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Let f(x) =
∑∞

n=0
1
n! q

n(n−1)/2xn (0 < q < 1) be the deformed 
exponential function. It is known that the zeros of f(x) are 
real and form a negative decreasing sequence (xk) (k ≥ 1). 
We investigate the complete asymptotic expansion for xk and 
prove that for any n ≥ 1, as k → ∞,

xk = −kq1−k
(
1 +

n∑
i=1

Ci(q)k−1−i + o(k−1−n)
)
,

where Ci(q) are some q series which can be determined 
recursively. We show that each Ci(q) ∈ Q[A0, A1, A2], where 
Ai =

∑∞
m=1 m

iσ(m)qm and σ(m) denotes the sum of positive 
divisors of m. When writing Ci as a polynomial in A0, A1
and A2, we find explicit formulas for the coefficients of the 
linear terms by using Bernoulli numbers. Moreover, we also 
prove that Ci(q) ∈ Q[E2, E4, E6], where E2, E4 and E6 are 
the classical Eisenstein series of weight 2, 4 and 6, respectively.
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1. Introduction

Consider the function

f(x) :=
∞∑

n=0

xn

n! q
n(n−1)/2 (1.1)

where x, q ∈ C, |q| ≤ 1. The function f(x) is entire and is called the “deformed ex-
ponential function” since it reduces to exp(x) when q = 1. It appears naturally and 
frequently in pure and applied mathematics. In combinatorics, the function f(x) relates 
closely to the generating function for Tutte polynomials of the complete graph Kn [24], 
the enumeration of acyclic digraphs [18] and inversions of trees [15]. It also relates to the 
Whittaker and Goncharov constants [2] in complex analysis, and the partition function 
of one-site lattice gas with fugacity x and two-particle Boltzmann weight q in statistical 
mechanics [19]. Moreover, one can verify that this function is the unique solution to the 
functional differential equation

y′(x) = y(qx), y(0) = 1, (1.2)

which is a special case of the “pantograph equation” [6]. For more detailed discussions 
on this function, we may refer to the notes from Alan Sokal’s talks [20].

Surprisingly, many important properties of this function remain open, e.g., the dis-
tribution of its zeros. In 1952, Nassif [17] studied (on Littlewood’s suggestion) the 
asymptotic behaviours and the zeros of the entire function

∞∑
n=0

en
2√2πiz2n/n!,

which equals to f(q 1
2 z2) with q = e2

√
2πi. He used the fact that 

√
2 has a periodic con-

tinued fraction expansion. Later, Littlewood [11,12] considered generalizations to Taylor 
series whose coefficients have smoothly varying moduli and arguments of the form en

2απi, 
where α is a quadratic irrationality. See also [4,10,13,23] for the studies on the behaviours 
of these functions. To our knowledge, for general complex number q satisfying |q| ≤ 1, 
the distribution of the zeros of f(x) has not been completely understood up to now. 
A theorem of Eremenko cited in [21] considered the case where q lies in any compact 
set of the open unit disk D. There are relatively more works on the model case where 
0 < q < 1. In 1972, Morris et al. [5] used a theorem of Laguerre to show that f(x) has 
infinitely many real zeros and these zeros are all negative and simple. They also proved 
that there is no other zero for the analytic extension (to the complex plane) of f(x) by 
using the so-called multiplier sequence (a modest gap in their proof was filled by Iserles 
[8]). Therefore, when 0 < q < 1, the zeros of f(x) form one strictly decreasing sequence 
of negative numbers (xk) (k ≥ 1). We remark that in some previous works (e.g., [9,22]), 
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the subscripts of the sequence start with 0 rather than 1. In this paper, as well as in [25], 
the subscripts start with 1 for the elegance of notation.

When 0 < q < 1, some conjectures on the zeros xk (k ≥ 1) have been proposed in 
[5,8,18]. For example, Morris et al. [5] conjectured that

lim
k→∞

xk+1

xk
= 1

q
. (1.3)

In 1973, Robinson [18] also derived (1.2) when counting the labeled acyclic digraphs. He 
speculated that

xk = −kq1−k + o(q1−k). (1.4)

These conjectures have been investigated by several authors (see e.g., [7,9,14,22]). In 
particular, Langley [9] showed that as k → ∞

xk+1

xk
= 1

q

(
1 + 1

k

)
+ o(k−2). (1.5)

He also proved that there exists a positive constant γ, which is independent of k, such 
that

xk = −kq1−k(γ + o(1)). (1.6)

As a consequence, (1.3) is true. Recently, one of the authors [25] refined Langley’s work 
and confirmed the observation (1.4). Indeed, he showed that as k → ∞,

xk = −kq1−k
(
1 +

∞∑
m=1

σ(m)qmk−2 + o(k−2)
)
. (1.7)

Here for any positive integer n,

σ(n) :=
∑

d|n, d>0

d.

Later Derfel et al. [3] studied the asymptotic behaviours of the zeros of solutions of (1.2)
with different initial conditions instead of the restriction y(0) = 1.

Our research on the zeros of the deformed exponential function is motivated by the 
conjectures introduced by Sokal [21] in his talk at Institut Henri Poincaré in 2009. In 
this paper, we obtain a complete asymptotic expansion formula for the zeros xk when 
0 < q < 1. To be more specific, we will approximate xk with remainder term o(k−n−1)
for any n ≥ 1. We also establish the connection between the classical Eisenstein series 
and the zeros of the deformed exponential function. To state our results, we define for 
i ≥ 0,
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Ai = Ai(q) :=
∞∑

m=1
miσ(m)qm. (1.8)

Theorem 1. Let 0 < q < 1 and n ≥ 1. Then as k → ∞,

xk = −kq1−k
(
1 +

n∑
i=1

Ci(q)k−1−i + o(k−1−n)
)
, (1.9)

where each Ci(q) is a multivariate polynomial in A0, A1, ..., Ai−1 with rational coeffi-
cients. These polynomials can be determined recursively.

Remark 1. For example, C1 = A0, C2 = −A1, C3 = − 1
10A0 + 3

5A1 + 1
2A2 − 13

10A
2
0. 

