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Abstract—The joint bilateral filter, which enables feature-preserving signal smoothing according to the structural information from a

guidance, has been applied for various tasks in geometry processing. Existing methods either rely on a static guidance that may be

inconsistent with the input and lead to unsatisfactory results, or a dynamic guidance that is automatically updated but sensitive to

noises and outliers. Inspired by recent advances in image filtering, we propose a new geometry filtering technique called static/dynamic

filter, which utilizes both static and dynamic guidances to achieve state-of-the-art results. The proposed filter is based on a nonlinear

optimization that enforces smoothness of the signal while preserving variations that correspond to features of certain scales. We

develop an efficient iterative solver for the problem, which unifies existing filters that are based on static or dynamic guidances. The

filter can be applied to mesh face normals followed by vertex position update, to achieve scale-aware and feature-preserving filtering of

mesh geometry. It also works well for other types of signals defined on mesh surfaces, such as texture colors. Extensive experimental

results demonstrate the effectiveness of the proposed filter for various geometry processing applications such as mesh denoising,

geometry feature enhancement, and texture color filtering.

Index Terms—Geometry processing, mesh filtering, mesh denoising

Ç

1 INTRODUCTION

SIGNAL filtering, the process of modifying signals to
achieve desirable properties, has become a fundamental

tool for different application areas. In image processing, for
example, various filters have been developed for smoothing
images while preserving sharp edges. Among them, the
bilateral filter [1] updates an image pixel using the weighted
average of nearby pixels, taking into account their spatial
and range differences. Its simplicity and effectiveness
makes it popular in image processing, and inspires various
follow-up work with improved performance [2], [3], [4], [5].

Besides image processing, filtering techniques have also
been utilized for processing 3D geometry. Indeed, many
geometric descriptors such as normals and vertex positions
can be considered as signals defined on two-dimensional
manifold surfaces, where image filtering methods can be
naturally extended and applied. For example, the bilateral
filter has been adapted for feature-preserving mesh smooth-
ing and denoising [6], [7], [8], [9].

Development of new geometry filters has also been
inspired by other techniques that improve upon the original
bilateral filter. Among them, the joint bilateral filter [2], [3]
determines the filtering weights using the information from a
guidance image instead of the input image, and achieves more

robust filtering results when the guidance provides reliable
structural information. One limitation of this approach is that
the guidance image has to be specified beforehand, and
remains static during the filtering processing. For image tex-
ture filtering, Cho et al. [4] address this issue by computing
the guidance using a patch-based approach that reliably cap-
tures the image structure. This idea was later adopted by
Zhang et al. [10] for mesh denoising, where a patch-based
guidance is computed for filtering the face normals. Another
improvement for the joint bilateral filter is the rolling guidance
filter proposed by [5], which iteratively updates an image
using the previous iterate as a dynamic guidance, and is able
to separate signals at different scales. Recently, this approach
was adapted by Wang et al. [11] to derive a rolling guidance
normal filter (RGNF), with impressive results for scale-aware
geometric processing.

For guided filtering, the use of static versus dynamic guid-
ance presents a trade-off between their properties. Static
guidance enables direct and intuitive control over the filter-
ing process, but is not trivial to construct a priori for general
shapes. Dynamic guidance, such as the one used in RGNF, is
automatically updated according to the current signal values,
but can be less robust when there are outliers or noises in the
input signal. Recently, Ham et al. [12] combine static and
dynamic guidance for robust image filtering. Inspired by
their work, we propose in this paper a new approach for fil-
tering signals defined on mesh surfaces, by utilizing both
static and dynamic guidances. The filtered signal is com-
puted by minimizing a target function that enforces consis-
tency of signal values within each neighborhood, while
incorporating structural information provided by a static
guidance. To solve the resulting noncovex optimization prob-
lem, we develop an efficient fixed-point iteration solver,
which significantly outperforms the majorization-minimiza-
tion (MM) algorithm proposed by [12] for similar problems.
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Moreover, unlike the MM algorithm, our solver can handle
constraints such as unit length for face normals, which are
important for geometry processing problems. Our solver iter-
atively updates the signal values by combining the original
signal with the current signal from a spatial neighborhood.
The combination weights are determined according to the
static input guidance as well as a dynamic guidance derived
from the current signal. The proposed method, called static/
dynamic (SD) filtering, benefits from both types of guidance
and produces scale-aware and feature-preserving results.

The proposed method can be applied to different signals
on mesh surfaces. When applied to face normals followed by
vertex updates, it filters geometric features according to their
scales. When applied to mesh colors obtained from texture
mapping, it filters the colors based on the metric on the mesh
surface. In addition, utilizing the scale-awareness of the filter,
we apply it repeatedly to separate signal components of dif-
ferent scales; the results can be combined according to user-
specifiedweights, allowing for intuitive featuremanipulation
and enhancement. Extensive experimental results demon-
strate the efficiency and effectiveness of our filter. We also
release the source codes to ensure reproducibility.

In addition, we propose a new method for vertex update
according to face normals, using a nonlinear optimization
formulation that enforces the face normal conditions while
preserving local triangle shapes. The vertex positions are
computed by iteratively solving a linear system with a fixed
sparse positive definite matrix, which is done efficiently via
pre-factorization of the matrix. Compared with existing
approaches, our method produces meshes that are more
consistent with the filtered face normals.

In summary, our main contributions include:

� we extend the work of Ham et al. [12] and propose
an SD filter for signals defined on triangular meshes,
formulated as an optimization problem;

� we develop an efficient fixed-point iteration solver
for the SD filter, which can handle constraints such
as unit normals and significantly outperforms the
MM solver from [12];

� we propose an efficient approach for updating vertex
positions according to filtered face normals, which
produces newmeshes that are consistent with the tar-
get normalswhile preserving local triangle shapes;

� based on the SD filter, we develop a method to sepa-
rate and combine signal components of different
scales, enabling intuitive feature manipulation for
mesh geometry and texture color.

