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Abstract: Herein, we use hybrid resampling to address (a) the long-standing prob-

lem of inference on change times and changed parameters in change-point ARX-

GARCH models, and (b) the challenging problem of valid confidence intervals,

after variable selection under sparsity assumptions, for the parameters in linear

regression models with high-dimensional stochastic regressors and asymptotically

stationary noise. For the latter problem, we introduce consistent estimators of

the selected parameters and a resampling approach to overcome the inherent dif-

ficulties of post-selection confidence intervals. For the former problem, we use a

sequential Monte Carlo for the latent states (respresenting the change times and

changed parameters) of a hidden Markov model. Asymptotic efficiency theory

and simulation and empirical studies demonstrate the advantages of the proposed

methods.
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1. Introduction and Background

Consider the linear regression model

yt = β0 +

pn∑
j=1

βjxtj + εt, t = 1, . . . , n, (1.1)

with pn predictor variables xt1, . . . , xt,pn that are uncorrelated with the

mean-zero random disturbances εt. By centering yt and xtj at their re-

spective means, we assume, without loss of generality, that β0 = 0. In the

case of big data, pn is often larger than n. As a result, we need to rely on

sparsity assumptions on the regression coefficients to carry out least squares

or penalized least squares regressions, together with greedy variable selec-

tion algorithms, such as the Lasso, L2-boosting, orthogonal matching pur-

suit (also called orthogonal greedy algorithm, or OGA), sure independence

screening, and high-dimensional information criterion (HDIC), as reviewed

by Ing and Lai (2011). The latter study also derives (a) the convergence

rate of OGA under weak sparsity assumptions, (b)the variable selection

consistency of OGA+HDIC under strong sparsity, and (c) the oracle prop-
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erty of OGA+HDIC+Trimming (i.e., the elimination of irrelevant variables)

such that the resultant regression estimate is equivalent to a least squares

regression on an asymptotically minimal set of relevant regressors.

1.1 Post-selection hypothesis testing and confidence regions

Consider independent Yt ∼ N(µ, 1), for 1 ≤ t ≤ n, and a selection rule

that considers the largest observation Y(n), where (n) = argmax1≤t≤n Yt.

Then, Y(n)−µ is no longer N(0, 1), but has the distribution of the maximum

of n independent standard normal variables. Hence, valid post-selection

confidence intervals have to incorporate the “selection effect” on their cov-

erage probability, as noted by Sorić (1989). For the regression parameters in

(1.1), Zhang and Zhang (2014) and Belloni et al. (2015) have shown how

to incorporate this selection effect to construct post-selection confidence

regions for the regression parameters selected by Lasso-type methods. Fur-

thermore, Ing and Lai (2015) incorporate the selection effect to construct

post-selection confidence regions for OGA selection, whereas Lee and Wu

(2018) do so using a “bootstrap recipe”.

Lee and Taylor (2014) and Lockhart et al. (2014) have shown that

the conditional distributions for the components of Eβ̂Ĵ , given that Ĵ is

selected using greedy-type algorithms, such as OGA and the Lasso, can be
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used to construct valid confidence intervals for these components, where βJ

is the column vector consisting of βj, for j ∈ J ⊂ {1, . . . , pn}, and β̂J is the

corresponding least squares or penalized least squares estimate. Because

X = (xtj)1≤t≤n,1≤j≤pn is nonrandom,

Eβ̂Ĵ = βĴ +
∑
j∈Ĵc

βj(X
T
Ĵ
XĴ)

−1XT
Ĵ
Xj; (1.2)

hence, Eβ̂Ĵ ̸= βĴ unless βj = 0, for j ∈ Ĵ c (i.e., all relevant variables are

selected) or XT
Ĵ
Xj = 0 (i.e., Xj is orthogonal to the linear space spanned by

the column vectors of XĴ), for j ∈ Ĵ c. That the valid confidence intervals

are actually about the components of EβĴ (rather than those of βĴ) has

been pointed out by Ing et al. (2017), who called it the “spill-over effect”

on these post-selection confidence intervals.

1.2 Hybrid resampling

Hybrid resampling, introduced by Chuang and Lai (2000), is a hybrid

of exact and bootstrap methods for constructing confidence regions when

the data-generating processes are too complex for standard approaches to

be applicable. With regard to the exact method, Chuang and Lai (1998)

note that even though the standardized sample mean
√
n(Ȳn−µ) is a pivot
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in the classical example Yi ∼ N(µ, 1),
√
T (ȲT − µ) is highly nonpivotal

when the fixed sample size n is replaced by a group sequential stopping

rule T , because the distribution of T depends on µ. Hence, we require

the exact method introduced by Rosner and Tsiatis (1988), which they

generalize as follows. If {Fθ : θ ∈ Θ} is indexed by a real-valued parameter

θ, an exact equal-tailed confidence region can always be found by using

the well-known duality between hypothesis tests and confidence regions.