The recurrence relation and the basic structure of these polynomials will be presented in 
Sections 3 and 4. Moreover, we conjecture that (1.9) should hold for any complex number 
q satisfying 0 < |q| < 1 (and even for some q satisfying |q| = 1), if the complex zeros are 
listed according to their multiplicities and ordered by increasing modulus. Furthermore, 
it is interesting to consider if one could obtain similar results for the zeros of the rescaled 
Rogers–Ramanujan function [22]

R̃(x; y, q) =
∞∑

n=0

xnqn(n−1)/2

(1 + y)(1 + y + y2) · · · (1 + y + · · · + yn−1) ,

which reduces to a “partial theta function” when y = 0, and the “deformed exponential 
function” when y = 1.

When n ≥ 4, we observe that the expression of Cn(q) in terms of A0, A1, . . . , An−1 is 
not unique. The polynomial given by the recurrence relation in Theorem 1 is just one 
candidate. For example, we have

C4 = 1
10A1 −

14
15A2 −

1
6A3 + 23

5 A0A1

= 1
10A1 −

11
10A2 + 23

5 A0A1 − 6A2
1 + 4A0A2. (1.10)

Thus we continue to study the relations between Ai’s. Indeed, the following identity is 
established

A3 = A2 + 36A2
1 − 24A0A2.

Differentiating it with respect to q gives more similar identities on Ai’s. Therefore, we find 
that it is possible to express Cn as a polynomial in just A0, A1 and A2. Furthermore, the 
coefficients of the linear terms in that polynomial can be given explicitly using Bernoulli 
numbers. Let Bn be the n-th Bernoulli number. It is well known that B2m+1 = 0 for all 
m ≥ 1. The first few values of Bi are B0 = 1, B1 = −1 , B2 = 1 and B4 = − 1 .
2 6 30
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Theorem 2. For any n ≥ 1, Cn can be expressed as a trivariate polynomial in A0, A1 and 
A2 with rational coefficients. This polynomial is unique and for n ≥ 2, we have

C2n−1 = 6B2n

n
A0 −

36B2n

n
A1 +

(
1 + 30B2n

n

)
A2 + higher degree terms,

C2n = −6B2n

n
A1 +

(
6B2n

n
− 1

)
A2 + higher degree terms.

Remark 2. For example, we find that

C5 = 1
21A0 −

2
7A1 + 26

21A2 + 53
70A

2
0 + 22A2

1 − 36A0A
2
1

− 159
35 A0A1 −

43
2 A0A2 + 2A1A2 + 737

210A
3
0 + 24A2

0A2,

C6 = − 1
21A1 −

20
21A2 −

74
35A0A1 −

1401
35 A2

1 −
2
5A

2
2 + 705

14 A0A2

− 101
10 A1A2 + 1662

5 A0A
2
1 −

321
14 A2

0A1 −
36
5 A3

1

− 1132
5 A2

0A2 −
864
5 A2

0A
2
1 + 72

5 A0A1A2 + 576
5 A3

0A2.

The Bernoulli numbers in the linear terms are from Faulhaber’s formula for the power 
sum of the first m positive integers (see (2.49)). As shown in the examples above, the 
higher degree terms look much more complicated than the linear terms, though they can 
be explicitly derived from the recurrence relation of Cn (see (4.1)), which is essentially 
determined by the expressions of the unsigned Stirling numbers of the first kind (see 
(2.24), (2.46)).

Let

E2 = E2(q) := 1 − 24
∞∑

n=1

nqn

1 − qn
, (1.11)

E4 = E4(q) := 1 + 240
∞∑

n=1

n3qn

1 − qn
, (1.12)

E6 = E6(q) := 1 − 504
∞∑

n=1

n5qn

1 − qn
. (1.13)

It is well known that E2, E4 and E6 are classical Eisenstein series on the full modular 
group

SL(2,Z) =
{(

a b
c d

)
| ad− bc = 1, a, b, c, d ∈ Z

}
.
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We will show that A0, A1 and A2 can be represented as polynomials in E2, E4 and E6

with rational coefficients and vice versa. Namely,

Q[A0, A1, A2] = Q[E2, E4, E6].

Since it is well known that E2, E4 and E6 are algebraically independent over C (see 
e.g., [16, Lemma 117]), it follows that A0, A1 and A2 are also algebraically independent 
over C. So Theorem 2 implies that Cn(q) are in the ring of quasimodular forms on 
SL(2, Z).

Corollary 1. Let n ≥ 1. Then Cn(q) ∈ Q[E2, E4, E6].

The paper is organized as follows. In Section 2, we study the series expansion of 
f(−(k + ak−1)q1−k) for large k, where a = a(k−1) is positive and bounded for large k. 
Here one can think of −(k+ak−1)q1−k as a “prospective root” of f . We observe that the 
first 2k terms of this series dominate the others, so these 2k terms are carefully analyzed 
in Lemmas 1 and 2. Most of these terms enjoy nice properties described in Lemma 1, 
while others are more subtle and related to the series expansion of (2.17). Lemma 2
gives the formula of the coefficient of each term in the series expansion of (2.17). In the 
proof of Lemma 2, the properties of elementary symmetric polynomials and complete 
homogeneous symmetric polynomials play an important role.

In Section 3, we prove Theorem 1. We first define Cn recursively (see (3.3)) by exploit-
ing the coefficients of the series expansion of (2.17). Let a =

∑n−1
i=1 Cik

−(i−1) +λk−(n−1). 
Then we use Lemmas 1 and 2 to show that if λ �= Cn, and in addition that λ > 0 when 
n = 1, then

(−1)k(λ− Cn)f(−(k + ak−1)q1−k) > 0.

This allows us to determine the signs of f(x) at the endpoints of certain intervals. We 
finish the proof of Theorem 1 by the intermediate value theorem and (1.5).