2 RELATED WORK

In the past, various filtering approaches have been proposed
to process mesh geometry. Early work from Taubin [13] and
Desbrun et al. [14] applied low-pass filters on meshes, which
remove high-frequency noises but also attenuate sharp fea-
tures. Later, Taubin [15] proposed a two-step approach that
first performs smoothing on face normals, followed by vertex
position updates using anisotropic filters. To enhance crease
edges, Ohtake et al. [16] applied anisotropic diffusion to
mesh normals before updating vertex positions. Chuang and
Kazhdan [17] developed a framework for curvature-aware
mesh filtering based on the screened Poisson equation.

An important class of mesh filtering techniques is based
on the bilateral filter [1]. On images, the bilateral filter
updates a pixel using a weighted average of its neighboring
pixels, with larger contribution from pixels that are closer in
spatial or range domain. It can smooth images while pre-
serving edges where there is large difference between
neighboring pixel values [18]. Different methods have been
developed to adapt the bilateral filter to mesh geometry.
Fleishman et al. [6] and Jones et al. [7] applied the bilateral
filter to the mesh vertex positions for feature-preserving
mesh denoising. Zheng et al. [8] applied the bilateral filter
to mesh face normals instead, followed by vertex position
update to reconstruct the mesh shape. Solomon et al. [9]
proposed a framework for bilateral filter that is applicable
for signals on general domains including images and
meshes, with a rigorous theoretical foundation. Besides
denoising, bilateral filtering has also been applied for other
geometry processing applications such as point cloud nor-
mal enhancement [19] and mesh feature recovery [20].

Fig. 1. Our SD filter can be used for scale-aware filtering of mesh geometry, allowing us to separate geometry signals according to their scales. Such
decomposition can be used for manipulating geometric details, boosting or attenuating features at different scales.
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The bilateral filter inspired a large amount of follow-up
work on image filtering. Among them, the joint bilateral fil-
ter [2], [3] extends the original bilateral filter by evaluating the
spatial kernel using a guidance image. It can produce more
reliable results when the guidance image correctly captures
the structural information of the target signal. This property
was utilized by Eisemann & Durand [2] and Petschnigg
et al. [3] to filter flash photos, using corresponding non-flash
photos as the guidance. Kopf et al. [21] and Cho et al. [4]
applied the joint bilateral filter for image upsampling and
structure-preserving image decomposition, respectively. In
particular, a patch-based guidance is constructed in [4] to cap-
ture the input image structure. This idea was later adopted
in [10] for filtering mesh face normals, where the guidance
normals are computed using surface patches with the most
consistent normals. Zhang et al. [5] proposed a different
approach to guidance construction in their iterative rolling
guidance filter, where the resulting image from an iteration is
used as a dynamic guidance for the next iteration. The rolling
guidance filter produces impressive results for scale-aware
image processing, and is able to filter out features according
to their scales. Wang et al. [11] adapted this approach to filter
mesh face normals; the resulting rolling guidance normal filter
enables scale-aware processing of geometric features, but is
sensitive to noises on the input model. Recently, Ham
et al. [12] proposed a robust image filtering technique based
on an optimization formulation that involves a nonconvex
regularizer. Their technique is effectively an iterative filter
that incorporates both static and dynamic guidances, and
achieves superior results in terms of robustness, feature-
preservation, and scale-awareness. Our SD filter is based on a
similar optimization formulation, but takes into account the
larger filtering neighborhoods that are necessary for geometry
signals. It enjoys the same desirable properties as its counter-
part in image processing. In addition, the numerical solver
proposed in [12] can only handle unconstrained signals, and
is less efficient for the large neighborhoods used in our formu-
lation. We therefore propose a new solver that outperforms
the one from [12], while allowing for constrained signals such
as unit normals.

Feature-preserving signal smoothing can also be achieved
via optimization. Notable examples include image smoothing
algorithms that induce sparsity of image gradients via
‘0-norm [22] or ‘1-norm [23] regularization. These approaches
were later adapted for mesh smoothing and denoising [24],
[25], [26]. Although effective inmany cases, their optimization
formulation only regularizes the signal difference between
immediately neighboring faces. In comparison, our optimiza-
tion compares signals within a neighborhood with user-
specified size, which provides more flexibility and achieves
better preservation of large-scale features.

From a signal processing point of view, meshes can be
seen as a combination of signals with multiple frequency
bands, which also relates with the scale space analysis [27].
Previous work separate geometry signals of different fre-
quencies using eigenfunctions of the heat kernel [28] or the
Laplace operator [29], [30]. Although developed with sound
theoretical foundations, such approaches are computation-
ally expensive. Moreover, as specific geometric features can
span across a wide range of frequencies, it is not easy to pre-
serve or manipulate them with such approaches. The recent

work from Wang et al. [11] provides an efficient way to sep-
arate and edit geometric features of different scales, har-
nessing the scale-aware property of the rolling guidance
filter. Our SD filter also supports scale-aware processing of
geometry signals, with more robustness than RGNF thanks
to the incorporation of both static and dynamic guidances.

3 THE SD FILTER

The SD filter was originally proposed by Ham et al. [12] for
robust image processing. Given an input image F and a
static guidance image G, they compute an output image U
via optimization

min
U

X
i

giðUi � FiÞ2 þ �
X

ði;jÞ2N
fmðGi �GjÞ � cnðUi � UjÞ;

(1)

where Fi;Gi; Ui are the pixel values of F , G and U respec-
tively, gi and � are user-specified weights, N denotes the
set of 8-connected neighboring pixels, and

fmðxÞ ¼ exp � x2

2m2

� �
; cnðxÞ ¼ 1� fnðxÞ: (2)

The first term in the target function is a fidelity term that
requires the output image to be close to the input image,while
the second term is a regularizer for the output image. Func-
tion cn (see Fig. 2) penalizes the difference between adjacent
pixels, butwith boundedpenalty for pixel pairswith large dif-
ference which correspond to edges or outliers. When n

approaches 0, cn approaches the ‘0 norm. Function fm is a
Gaussian weight according to the guidance, with larger
weights for pixel pairs with closer guidances. Thus the regu-
larizer promotes smooth regions and preserves sharp features
based on the guidance, and is robust to outliers.