Suppose one would like to test the null hypothesis that θ is equal to θ0. Let

R(Y, θ0) be some real-valued test statistic based on the data Y. Let uα(θ0)

be the α-quantile of the distribution of R(Y, θ0) under the distribution

Fθ0 . The null hypothesis is accepted if uα(θ0) < R(Y, θ0) < u1−α(θ0).

An exact equal-tailed confidence region with coverage probability 1 − 2α

consists of all θ0 not rejected by the test, and is therefore given by {θ :

uα(θ) < R(Y, θ) < u1−α(θ)}. The exact method, however, applies only

when there are no nuisance parameters. The bootstrap method replaces the

quantiles uα(θ) and u1−α(θ) with the approximate quantiles u∗
α and u∗

1−α,

respectively, obtained in the following manner. Based on Y, construct an

estimate F̂ of F ∈ F . The quantile u∗
α is defined as the α-quantile of the

distribution of R(Y∗, θ̂), with Y∗ generated from F̂ and θ̂ = θ(F̂ ), yielding

the confidence region {θ : u∗
α < R(Y, θ) < u∗

1−α} with approximate coverage



1.3 Stochastic regressors and martingale regression models 6

probability 1 − 2α. The hybrid resampling confidence region is based on

reducing the family of distributions F to another family of distributions

{F̂θ : θ ∈ Θ}, which is used as the “resampling family” and in which θ is the

unknown parameter of interest. Let ûα(θ) be the α-quantile of the sampling

distribution of R(Y, θ) under the assumption that Y has distribution F̂θ.

The hybrid confidence region results from applying the exact method to

{F̂θ : θ ∈ Θ} and is given by {θ : ûα(θ) < R(Y, θ) < û1−α(θ)}; the quantiles

ûα(θ) and û1−α(θ) can be computed using the bootstrap method.

1.3 Stochastic regressors and martingale regression models

For the case of constant pn in (1.1) with Ft−1-measurable regressor

xt = (xt1, . . . , xt,pn)
T and Ft-measurable εt, such that E(εt | Ft−1) = 0 (i.e.,

{εt,Ft, t ≥ 1} is a martingale difference sequence), where Ft is the filtration

generated by {(xs, ys), 1 ≤ s ≤ t} (i.e., observations up to time t), Lai and

Wei (1982) use martingale theory to analyze the convergence properties

and the asymptotic normality of least squares estimates in time series mod-

els and dynamic input-output systems. For Lasso regularization, Loh and

Wainwright (2012) consider the case of stochastic regressors xt that are

Gaussian VAR(1) processes xt = Axt−1 + ξt with spectral norm ∥A∥ < 1,

where {ξs} is independent of {εs}. Furthermore, Basu and Michailidis



1.3 Stochastic regressors and martingale regression models 7

(2015) consider Ft−1-measurable regressors xt and Ft-measurable errors εt

“generated according to independent, centered, Gaussian stationary pro-

cesses.” They derive the asymptotic properties of the Lasso estimate of β

under usual regularity conditions, such as the restricted eigenvalue or re-

stricted strong convexity assumption, for a theoretical analysis of the Lasso.

In their discussion section, Basu and Michailidis (2015, p.1565) note

that a serious limitation of their approach is that “popular models exhibit-

ing nonlinear dependencies such as ARCH and GARCH are not covered.”

Working with OGA instead of the Lasso, we develop valid post-selection

confidence regions for selected parameters in stochastic regression mod-

els with conditionally heteroscedastic martingale difference random distur-

bances εt, called “martingale regression models” by Guo et al. (2017, p.36).

In Sections 2.2 and 2.6 of the latter work, the authors describe the histori-

cal background and development of models of “speculative prices” in equity

markets. In particular, Section 2 focuses on GARCH(1,1) errors

εt = σtξt, σ2
t = ω + aε2t−1 + bσ2

t−1, (1.3)

and independent and identically distributed (i.i.d.) ξt having a common

standardized Student t-distribution with ν > 2 degrees of freedom in the
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martingale regression model (1.1), with β0 = 0; the case ν = ∞ corresponds

to the standard normal distribution (Lai and Xing (2008, p.150)).

In Section 2, we develop hybrid resampling methods for inference in

martingale regression models, including (a) confidence intervals for selected

regression parameters, and (b) credible intervals for the regression and

GARCH parameters in an empirical Bayes model of the change points of the

time series. We also give implementation details and asymptotic efficiency

results. Section 3 provides simulation and empirical studies to illustrate

the advantages of the proposed methods, as well as further discusson and

concluding remarks.

2. Hybrid Resampling in Martingale Regression Models

2.1 Valid confidence intervals for selected regression parameters

Letting Ĵ ⊂ {1, . . . , pn} with cardinality m be selected using OGA, we

can write (1.1) with β0 = 0 as yt =
∑

j∈Ĵ βjxtj +
∑

j∈Ĵc βjxtj + εt, for t =

1, . . . , n, or Y = XĴβĴ+w in vector form, as in (1.2), where w = XĴcβĴc+

ε. We begin by describing the exact method in the preceding paragraph

when it is applied with resampling to construct a confidence interval for βj,

with j ∈ Ĵ , assuming βĴ\{j} and that the distribution of w is known. We

compare the test statistic Rj(Y,X, θ) with the quantiles uα(θ) and u1−α(θ)
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of Rj(Y
(b)
j ,X, θ), for b = 1, . . . , B, where Y

(b)
j =

∑
i∈Ĵ\{j} βiXi+θXj+w(b).