In Section 4, we study various representations of Cn. In Section 4.1, we give more de-
tails on the recursive formula of Cn, and prove that Cn can be written as a multivariate 
polynomial of A0, A1, . . . , An−1, in which the coefficient of An−1 is (−1)n−1

(n−1)! (Proposi-
tion 5). In Section 4.2, we continue to discuss the structure of the multivariate polynomial 
representation of Cn by those Ai’s, especially the linear terms. In particular, we show 
in Proposition 6 that the sum of the coefficients of the linear terms A0, A1, . . . , An−1 in 
Cn equals to (−1)n−1. Furthermore, we give explicit formulas for the coefficients of the 
linear terms A0 and A1 in Propositions 7 and 8. In Section 4.3, we first establish the 
relations between the classical Eisenstein series and our Ai’s (Proposition 9). Then we 
show in Lemma 10 that each An can be written as a multivariate polynomial in A0, A1

and A2. Combining these facts, we complete the proof of Theorem 2.
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Remark 3. It may be illuminating to consider (1.9) as a formal power series. Suppose 
that Ci(q) =

∑∞
j=1 Cijq

j . Using formal power series, we denote Fj(t) :=
∑∞

i=1 Cijt
i+1. 

Then one may rewrite (1.9) as a formal power series

xk(q) ∼ −kq1−k
(
1 +

∞∑
j=1

Fj(k−1)qj
)
. (1.14)

We observe that the formal power series (1.14) numerically agrees with the expansion in 
q of the k-th zero given in [21, p. 14]. (Note that in [21] the sequence (xk) starts with 
subscript 0 and for each j, Fj(k−1) is a rational function in k.) It was conjectured by 
Sokal [21, p. 11] that

Fj(k−1) ≥ 0

for all integers j, k ≥ 1. This conjecture is still open, even for fixed k = 1. In particular, 
we will see that Ci1 = (−1)i+1 by Proposition 6, which implies that

F1(k−1) = 1
k(k + 1) .

This verifies the case j = 1. For j ≥ 2, we find that the difficulty to obtain the closed 
form of Fj(k−1) lies in the complexity of the higher degree terms in Theorem 2.

2. Preliminary results

Throughout this paper, we fix q with 0 < q < 1. We use the notation “O(k−m)” to 
denote the class of functions of k which is bounded by Ck−m, where C is a constant 
that is dependent on the fixed parameters but independent of k. Let a = a(k−1) be a 
function in k satisfying that a = a0 +O(k−1) where a0 > 0 is a constant. The main goal 
of this section is to study the values of f(−(k + ak−1)q1−k) for large k.

We first observe that

f(−(k + ak−1)q1−k) =
∞∑

n=0
(−1)nun, (2.1)

where

un = (k + ak−1)n

n! q−n(2k−n−1)/2.

In order to prove Theorem 1, we will select some special functions as a (see Section 3). 
For these a and sufficiently large k, we will see that for the sum in (2.1), the first 2k
terms dominate the others. Therefore, we rewrite (2.1) as
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f(−(k + ak−1)q1−k) =
2k−1∑
n=0

(−1)nun +
∞∑

n=2k

(−1)nun =
k−1∑
j=0

(−1)j−1vj +
∞∑

n=2k

(−1)nun,

(2.2)

where we denote

vj = u2k−j−1 − uj (0 ≤ j ≤ k − 1).

The following lemma shows the positivity and “almost monotonicity” of the sequence vj .

Lemma 1. There exists a positive integer K(q) such that for any k ≥ K(q),

vj > 0, 0 ≤ j ≤ k − 1.

Furthermore, there exists a positive integer N(q) such that for any N ≥ N(q) and k ≥
q−3N ,

vj < vj+1, 0 ≤ j ≤ k −N.

Proof. Since a = a0 +O(k−1) and a0 > 0, we can find a positive integer K(q) such that 
a > 0 for any k ≥ K(q). Now we assume that k ≥ K(q). By the AM-GM inequality, we 
have

2k−1−2j∏
i=1

(j + i) <

⎛
⎜⎜⎜⎝

2k−1−2j∑
i=1

(j + i)

2k − 1 − 2j

⎞
⎟⎟⎟⎠

2k−1−2j

= k2k−1−2j

< (k + ak−1)2k−1−2j (0 ≤ j ≤ k − 1). (2.3)

This implies

(k + ak−1)j

j! <
(k + ak−1)2k−1−j

(2k − 1 − j)! (0 ≤ j ≤ k − 1).

So

uj < u2k−1−j (0 ≤ j ≤ k − 1),

which gives the first inequality.
Note that

vj+1 = q(j+1)(j+2−2k)/2 (k + ak−1)2k−j−2

(2k − 2 − j)! (1 − wj) (2.4)
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where

wj = (2k − 2 − j)!
(j + 1)!(k + ak−1)2k−3−2j .

Since we have proved that vj+1 > 0, it follows that

0 < wj < 1

By the AM-GM inequality,

wj+1

wj
= (k + ak−1)2

(j + 2)(2k − 2 − j) > 1.

By (2.4), we see that vj < vj+1 is equivalent to

qj+1−k(1 − wj) >
k + ak−1

2k − j − 1(1 − wj−1). (2.5)

Using the relation

wj−1 = (j + 1)(2k − j − 1)
(k + ak−1)2 wj ,

we see that (2.5) is equivalent to
(
q−k+j+1 − j + 1

k + ak−1

)
wj < q−k+j+1 − k + ak−1

2k − 1 − j
. (2.6)

For some positive integer N , we denote

t = 2k − 1 − j (k + N − 1 ≤ t ≤ 2k − 1)

and

g(t) = 1
t
− (2k − t)wk−N

(k + ak−1)2
− qk−t

(
1 − wk−N

k + ak−1

)
.

Direct calculation yields

g′(t) = − 1
t2

+ wk−N

(k + ak−1)2
+

(
1 − wk−N

k + ak−1

)
qk−t ln q (2.7)

and

g′′(t) = 2
t3

−
(

1 − wk−N

k + ak−1

)
qk−t(ln q)2. (2.8)
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Since 0 < wj < 1, g′′(t) is decreasing for t > 0.
Note that when N is large enough (N ≥ N1(q)), we have k ≥ q−3N ≥ max{K(q), N6}. 

