al. 2017] to

construct an initial descent direction for their L-BFGS solver of

projective dynamics. The goal of their solver is to find a root of the

equation g(Q) = 0, where g is the gradient of the projective dy-

namics energy (4). Each iteration computes a descent direction and

performs line search to determine the next iterate. To compute the

descent direction, they start with an initial estimate −Hg(Qk) where
H is an approximate inverse Hessian of the target function, followed

by a two-loop recursion that implicitly updates the inverse Hessian

and the descent direction according tom previous iterates. In [Liu

et al. 2017], the initial inverse Hessian H is chosen to be the inverse

of matrixM/h2 +
∑
i ATi Ai of the global step (5), which is the Hes-

sian of a modified target energy with the projection variables P fixed.

In other words, their initial inverse Hessian is constructed using the

same assumption as for our initial inverse Jacobian. From this point

of view, the main difference between our technique and [Liu et al.

2017] is in the update of the inverse Hessian/Jacobian. Anderson ac-

celeration modifies the inverse Jacobian by enforcing them secant

equations simultaneously, while the L-BFGS two-loop recursion

updates the inverse Hessian inm steps, each applying minimum

modification to satisfy one secant equation [Nocedal and Wright

2006]. In general, the L-BFGS inverse Hessian is not guaranteed

to satisfy all m secant equations except for the last one. In addi-

tion, this leads to different computational costs between the two

methods: for both of them, the cost is dominated by inner products

between vectors of the same length; the two-step recursion requires

2m + 1 inner products to be done sequentially, while our method

requires onlym inner products that can be parallelized. As a result,

our method incurs a lower computational cost than L-BFGS.

From another perspective, our selection strategy for stabilizing

Anderson acceleration has a similar effect as the line search em-

ployed by [Liu et al. 2017] to ensure stability of L-BFGS. In [Liu et al.

2017], the quasi-Newton step is guaranteed to be along a descent

direction, but the default step size may actually increase the tar-

get energy. Thus they adjust the step size using backtracking line

search, to guarantee sufficient decrease of energy by satisfying the

Armijo condition. Similarly, when an Anderson acceleration iterate

increases the energy value, we revert to the local-global iterate;

this can be seen as a single-step line search that guarantees energy

decrease. Unlike the line search in [Liu et al. 2017], our strategy does

not guarantee the Armijo condition, which in theory may not reduce

the energy as much as L-BFGS in some cases. On the other hand,

our single-step line search guarantees low computational overhead,

which allows for more iterations within the same time. In practice,

we observe similar decrease of energy per iteration between our

method and L-BFGS (see Section 5).

4.5 Beyond local-global solvers
Our method is applicable to other iterative solvers, as long as they

monotonically decrease the target energy, and there is a well-defined

mapping between two consecutive iterates. In some cases, even

solvers that do not strictly satisfy these conditions can be accelerated

with minor modification. Some examples are provided in Section 5.3.

5 RESULTS
In this section, we evaluate the behavior and performance of our

acceleration technique on a variety of geometry optimization and

physics simulation problems, and compare it with existing methods.

We solve the geometry optimization problems using an acceler-

ated version of the Shape-Up solver [Bouaziz et al. 2012], and the

physics simulation problems using an accelerated Projective Dy-

namics solver [Bouaziz et al. 2014]. We compare different methods

by starting from the same initial solution, and plotting for each

method the graphs of relative energy error E or the relative distance

error D with respect to the computational time and iteration counts.

The relative energy error is defined as

E =
E − E∗

E0 − E∗
. (16)

Here E is the current energy value, and E0 is the energy value

for the initial solution; E∗ is the energy value at the final solution,

computed by running all methods until full convergence and taking

ACM Trans. Graph., Vol. 37, No. 4, Article 42. Publication date: August 2018.

42:8 • Peng, Deng, Zhang, Geng, Qin, and Liu

Original

(#V: 3K, #F: 5.5K) (#V:50K, #F: 98K) (#V:200K, #F: 400K)

Deformation 1

Deformation 2

CM Results

0 3 6 9 12 15
Time (sec)

10 -10

10 -5

10 0

0 3 6 9 12 15
Time (sec)

10 -10

10 -5

10 0

0 400 800 1200 1600 2000
Number of iterations

10 -10

10 -5

10 0

0 200 400 600 800 1000
Number of iterations

10 -10

10 -5

10 0

0 7.8 15.6 23.4 31.2 39
Time (sec)

10 -10

10 -5

10 0

0 400 800 1200 1600 2000
Number of iterations

10 -10

10 -5

10 0

0 6 12 18 24 30
Time (sec)

10 -10

10 -5

10 0

0 400 800 1200 1600 2000
Number of iterations

10 -10

10 -5

10 0

0 0.07 0.14 0.21 0.28 0.35
Time (sec)

10 -10

10 -5

10 0
Lo

g
En

er
gy

Shape-Up
CM
Our method

0 0.2 0.4 0.6 0.8 1
Time (sec)

10 -10

10 -5

10 0

AQP
Our method

0 0.07 0.14 0.21 0.28 0.35
Time (sec)

10 -10

10 -5

10 0

0 0.07 0.14 0.21 0.28 0.35
Time (sec)

10 -10

10 -5

10 0

0 400 800 1200 1600 2000
Number of iterations

10 -10

10 -5

10 0

0 0.07 0.14 0.21 0.28 0.35
Time (sec)

10 -10

10 -5

10 0

0 400 800 1200 1600 2000
Number of iterations

10 -10

10 -5

10 0

0 0.07 0.14 0.21 0.28 0.35
Time (sec)

10 -10

10 -5

10 0

0 400 800 1200 1600 2000
Number of iterations

10 -10

10 -5

10 0

0 10 20 30 40 50
Time (sec)

10 -10

10 -5

10 0

0 10 20 30 40 50
Time (sec)

10 -10

10 -5

10 0

0 200 400 600 800 1000
Number of iterations

10 -10

10 -5

10 0

0 30 60 90 120 150
Time (sec)