This enables the hybrid resampling method to construct confidence intervals

for βj, j ∈ Ĵ . The consistency of β̂Ĵ , the least squares estimate of βĴ , in a

martingale regression has recently been established by Lai, Xu, and Yuan

(2020), who also extended the result of Ing and Lai (2011, Theorem 3)

that the set Ĵ of regressors selected by OGA+HDIC contains all relevant

variables with probability approaching one as n → ∞. This and (1.1)

with β0 = 0 then imply that with probability approaching one as n → ∞,

ŵt → εt, where ŵt = yt−
∑

j∈Ĵ β̂jxtj are the residuals and β̂j(j ∈ Ĵ) are the

components of the least squares estimate β̂J . Because {εt} is a conditionally

heteroscedastic martingale difference sequence (and not an i.i.d. sequence),

we apply the double block bootstrap (instead of the usual bootstrap for

i.i.d. data), introduced by Lee and Lai (2009), to the residuals ŵt that

approximate the unobservable εt. Let W = (ŵ1, . . . , ŵn). Because ŵt → εt

with probability approaching one as the sample size n approaches ∞, the

block bootstrap is applicable when the εt are asymptotically stationary; see

Bühlmann (2002). For a block length ℓ(≤ n), define overlapping blocks

Bi,ℓ = (ŵi, . . . , ŵi+ℓ−1), for 1 ≤ i ≤ n − ℓ + 1. A generic block bootstrap

series W∗ consists of m = ⌊n/ℓ⌋ blocks B∗
i,ℓ sampled with replacement

from {Bi,ℓ: : i = 1, . . . , n − ℓ + 1} and pasted end-to-end, such that “the
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block-starting points S1, . . . , Sm are i.i.d. uniform on the possible starting

locations” (i.e., 1, . . . , n − ℓ + 1). Under certain regularity conditions, the

choice ℓ ∝ n1/3 yields the smallest coverage error, of order O(n−1/3) for the

block bootstrap confidence, as noted by Lee and Lai (2009), that fails to

improve upon a normal approximation impeded by the widespread use of

the block bootstraps. They propose the following double block bootstrap

procedure to reduce the coverage error by an order of magnitude to achieve

a marked improvement over the normal approximation.

The first level of the double bootstrap gives the above block bootstrap

series W∗. For i = 1, . . . ,m, divide block B∗
i,ℓ ∈ W∗ into ℓ− ℓ̃+1 subseries

B∗
i,j,ℓ̃

, each of length ℓ̃. The second level of the double block bootstrap

samples m̃ = ⌊n/ℓ̃⌋ blocks with replacement from {B∗
i,j,ℓ̃

: i = 1, . . . ,m; j =

1, . . . , ℓ− ℓ̃+1}, yielding the block bootstrap series W∗∗ that consists of m̃

blocks B∗∗
i,j,ℓ̃

pasted end-to-end. The procedure is summarized in Algorithm

1, which we now use to construct confidence intervals for βj, for j ∈ Ĵ , in the

martingale regression model. Here, we use the Studentized correction of the

coverage error, as in Lee and Lai (2009, Sections 2.2 and 3) and Chuang and

Lai (2000, Section 3.2); specifically, we consider the Studentized statistic

Rj(Y,X, θ) = (β̂j − θ)/(s
√
cjj) (2.1)
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Algorithm 1 Double block bootstrap

INPUT: W = (ŵ1, . . . , ŵn)
Step 1: Resample first-level block bootstrap series W∗ consisting of
m = ⌊n/ℓ⌋ blocks B∗

i,ℓ pasted end-to-end.
Step 2: Resample second-level block bootstrap series W∗∗

2.1 Divide B∗
i,ℓ into ℓ− ℓ̃+ 1 sub-blocks, each of length ℓ̃.

2.2 Sample m̃ = ⌊n/ℓ̃⌋ blocks B∗∗
i,j,ℓ with replacement from these sub-

blocks and paste them end-to-end to form W∗∗.