Hence

1
k + N − 1 = k−1 (1 − (N − 1)k−1 + (N − 1)2k−2 + O(N3k−3)

)
= k−1 − (N − 1)k−2 + (N − 1)2k−3 + O(k−7/2). (2.9)

Similarly we have

1
(k + N − 1)2 = k−2 − 2(N − 1)k−3 + O(k−11/3) (2.10)

and

1
(k + N − 1)3 = k−3 + O(k−23/6). (2.11)

Next,

wk−N =
N−2∏

t=−N+2

k + t

k + ak−1

=
N−2∏

t=−N+2

(
1 + t

k

)(
1 − a0

k2 + O(k−3)
)

=
N−2∏

t=−N+2

(
1 + t

k
− a0

k2 − a0t

k3 + O(k−3)
)

= 1 − a0(2N − 3)k−2 +
∑

−N+2≤t1<t2≤N−2

t1t2
k2 + O(k−17/6)

= 1 − a0(2N − 3)k−2 − (N − 2)(N − 1)(2N − 3)
6 k−2 + O(k−17/6).

Hence

1 − wk−N

k + ak−1 =1
k

(
1 − a0k

−2 + O(k−3)
)

·
(
a0(2N − 3)k−2 + (N − 2)(N − 1)(2N − 3)

6 k−2 + O(k−17/6)
)

=
(
a0(2N − 3) + (N − 2)(N − 1)(2N − 3)

6

)
k−3 + O(k−23/6). (2.12)

Note that k ≥ q−3N implies q−N = O(k1/3). Now by (2.11) and (2.12), we deduce that
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g′′(k + N − 1) =
(
2 − cNq1−N (ln q)2

)
k−3 + O(k−7/2)

where

cN := a0(2N − 3) + 1
6(N − 2)(N − 1)(2N − 3).

Similarly, we have

g′(k + N − 1) =
(
2N − 2 + cNq1−N ln q

)
k−3 + O(k−7/2).

When N is sufficiently large (N ≥ N2(q) ≥ N1(q)), we will have

g′′(k + N − 1) < 0,

and

g′(k + N − 1) < 0.

So g′(t) and g(t) are also decreasing for t ≥ k + N − 1.
In the same way, we find that

g(k + N − 1) =
(
a0(2N − 1) + N

6 (N − 1)(2N − 1) − cNq1−N

)
k−3 + O(k−10/3).

When N is large enough (N ≥ N(q) ≥ N2(q)), we have

g(k + N − 1) < 0.

So if N ≥ N(q) and k ≥ q−3N , we have

g(t) ≤ g(k + N − 1) < 0, t ≥ k + N − 1.

Therefore,

1
2k − 1 − j

− (j + 1)wk−N

(k + ak−1)2
− q−k+j+1

(
1 − wk−N

k + ak−1

)
< 0 (0 ≤ j ≤ k −N).

This implies
(
q−k+j+1 − j + 1

k + ak−1

)
wk−N < q−k+j+1 − k + ak−1

2k − 1 − j
(0 ≤ j ≤ k −N).

Since wj < wj+1, we have
(
q−k+j+1 − j + 1

−1

)
wj < q−k+j+1 − k + ak−1

(0 ≤ j ≤ k −N).

k + ak 2k − 1 − j
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This proves (2.6) and hence the fact that

vj < vj+1 (0 ≤ j ≤ k −N). �
However, the sequence vj may not be monotone when k−N < j ≤ k− 1. So we need 

more delicate analysis on these vj ’s, which is the crux of the problem. For 1 ≤ j ≤ N ,

vk−j = uk+j−1 − uk−j =
( (k + ak−1)k+j−1

(k + j − 1)! − (k + ak−1)k−j

(k − j)!

)
q−(k+j−1)(k−j)/2

=

⎛
⎝j−1∏

i=1

k + ak−1

k + i
−

0∏
i=1−j

k + i

k + ak−1

⎞
⎠ (k + ak−1)k 1

k!q
−(k+j−1)(k−j)/2

=

⎛
⎝j−1∏

i=0

1 + ak−2

1 + ik−1 −
−1∏

i=1−j

1 + ik−1

1 + ak−2

⎞
⎠ 1 + ak−2

k−2

· qj(j−1)/2 · (k + ak−1)k−2 1
k!q

−k(k−1)/2. (2.13)

We define for j ≥ 1,

G(α;x) :=
j−1∏
i=0

1 + αx2

1 + ix
, (2.14)

H(α;x) :=
−1∏

i=1−j

1 + ix

1 + αx2 . (2.15)

In particular, when j = 1 we have G(α; x) = 1 + αx2 and H(α; x) = 1 since we agree 
that the empty product equals 1. It is then clear from (2.13) that

vk−j =
(
G(a; k−1) −H(a; k−1)

) 1 + ak−2

k−2 · qj(j−1)/2 · (k + ak−1)k−2 1
k!q

−k(k−1)/2.

(2.16)

Now we analyze the series expansion of the product

G(α;x) −H(α;x)
x2

(
1 + αx2) (2.17)

for α being a power series of x.

Lemma 2. Let

α(x) :=
∞∑
i=0

aix
i. (2.18)
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For n ≥ 1, the coefficient of xn−1 in the expansion of

G(α(x);x) −H(α(x);x)
x2 (1 + α(x)x2)

has the form

μ(an−1 + S0(n) + S1(n)ν + S2(n)ν2 + ... + Sn(n)νn), (2.19)

where μ = 2j − 1, ν = j(j − 1), and each Si(n) is a polynomial of a0, a1, ..., an−2, which 
is independent of j and has rational coefficients. In particular, S0(1) = S0(2) = 0 and 
S1(1) = 1

6 .

The rest of this section will be devoted to giving a proof of Lemma 2. First, we compute 
the coefficients in the expansions G(α; x) and H(α; x) as power series in x regarding α
as a parameter. That is,

G(α;x) =
∞∑

N=0
GNxN , H(α;x) =

∞∑
N=0

HNxN ,

where GN and HN are polynomials of α with coefficients depending on j. For example,

G0 =H0 = 1,

G1 =H1 = −1
2j(j − 1),

G2 = 1
24 (j − 1)j(j + 1)(3j − 2) + jα,

H2 = 1
24 (j − 2)(j − 1)j(3j − 1) + (1 − j)α,

G3 = − 1
48 (j − 1)2j2(j + 1)(j + 2) − 1

2 (j − 1)j2α,

H3 = − 1
48 (j − 3)(j − 2)(j − 1)2j2 + 1

2 (j − 1)2jα.