In this paper,we propose an SDfilter for signals defined on
2-manifold surfaces represented as triangular meshes. We
begin our discussion with filtering face normals, a common
approach for smoothingmesh geometry [8], [9], [10], [31].

3.1 SD Filter for Face Normals

For a given orientable triangular mesh, let ni 2 R3 be the
outward unit normal of face fi, computed as

ni ¼ ðvi1 � vi2Þ � ðvi3 � vi2Þ
kðvi1 � vi2Þ � ðvi3 � vi2Þk

; (3)

where vi1 ; vi2 ; vi3 2 R3 are its vertex positions enumerated
according to the orientation. We associate the normal with
the face centroid ci ¼ 1

3

P3
k¼1 vik . We first filter the face

Fig. 2. The graphs of cnðxÞ with different n parameters.
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normals, and then update the mesh vertices accordingly. To
define an SD filter for the normals fnig, we must consider
some major differences compared with image filtering:

� Image pixels are located on a regular grid, but mesh
faces may result from irregular sampling of the
surface.

� To smooth an image, the SD filter as per Eq. (1) only
considers the difference between a pixel and its eight
neighbor pixels. On meshes, however, geometry fea-
tures can span across a large region, thus we may
need to compare face normals beyond one-ring
neighborhoods [11]. Moreover, similar to the bilat-
eral filter, such comparison should consider the dif-
ference between the spatial locations, with stronger
penalty for normal deviation between faces that are
closer to each other.

Therefore, we compute the filtered normals fnig by mini-
mizing a target function

ESD ¼ Efid þ �Ereg; (4)

with a user-specified weight � > 0. Here Efid is a fidelity
term between the input and output normals,

Efid ¼
X
i

Aikni � n̂ik2; (5)

where n̂i; Ai are the normal and area of face fi, respectively.
Ereg is a regularization term defined as

Ereg ¼
X
i

X
fj2NðiÞ

½ Aj � fhðkci � cjkÞ

� fmðkgi � gjkÞ � cnðkni � njkÞ �;
(6)

where fgig are the guidance face normals, and NðiÞ denotes
the set of neighboring faces of fi. The Gaussian standard
deviation parameters h;m; n 2 Rþ are controlled by the user.
Compared with the image regularizer in Eq. (1), this formu-
lation introduces a Gaussian weight fh for the spatial loca-
tions of face normals. Here fh is defined according to the
euclidean distance between face centroids for simplicity of
computation, but other distance measures such as the geo-
desic distance can also be used. For each face fi, its neigh-
borhood NðiÞ is chosen to be the set of faces with a
significant value of the spatial weight fhðkci � cjkÞ. Using
the empirical three-sigma rule [32], we include in NðiÞ the
faces ffjg with kcj � cik � 3h, which can be found using a
breadth-first search from fi.

The target function ESD is nonconvex because of cn, and
needs to be minimized numerically. In the following, we
first show how the majorization-minimization (MM) algo-
rithm proposed in [12] can be extended to solve this prob-
lem. Afterwards, we propose a new fixed-point iteration
solver that significantly outperforms the MM algorithm and
is suitable for interactive applications.

MM Algorithm. For the SD image filter, Ham et al. [12]
proposed a majorization-minimization (MM) algorithm to
iteratively minimize the target function (1). In each iteration,
the target function is replaced by a convex surrogate func-
tion that bounds it from above, which is computed using
the current variable values. This surrogate function is then
minimized to update the variables. The MM solver is

guaranteed to converge to a local minimum of the target
function. Thus a straightforward way to minimize the new
target function (4) is to employ the MM algorithm, using the
convex surrogate functionCt

n for cnðxÞ at x ¼ t [12]:

Ct
nðxÞ ¼ cnðtÞ þ ðx2 � t2Þð1=2n2 � cnðtÞ=2n2Þ: (7)

Specifically, with the variable values nk
i

� �
at iteration k, we

replace the term cnðkni � njkÞ in the target function by its

convex surrogate C
knk

i
�nk

j
k

n ðkni � njkÞ according to Eq. (7).

The updated variable values nkþ1
i

� �
are computed from the

resulting convex problem

min
fnkþ1

i
g

X
i

Aiknkþ1
i � n̂ik2 þ �

X
i

X
fj2NðiÞ

wk
ijknkþ1

i � nkþ1
j k22;

(8)
where

wk
ij ¼

Aj

2n2
� fhðkci � cjkÞ � fmðkgi � gjkÞ � fnðknk

i � nk
jkÞ: (9)

Due to the symmetry of neighboring relation between faces
(i.e., fj 2 NðiÞ , fi 2 NðjÞ), the optimization problem (8)
amounts to solving a linear system:

ðDþ �MkÞNkþ1 ¼ DN̂; (10)

where D ¼ diagðA1; A2; . . . ; Anf Þ with nf being the number

of faces,Nkþ1; N̂ 2 Rnf�3 stack the values of fnkþ1
i g and fn̂ig

respectively, and Mk 2 Rnf�nf is a symmetric matrix with

diagonal elements

mk
ii ¼

X
j2NðiÞ

wk
ij þ wk

ji

� �
;

and off-diagonal elements

mk
ij ¼

�wk
ij � wk

ji; if j 2 NðiÞ;
0; otherwise:

(

The linear system matrix in Eq. (10) is diagonally dominant
and symmetric positive definite, and can be solved using
standard linear algebra routines.