10 -10

10 -5

10 0

0 400 800 1200 1600 2000
Number of iterations

10 -10

10 -5

10 0

0 30 60 90 120 150
Time (sec)

10 -10

10 -5

10 0

0 400 800 1200 1600 2000
Number of iterations

10 -10

10 -5

10 0

0 200 400 600 800 1000
Number of iterations

10 -10

10 -5

10 0

Shape-Up CM AQP Our method

R
el

at
iv

e
En

er
gy

 E
rr

or
R

el
at

iv
e

En
er

gy
 E

rr
or

10 -10

10 -5

10 0

10 -10

10 -5

10 0

10 -10

10 -5

10 0

10 -10

10 -5

10 0

10 -10

10 -5

10 0

10 -10

10 -5

10 0

10 -10

10 -5

10 0

10 -10

10 -5

10 0

10 -10

10 -5

10 0

10 -10

10 -5

10 0

10 -10

10 -5

10 0

10 -10

10 -5

10 0

10 -10

10 -5

10 0

10 -10

10 -5

10 0

10 -10

10 -5

10 0

10 -10

10 -5

10 0

10 -10

10 -5

10 0

10 -10

10 -5

10 0

10 -10

10 -5

10 0

10 -10

10 -5

10 0

0 400 800 1200 1600 2000

10 -10

10 -5

10 0

Number of iterations

10 -10

10 -5

10 0

10 -10

10 -5

10 0

10 -10

10 -5

10 0

10 -10

10 -5

10 0

10 -10

10 -5

10 0

10 -10

10 -5

10 0

10 -10

10 -5

10 0

10 -10

10 -5

10 0

0 400 800 1200 1600 2000 0 400 800 1200 1600 2000 0 400 800 1200 1600 2000 0 400 800 1200 1600 2000 0 400 800 1200 1600 20000 200 400 600 800 1000

0 200 400 600 800 1000 0 400 800 1200 1600 20000 200 400 600 800 1000 0 400 800 1200 1600 20000 400 800 1200 1600 2000 0 400 800 1200 1600 2000
Number of Iterations

Number of Iterations

Time (sec)

Time (sec)

Number of Iterations

Number of Iterations

Time (sec)

Time (sec)

Number of Iterations

Number of Iterations

Time (sec)

Time (sec)

Number of Iterations

Number of Iterations

Time (sec)

Time (sec)

Number of Iterations

Number of Iterations

Time (sec)

Time (sec)

Number of Iterations

Number of Iterations

Time (sec)

Time (sec)

Fig. 5. Comparison between different solvers for 2D ARAP deformation of a bar model in different resolutions, by plotting their relative energy errors. The
vertices at two ends of the bar are used as handles (shown in red). For fair comparison, we compare AQP with a single-threaded implementation of our
algorithm. Note that the CM solver may converge to a suboptimal local minimum, as shown in the last row.

the lowest energy value among their final results. Similarly, the

relative distance error is defined as

D =
∥Q − Q∗∥
∥Q0 − Q∗∥

, (17)

where Q,Q0
are the current and initial solutions, and Q∗ is the final

solution corresponding to the final energy E∗ in Eq. (16).

Our algorithm is implemented in C++, using Eigen [Guennebaud

et al. 2010] for linear algebra, and Libigl [Jacobson et al. 2016]

for geometry processing operations. Unless stated otherwise, all

examples are run on a desktop PC with 16GB of RAM and a quad-

core CPU at 3.6 GHz. For the best performance, all methods are

parallelized using OpenMP where appropriate. The source code of

our method is available at https://github.com/bldeng/AASolver.

5.1 Geometry Optimization
Planarization. Figure 1 shows an example of planar quadrilateral

(PQ) mesh optimization, which is an important problem for freeform

architectural design [Liu et al. 2006]. Starting from the initial quad

mesh and a reference triangle mesh, we planarize the quad mesh by

minimizing a target energy about its vertex positions:

E1 = wplanar
E
planar

+w
ref

E
ref
+w

fair
E
fair
+w

2nd
E
2nd
, (18)

wherew
planar

,w
ref
,w

fair
,w

2nd
are positive weights, E

planar
is a pla-

narity term that measures the sum of squared distance between

each face and its best fitting plane [Bouaziz et al. 2012], E
ref

is a

reference term that sums the squared distance from each vertex

to the reference mesh, and E
fair
,E

2nd
are Laplacian fairness and

relative Laplacian fairness terms as defined in [Liu et al. 2011].

The projection operators for the planarity terms are computed via

SVD [Bouaziz et al. 2012], while the projection operators of the

reference term are evaluated by finding the closest point on the

reference surface from each quad mesh vertex, and implemented

using an AABB tree. Figure 1 shows the relative energy graphs

for the Shape-Up solver [Bouaziz et al. 2012] and its accelerated

version using our technique. The Shape-Up solver suffers from slow

convergence after the initial iterations, while the accelerated solver

requires significantly fewer iterations and less computational time

to achieve the final solution.

Wire mesh design. Figure 4 shows an example of material-aware

design, where a wire mesh model is optimized to approximate a

target surface [Garg et al. 2014]. The wire mesh is represented as a

quadrilateral mesh, subject to the following geometric constraints

that model its material properties: (i) all edge lengths equal to a

ACM Trans. Graph., Vol. 37, No. 4, Article 42. Publication date: August 2018.

https://github.com/bldeng/AASolver

Anderson Acceleration for Geometry Optimization and Physics Simulation • 42:9
R

el
at

iv
e

En
er

gy
 E

rr
or

Shape-Up AQP Our Method

0 0.04 0.08 0.12 0.16 0.2
Time (sec)

10 -10

10 -5

10 0

0 100 200 300 400 500
Number of Iterations

10 -10

10 -5

10 0

0 0.24 0.48 0.72 0.96 1.2
Time (sec)

10 -10

10 -5

10 0

0 24 48 72 96 120
Number of Iterations

10 -10

10 -5

10 0

0 0.5 1 1.5 2 2.5
Time (sec)

10 -10

10 -5

10 0

0 100 200 300 400 500
Number of Iterations

10 -10

10 -5

10 0

0 1.8 3.6 5.4 7.2 9
Time (sec)