To represent GN and HN , we define for j ≥ 1 and i ≥ 0 that

qi(j) := ei(1, 2, · · · , j − 1), (2.20)

Qi(j) := (−1)ihi(1, 2, · · · , j − 1) (2.21)

where

ei(X1, X2, · · · , Xn) =
∑

1≤n1<n2<···<ni≤n

Xn1Xn2 · · ·Xni
(2.22)

and

hi(X1, X2, · · · , Xn) =
∑

1≤n1≤n2≤···≤ni≤n

Xn1Xn2 · · ·Xni
(2.23)
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are elementary symmetric polynomials and complete homogeneous symmetric polyno-
mials respectively. Note that here we agree that

e0(X1, X2, · · · , Xn) = h0(X1, X2, · · · , Xn) = 1

so that q0(j) = Q0(j) = 1. By definition it is clear that qi(j) = Qi(j) = 0 if i ≥ j. 
Moreover, we remark that qi(j) is just the unsigned Stirling numbers of the first kind

qi(j) = c(j, j − i). (2.24)

It is not difficult to see that

∞∑
k=0

ek(X1, X2, · · · , Xn)tk =
n∏

i=1
(1 + Xit), (2.25)

∞∑
k=0

hk(X1, X2, · · · , Xn)tk =
n∏

i=1

1
1 −Xit

. (2.26)

These identities imply the following well-known fundamental relation: for m ≥ 1,

m∑
i=0

(−1)iei(X1, · · · , Xn)hm−i(X1, X2, · · · , Xn) = 0. (2.27)

Therefore, we have the following recurrence relation for Qk(j):

Qk(j) = −
k∑

i=1
qi(j)Qk−i(j), k ≥ 1. (2.28)

Recall the generalized binomial coefficient for k ∈ N, z ∈ C

(
z

k

)
= z(z − 1) · · · (z − k + 1)

k! .

Lemma 3. We have

GN =
[N/2]∑
m=0

G(N,m)αm, N = 0, 1, 2, ...

where

G(N,m) =
(
j

m

)
QN−2m(j). (2.29)

Moreover,
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HN =
[N/2]∑
m=0

H(N,m)αm, N = 0, 1, 2, ...

where

H(N,m) = (−1)N
(

1 − j

m

)
qN−2m(j). (2.30)

Proof. Since

j−1∏
i=0

1
1 + ix

=
∞∑
i=0

Qk(j)xk, (2.31)

we have

G(α;x) =
j∑

m=0

(
j

m

)
αmx2m

∞∑
k=0

Qk(j)xk =
∞∑

N=0
xN

[N/2]∑
m=0

(
j

m

)
QN−2m(j)αm.

Similarly,

H(α;x) =
∞∑

m=0

(
1 − j

m

)
αmx2m

∞∑
k=0

qk(j)(−x)k

=
∞∑

N=0
xN

[N/2]∑
m=0

(−1)NqN−2m(j)
(

1 − j

m

)
αm. �

For fixed n, both qn(j) and Qn(j) are polynomials in j. Hence they can be naturally 
extended to be two functions defined on the whole real line. The following lemma gives 
a relation between these two functions.

Lemma 4. For n ≥ 0, we have Qn(1 − t) = (−1)nqn(t), t ∈ R.

Proof. We denote for j ≥ 1,

φj(x) :=
j−1∏
i=0

1
1 + ix

=
∞∑

n=0
Qn(j)xn, (2.32)

ψj(x) :=
j−1∏
i=1

(1 − ix) =
∞∑

n=0
(−1)nqn(j)xn. (2.33)

In particular, φ1(x) = ψ1(x) = 1. Note that

φj(x) = (1 + jx)φj+1(x) =
∞∑

n=0

(
Qn(j + 1) + jQn−1(j + 1)

)
xn (2.34)
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where we set Q−1(t) = 0. Comparing the coefficient of xn on both sides, we deduce that 
for any n ≥ 0,

Qn(j) = Qn(j + 1) + jQn−1(j + 1). (2.35)

Similarly, observing that ψj+1(x) = ψj(x)(1 − jx), we deduce that for any n ≥ 0,

qn(j + 1) = qn(j) + jqn−1(j) (2.36)

where we set q−1(t) = 0. Since (2.35) and (2.36) hold for all j ≥ 1 and both Qn(t) and 
qn(t) are polynomials in t, we conclude that for any t ∈ R

Qn(t) = Qn(t + 1) + tQn−1(t + 1), (2.37)

qn(t + 1) = qn(t) + tqn−1(t). (2.38)

Now we let Qn(t) = Qn(1 − t). Then (2.37) implies

Qn(t + 1) = Qn(t) − tQn−1(t). (2.39)

Comparing (2.39) with (2.38), we see that the polynomials Qn(t) and (−1)nqn(t) satisfy 
the same recurrence relation. Next, by direct computation, we find that

Q0(j) = q0(j) = 1, Q1(j) = −j(j − 1)
2 , q1(j) = j(j − 1)

2 . (2.40)

Thus

Q1(t) = −q1(t) = − t(t− 1)
2 .

Now suppose that Qn−1(t) = (−1)n−1qn−1(t) for some n ≥ 2. By (2.38) and (2.39) we 
deduce that

Qn(t + 1) −Qn(t) = (−1)nqn(t + 1) − (−1)nqn(t).

Summing over t from 1 to j − 1, we obtain

Qn(j) −Qn(1) = (−1)nqn(j) − (−1)nqn(1). (2.41)

By definition, we have Qn(1) = (−1)nqn(1) = 0 for n ≥ 1. Therefore, (2.41) implies 
that Qn(j) = (−1)nqn(j) for any j ≥ 1. This implies that Qn(t) = (−1)nqn(t) for any 
t ∈ R. �
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Since G0 = H0, G1 = H1, we get

G(α(x);x) −H(α(x);x)
x2 =

∞∑
N=0

(GN+2 −HN+2)xN .

Hence

G(α(x);x) −H(α(x);x)
x2 (1 + α(x)x2) =

∞∑
N=0

(GN+2 −HN+2 + (GN −HN )α(x))xN .

(2.42)

To prove Lemma 2, we need to compute the coefficient of xn−1 in (2.42). For N ≥ 2m, 
we define

Δ(N,m) := G(N,m) −H(N,m) =
(
j

m

)
QN−2m(j) − (−1)N

(
1 − j

m

)
qN−2m(j).