OUTPUT: W∗∗

to test βj = θ, where β̂j is the jth component of the least squares estimate

(XT
Ĵ
XĴ)

−1XĴYĴ of βĴ , cjj is the jth diagonal element of (XT
Ĵ
XĴ)

−1, s2 =

(
∑n

t=1w
2
t )/(n−mn), and mn = O(

√
n/ log pn) is the cardinality of the set Ĵ

of regressors selected using OGA+HDIC. The quantiles ûα(θ) and û1−α(θ)

of Rj(Y,X, θ) are evaluated using Algorithm 1. Although the (1−2α)-level

confidence set {θ : ûα(θ) < Rj(Y,X, θ) < û1−α(θ)} may not be an interval,

it often suffices to give the upper limit θUj = argminθ |Rj(Y,X, θ)− ûα(θ)|

and the lower limit θLj = argminθ |Rj(Y,X, θ)− û1−α(θ)| as the confidence

interval [θLj , θ
U
j ] of βj; see Chuang and Lai (2000, p.4). We choose m = mn

in the double block bootstrap (Algorithm 1), and hence the block length ℓ,

using OGA+HDBIC, as in Section 4 of Ing and Lai (2011, p.1484):

mn = arg min
1≤k≤2⌊n/ log pn⌋

{n log σ̂2
{ĵ1,...,ĵk}

+ k(log n)(log pn)}, (2.2)
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where ĵ1, . . . , ĵk are selected along the OGA path until the kth iteration,

and σ̂2
J = n−1

∑n
t=1(yt − ŷt;J)

2, for J ⊂ {1, . . . , pn}, in which ŷt;J denotes

the fitted value of yt when Y is projected into the linear space spanned

by the column vectors of XJ ; see Ing and Lai (2011, p.1479). In the

Supplementary Material S1, we prove the following theorem, showing that

the post-selection confidence interval for βj, for j ∈ Ĵ , constructed using

this hybrid resampling approach has coverage error o(n−1/2), under certain

regularity conditions, if ℓ is chosen suitably.

Theorem 1. If ℓ ∝ n1/3, then the preceding confidence interval for βj, for

j ∈ Ĵ , in the martingale regression model has coverage error O(n−2/3).

2.2 Change-point ARX-GARCH models and empirical Bayes

GARCH models are widely used in econometric time series for the dy-

namic modeling of volatilities; see Chapter 6 of Lai and Xing (2008), whose

Sections 6.3.2 and 9.5 describe the commonly observed pattern of “volatility

persistence” and its cause from ignoring structural changes in the GARCH

model, respectively. Their Section 9.5.2 also describes change-point AR-

GARCH models, definitively generalized by Lai and Xing (2013), who use
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a Bayesian change-point ARX-GARCH model of the form

yt = βT
t xt + νt

√
htϵt, (2.3)

where ϵt are i.i.d. with a standardized Student t-distribution with κ > 2

degrees of freedom and are independent of xt, the parameter vector βt and

the unconditional variance ν2
t are piecewise constant with jumps at times

of structural change, the vector xt consists of exogenous variables and past

observations yt−1, yt−2, . . . , yt−k, and ht represents short-term proportional

fluctuations in the variance generated by the GARCH model

ht = (1−
k∑

i=1

ai −
k′∑
l=1

bl) +
k∑

i=1

aiw
2
t−i +

k′∑
l=1

blht−l, with ws =
√

hsϵs,

(2.4)

where the time-invariant GARCH parameters a1, . . . , ak, b1, . . . , bk′ are as-

sumed to satisfy ai ≥ 0, bl ≥ 0, and
∑k

i=1 ai +
∑k′

l=1 bl ≤ 1. Letting

τt = 1/(2ν2
t ), they assume θt = (βT

t , τt)
T is piecewise constant and sat-

isfies the following conditions:

(A1) Let t0 = max(k, k′), It0 = 1, and there be no change point prior to t0.

For t > t0, the change times of θt form a renewal process with i.i.d.

inter-arrival times that are geometrically distributed with parameter
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p or, equivalently,

It := 1{θt ̸=θt−1} are i.i.d. Bernoulli(p) with P (It = 1) = p. (2.5)

(A2) θt = (1− It)θt−1 + It(z
T
t , γt)

T , where (zT1 , γ1)
T , (zT2 , γ2)

T , . . . are i.i.d.

random vectors such that zt | γt ∼ Normal(z,V/(2γt)), γt ∼ χ2
d/ρ,

with χ2
d the chi-square distribution with d degrees of freedom.

(A3) The processes {It}, {(zTt , γt)}, and {(xt, ϵt)} are independent.

We now focus on the case k = k′ = 1 in (2.4), that is, the GARCH(1,1)

model with nonnegative parameters a and b such that a + b ≤ 1, and

summarize Lai and Xing’s empirical Bayes (EB) approach to determining

the hyperparameters η = (a, b, κ), p, z,V, ρ, and d in (2.5) and (A2) that

define the change-point ARX-GARCH(1,1) model. Section 2.2 of Lai and

Xing (2013) provides details of the EB approach. First, the χ2
d/ρ prior

distribution for 1/(2ν2
t ) given by (A2) is written as Gamma(d/2, ρ/2) so that

d does not need to be an integer. Second, z,V, ρ, and d are estimated by

applying the following method of moments to the “stationary distribution

of the Markov chain (It,θt, ϵt) that is partially observed via (xt, yt), 1 ≤ t ≤

n.” From (A2) and (A3), it follows that E(βt) = z,Cov(βt) = (Eν2
t )V, and

E(xtyt) = E(xtx
T
t )z. From n−L moving windows {(xt, yt) : s ≤ t ≤ s+L}
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of these data, compute the least squares estimate, and denote it as β̃
(s)
.