10 -10

10 -5

10 0

0 24 48 72 96 120
Number of Iterations

10 -10

10 -5

10 0

0 6 12 18 24 30
Time (sec)

10 -10

10 -5

10 0

0 100 200 300 400 500
Number of Iterations

10 -10

10 -5

10 0

0 16 32 48 64 80
Time (sec)

10 -10

10 -5

10 0

0 24 48 72 96 120
Number of Iterations

10 -10

10 -5

10 0

#T: 2727 #T: 21779 #T: 174536

Fig. 6. ARAP deformation of a 3D bar in three different resolutions, using vertices at the two ends as handles.

constant l ; (2) within each face, all four corner angles are between

45 and 135 degrees [Garg et al. 2014]. Given a reference surface and

an initial wire mesh shape, we compute the final wire mesh shape

by minimizing the target function

E2 = wedge
E
edge
+w

angle
E
angle

+w
ref

E
ref
, (19)

where E
ref

is a reference surface term defined in the same way as in

Equation (18). E
edge
,E

angle
are shape proximity terms for the edge

length constraints and the angle constraints, respectively:

E
edge
=
∑
i ∈E

∥qi1 − qi2 − pi ∥
2 + σ

edge
(pi), (20)

E
angle

=
∑

(i, j,k)∈A

[
qi − qj
qk − qj

]
−

e1i jk
e2i jk

2

F

+ σ
angle

*
,

e1i jk
e2i jk

+
-
, (21)

where E is the index set of mesh edges, qi1 and qi2 are the vertices of
edge i , σ

edge
is the indicator function for the edge length constraint

feasible set {e | ∥e∥ = l }; A is the index set of vertices that form a

face corner, and σ
angle

is the indicator function for the angle con-

straint feasible set

{
(e1, e2)

�����
cos(

3π

4

) ≤
e1
∥e1∥

·
e2
∥e2∥

≤ cos(
π

4

)

}
.

The projection operators for the edge length constraint and the

angle constraint are given in [Deng et al. 2015]. The accelerated

solver only takes a fraction of iterations to compute an accurate

result compared with the unaccelerated one, which significantly

reduces the computational time.

ARAP deformation. In Figures 5 and 7, we perform ARAP defor-

mation of 2D triangle meshes and 3D tetrahedron meshes according

to user-driven handle vertices, by solving the problem subject to

hard constraints of handle vertex positions:

min

Qfree

∑
i ∈F

 JiQi − Ri 2F + σrot (Ri), (22)

where Q
free

are the positions of non-handle vertices, F is the index

set of triangles or tetrahedrons, Qi ∈ R
d+1×d

collects the positions

of the d + 1 vertices in cell i , Ji ∈ Rd×(d+1) is a linear map that

computes the deformation gradient of cell i between positions Qi
and initial positions Q0

i , and σrot is the indicator function for d × d
rotation matrices. With the Shape-Up solver, the projection operator

in the local step finds the closest rotation matrix to a given matrix,

which we compute using SVD according to [Sorkine-Hornung and

Rabinovich 2016]. To enforce handle positions as hard constraints,

we modify the global step of the Shape-Up solver by removing

the rows that correspond to handle vertices. We compare the per-

formance of our accelerated solver with other ARAP solvers that

support hard-constraint handles, including the accelerated quadratic

proxy (AQP) solver from [Kovalsky et al. 2016], and the compos-

ite majorization (CM) solver from [Shtengel et al. 2017]. The CM

0 100 200 300 400 500 600 700 800 900
time (sec)

10-12

10-10

10-8

10-6

10-4

10-2

100

re
la

tiv
e

er
ro

r

AQP
Our method

0 100 200 300 400 500 600 700 800 900 1000 1100
number of iterations

10-12

10-10

10-8

10-6

10-4

10-2

100

re
la

tiv
e

er
ro

r

Shape-Up
Our method

0 10 20 30 40 50 60 70 80
time (sec)

10-12

10-10

10-8

10-6

10-4

10-2

100

re
la

tiv
e

er
ro

r

Shape-Up
Our method

Original

Result
0 100 200 300 400 500 600 700 800 900 1000 1100

number of iterations

10-12

10-10

10-8

10-6

10-4

10-2

100

re
la

tiv
e

er
ro

r

AQP
Our method

R
el

at
iv

e
En

er
gy

 E
rr

or

0 200 400 600 800 1000
Number of Iterations

R
el

at
iv

e
En

er
gy

 E
rr

or
R

el
at

iv
e

En
er

gy
 E

rr
or

0 20 40 60 80
Time (sec)

Time (sec)
0 200 400 600 800

100

10-4

10-8

10-12R
el

at
iv

e
En

er
gy

 E
rr

or

0 200 400 600 800 1000
Number of Iterations

Shape-Up AQP Our Method

100

10-4

10-8

10-12

100

10-4

10-8

10-12

100

10-4

10-8

10-12

#T: 260K

Fig. 7. 3D ARAP deformation of a mesh, with handles located at the limbs.

ACM Trans. Graph., Vol. 37, No. 4, Article 42. Publication date: August 2018.

42:10 • Peng, Deng, Zhang, Geng, Qin, and Liu

#V: 10K
#F: 20K #V: 3K

#T: 10K

#V:14K
#T: 55K

R
el

at
iv

e
D

ist
an

ce
 E

rr
or

R
el

at
iv

e
En

er
gy

 E
rr

or

Increased Stiffness Increased Stiffness Increased Stiffness

Shape-Up
L-BFGS
Chebyshev
Newton
Our method

0 2 4 6 8 10
Time (sec)

10 -10

10 -5

10 0

0 5 10 15 20 25
Time (sec)

10 -6

10 -4

10 -2

10 0

0 200 400 600 800 1000
Number of iterations

10 -10

10 -5

10 0

0 300 600 900 1200 1500
Number of iterations

10 -6

10 -4

10 -2

10 0

0 3 6 9 12 15
Time (sec)

10 -10

10 -5

10 0

0 1000 2000 3000 4000 5000
Number of iterations

10 -10

10 -5

10 0

0 6 12 18 24 30
Time (sec)