(2.43)

For example,

Δ(0, 0) = Δ(1, 0) = 0,

Δ(2, 0) = 1
6j(j − 1)(2j − 1), Δ(2, 1) = 2j − 1,

Δ(3, 0) = − 1
12 (j − 1)2j2(2j − 1), Δ(3, 1) = −1

2 (j − 1)j(2j − 1),

Δ(4, 0) = 1
240 (−1 + j)j(−1 + 2j)(−4 − 12j + 17j2 − 10j3 + 5j4),

Δ(4, 1) = 1
24 (−1 + j)j(−1 + 2j)(2 − 3j + 3j2), Δ(4, 2) = 0,

Δ(5, 0) = − 1
1440 (−1 + j)2j2(−1 + 2j)(−12 − 56j + 61j2 − 10j3 + 5j4),

Δ(5, 1) = − 1
48 (−1 + j)2j2(−1 + 2j)(6 − j + j2), Δ(5, 2) = 0.

Proposition 1. Let μ = 2j − 1 and ν = j(j − 1). Then for N ≥ 2m the polynomial 
Δ(N, m) can be written as

Δ(N,m) = μ(s0 + s1ν + · · · + skν
k), s0, s1, . . . , sk ∈ Q, (2.44)

where k ≤
[2N−3m−1

2
]
. Moreover, if (N, m) �= (2, 1), then s0 = 0.

In order to prove this proposition, we need the following lemmas.

Lemma 5. Any polynomial of j can be written into a polynomial of μ = 2j − 1 and 
ν = j(j − 1), in which the degree of μ in each term is at most 1. Moreover, such a 
representation is unique. In order words, any polynomial ϕ(j) can be uniquely written as
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ϕ(j) = s0,0 + s0,1ν + ... + s0,n0ν
n0 + μ(s1,0 + s1,1ν + ... + s1,n1ν

n1).

Furthermore, if all the coefficients of ϕ(j) are rational numbers, then each si,l ∈ Q.

Proof. Note that μ2 = 4ν + 1. By the binomial theorem we have

jn =
(
μ + 1

2

)n

= 1
2n

n∑
k=0

(
n

k

)
μk

= 2−n

⎛
⎝[n/2]∑

k=0

(
n

2k

)
μ2k +

[(n−1)/2]∑
k=0

(
n

2k + 1

)
μ2k+1

⎞
⎠

= 2−n

[n/2]∑
k=0

(
n

2k

)
(4ν + 1)k + 2−nμ

[(n−1)/2]∑
k=0

(
n

2k + 1

)
(4ν + 1)k. (2.45)

This proves the assertions for the polynomial jn.
Since any polynomial ϕ(j) is a linear combinations of jn (n = 0, 1, · · · ), we know that 

ϕ(j) can be written in the desired form. If ϕ(j) has rational coefficients, then clearly 
each si,l ∈ Q.

The uniqueness is clear, since otherwise we will have a relation

ϕ1(ν) + μϕ2(ν) = 0

for some nonzero polynomials ϕ1(j) and ϕ2(j), which is impossible because μ2 =
4ν + 1. �
Remark 4. We see from (2.45) that j2n = νn+ n

2μν
n−1+ lower degree terms and j2n+1 =

1
2μν

n+ lower degree terms.

Lemma 6. For k ≥ 1,

qk(j) = 1
2kk!j

2k − 2k + 1
3 · 2k(k − 1)!j

2k−1 + O(j2k−2), (2.46)

Qk(j) = (−1)k

2kk! j2k + (−1)k(2k − 5)
3 · 2k(k − 1)! j

2k−1 + O(j2k−2). (2.47)

Proof. We denote

pm(j) :=
j−1∑
k=1

km. (2.48)

It is known that
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pm(j) = 1
m + 1

m∑
i=0

(−1)i
(
m + 1

i

)
Bij

m+1−i − jm. (2.49)

From (2.49) we have

p1(j) = 1
2j

2 − 1
2j, p2(j) = 1

3j
3 − 1

2j
2 + 1

6j.

As a polynomial in j, the degree of pm(j) is m + 1. Moreover, it is known that

qk(j) = (−1)k
∑

m1+2m2+···+kmk=k
m1≥0,··· ,mk≥0

k∏
i=1

(−pi(j))mi

mi!imi
. (2.50)

As a polynomial in j, the degree of qk(j) is no more than

deg
( k∏
i=1

pmi
i (j)

)
= 2m1 + 3m2 + · · · + (k + 1)mk

= (m1 + 2m2 + · · · + kmk) + (m1 + m2 + · · · + mk)

= k + (m1 + m2 + · · · + mk)

≤ 2k.

Now we are going to find the coefficients of j2k and j2k−1 in qk(j), respectively.
We consider the system of linear equations

{
2m1 + 3m2 + · · · + (k + 1)mk = 2k
m1 + 2m2 + · · · + kmk = k,

which is equivalent to
{

m1 + m2 + · · · + mk = k

m1 + 2m2 + · · · + kmk = k.

It is clear that the unique solution to the equations above are m1 = k and mi = 0 for 
2 ≤ i ≤ k. Now we compute

(−1)k (−p1(j))k

k! = 1
k!

(
1
2j

2 − 1
2j

)k

= 1
k!

(
1
2k j

2k − k

2k j
2k−1 + O(j2k−2)

)
. (2.51)

Similarly, we consider the system of linear equations
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{
2m1 + 3m2 + · · · + (k + 1)mk = 2k − 1
m1 + 2m2 + · · · + kmk = k.

The only solutions are m1 = k − 2, m2 = 1 and mi = 0 for all i ≥ 3. The corresponding 
term in qk(j) is

(−1)k (−p1(j))k−2

(k − 2)! · −p2(j)
2! = − 1

2(k − 2)!

(
1
2j

2 − 1
2j

)k−2

·
(

1
3j

3 − 1
2j

2 + 1
6j

)

= − 1
3 · 2k−1(k − 2)!j

2k−1 + O(j2k−2). (2.52)

Adding (2.51) and (2.52) up, we obtain (2.46).
Next, from Lemma 4, we see that if we replace j by 1 −j in the polynomial expression 

of (−1)kqk(j), then we get Qk(j). Thus by replacing j by 1 − j in (2.46), we obtain 
(2.47). �
Lemma 7. For any integer n ≥ 1, both qn(j) and Qn(j) are divisible by j(j − 1), and 
q2n+1(j) is divisible by j2(j − 1)2.