Each β̃
(s)

is a method-of-moments estimate of z, and thus so is β = (n −

L)−1
∑n−L

s=1 β̃
(s)
. If an oracle revealed the change times up to time n, then

one would segment the time series accordingly, and use the least squares

estimate of each segment to estimate the regression parameter for that

segment. This suggests using (a) moving windows of length L+1 to replace

the segments and (b) the least squares estimate β̃
(s)

based on the moving

window {(xt, yt) : s ≤ t ≤ s + L}. The average r̂s := (L + 1)−1
∑s+L

t=s (et −

ēs)
2 of the squared (centered) residuals in the moving window, where et =

yt − xT
t β̃

(s)
and ēs = (L + 1)−1

∑s+L
t=s et, is a method-of-moments estimate

of E(ν2
t ) = ρ/[2(d − 2)] for this time segment; hence, ρ/[2(d − 2)] can

be estimated by r := (n − L)−1
∑n−L

s=1 r̂s. In this connection, recall that

θT
t = (βT

t , τt) and 2ν2
t = 1/τt, and note that by (A2), βt|ν2

t ∼ N(z, 2ν2
tV)

and 2ν2
t (= 1/τt) has the inverse gamma distribution with shape parameter

d/2 and scale parameter ρ/2, the mean (respectively, variance) of which is

ρ/(d−2) if d > 2 (respectively, 2ρ2/[(d−2)2(d−4)] if d > 4). The variance

E[(ν2
t − Eν2

t )
2] can be estimated from the centered residuals in moving

window s by v̂s := L−1
∑s+L

t=s (e
2
t − r̂s)

2; hence, ρ2/2[(d− 2)2(d− 4)] can be

estimated by the average v := (n−L)−1
∑n−L

s=1 v̂s over the moving windows.

Because V = Cov(βt)/Eν2
t , an obvious method-of-moments estimate of V
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is Ṽ := (n − L)−1
∑n−L

s=1 Ĉovs/r̂s, where Ĉovs is the sample covariance

matrix of β(s) for moving window s. Lastly, “with z,V, ρ, and d replaced

by these estimates,” η and p can be estimated by maximum likelihood using

a recursive representation of the log-likelihood function based on (xt, yt),

for 1 ≤ t ≤ n; see Eq.(2.5) of Lai and Xing (2013, p.1578), where the

consistency of these hyperparameter estimates (as n → ∞ and with pL

sufficiently small) is also established.

2.3 Sequential Monte Carlo to sample the latent variables It,θt

Chen and Lai (2007) and Chan and Lai (2013) have shown how parti-

cle filters that use a sequential Monte Carlo (SMC) with importance sam-

pling and resampling can be used to sample the latent variables It and the

changed regression parameters or means in the change-point ARX model

and mean-shift model, respectively, without GARCH dynamics for ϵt. We

next extend the SMC procedure in Section II of Chen and Lai (2007, pp.67–

68) to the change-point ARX-GARCH(1,1) model, first assuming that the

hyperparameters z,V, ρ, d, p, and η are known.

Let Ct = max{j ≤ t : Ij = 1} be the most recent change time up

to time t (max ∅ = t0), which plays a key role in Chen and Lai’s SMC

procedure for the change-point ARX model with ht = 1 in (2.3), for which
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they also assume ϵt is standard normal. This distributional assumption is

overly restrictive for GARCH models, for which the standardized Student

t-distribution with unspecified degrees of freedom κ > 2 is often assumed in

likelihood inference; see Lai and Xing (2008, p.150). In view of the normal-

inverse gamma prior distribution in (A2) for (βT
s , 2ν

2
s ) that does not change

for Ct ≤ s ≤ t, the posterior distribution of θt (with components βt and

τt = (2ν2
t )

−1), given Ct and {(xs, ys) : Ct ≤ s ≤ t}, also belongs to this

conjugate family, with βt|ν2
Ct

∼ N(µCt,t, ν
2
Ct
VCt,t) and τt ∼ Gamma(d/2 +

(t− Ct)/2, ρt/2), where

µs,t = Vs,t(V
−1z+

t∑
i=s

yixi), Vs,t = (V−1 +
t∑

i=s

xix
T
i )

−1,

ρt = ρ+ zTV−1z+
t∑

s=Ct

y2s − µT
Ct,tV

−1
Ct,t

µCt,t,

(2.6)

assuming the hyperparameters of the Bayesian model and Ct are specified;

see Box and Tiao (1973, Chapter 8). Without prespecifying the hyperpa-

rameters z,V, ρ, and d, we can replace them in (2.6) with their method-of-

moments estimates described in Section 2.2, which also gives the estimates

p̃ and η̃ of the hyperparameters p and η, respectively in (A1) and (2.4).

Replacing βt, νt, and ht in ϵt = (yt −βT
t xt)/(νt

√
ht) (from (2.3)) with their

estimates involves Ct, which we now construct using an SMC with sequen-
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tial importance sampling and resampling, as described by Chen and Lai

(2007, Section II) and Chan and Lai (2013, Section 2.1).