10 -6

10 -4

10 -2

10 0

0 1000 2000 3000 4000 5000
Number of iterations

10 -6

10 -4

10 -2

10 0

0 0.4 0.8 1.2 1.6 2
Time (sec)

10 -10

10 -5

10 0

0 0.6 1.2 1.8 2.4 3
Time (sec)

10 -6

10 -4

10 -2

10 0

0 12 24 36 48 60
Number of Iterations

10 -10

10 -5

10 0

0 40 80 120 160 200
Number of Iterations

10 -6

10 -4

10 -2

10 0

0 1 2 3 4 5
Time (sec)

10 -10

10 -5

10 0

0 20 40 60 80 100
Number of Iterations

10 -10

10 -5

10 0

0 1.2 2.4 3.6 4.8 6
Time (sec)

10 -6

10 -4

10 -2

10 0

0 80 160 240 320 400
Number of Iterations

10 -6

10 -4

10 -2

10 0

0 0.04 0.08 0.12 0.16 0.2
Time (sec)

10 -10

10 -5

10 0

0 6 12 18 24 30
Number of Iterations

10 -10

10 -5

10 0

0 0.06 0.12 0.18 0.24 0.3
Time (sec)

10 -6

10 -4

10 -2

10 0

0 20 40 60 80 100
Number of Iterations

10 -6

10 -4

10 -2

10 0

0 0.05 0.1 0.15 0.2 0.25
Time (sec)

10 -10

10 -5

10 0

0 10 20 30 40 50
Number of Iterations

10 -10

10 -5

10 0

0 0.1 0.2 0.3 0.4 0.5
Time (sec)

10 -6

10 -4

10 -2

10 0

0 24 48 72 96 120
Number of Iterations

10 -6

10 -4

10 -2

10 0

Fig. 8. Acceleration of physics simulation. The graphs show in log scale the relative energy error (top two rows) and the relative distance error (bottom two
rows) for each solver. Each model is tested with two stiffness settings, and the results with increased stiffness are shown on the right column.

L-BFGS Chebyshev Ours Exact

Fig. 9. Comparison of a cloth simulation frame at the same time instance,
computed using different methods with the same computational time bud-
get per frame. The result using our method is closer to the exact solution of
the simulation sequence.

formulation of 2D ARAP deformation is derived by representing

the ARAP energy as a function of singular values for the Jacobian,

and using the singular value formulas provided in [Shtengel et al.

2017]. The AQP solver and the CM solver are implemented using

the source codes provided by the authors
12
. Since the AQP code

1
https://github.com/shaharkov/AcceleratedQuadraticProxy

2
https://github.com/Roipo/CompMajor

is implemented using a single thread, we compare with it with a

single-threaded implementation of our solver for fair comparison.

Figure 5 shows the deformation of a 2D bar model represented us-

ing meshes of different resolutions and with different target handle

positions. Figure 6 shows the deformation of a 3D bar model with

different resolutions. Figure 7 shows the deformation of a 3D mesh

with 260K tetrahedrons. We can see that depending on the model

and the configuration, different solvers may converge to different

local minima. In most cases, our accelerated solver converges to the

lowest energy with small computational cost.

5.2 Physics simulation
We apply our accelerated Projective Dynamics solver to simulate

the deformation of cloth and elastic solids under gravity and subject

to positional constraints. We model a piece of cloth as a mass-spring

network represented as a triangle mesh, where each edge is subject

to a length constraint with its rest length being the target length.

Such constraint defines an elastic potential energy term that has

the same form as in Equation (20), weighted by the spring stiffness

constant [Liu et al. 2013]. For elastic solids, we represent them as

tetrahedron meshes, and define its elastic potential energy in the

same way as the target function in (22), weighted by an elasticity

ACM Trans. Graph., Vol. 37, No. 4, Article 42. Publication date: August 2018.

Anderson Acceleration for Geometry Optimization and Physics Simulation • 42:11

Initialization Convergence Result Initialization Convergence result

#V: 235K
#F: 470K

#V: 95K
#F: 190K

0 32 64 96 128 160

100

10-5

10-10

R
el

at
iv

e
En

er
gy

 E
rr

or

Number of Iterations

100

10-5

10-10

0 10 20 30 40 50

R
el

at
iv

e
En

er
gy

 E
rr

or

Time (sec)

0 50 100 150 200 250

R
el

at
iv

e
En

er
gy

 E
rr

or

Number of Iterations

100

10-5

10-10

0 40 80 120 160 200

R
el

at
iv

e
En

er
gy

 E
rr

or

Time (sec)
100

10-5

10-10

CM
SLIM
Our method

CM
SLIM
Our method

Fig. 10. Optimizing the symmetric Dirichlet energy, using the original SLIM algorithm, our accelerated version, and the CM solver.

parameter. For each node qi that needs to be fixed during simula-

tion, we add a penalty term 0.5 ·w
fixed
∥qi − qi ∥

2
to the Projective

Dynamics target energy (4), where qi is the constrained position

andw
fixed

is a large positive weight. To evaluate the effectiveness of

our acceleration, we compare it with the Chebyshev semi-iterative

method in [Wang 2015], and the L-BFGS approach in [Liu et al. 2017].

We apply the Chebyshev semi-iterative method with a direct solver

for the full step instead of the Jacobi solver proposed in the paper,

because the direct solver is more efficient on the CPU [Wang 2015].