Fixed-Point Iteration Solver. Although the MM algorithm
works well on images, its performance on meshes is often
unsatisfactory. Due to larger face neighborhoods, there are
a large number of nonzeros in the linear system matrix of
Eq. (10), resulting in long computation time for each itera-
tion. In the following, we propose a more efficient solver
that is suitable for interactive applications. Note that a local
minimum of the target function (4) should satisfy the first
order optimality condition @ESD=@ni ¼ 0 for each ni, which
expands into

Aiðni � n̂iÞ þ �
X

fj2NðiÞ
bijðni � njÞ ¼ 0; 8 i; (11)

where

bij ¼ Ai þAj

2n2
fhðkci � cjkÞ � fmðkgi � gjkÞ � fnðkni � njkÞ:

(12)
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The Eq. (11) can be solved using fixed-point iteration

nkþ1
i ¼

Ain̂i þ �
P

fj2NðiÞ b
k
ijn

k
j

Ai þ �
P

fj2NðiÞ b
k
ij

; (13)

with bkij ¼ AiþAj

2n2
fhðkci � cjkÞ � fmðkgi � gjkÞ � fnðknk

i � nk
jkÞ.

In this way, the updated normal nkþ1
i of a face fi is a convex

combination of its initial normal n̂i and the current normals

fnk
jg of the faces in its neighborhood. The convex combina-

tion coefficient for a neighboring face normal nk
j depends on

both the (static) difference between the guidance normals

ðgi; gjÞ on the two faces, and the (dynamic) difference

between their current normals ðnk
i ;n

k
j Þ, hence the name

static/dynamic filter. Moreover, there is an interesting con-
nection between the fixed-point iteration and the MM algo-

rithm: the iteration (13) is a single step of Jacobi iteration for

solving the MM linear system (10).
It can be shown that the fixed-point iteration monotoni-

cally decreases the target function value until it converges
to a local minimum. A proof is provided in the supplemen-
tary material, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TVCG.2018.2816926. Moreover, the face normal
updates are trivially parallelizable, enabling speedup on
GPUs and multi-core CPUs. Our fixed-point solver is signif-
icantly faster than the MM algorithm, as shown in Fig. 3
where we compare the change of target energy with respect
to the computational time between the two solvers. Here
the spatial Gaussian parameter h is set to three times the
average distance between neighboring face centroids in the
mesh. To achieve the best performance for the MM solver,
we tested two strategies for solving the MM linear system:
1) pre-computing symbolic Cholesky factorization of the
system matrix, and performing numerical factorization in
each iteration, with the three right-hand-sides for x-, and y-
and z-coordinates solved in parallel; 2) conjugate gradient
method with parallel sparse matrix-vector multiplication.

Due to the large neighborhood size, the MM system matrix
has a large number of non-zeros in each row, and the Cho-
lesky factorization approach is much more time-consuming
than conjugate gradient. Therefore, we only show the conju-
gate gradient timing. We can see that the fixed-point solver
is much more efficient than the MM algorithm, drastically
reducing the energy to a value close to the solution within a
fraction of the computational time for one MM iteration.
This phenomenon is observed in our experiments with
other models as well. Detailed results are provided in the
supplemental materials, available online.

Enforcing Unit Normal Constraints. The target function
ESD in Eq. (4) adapts the SD filter to mesh face normals in a
straightforward way, but fails to recognize the requirement
that all normals should lie on the unit sphere. In fact, start-
ing from the unit face normals of the input mesh, ESD can
be decreased by simply shrinking the normals without
changing their directions, and the filtered normals can have
different lengths across the mesh. In other words, without
the requirement of unit normals, the difference between
two normal vectors is not a reliable measure of the deviation
between their directions, which makes ESD less effective for
controlling the filter. To resolve this issue, we derive a new
target function ESD for optimization, by substituting each
normal vector niði ¼ 1; . . . ; nfÞ in ESD with its normalization
ni ¼ ni=knik. However, such normalization increases the
nonlinearity of the problem and makes its numerical solu-
tion more challenging. The MM algorithm is no longer
applicable, because the quadratic surrogate in Eq. (7) does
not hold here. On the other hand, the fixed-point iteration
solver can be slightly modified to minimize ESD efficiently.
At a local minimum, the first-order optimality condition
@ESD=@ni ¼ 0 amounts to

I3 � nin
T
i

� 	
ni �

Ain̂i þ �
P

fj2NðiÞ bijnj

Ai þ �
P

fj2NðiÞ bij

 !
¼ 0; (14)

where

bij ¼ Ai þAj

2n2
fhðkci � cjkÞ � fmðkgi � gjkÞ � fnðkni � njkÞ;

and I3 is the 3� 3 identity matrix. The matrix I3 � nin
T
i rep-

resents the projection onto the subspace orthogonal to ni.
Geometrically, condition (14) means that the linear combi-
nation Ain̂i þ �

P
fj2NðiÞ bijnj must be parallel to ni. There-

fore, we can update ni via

nkþ1
i ¼

Ain̂i þ �
P

fj2NðiÞ b
k

ijn
k
j

kAin̂i þ �
P

fj2NðiÞ b
k

ijn
k
jk

; (15)

with b
k

ij ¼ AiþAj

2n2
fhðkci � cjkÞ � fmðkgi � gjkÞ � fnðknk

i � nk
jkÞ.

Compared with the previous iteration format (13), this sim-
ply adds a normalization step after each iteration.

Similar to the previous fixed-point iteration format, the
new solver with Eq. (15) is embarrassingly parallel, and rap-
idly decreases the target function within a small number of
iterations (see Fig. 4). In the following, all examples of SD
normal filtering are processed using this solver.