To explain the SMC, we first assume that the hyperparameters z,V, ρ, d, p,

and η are known. As in Chen and Lai (2007, p.68), let π(·|·) and π(·)

denote the conditional and the joint density functions, respectively, of

the random variables indicated. Sequential importance sampling samples

It0 = 1, It0+1, . . . , In sequentially from the proposed distribution, for which

It|(It0 , . . . , It−1) is Bernoulli, assuming the values one and zero with respec-

tive probabilities that are proportional to at(p,η) : bt(p,η), where

at(p,η) =
p

(xT
t Vxt + ν2

t ht)1/2
π
( yt
(xT

t Vxt + ν2
t ht)1/2

)
,

bt(p,η) =
1− p

(xT
t VCt,txt + ν2

t ht)1/2
π
( yt − µT

Ct,t
xt

(xT
t VCt,txt + ν2

t ht)1/2

)
,

(2.7)

in which π is the standardized Student t-density (with κ degrees of freedom)

for ϵt in (2.3), and ht is defined recursively by (2.4), with k = k′ = 1

and the GARCH parameter vector η = (a, b, κ). Hence, the argument in

Section IIA of Chen and Lai (2007) can be extended to the change-point

ARX-GARCH(1,1) model, yielding the recursive formula for the importance
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weights,

wt = wt−1{at(p,η) + bt(p,η)}, t > t0;wt0 = 1, (2.8)

for the posterior distribution of It0:t := (It0 , . . . , It). For the Monte Carlo

implementation, B sample paths are generated, with importance weights

w
(b)
t (b = 1, . . . , B). As such, the Monte Carlo estimate of the posterior

mean E(θt|(xs, ys) : s ≤ t) is given by

βt,Bayes = (
B∑
b=1

w
(b)
t µ

C
(b)
t ,t

)/
B∑
b=1

w
(b)
t , 2ν2

t,Bayes =
B∑
b=1

ρt
(d+ t− Ct)

w
(b)
t∑B

b=1 w
(b)
t

,

(2.9)

where C
(1)
t , . . . , C

(B)
t areB independent replicates of Ct and the Bayes model

has hyperparameters, which we estimate sequentially, as described in the

next paragraph.

To initialize, we use moving windows of length L+ 1 and the method-

of-moment estimates of z,V, ρ, and d, followed by maximum likelihood

estimates of η and p, as in the second paragraph of Section 2.2. These esti-

mates are used in (2.7) and (2.8), which define the importance weights in the

SMC procedure to generate It0:t. This represents the initialization Ĩt0:n of

the SMC procedure to generate the successive change times t0, t1, . . . (< n)
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under the posterior distribution, given the observations (xt, yt), 1 ≤ t ≤ n.

After the change times are generated, the moving windows of length L+ 1

in the second paragraph of Section 2.2 can be replaced with the times

t ∈ {ti, ti + 1, . . . , ti+1 − 1} between consecutive change-points. Thus, the

hyperparameters are re-estimated using these time segments during which

θt stays constant. These revised hyperparameter estimates are denoted by

ẑ, V̂, ρ̂, d̂, η̂, and p̂ in the SMC procedure summarized in Algorithm 2, which

consists of sequential importance sampling and bootstrap resampling, as in

Chan and Lai (2013, Section 2.1). The algorithm describes Monte Carlo

simulations of B independent sample paths I
(b)
t0:n from the estimated poste-

rior distribution, given {(xt, yt) : 1 ≤ t ≤ n}, with importance weights that

use ẑ, V̂, ρ̂, d̂, η̂, and p̂ for the unspecified hyperparameters in the Bayesian

model.

As explained in Section IIB of Chen and Lai (2007), the importance

weights (2.8) have difficulties for large t, when they tend to have large vari-

ance, as reflected by the normalized weights w
(i)
t /

∑B
b=1 w

(b)
t mostly converg-

ing to zero while having to sum to one. To address this difficulty, bootstrap

resampling is used to resample {I(1)t0:t, . . . , I
(B)
t0:t } with probabilities propor-

tional to the importance weights. Thus, at every t, the SMC consists of

an importance sampling step followed by a resampling that transforms the
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weighted sample to a bootstrap sample with equal weights. Section 2.1

of Chan and Lai (2013) provides an asymptotic theory of the SMC with

bootstrap resampling at every stage t. In their Section 2.2, they extend this

to occasional resampling when the coefficient of variation of the normalized

weights exceeds some threshold, as in Section IIB of Chen and Lai (2007).