For the L-BFGS solver, the two-loop recursion is performed using

five previous iterates as suggested by [Liu et al. 2017]. For elastic

solids, we also compare with the Newton solver derived in [Sifakis

and Barbič 2012]. Since the local-global solver converges quickly

to an approximate solution and the Newton solver enables local

quadratic convergence and the accurate solution, we perform five it-

erations of local-global solve before switching to the Newton solver,

to achieve good performance. The Newton linear system is solved

using PARDISO, with symbolic pre-factorization to maximize its ef-

ficiency. Each model is tested under two stiffness settings, by setting

the spring stiffness constant or the elasticity parameter. Figure 8

shows the decrease of relative energy error and relative distance

error for each solver, for the computation of the first frame in the

simulation. Due to the very large initial energy, the relative distance

error provides better indication of convergence to solution. We can

see that all three accelerated solvers perform better than the origi-

nal projective dynamics solver. Our solver has similar performance

with the L-BFGS in the decrease of energy with respect to iteration

counts, potentially because the two solvers construct the initial in-

verse Hessian/Jacobian in a similar way, and both use five previous

iterates for acceleration. Our solver performs better than L-BFGS in

terms of computational time, due to its lower cost of computing the

accelerated iterate. Both solvers perform better than the Chebyshev

solver, potentially because the Chebyshev approach is equivalent to

quasi-Newton using two previous iterates [Liu et al. 2017], thus with

less accurate approximation of the Hessian. Although the Newton

solver requires the least iterations to converge in most cases, it is

not the best-performing solver in terms of computational time, due

to its high computational cost per iteration.

Figure 9 shows a comparison of the simulation results using

different solvers with the same computational budget for each frame.

The results are compared with an exact solution sequence, where

each frame is computed by running the L-BFGS solver until full

convergence. The simulation result using our solver is very close

the exact solution, while other solvers lead to noticeable difference

comparedwith the exact result. The full simulation results are shown

in the accompanying video.

5.3 Other solvers
To verify the effectiveness of our acceleration technique beyond

the classical local-global solvers, we apply it to two other iterative

solvers. The first one is the Lloyd algorithm for computing cen-

troidal Voronoi tessellation (CVT) for a bounded domain, where the

generating points of the Voronoi cells coincide with the centroids

of the cells [Du et al. 2006]. Given a density function ρ defined on

the domain, the generating points X = {xi } of a CVT correspond to

a minimum of the energy [Du et al. 1999]:

F (X) =
∑
i

∫
Ωi

ρ (y)∥y − xi ∥2dy,

0 30 60 90 120 150
Time (sec)

6.8

6.9

7

7.1

7.2

En
er

gy

10 7

Input Lloyd algorithm

Our method

Fig. 11. Acceleration of the Lloyd algorithm for minimizing the CVT energy
on a Octagon shape boundary and 500 generating points.

ACM Trans. Graph., Vol. 37, No. 4, Article 42. Publication date: August 2018.

42:12 • Peng, Deng, Zhang, Geng, Qin, and Liu

#V: 58752000
#F: 58736640

0 14000 28000 42000 56000
10 3

10 4

10 5

0 1800 3600 5400 7200
10 3

10 4

10 5

Shape-Up
Our method

900070000
Number of IterationsTime (sec)

Lo
g

En
er

gy

Fig. 12. Acceleration of wire mesh optimization on a very large model.

where Ωi is the Voronoi cell for xi . The Lloyd algorithm is a fixed-

point iteration to minimize this energy

xk+1i =

∫
Ωk
i
yρ (y)dy∫

Ωk
i
ρ (y)dy

, (23)

where Ωk
i is the Voronoi cell for the current iterate xki ; i.e, in each

iteration the generating points are moved to the centroid of their

current Voronoi cells. The Lloyd algorithm is shown to decrease

the target energy and converges to a CVT [Du et al. 2006]. How-

ever, it suffers from slow convergence to the solution, which has

prompted the development of faster CVT solvers based on L-BFGS

which require evaluation of the energy gradient [Liu et al. 2009]. Our

acceleration technique can be directly applied to the fixed-point

iteration (23) to produce an accelerated iterate Xk+1
AA

. We accept

Xk+1
AA

as the new iterate if it decreases the target energy compared

with the previous iterate and the generating points are inside the

domain boundary; otherwise we revert to the Lloyd algorithm’s

result as the next iterate. In Figure 11, we apply the acceleration to

a publicly available implementation of Lloyd algorithm
3
. Without

evaluating the gradient or using preconditioner, our simple acceler-

ation achieves comparable speed-up to the L-BFGS solver proposed

in [Liu et al. 2009]. This example shows a benefit of our acceleration

technique: it only requires the evaluation of target energy, and can

be easily added on top of existing codes.

Another example is the scalable locally injective mapping (SLIM)

solver [Rabinovich et al. 2017], which computes injective mesh

parameterization by minimizing a flip-preventing energy:

min

x

∑
f ∈F

Af D (Jf (x)),

where x is the parameterization coordinates at the vertices, F is the

mesh face set, Af is the cell area/volume, Jf is the parameterization

Jacobian on face f , and D is a distortion measure. As the energy

cannot be directly minimized using classical local-global solvers,

the authors adopt a reweighting strategy: the local step remains the

same as other local-global solvers, while the global step constructs

a reweighted proxy function based on the current iterate xk and

minimizes it to obtain a solution pk+1 that provides a decent direc-
tion. Then a bisection line search is performed to determine the next

iterate xk+1 = xk +α (pk+1 −xk) which reduces the original energy

while ensuring injectivity of the mapping, with an initial step size

α = min{0.8αmax, 1} that prevents element flips where αmax is the

maximal step size with no foldovers. As mentioned in [Rabinovich

3
https://github.com/Narusaki/CVT2D

0 0.4 0.8 1.2 1.6 2
Time (sec)

10-15

10
-10

10-5

100

0 16 32 48 64 80
Number of iterations

10
-15

10
-10

10-5

100

0 0.4 0.8 1.2 1.6 2
Time (sec)

10-6

10-4

10
-2

10 0

0 16 32 48 64 80
Number of iterations

10-6

10
-4

10-2

10 0

R
el

at
iv

e
En

er
gy

 E
rr

or
R

el
at

iv
e

D
is

ta
nc

e
Er

ro
r

Shape-Up
L-BFGS
Chebyshev
Our method

Fig. 13. Physics simulation of an elastic solid with degenerate tetrahedrons.
The model is derived by randomly adding 100 degenerate tetrahedrons to
the Armadillo model in Figure 8.

et al. 2017], this method has similar convergence property to clas-

sical local-global solvers, with slow convergence to high-accuracy

solutions. Since the new iterate is determined via discrete line search,

there is no well-defined mapping between consecutive iterates xk

and xk+1, and we cannot directly apply Anderson acceleration to

the sequence {xk }. On the other hand, the proxy solution pk+1 is
determined by minimizing a convex energy that depends on xk ,
which can be written as a mapping pk+1 = G (xk); moreover, a

fixed-point of the mapping G is a local minimum of the original

energy. Therefore, we apply Anderson acceleration to the mapping

G, to determine an accelerated proxy solution pk+1
AA

. To choose the

next iterate, we evaluate the original target energy using the ini-

tial line search steps according to pk+1
AA

and pk+1 respectively, and
choose the one with lower energy to continue with the line search.