Proof. By definition we have qn(j) = Qn(j) = 0 when j = 0 and j = 1. As polynomials 
of j, we know that qn(j) and Qn(j) are divisible by j(j − 1).

Furthermore, from Newton’s identities, we have

mqm(j) =
m∑

k=1

(−1)k−1pk(j)qm−k(j). (2.53)

For each 1 ≤ k ≤ m − 1, pk(j)qm−k(j) is divisible by j2(j − 1)2. It is well known that if 
m ≥ 3 is odd, then pm(j) is divisible by j2(j − 1)2. Hence (2.53) implies that q2n+1(j)
is divisible by j2(j − 1)2 for any n ≥ 1. �

Now we are able to prove Proposition 1.

Proof of Proposition 1. From (2.43) it is clear that Δ(N, m) is a polynomial of j with 
rational coefficients. By Lemma 5, we can write

Δ(N,m) = s0,0 + s0,1ν + · · · + s0,n0ν
n0 + μ (s1,0 + s1,1ν + · · · + s1,n1ν

n1) (2.54)

where each si,l ∈ Q. Replacing j by 1 − j, then μ 
→ −μ and ν 
→ ν. Lemma 4 and (2.43)
imply

−Δ(N,m) = s0,0 + s0,1ν + · · · + s0,n0ν
n0 − μ (s1,0 + s1,1ν + · · · + s1,n1ν

n1) .

(2.55)

From (2.54) and (2.55), we deduce that
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Δ(N,m) = μ (s1,0 + s1,1ν + · · · + s1,n1ν
n1) .

By Lemma 7 and (2.43) we know that Δ(N, m) is divisible by ν when N − 2m > 0. If 
N − 2m = 0, we have

Δ(2m,m) =
(
j

m

)
−

(
1 − j

m

)
.

Clearly, when j = 0 or j = 1, we have Δ(2m, m) = 0 except when m = 1. Therefore 
Δ(2m, m) has a factor j(j−1) except when m = 1. Thus when (N, m) �= (2, 1), Δ(N, m)
is always divisible by ν, which means s1,0 = 0.

It remains to prove that n1 ≤
[2N−3m−1

2
]
. By the definition of G(N, m) and Lemma 6,

G(N,m) = (−1)N

m!(N − 2m)!2N−2m j2N−3m + O(j2N−3m−1). (2.56)

Similarly,

H(N,m) = (−1)N−m

m!(N − 2m)!2N−2m j2N−3m + O(j2N−3m−1). (2.57)

Hence

Δ(N,m) = Const. μν[ 2N−3m−1
2 ] + lower degree terms. (2.58)

This completes the proof of Proposition 1. �
Finally, we arrive at the stage to prove Lemma 2.

Proof of Lemma 2. We plug

α(x) =
∞∑
k=0

akx
k

into (2.42) and expand it to a power series of x. By direct calculations, we find that the 
coefficient of xn−1 in (2.42) is the sum of the following terms:

Δ(2, 1)an−1, (2.59)

(Δ(N,m) + Δ(N − 2,m− 1))
∑

i1+...+im=n−N+1
ai1 · · · aim (2.60)

(3 ≤ N ≤ n + 1, 1 ≤ m ≤ [N2 ]),

Δ(n + 1, 0). (2.61)
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Note that Δ(2, 1) = 2j − 1 = μ. (2.59) gives the first term in (2.19). By Proposition 1, 
we can write each Δ(N, m) as

μ(s0 + s1ν + ... + skν
k), s0, s1, . . . , sk ∈ Q,

where k ≤ [ 2N−3m−1
2 ]. Since N ≤ n + 1, m ≥ 0, we have [ 2N−3m−1

2 ] ≤ n, which means 
the degree of ν in Δ(N, m) is at most n. This gives (2.19) and clearly each polynomial 
Si(n) has rational coefficients. More explicitly, from (2.60) and (2.61), we see that for 
i = 0, 1, ..., n,

Si(n) = [μνi]Δ(n + 1, 0)

+
n+1∑
N=3

[N/2]∑
m=1

∑
i1+...+im=n−N+1

([μνi]Δ(N,m) + [μνi]Δ(N − 2,m− 1))ai1 · · · aim ,
(2.62)

where [μνi]Δ(N, m) means the coefficient of the term μνi in Δ(N, m). In particular,

Si(1) = [μνi]Δ(2, 0), i = 0, 1,

Si(2) = [μνi]Δ(3, 0) + [μνi]Δ(3, 1)a0, i = 0, 1, 2.

Recall that Δ(2, 0) = 1
6μν, Δ(3, 0) = − 1

12μν
2, and Δ(3, 1) = −1

2μν. So we have S0(1) =
S0(2) = 0, S1(1) = 1

6 , S1(2) = −1
2a0, S2(2) = − 1

12 . �
3. Proof of Theorem 1

Recall Ramanujan’s Theta-operator Θ = q∂q, which has the effect that

Θ
( ∞∑

n=n0

x(n)qn
)

:=
∞∑

n=n0

nx(n)qn.

Let

P0 =
∞∑
j=1

(−1)j−1(2j − 1)qj(j−1)/2.

Lemma 8. For any m ≥ 1, we have

Θm(P0) = −3P0Pm,

where Pm is a multivariate polynomial of A0, A1, ..., Am−1 with rational coefficients and 
Ai was defined in (1.8). Moreover, we have

P1 = A0, Pm+1 = Θ(Pm) − 3A0Pm, m = 1, 2, ....
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Proof. By Jacobi’s identity [1, Theorem 1.3.9], we have

P0 =
∞∏

n=1
(1 − qn)3. (3.1)

Hence

Θ(P0)
P0

= −3
∞∑

n=1

nqn

1 − qn
= −3

∞∑
n=1

σ(n)qn.

This proves that Θ(P0) = −3A0P0 and hence P1 = A0.
Next, note that

Θm+1(P0) = Θ(−3P0Pm) = −3Θ(P0)Pm − 3P0Θ(Pm) = −3P0(Θ(Pm) − 3A0Pm).