Vertex Update. After filtering the face normals, we need
to update the mesh vertices accordingly. Many existing

Fig. 3. The change of target energy ESD for the Gargoyle model with
respect to the computational time, using the fixed-point iteration
solver (13) for 100 iterations and the MM algorithm for 5 iterations,
respectively. The fixed-point iteration solver takes much shorter time per
iteration, and reduces the energy to a value close to the solution within a
fraction of the time for one MM iteration.
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methods do so by enforcing orthogonality between the new
edge vectors and the target face normals [31]. Although
very efficient, such methods can result in a large number of
flipped triangles, because the orthogonality constraint is still
satisfied if the updated face normal is opposite to the target
one. To address this issue, we propose a new update
method that directly enforces the oriented normals as soft
constraints, in the same way as [33]. Specifically, for each
face fi with a target oriented unit normal n̂i, we define Ci as
the feasible set of its vertex positions for which the resulting
oriented unit normal is n̂i. The new vertex positions
V ¼ ½v1; . . . ; vnv �T 2 Rnv�3 are determined by solving

min
V;P

w kV�V0k2F þ
Xnf
i¼1

kMVfi � Pik2F þ siðPiÞ: (16)

Here the first term penalizes the deviation between the new
vertex positions and the original vertex positions V0, with
k � kF being the Frobenius norm. w is a user-specified posi-
tive weight, which is set to 0.001 by default. Matrix
Vfi 2 R3�3 stores the vertex positions of face fi in its rows.
Matrix

M ¼ 1

3

2 �1 �1
�1 2 �1
�1 �1 2

24 35;
produces the mean-centered vertex positions for a face.
Pi 2 R3�3 are auxiliary variables representing the closest
projection of MVfi onto the feasible set Ci, and si is an indi-
cator function for Ci, so that

siðPiÞ ¼ 0 if Pi 2 Ci;
þ1 otherwise:



The second term of the target function (16) penalizes the vio-
lation of oriented normal constraint for each face, using the
squared euclidean distance to the feasible sets. The use of
mean-centering matrix M utilizes the translation-invariance
of the oriented normal constraint, to allow for faster conver-
gence of the solver [33]. Overall, this optimization problem

searches for new vertex positions that satisfy the oriented
normal constraints as much as possible, while being close the
original positions. It is solved via alternating minimization
ofV and P, following the approach of [33]:

� First, we fix V and update P. This reduces to a set of
separable subproblems, each projecting the current
mean-centered vertex positions MVfi of a face to the
corresponding feasible set Ci. Namely, we look for
vertex positions Pi closest to MVfi while achieving
the target oriented unit normal n̂i. The normal condi-
tion means that Pi must lie on a plane orthogonal to
n̂i. Moreover, as the mean of the three vertex posi-
tions in MVfi is at the origin, it can be shown that
the mean of Pi must also lie at the origin. As a result,
Pi must lie on a plane that passes through the origin
and is orthogonal to n̂i. The closest projection from
MVfi onto this plane can be computed as

Pi ¼ MVfiðI3 � n̂in̂
T
i Þ:

Let ni be the oriented unit normal for the current ver-
tex positions MVfi . Then depending on the relation
between ni and n̂i, we have two possible solutions
for Pi.
1) If ni � n̂i � 0, then the oriented unit normal for Pi

is n̂i, and we have Pi ¼ Pi.
2) If ni � n̂i < 0, then the oriented unit normal for Pi

is �n̂i. In this case, the solution Pi degenerates to
three colinear points that lie in the plane of Pi

and minimizes the distance kPi � PikF . This can
be computed as

Pi ¼ PiðhhT Þ;
where h is the right-singular vector of Pi corre-
sponding to its largest singular value.

The subproblem for each face is independent and can be

solved in parallel.

� Next, we fix P and update V. This is equivalent to

min
V

wkV�V0k2F þ kKV� Pk2F ;

where the sparse matrix K 2 R3nf�nv collects the
mean-centering matrix coefficients for each face.
This amounts to solving a sparse positive definite
linear system

½wInv þKTK�V ¼ wV0 þKTP;

where Inv is the nv � nv identity matrix. The three
right-hand-sides of the system corresponds to the x-,
y-, and z-coordinates, and can be solved in parallel.
Moreover, the system matrix is fixed during all itera-
tions, thus we can pre-compute its Cholesky factori-
zation to allow for efficient solving in each iteration.

The above alternating minimization is repeated until con-
vergence. We use 20 iterations in all our experiments, which
is sufficient to achieve nice results.

Our vertex update method can efficiently compute a new
mesh that is consistent with the target face normals, while
being close to the original mesh shape. Fig. 5 compares our

Fig. 4. The change of the modified target energy ESD with respect to the
number of iterations, using our fixed-point iteration solver (15) for the
cube model in Fig. 8. The solver rapidly decreases the energy within a
small number of iterations.
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approach with the vertex update method proposed in [11],
which also avoids flipped triangles. Given the target ori-
ented normal for each face, they first rotate the current face
to align its oriented normal with the target normal; then the
new vertex positions are computed by matching the new
face gradients with the rotated ones in a least-squares man-
ner, by solving a Poisson linear system. For each method,
we evaluate the deviation between the resulting mesh and
the original mesh by aligning their centroids to minimize
their ‘2 norm of their vertex deviation (shown in the top cen-
ter of Fig. 5), and then visualizing the deviation of each ver-
tex via color coding. The resulting mesh using our method
is noticeably closer to the original mesh, as we explicitly
enforce closeness in our target function. This is desirable for
many applications such as mesh denoising. In addition, we
compute the deviation between the resulting face normals
and the target normals, and visualize their distribution
using histogram as well as color-coding on the mesh sur-
face. Our method leads to smaller deviation between the
target and the resulting normals. Although the computa-
tional time of our method (0.4313 seconds) is higher than
the method from [11] (0.1923 seconds), it does not make a
significant difference to the total filtering time (see Table 1).