Algorithm 2 uses bootstrap resampling at every stage, because the goal is

to generate a sequence of consecutive change times that are used to seg-

ment the data so that the hyperparameters can be re-estimated using these

time segments. Specifically, recall that we use n − L moving windows of

length L+ 1 to replace the time segments between two consecutive change

times “revealed by an oracle” to estimate the hyperparameters using the

method of moments or maximum likelihood. In lieu of the oracle, Algo-

rithm 2 simulates B samples of It0:n from its posterior distribution, given

the observations. From each simulated sample I
(b)
t0:n, we have the time seg-

ments {t(b)i , t
(b)
i +1, . . . , t

(b)
i+1 − 1} between consecutive change times t

(b)
i and

t
(b)
i+1. Hence, we can apply the method of moments (respectively, maximum

likelihood) to each time segment, and aggregate over these time segments

to obtain the revised hyperparameter estimates ẑ, V̂, ρ̂, and d̂ (respectively,

η̂ and p̂).

Algorithm 2 plays a basic role in constructing hybrid resampling cred-
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Algorithm 2 SMC to simulate B samples I
(b)
t0:n from posterior distribution

INPUT: Observations (xt, yt), 1 ≤ t ≤ n
For t = 2, . . . , n, initialize It0 = 1, wt0 = 1 with t0 = 1
Importance Sampling: Generate for b = 1, . . . , B, Bernoulli
Ĩ
(b)
t |It0:t−1 taking the values 1 and 0 with respective probabilities that
are proportional to at(p̃, η̃) : bt(p̃, η̃) defined by (2.7) with the hy-
perparameters replaced by their estimates described in Section 2.2.
Let Ĩt0:t = (I

(b)
t0:t−1, Ĩ

(b)
t ), which is assigned the importance weight

w̃
(b)
t = w

(b)
t−1{at(p̃, η̃) + bt(p̃, η̃)}.

Bootstrap Resampling: Resample Ĩ
(1)
t0:t, . . . , Ĩ

(B)
t0:t with probabilities

proportional to the importance weights, yielding the bootstrap sample
I
(1)
t0:t, . . . , I

(B)
t0:t with equal weights w

(1)
t = . . . = w

(B)
t = 1.

OUTPUT: I
(b)
t0:n, b = 1, . . . , B, and ẑ, V̂, ρ̂, d̂, η̂, p̂

ible intervals for the regression parameters βt and the GARCH parame-

ters ν2
t in the change-point ARX-GARCH(1,1) model (2.3), similar to that

played by Algorithm 1 (double block bootstrap) for the hybrid confidence

intervals for the selected regression parameters in Section 2.1. For ν2
t and

scalar functions of βt, we construct EB credible intervals for their values

over a designated period, which may contain zero,one or more change points

in the Bayesian change-point ARX-GARCH(1,1) model. Details are given

in the next subsection, which also establishes the asymptotic efficiency of

the EB approach .

2.4 Frequentist segmentation, asymptotic efficiency of EB

Lai and Xing (2013, p.1575) point out that in contrast to the EB ap-
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proach, which assumes a “relatively simple stochastic model” for change

points, “the frequentist approach, often called segmentation, assumes the

change-points in the pre- and post-change regression coefficients in regres-

sion models to be unknown parameters, and uses maximum likelihood to

estimate them and a model selection criterion to determine the number of

change-points.” Lai and Xing (2011, pp.539–540) provide a survey of the

frequentist approach, including the works of Bai and Perron (1998, 2003),

and Olshen et al. (2004) on segmentation, and those of Yao (1988) , Birgé

and Massart (2001), Zhang and Siegmund (2006), and Davis et al. (2006)

on model selection criteria. Their Section 4 describes how “the relative

simplicity of the posterior distribution (of the change-points in the EB ap-

proach) opens up new possibilities in resolving the long-standing difficulties

in the frequentist problem of testing for change-points and determining the

segmentation.” Lai and Xing (2013, pp.1584–1587) extend this work to the

change-point ARX-GARCH model described in Section 2.2, establishing

the consistency of the EB estimates of the number of change points and the

post-change parameters in the frequentist segmentation model, in addition

to the hyperparameter vector η in the Bayesian model.

As noted in the last paragraph of Section 2.3, the hybrid resampling

method is used to construct credible intervals of the piecewise constant νt
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and βt,i in the ARX-GARCH(1,1) model. The following theorem, which is

proved in the Supplementary Material S2, together with additional refer-

ences to the underlying developments of the EB approach to change-point

stochastic regression models, establishes the asymptotic efficiency of the

method.

Theorem 2. Under a limiting Poisson assumption given in S2, the EB ap-

proach using the hybrid resampling method attains the asymptotic efficiency

of the oracle procedure with knowledge of the successive change times and the

hyperparameters of the Bayesian change-point ARX-GARCH(1,1) model.

3. Simulation and Empirical Studies

We begin with a simulation study in Section 3.1 of the coverage errors

of the selected confidence intervals [θLj , θ
U
j ], for j ∈ Ĵ , in the regression

model (1.1) with β0 = 0 and GARCH(1,1) errors εt. Section 3.2 presents

an empirical study to illustrate the usefulness of the change-point model

and the associated EB-SMC method, and gives some concluding remarks.