In this way, the acceleration helps to find a descent direction with

faster decrease of the original energy. Figure 10 compares the per-

formance of the original SLIM algorithm, our accelerated version,

and the CM solver, in optimizing the symmetric Dirichlet energy

for parameterization. Our technique provides effective acceleration

for SLIM, although still slower than CM.

5.4 Stress Tests
We also perform a series of stress tests to evaluate the performance

of our method in extreme cases. In Figure 12, we perform wire mesh

optimization with the same settings as in Figure 4, but on a model

with over 50M vertices. The model is derived from the mesh in

Figure 4 by repeatedly subdividing each quad face into four quads.

For such a large model, it is impractical to fully solve the linear

system in the global step. Instead we adopt the strategy from [Wang

2015] and only perform one step of Jacobi iteration for the linear

system. The experiment was run on a workstation with 48 Xeon

cores and 128GB RAM. Since it takes too long for the solvers to

achieve full convergence, we only plot the energy graphs instead

of the relative energy errors. We can see that our method achieves

similar speedup as in the smaller model from Figure 4.

In Figure 13, we apply our method for physics simulation to

a mesh model with degenerate elements. We randomly add 100

degenerate tetrahedrons to the Armadillo model used in Figure 9.

ACM Trans. Graph., Vol. 37, No. 4, Article 42. Publication date: August 2018.

Anderson Acceleration for Geometry Optimization and Physics Simulation • 42:13

30000 iters
33330.7 s

41804 iters
47428.6 s

30000 iters
31140.4 s

47705 iters
47429.2 s

0 10K 20K 30K 40K 50K
Time (sec)

10 -5

10 0

10 5

Lo
g

En
er

gy

0 10K 20K 30K 40K 50K
Number of iterations

10 -5

10 0

10 5

CM
SLIM
Our method

#V: 337689

CM Our methodSLIM

30000 iters
31752.9 s

45603 iters
47428.1 s

Fig. 14. Unwrapping a Hilbert-curve-shape mesh on a cylinder by minimiz-
ing the symmetric Dirichlet energy.

Each degenerate tetrahedron is added by randomly picking a triangle

face, introducing a new vertex on a random position within the face,

and connecting the new vertex to the three triangle vertices. Our

method remains effective in the presence of degenerate elements.

In Figure 14, we compare our accelerated SLIM solver with the

original SLIM and the CM solver, on a challenging problem pro-

posed in [Smith and Schaefer 2015]: we unwrap a Hilbert-curve-

shaped mesh on a cylinder by optimizing the symmetric Dirichlet

energy, starting from its Tutte’s embedding. Since the mesh can

be unwrapped without distortion, we evaluate the performance of

each solver by plotting the difference between its resulting energy

and the ground truth minimum energy. Our approach achieves the

fastest decrease of energy and convergence to the solution.

6 DISCUSSION AND CONCLUSION
Although our acceleration is simple and effective on a variety of

problems, there are a few limitations that we need to be aware

of. First, although our analysis shows that the canonical mixing

parameter β = 1 is effective for the local-global formulation, the

same cannot be said for general fixed-point iteration solvers. Most

existing work in the literature simply choose β = 1 and achieve

good results. But it has also been shown that for problems, choosing

another value can lead to better convergence [Fang and Saad 2009].

It remains an open research problem to choose β automatically for a

general fixed-point solver. In the future, we would like to investigate

the choice of β beyond classical local-global solvers.

Our default selection strategy only compares the energy values of

the accelerated iterate and the previous iterate. In theory, without

comparison to the local-global iterate, it may accept an accelerated

iterate that actually has a higher energy than its local-global coun-

terpart and slows down the convergence. Moreover, although this

strategy ensures monotonic decrease and convergence of the energy,

it does not necessarily converge to a critical value of the energy, nor

does it guarantee the convergence of variables. So far we have not

observed such pathological cases in our experiments. In the future,

a more thorough investigation into the selection strategy and its

convergence behavior would be helpful.

Fang and Saad [2009] point out that Anderson acceleration is a

particular case in the Anderson family of multisecant methods, and

call it the Type-II method. Another member of the family, called

the Type-I method, approximates the Jacobian instead of its inverse,

resulting in a slightly different formula for the accelerated iter-

ate [Walker and Ni 2011]. Most existing works, such as the local

convergence proofs in [Toth et al. 2017; Toth and Kelley 2015], are

focused on the Type-II method. An interesting future work is to

investigate the application and performance of the Type-I method.

The local-global solvers discussed in this paper enforce geometric

constraints by minimizing their violation. Apart from fixed node

positions, our approach currently does not support general hard

constraints (i.e., constraints that need to be strictly satisfied). For ge-

ometry optimization and physics simulation, such hard constraints

can be handled by introducing dual variables and using an aug-

mented Lagrangian or ADMM solver [Deng et al. 2015; Overby

et al. 2017]. In the future, we would like to extend our acceleration

technique to solvers with both primal and dual variables.

To conclude, we propose in this paper a simple and effective way

to apply Anderson acceleration to local-global solvers for geom-

etry optimization and physics simulation. We improve upon the

classical Anderson acceleration, by introducing a simple selection

strategy that guarantees its global convergence with a small com-

putational cost. In addition, we analyze and show the effectiveness

of the canonical mixing parameter for achieving good acceleration

results. Extensive experiments show that our technique achieves

comparable or better results than state-of-the-art fast solvers on

a variety of problems, and is applicable beyond the classical local-

global solvers. Given the success of Anderson acceleration in other

fields such as computational chemistry and computational physics,

we believe it is a promising tool for improving existing algorithms

and designing new algorithms for computer graphics.