3.2 SD Filter for Texture Colors

Our SD filter can be applied to not only face normals, but
also other signals defined on mesh surfaces. One example is
RGB colors from texture mapping. Given a texture image
and its target triangular mesh, we can use the texture coor-
dinates to identify each pixel i that gets mapped to the sur-
face, as well as its target position pi 2 R3 on the mesh. In
this way, the texture color becomes a signal defined on the
mesh surface, associated with the points fpig. Let fgig be
the guidance colors for these points. We compute the fil-
tered texture colors fqig by minimizing the target function
ESD in Eq. (4), with ci;ni replaced by pi;qi respectively,
and using the distance between points pi to define the

neighborhoods and compute the spatial Gaussian weights.
Thus the texture colors are filtered according to the metric
on the mesh surface instead of the distance on the image
plane. The optimization problem is solved using uncon-
strained fixed-point iteration similar to (13). Fig. 6 shows
some examples of texture color filtering.

4 RESULTS AND APPLICATIONS

In this section, we use a series of examples to demonstrate
the efficiency and effectiveness of our SD filter, as well as its
various applications. We also compare the SD filter with
related methods including ‘0 optimization [25] and rolling
guidance normal filter (RGNF) [11].

Implementation. Our algorithm is implemented in C++,
using EIGEN [34] for all linear algebra operations. For filter-
ing of face normals, we run the iterative solver until one of
the following conditions is satisfied: 1) the solver reaches
the maximum number iterations, which is set to 100 for all
our experiments; or 2) the area-weighted ‘2 norm of normal
changes between two consecutive iterations is smaller than
a certain threshold angle �, i.e.,

P
i Aiknkþ1

i � nk
i k2 �

4 sin ð�=2Þ½ �2Pi Ai: We set � to 0.2 degrees in all our experi-
ments. For filtering of texture colors, we run the solver for
50 iterations. Unless stated otherwise, all examples are run
on a desktop PC with 16 GB of RAM and a quad-core CPU
at 3.6 GHz, using OpenMP for parallelization.

In all examples, the spatial Gaussian parameter h is speci-
fied with respect to the average distance between adjacent
face centroids, denoted as lc. By default, the initial signal is
used as the guidance. For more intuitive control of the opti-
mization, we also rescale the user-specified regularizer
weight � according to the value of h. As h increases, the inte-
gral of spatial Gaussian fh on the corresponding face neigh-
borhood also increases, and the relative scale of the
regularizer term with respect to the fidelity term grows.
Therefore, we compensate for the change of the regularizer

Fig. 5. Comparison between our vertex update method and the Poisson-based update method from [11], based on the same original mesh (left) and
target normals. Top center: we align the centroid of each resulting mesh (in blue) with the centroid of the original mesh (in yellow) to minimize the ‘2
norm of the deviation between their vertices; the Poisson-based method leads to larger deviation from the original mesh. Bottom center: the deviation
between individual vertices after the centroid alignment is visualized via color coding. Right: we evaluate the deviation between the resulting normals
and target normals for each face, and visualize its distribution across the mesh via histogram (top right) and color coding (bottom right).
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scale due to h, by rescaling � with a factor
P

i Ai

� 	
=

ðPi

P
fj2NðiÞ Ajfhðkci � cjkÞÞ.

The source code for our SD filter is available at https://
github.com/bldeng/MeshSDFilter. The parameters for the
examples in this section can be found in the supplemental
material, available online.

Scale-Aware and Feature-Preserving Filtering. The SD filter
can effectively remove features based on their scales accord-
ing to the user-specified parameters. This is demonstrated
in Fig. 7, where the input models are a sphere and a cube
with additional features of different scales on the surfaces.
Using different parameter settings, the SD filter gradually
removes the geometry features of increasing scales, while
preserving the sharp edges on the cube. Similar scale-aware
and feature-preserving effects are observed for filtering of
texture colors, as shown in Fig. 6.

In Figs. 8, 9, and 10,we showmore examples of scale-aware
and feature-preserving filtering of mesh geometry using the
SD filter, and compare the results with ‘0 optimization
method from [25] and RGNF from [11]. We tune the parame-
ters of eachmethod to achieve the best results, while ensuring
comparable effects from different methods. In all examples,
the SD filter achieves better or similar results compared with

RGNF, and outperforms ‘0 optimization. In Fig. 8, the input
model is a cube with additional features on each face, and the
result with the SD filter is the closest to the cube shape. The
result with RGNF has larger deviation from the cube shape,
because the filtered signals are computed as a combination of
the original signals within a neighborhood; as a consequence,
when there is large deviation between the input signals and
the desired output within a certain region, RGNF may not
produce a desirable result inside the region. By default,Wang
et al. [11] run RGNF for 5 iterations. To verify its convergence,
we run 50 iterations of RGNF and compare the results. We
can see that the resulting mesh with 50 RGNF iterations is
slightly closer to the cube shape, but the difference is not sig-
nificant, and the undesirable deviation around the edges
remains. For comparison, we also run the SD filter for 50 and

Fig. 6. SD filtering of texture image, which can smooth out features based on their scales on the mesh surface.

Fig. 7. By repeatedly applying our SD normal filter with different parame-
ters, we can gradually remove the geometry features of increasing
scales. Detailed parameter values can be found in the supplemental
material, available online.

Fig. 8. Comparison between the SD normal filter, RGNF, and ‘0 optimi-
zation, using a cube shape with added features on each side. The color-
map shows the deviation between the results and the original cube
shape. The result from the SD filter is the closest to the cube.
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500 iterations respectively. Similar to RGNF, running more
iterations of SD filters makes the result slightly closer to the
cube shape, but without significant difference. In Fig. 9, the
SD filter is able to smooth out the star-shaped features on
the knot surface, while enhancing the sharp feature lines
between different sides of the knot. Although ‘0 optimization
also enhances the feature lines, it leads to piecewise flat
shapes because the ‘0 norm promotes piecewise constant sig-
nals. Similar to Fig. 8, we run RGNF for 5 and 50 iterations,
and the SD filter for 50 and 500 filters, to compare their results
and convergence. For both filters, running for more iterations
slightly improve the result, but without significant difference.
In Fig. 10, the three methods produce similar results on the
Merlionmodel, while the scale-awareness of the SD filter ena-
bles it to remove the fine brick lines at the base while clearly
retaining the letters.