3.1 Coverage errors of post-selection confidence intervals

We now study the performance of [θLj , θ
U
j ], for j ∈ Ĵ , by simulating

the martingale regression model (1.1) with β0 = 0 and GARCH(1,1) er-
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rors εt; see (1.3). We consider n = 400, pn = 500, the regressors xtj

generated by i.i.d. standard normal ztj and z̃t from xtj = ft + ztj and

ft = 0.9ft−1 + z̃t(f0 = 0), and α = 0.1 for the nominal confidence level

1− 2α (hence, coverage error 2α). Table 1, given in Supplementary Mate-

rial S1, presents the results, each of which is based on 500 simulations, with

B = 900, of the actual coverage errors of the hybrid resampling confidence

intervals [θLj , θ
U
j ], for five parameter settings of the martingale regression

model. In the last setting, the GARCH parameters a = 0 = b and ν = ∞;

hence, εt ∼ 0.1N(0, 1) and the conditional approach of Lockhart et al.

(2014) is applicable. As shown in the last row of Table 1, the coverage

errors of the confidence intervals attained using this conditional approach

differ substantially from the nominal value of 20%, even though it is appli-

cable in this setting. This is due to the spill-over effect. In contrast, the

hybrid resampling confidence intervals [θLj , θ
U
j ], for j ∈ Ĵ , have coverage

errors close to 20%. Note that the double block bootstrap in Algorithm 1

is nonparametric and assumes only that εt is asymptotically stationary. On

the other hand, if it is assumed that εt follows a GARCH(1,1) process, as

in our martingale regression model, then hybrid resampling uses the para-

metric bootstrap to generate confidence intervals for βj, for j ∈ Ĵ . This is

similar to the hybrid resampling confidence intervals for the correlation co-
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efficient of a bivariate distribution in Example 4 (parametric case involving

bivariate normal or regression model with double exponential errors) and

Example 6 (nonparametric case) of Chuang and Lai (2000, pp.13–15, 26–

28). We discuss this in greater detail for the martingale regression model

with GARCH(1,1) errors (1.3) in the next subsection.

3.2 Empirical study of EB change-point model and discussion

We illustrate the performance of the proposed EB change-point ARX-

GARCH(1,1) modeling approach on real-world data in financial markets

that have experienced changes during the period January 3, 2001, to De-

cember 31, 2008. To do so, we use weekly log returns of Wells Fargo & Com-

pany (WFC) and a market portfolio (represented by the S&P500 Index) in

the capital asset pricing model (CAPM); see Guo et al. (2017, Sections 2.3

and 2.4.1). The data set consists of n = 416 closing prices Pt for the stock

on the first day of the week, from which the log returns yt = log(Pt/Pt−1)

are computed. Let xt be the corresponding log returns of the market port-

folio. Figure 1 in the Supplementary Material S2 plots the time series of

xt, yt. For comparison with the EB change-point ARX-GARCH(1,1) mod-

eling approach, we use garch in MATLAB to fit the ARX-GARCH(1,1) model
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to the data with the following time-invariant parameters:

yt = β1xt−1 + β2yt−1 + wt, wt = σtϵt, σ2
t = ω + aw2

t−1 + bσ2
t−1. (3.1)

The results, given in the first row of Table 2 in S2, show high volatil-

ity persistence. The other rows of Table 2 give corresponding results for

the piecewise constant parameters (between the successive change times

identified) by applying the method in Section 2.3 to fit the change-point

ARX-GARCH(1,1) model

yt = βt,1xt−1 + βt,2yt−1 + νtwt, wt =
√

htϵt, ht = 1− a− b+ aw2
t−1 + bht−1

(3.2)

to these data. The four identified change times correspond to December

26, 2002, April 26, 2007, December 22, 2007 and July 5, 2008. These

dates correspond to the following significant economic events in the U.S.

economy: the aftermath of the September 11, 2011, terrorist attacks and

the preparation for the Iraq War, following congressional authorization by

President Bush to launch a military attack against Iraq; concern for the

sustainability of the upward earnings trend of the DJIA (Dow Jones Indus-

trial Average), which actually switched to a negative regime on April 30,
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2007, after 2:30 pm; and the subprime mortgage meltdown and the collapse

of Bear Stearns and Lehman Brothers during the period June 2007 to July

2008. This empirical study demonstrates the effectiveness of the SMC pro-

cedure in identifying the unspecified change times in the EB change-point

ARX-GARCH(1,1) model (3.2), which is also shown to be amenable to valid

inference on the piecewise constant regression coefficients and volatility pa-

rameters.

In conclusion, we have enhanced the hybrid resampling methodology

introduced and developed by Professor Lai and broadened it to tackle two

challenging problems related to inferences on martingale regression mod-

els. The effectiveness of our enhancement in terms of constructing valid

confidence intervals for selected regression parameters in high-dimensional

martingale regression models after model selection under sparsity assump-

tions, and in terms of empirical Bayes estimations of the change times

with credible intervals for the piecewise constant regression coefficients and

volatility parameters in change-point martingale regression models, opens

up new possibilities and applications in time series analysis.

Supplementary Materials The online supplement contains the fol-

lowing sections:

S1 Proof of Theorem 1 and simulation study in Section 3.1
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