ACKNOWLEDGMENTS
The initial PQ meshes in Figures 1, 2 and 3 are provided by Yang

Liu. The target model in Figure 4, “Male Torso, Diadumenus Type”

by CosmoWenman, is licensed under CC BY 3.0. This work was sup-

ported by theNational Key R&DProgram of China (No. 2016YFC0800501),

the National Natural Science Foundation of China (No. 61672481, No.

61672482 and No. 11626253), and the One Hundred Talent Project

of the Chinese Academy of Sciences.

REFERENCES
Hengbin An, Xiaowei Jia, and Homer F. Walker. 2017. Anderson acceleration and

application to the three-temperature energy equations. J. Comput. Phys. 347 (2017),

ACM Trans. Graph., Vol. 37, No. 4, Article 42. Publication date: August 2018.

https://www.thingiverse.com/thing:146386
https://www.thingiverse.com/CosmoWenman/about
https://creativecommons.org/licenses/by/3.0/

42:14 • Peng, Deng, Zhang, Geng, Qin, and Liu

1–19.

Donald G. Anderson. 1965. Iterative Procedures for Nonlinear Integral Equations. J.
ACM 12, 4 (1965), 547–560.

A. Beck. 2017. First-Order Methods in Optimization. Society for Industrial and Applied

Mathematics, Philadelphia, PA.

Amir Beck and Luba Tetruashvili. 2013. On the Convergence of Block Coordinate

Descent Type Methods. SIAM Journal on Optimization 23, 4 (2013), 2037–2060.

Sofien Bouaziz, Mario Deuss, Yuliy Schwartzburg, Thibaut Weise, and Mark Pauly. 2012.

Shape-Up: Shaping Discrete Geometry with Projections. Comput. Graph. Forum 31,

5 (2012), 1657–1667.

Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014.

Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM Trans.
Graph. 33, 4 (2014), 154:1–154:11.

Bailin Deng, Sofien Bouaziz, Mario Deuss, Alexandre Kaspar, Yuliy Schwartzburg, and

Mark Pauly. 2015. Interactive design exploration for constrained meshes. Computer-
Aided Design 61, Supplement C (2015), 13–23.

Qiang Du, Maria Emelianenko, and Lili Ju. 2006. Convergence of the Lloyd Algorithm

for Computing Centroidal Voronoi Tessellations. SIAM J. Numer. Anal. 44, 1 (2006),
102–119.

Qiang Du, Vance Faber, and Max Gunzburger. 1999. Centroidal Voronoi Tessellations:

Applications and Algorithms. SIAM Rev. 41, 4 (1999), 637–676.
V. Eyert. 1996. A Comparative Study on Methods for Convergence Acceleration of

Iterative Vector Sequences. J. Comput. Phys. 124, 2 (1996), 271–285.
Haw-ren Fang and Yousef Saad. 2009. Two classes of multisecant methods for nonlinear

acceleration. Numerical Linear Algebra with Applications 16, 3 (2009), 197–221.
Akash Garg, Andrew O. Sageman-Furnas, Bailin Deng, Yonghao Yue, Eitan Grinspun,

Mark Pauly, and Max Wardetzky. 2014. Wire mesh design. ACM Trans. Graph. 33, 4
(2014), 66:1–66:12.

Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org. (2010).

Nicholas J. Higham and Nataša Strabić. 2016. Anderson acceleration of the alternat-

ing projections method for computing the nearest correlation matrix. Numerical
Algorithms 72, 4 (2016), 1021–1042.

Nguyenho Ho, Sarah D. Olson, and Homer F. Walker. 2017. Accelerating the Uzawa

Algorithm. SIAM Journal on Scientific Computing 39, 5 (2017), S461–S476.

Alec Jacobson, Daniele Panozzo, et al. 2016. libigl: A simple C++ geometry processing

library. (2016). http://libigl.github.io/libigl/.

C. Kelley. 1995. Iterative Methods for Linear and Nonlinear Equations. Society for

Industrial and Applied Mathematics.

Shahar Z. Kovalsky, Meirav Galun, and Yaron Lipman. 2016. Accelerated quadratic

proxy for geometric optimization. ACM Trans. Graph. 35, 4 (2016), 134:1–134:11.
K. Lipnikov, D. Svyatskiy, and Y. Vassilevski. 2013. Anderson Acceleration for Nonlinear

Finite Volume Scheme for Advection-Diffusion Problems. SIAM Journal on Scientific
Computing 35, 2 (2013), A1120–A1136.

Ligang Liu, Lei Zhang, Yin Xu, Craig Gotsman, and Steven J. Gortler. 2008. A Lo-

cal/Global Approach to Mesh Parameterization. Computer Graphics Forum 27, 5

(2008), 1495–1504.

Tiantian Liu, Adam W. Bargteil, James F. O’Brien, and Ladislav Kavan. 2013. Fast

Simulation of Mass-spring Systems. ACM Trans. Graph. 32, 6 (2013), 214:1–214:7.
Tiantian Liu, Sofien Bouaziz, and Ladislav Kavan. 2017. Quasi-Newton Methods for

Real-Time Simulation of Hyperelastic Materials. ACM Trans. Graph. 36, 3 (2017),
23:1–23:16.

Yang Liu, Helmut Pottmann, Johannes Wallner, Yong-Liang Yang, and Wenping Wang.

2006. Geometric Modeling with Conical Meshes and Developable Surfaces. ACM
Trans. Graph. 25, 3 (2006), 681–689.

Yang Liu, Wenping Wang, Bruno Lévy, Feng Sun, Dong-Ming Yan, Lin Lu, and Chenglei

Yang. 2009. On Centroidal Voronoi Tessellation&Mdash;Energy Smoothness and

Fast Computation. ACM Trans. Graph. 28, 4 (2009), 101:1–101:17.
Yang Liu, Weiwei Xu, Jun Wang, Lifeng Zhu, Baining Guo, Falai Chen, and Guoping

Wang. 2011. General Planar Quadrilateral Mesh Design Using Conjugate Direction

Field. ACM Trans. Graph. 30, 6 (2011), 140:1–140:10.
Yurii Nesterov. 1983. A method of solving a convex programming problem with

convergence rate O (1/k2). Soviet Mathematics Doklady 27 (1983), 372–376.