Coating Transfer. Similar to [11], our filter can be utilized to
perform coating transfer [35], which transfers geometric tex-
tures from a source mesh to a target mesh. An example is
shown in Fig. 11. Here following [11], we first filter the source
mesh to remove the letters on its surface, and encode them
using the difference between Laplacian coordinates of the
mesh before and after the filtering. We then transfer these let-
ters onto the base cube shape of the target mesh which is also
obtained by filtering: the encoded letter shapes are added to
the Laplacian coordinates of the base cube mesh, and a new
mesh is reconstructed from the resulting Laplacian coordi-
nates. For comparison, we also show the results using [11],
where the meshes are processed using the RGNF instead of
the SD filter. While both methods can extract the source geo-
metric textures and prepare the target cubemesh, the SD filter
produces better a result in preserving the sharp edges and
recovering the flat faces of the cube shape.

Choice of Parameters. Our filter is influenced by four
parameters: the regularizer weight �, the spatial Gaussian
parameter h which also influences the neighborhood size,
the guidance Gaussian parameter m, and the range Gauss-
ian parameter n. For both � and h, a larger value leads to a
smoother result, as shown in Fig. 12. Parameters m and n

determine which face normals within a neighborhood

Fig. 9. Filtering of the Knot model. The SD filter removes the features on
each side of the knot and produces smooth appearance, while sharpen-
ing the edges between different sides.

Fig. 10. Scale-aware filtering of the Merlion model, in comparison with ‘0
optimization and RGNF. Each row shows comparable results using the
three methods, while each column shows the results from one method.
The SD filter successfully removes the fine brick lines at the base, while
preserving the letters on the base.

Fig. 11. Coating transfer between two meshes, by first filtering the
source mesh to obtain its geometric textures, and applying them to the
base cube shape of the target mesh which is also obtained via filtering.
The SD filter produces a better result in preserving the sharp edges and
recovering the flat faces of the underlying cube shape.

Fig. 12. A larger value of � or h leads to a smoother filtering result. Here
each rows shows the filtering results with increasing values of � or h,
while keeping the other parameters fixed.
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affects the central face in a fixed-point iteration. For more
intuitive control, we propose a method to interactively set
the m and n parameters. First, the user selects two smooth
regions on different sides of a feature intended to be kept.
We denote the two regions as P1 and P2, and compute the
mean enl and variance sl (l ¼ 1; 2) of the normals within each
region via

enl ¼
P

i2Pl
AiniP

i2Pl
Aini

��� ��� ; s2
l ¼

P
i2Pl Ai ni � enlk k2P

i2Pl Ai
:

Then the range of n is determined using the following strat-
egy: n should be small enough such that the two mean nor-
mals have negligible influence on each other according to
the range Gaussian; at the same time, within each region the
normals should influence each other such that sharp fea-
tures do not emerge. Based on this strategy, we first deter-
mine the lower- and upper-bounds of n via

nmin ¼ 1

2
maxðs1; s2Þ; nmax ¼ 1

3
en1 � en2k k:

If nmax < nmin, then the user needs to select another pair of
regions; otherwise, a value between nmin and nmax as the
parameter n. In our experiments, good results can often
be achieved by choosing n ¼ ðnmin þ nmaxÞ=2 and setting
m ¼ a � n with a 2 ½1; 10�. Fig. 13 shows the effects of differ-
ent n values on the Chinese lion model.

Feature Manipulation and Enhancement. The scale-
awareness of our filter enables us to manipulate mesh
details according to their scales. Given an input mesh M,

we repeatedly apply the SD normal filter with different
parameters to obtain a series of filtered meshes
Mm�1; . . . ;M1;M0, where Mkðk ¼ 0; . . . ;m� 2Þ is obtained
by filtering Mkþ1 to remove more details. If we denote the
input mesh as Mm, then M0; . . . ;Mm forms a coarse-to-fine
sequence of meshes, with M0 being the base mesh, and Mm

being the original mesh. We encode the difference between
two consecutive meshes Mk;Mk�1 by comparing their cor-
responding vertex positions and face normals, represented
as dk

i ¼ v
ðkÞ
i � v

ðk�1Þ
i ði ¼ 1; . . . ; nvÞ and fkj ¼ n

ðkÞ
j � n

ðk�1Þ
j ði ¼

1; . . . ; nfÞ, where v
ðkÞ
i

n o
and n

ðkÞ
j

n o
are the vertex positions

and face normals of mesh Mk. These differences represent

the required deformation for Mk�1 to introduce the addi-
tional details in Mk. They can be linearly combined accord-
ing to coefficients aa ¼ ½a1; . . . ;am� and added to the face
normals and vertex positions of the base mesh, to derive the
target vertex positions v̂if g and target face normals n̂j

� �
for

a new meshM:

v̂i ¼ v
ð0Þ
i þ

Xm
k¼1

akd
k
i ; n̂j ¼

n
ð0Þ
j þPm

k¼1 akf
k
j

knð0Þ
j þPm

k¼1 akf
k
jk

: (17)

Note that the target vertex positions and target face normals
are often incompatible. To combine the two conditions, we
determine the new mesh by solving the same optimization
problem as our vertex update (16), with the matrix V0 in the
target function storing the target vertex positions. In this
way, the linear combination coefficients aa indicate the con-
tribution of geometric features from the original model