Jorge Nocedal and Stephen J. Wright. 2006. Numerical optimization (2nd ed.). Springer-

Verlag New York.

C. W. Oosterlee and T. Washio. 2000. Krylov Subspace Acceleration of Nonlinear

Multigrid with Application to Recirculating Flows. SIAM Journal on Scientific
Computing 21, 5 (2000), 1670–1690.

M. Overby, G. E. Brown, J. Li, and R. Narain. 2017. ADMM ⊇ Projective Dynamics: Fast

Simulation of Hyperelastic Models with Dynamic Constraints. IEEE Transactions on
Visualization and Computer Graphics 23, 10 (2017), 2222–2234.

Florian A. Potra and Hans Engler. 2013. A characterization of the behavior of the

Anderson acceleration on linear problems. Linear Algebra Appl. 438, 3 (2013), 1002–
1011.

Phanisri P. Pratapa, Phanish Suryanarayana, and John E. Pask. 2016. Anderson acceler-

ation of the Jacobi iterative method: An efficient alternative to Krylov methods for

large, sparse linear systems. J. Comput. Phys. 306 (2016), 43–54.

Péter Pulay. 1980. Convergence acceleration of iterative sequences. the case of SCF

iteration. Chemical Physics Letters 73, 2 (1980), 393–398.
P. Pulay. 1982. Improved SCF convergence acceleration. Journal of Computational

Chemistry 3, 4 (1982), 556–560.

Michael Rabinovich, Roi Poranne, Daniele Panozzo, and Olga Sorkine-Hornung. 2017.

Scalable Locally Injective Mappings. ACM Trans. Graph. 36, 2 (2017), 16:1–16:16.
Thorsten Rohwedder and Reinhold Schneider. 2011. An analysis for theDIIS acceleration

method used in quantum chemistry calculations. Journal of Mathematical Chemistry
49, 9 (2011), 1889–1914.

Anna Shtengel, Roi Poranne, Olga Sorkine-Hornung, Shahar Z. Kovalsky, and Yaron

Lipman. 2017. Geometric optimization via composite majorization. ACM Trans.
Graph. 36, 4 (2017), 38:1–38:11.

Eftychios Sifakis and Jernej Barbič. 2012. FEM Simulation of 3D Deformable Solids:

A Practitioner’s Guide to Theory, Discretization and Model Reduction. In ACM
SIGGRAPH 2012 Courses. 20:1–20:50.

Jason Smith and Scott Schaefer. 2015. Bijective Parameterization with Free Boundaries.

ACM Trans. Graph. 34, 4 (2015), 70:1–70:9.
Olga Sorkine and Marc Alexa. 2007. As-Rigid-As-Possible Surface Modeling. In Pro-

ceedings of EUROGRAPHICS/ACM SIGGRAPH Symposium on Geometry Processing.
109–116.

Olga Sorkine-Hornung and Michael Rabinovich. 2016. Least-Squares Rigid Motion

Using SVD. (2016). Technical note.

H. De Sterck. 2012. A Nonlinear GMRES Optimization Algorithm for Canonical Tensor

Decomposition. SIAM Journal on Scientific Computing 34, 3 (2012), A1351–A1379.

Phanish Suryanarayana, Phanisri P Pratapa, and John E Pask. 2016. Alternating

Anderson-Richardson method: An efficient alternative to preconditioned Krylov

methods for large, sparse linear systems. arXiv preprint arXiv:1606.08740 (2016).
Chengcheng Tang, Xiang Sun, Alexandra Gomes, Johannes Wallner, and Helmut

Pottmann. 2014. Form-finding with Polyhedral Meshes Made Simple. ACM Trans.
Graph. 33, 4 (2014), 70:1–70:9.

Alex Toth, J. Austin Ellis, Tom Evans, Steven Hamilton, C. T. Kelley, Roger Pawlowski,

and Stuart Slattery. 2017. Local Improvement Results for Anderson Acceleration

with Inaccurate Function Evaluations. SIAM Journal on Scientific Computing 39, 5

(2017), S47–S65.

Alex Toth and C. T. Kelley. 2015. Convergence Analysis for Anderson Acceleration.

SIAM J. Numer. Anal. 53, 2 (2015), 805–819.
Homer F. Walker and Peng Ni. 2011. Anderson Acceleration for Fixed-Point Iterations.

SIAM J. Numer. Anal. 49, 4 (2011), 1715–1735.
Huamin Wang. 2015. A chebyshev semi-iterative approach for accelerating projective

and position-based dynamics. ACM Trans. Graph. 34, 6 (2015), 246:1–246:9.
Huamin Wang and Yin Yang. 2016. Descent Methods for Elastic Body Simulation on

the GPU. ACM Trans. Graph. 35, 6 (2016), 212:1–212:10.
T. Washio and C. W. Oosterlee. 1997. Krylov subspace acceleration for nonlinear

multigrid schemes. Electronic Transactions on Numerical Analysis 6, 271–290 (1997).
Jeffrey Willert, William T. Taitano, and Dana Knoll. 2014. Leveraging Anderson Ac-

celeration for improved convergence of iterative solutions to transport systems. J.
Comput. Phys. 273 (2014), 278–286.

ACM Trans. Graph., Vol. 37, No. 4, Article 42. Publication date: August 2018.

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Geometry optimization
	3.2 Physics simulation

	4 Our Method
	4.1 Anderson acceleration
	4.2 Improving stability
	4.3 Choice of m
	4.4 Analysis
	4.5 Beyond local-global solvers

	5 Results
	5.1 Geometry Optimization
	5.2 Physics simulation
	5.3 Other solvers
	5.4 Stress Tests

	6 Discussion and Conclusion
	Acknowledgments
	References