Fig. 13. According to two user-selected regions (shown in red and yellow), we determine upper bound nmax and nmin for the n parameter, which inhibits
influence between the face normals from the two regions, and ensures the smoothing of normals within each region. Within this range, a larger n
leads to smoother results, while a smaller n promotes sharp features between the two selected regions. Here each row shows one pair of selected
regions, and the resulting meshes using different values of n within the corresponding range.
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within a certain range of scales. By changing the value of aa,
a user can control geometric features according to their
scales. Setting all coefficients to 1 recovers the original
mesh, while setting a coefficient to a value different from 1
can boost or attenuate the features of the corresponding
scales. Moreover, the linear system matrix for the optimiza-
tion problem is fixed regardless of the value of aa, and only
needs to be pre-factorized once. Afterwards, the user can
choose any value of aa, and the resulting mesh can be effi-
ciently computed using the pre-factorized system. This
allows the user to interactively explore different linear com-
bination coefficients to achieve desirable results. Figs. 1, 14,
and 15 show examples of new meshes created in this man-
ner. We can see that the coarse-to-fine sequence of meshes
captures the geometrical features of different scales, which

are effectively manipulated using the linear combination
coefficients. In some application scenarios, it is desirable to
only modify the features within a certain region on the
surface. In this case, the target vertex positions and target
normals are linearly combined only within user-selected
regions; outside these regions they remain the same as the
original mesh. Fig. 17 shows such an example, where we
enhance the features of the Gargoyle model in a user-
selected local region. Another example is shown in Fig. 18,
where a 3D human face model is locally enhanced.

Similarly, we can manipulate and enhance texture colors
using the SD filter, as shown in Fig. 16. We first filter the
input texture colors T incrementally to derive a coarse-to-
fine sequence T 0; . . . ; Tm�1; Tm ¼ T . Then new texture col-
ors are computed via linear combination with coefficients aa:

Fig. 14. Geometry feature manipulation and enhancement for the Armadillo model, by controlling the contribution from features of different scales.
Left: A coarse-to-fine sequence of meshes, obtained by repeatedly applying the SD normal filter with different parameters. Right: new meshes gener-
ated using linearly combined target vertex positions and target normals (Eq. (17)), with the combination coefficients shown below each result.

Fig. 15. Geometry feature manipulation and enhancement for the Welsh Dragon model. Left: the coarse-to-fine sequence of meshes resulting from
SD normal filtering. Right: generated new meshes and their corresponding linear combination coefficients.
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T new ¼ T 0 þ
Xm
k¼1

akðTk � Tk�1Þ: (18)

Out-of-bound colors in T new are reset to their closest valid
values.

Mesh Denoising. By constructing appropriate guidance
signals, our SD filter can also be applied for mesh denoising,
as shown in Fig. 19. Here we repeatedly apply the SD nor-
mal filter to each input mesh to remove the noise. In each
run of the filter, the guidance normals are computed from
the current mesh using the patch-based approach proposed
in [10]. The results are evaluated using the average normal
deviation d and the average vertex deviation Dmean from the
ground-truth mesh as proposed in [10]. In addition, similar
to [9], we measure the perceptual difference between the
denoised mesh and the ground truth using the spatial error
term of the STED distance proposed in [36], computed with
one-ring vertex neighborhood. Fig. 19 compares our denois-
ing results with the guided mesh normal filtering (GMNF)
method from [10]. The results from the two methods are
quite close, with similar error metric values. Detailed
parameter settings are provided in the supplementary mate-
rials, available online.

Performance. Using parallelization, our SD filter can
compute the results efficiently. Table 1 provides the

representative computation time of the SD normal filter on
different models, showing the timing for each part of the
algorithm:

� T1: the pre-processing time for finding the
neighborhood;

� T2: the average timing of one iteration;
� T3: the timing for mesh vertex update;
� Ttotal: The total timing for the whole filtering process.
For meshes with less than 100K faces and with h � 3lc,

the whole process typically takes only a few seconds.

5 DISCUSSION AND CONCLUSION

We present the SD filter for triangular meshes, which is for-
mulated as an optimization problem with a target energy
that combines a quadratic fidelity term and a nonconvex
robust regularizer. We develop an efficient fixed-point

Fig. 17. Detail enhancement of the Gargoyle model in a local region
selected by the user (shown in yellow), using the same coarse-to-fine
mesh sequence as Fig. 1.

Fig. 18. Local feature enhancement on a human face model, with the
local region and the combination coefficients annotated below each
result.

Fig. 16. Texture image feature enhancement using the SD filter.
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iteration solver for the problem, enabling the filter to be
applied for interactive applications. Our SD filter general-
izes the joint bilateral filter, combining the static guidance
with a dynamic guidance that is derived from the current
signal values. Thanks to the joint static/dynamic guidance,
the SD filter is robust, feature-preserving and scale-aware,
producing state-of-the-art results for various geometry
processing problems.

Although our solver can incorporate simple constraints
such as unit length for normal vectors, we do not consider
global conditions for the signals. For example, we do not
ensure the integrability of normals, i.e., the existence of a
mesh whose face normals match the filter results; as a result,
some parts of the updated mesh may not be consistent with
the filtered normals. Neither dowe consider the prevention of
self intersection of the updated mesh. Due to the local nature
of our fixed-point iteration, it is not easy to incorporate such
global constraints into the solver. A possible remedy is to
introduce a separate step to enforce these conditions after a
few iterations. Amore in-depth investigation into such global
conditionswill be an interesting problem.

Depending on the parameters, our filter can sometimes
create sharp features in regions that are originally smooth.
For example, this can be seen in the top right image of
Fig. 10, around the scales of the Merion model. One poten-
tial solution is to use spatially varying filter parameters that

adapt to local feature sizes and user preferences, which we
will leave as future work.

Although we only consider filtering of face normals and
texture colors in this paper, our formulation is general
enough to be applied for other scenarios. In the future, we
would like to extend the filter to other geometry signals
such as curvatures and shape operators, and to other geo-
metric representations such as point clouds and implicit
surfaces. Also worth investigating is the application of
fixed-point iteration to similar image filtering problems,
especially where direct linear solve is too slow due to the
problem scale or the neighborhood size.
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