We deduce that

Pm+1 = Θ(Pm) − 3A0Pm. (3.2)

Suppose we have proved that Pm is a polynomial of A0, A1, . . . , Am−1 with rational 
coefficients, which is clearly true for m = 1. Then since Θ(Ak) = Ak+1, from (3.2) it 
follows that Pm+1 is a polynomial of A0, A1, . . . , Am with rational coefficients. Thus by 
induction on m we know that the first assertion is true. �

Recall that in Lemma 2, S0(1) = 0, S1(1) = 1
6 , and for m ≥ 2, Si(m) are polynomials 

of a0, a1, · · · , am−2 and independent of j. For m ≥ 1, we recursively define

Cm = −S0(m) +
m∑
i=1

3 · 2iSi(m)(C1, · · · , Cm−1)Pi. (3.3)

In particular,

C1 = 6S1(1)P1 = A0. (3.4)

The following lemma is a key for the proof of Theorem 1.

Lemma 9. Let n ≥ 1 and λ �= Cn. In addition, we assume λ > 0 when n = 1. Then for 
large k,

(−1)k(λ− Cn)f(−(k + Λn−1(k−1)k−1)q1−k) > 0, (3.5)

where

Λn−1(x) =
n−1∑
i=1

Cix
i−1 + λxn−1. (3.6)
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Remark 5. Here and in the proof below, we use the convention that in any summation ∑b
i=a, if a > b, then we assume the sum is empty (zero). In (3.6), when n = 1, we have 

an empty sum and so Λ0(x) = λ.

Proof. For convenience, we define for m ≥ 0

Pm :=
∞∑
j=1

(−1)j−1(2j − 1) (j(j − 1))m qj(j−1)/2 (3.7)

and

Pm,2N−1 :=
2N−1∑
j=1

(−1)j−1(2j − 1) (j(j − 1))m qj(j−1)/2. (3.8)

It is clear that P 0 = P0 and Pm = 2mΘm(P0) = −3 · 2mP0Pm (m ≥ 1). Moreover, (3.3)
implies that for any m ≥ 1,

CmP0 +
m∑
i=0

Si(m)(C1, C2, · · · , Cm−1)P i = 0. (3.9)

Since q is fixed with 0 < q < 1, we have Λ0(k−1) = λ > 0 and Λn−1(k−1) = C1 +
O(k−1) for n ≥ 2. Note that C1 = A0 =

∑∞
m=1 σ(m)qm > 0. Now we set a = Λn−1(x)

in (2.1) with x = k−1. From (2.13) and Lemma 2 we deduce that

vk−j =
(
G(Λn−1(k−1); k−1) −H(Λn−1(k−1); k−1)

)1 + Λn−1(k−1)k−2

k−2 qj(j−1)/2

· (k + Λn−1(k−1)k−1)k−2 1
k!q

−k(k−1)/2

=(k + Λn−1(k−1)k−1)k−2 1
k!q

−k(k−1)/2 · qj(j−1)/2
( n∑

m=1
ξm−1k

−(m−1) + O(k−n)
)
,

(3.10)

where

ξm−1 = μ

(
Cm +

m∑
i=0

Si(m)(C1, · · · , Cm−1)νi
)
, 1 ≤ m ≤ n− 1, (3.11)

and

ξn−1 = μ

(
λ +

n∑
i=0

Si(n)(C1, · · · , Cn−1)νi
)
. (3.12)
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For convenience, from now to the end of proof, we will omit the variables C1, · · · , Cn−1
and simply write the polynomial Si(j)(C1, · · · , Cj−1) as Si(j).

By Lemma 1, there exists a positive integer N1 = N1(q) such that for k ≥ q−3N1 ,

vk−N1 > vk−N1−1 > · · · > v0.

Note that (3.1) implies P0 > 0. If λ − Cn < 0, by (3.9) we know there exists a positive 
integer N2 = N2(q) such that for any integers m ≥ N2,

λP 0,2m−1 +
n∑

i=0
Si(n)P i,2m−1 < 0. (3.13)

Let N > max{N1, N2}. Using (3.10) and by direct calculations, we find that

2N−1∑
j=1

(−1)j−1vk−j =

(k + Λn−1(k−1)k−1)k−2 1
k!q

−k(k−1)/2 ·
(

n−1∑
�=1

(
C�P 0,2N−1 +

�∑
i=0

Si(�)P i,2N−1
)
k−(�−1)

+
(
λP 0,2N−1 +

n∑
i=0

Si(n)P i,2N−1
)
k−(n−1) + O(k−n)

)
. (3.14)

Now for each 1 ≤ � ≤ n − 1, from (3.9) we deduce that

C�P 0 +
�∑

i=0
Si(�)P i = 0. (3.15)

Hence
∣∣∣∣∣
(
C�P 0,2N−1 +

�∑
i=0

Si(�)P i,2N−1

)
k−(�−1)

∣∣∣∣∣
=

∣∣∣∣∣∣
∑
j≥2N

(
C� +

�∑
i=0

Si(�)vi
)
(−1)j−1(2j − 1)qj(j−1)/2

∣∣∣∣∣∣
≤|C�|

∣∣∣∣∣∣
∑
j≥2N

(−1)j−1(2j − 1)qj(j−1)/2

∣∣∣∣∣∣
+

�∑
i=0

|Si(�)|

∣∣∣∣∣∣
∑

(−1)j−1(2j − 1)(j(j − 1))iqj(j−1)/2

∣∣∣∣∣∣
j≥2N
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≤|C�|(4N − 1)qN(2N−1) +
�∑

i=0
|Si(�)|(4N − 1)(2N(2N − 1))iqN(2N−1)

=O(qN
2
).

Here for the last inequality, we have used the fact that when N is sufficiently large, the 
sequence (2j − 1)(j(j − 1))iqj(j−1)/2 will be decreasing when j ≥ 2N .

Note that when k ≤ q−N2/n, we have qN
2 ≤ k−n. Hence for each k satisfying q−3N ≤

k ≤ q−N2/n, (3.14) implies

2N−1∑
j=1

(−1)j−1vk−j = (k + Λn−1(k−1)k−1)k−2 1
k!q

−k(k−1)/2

×
((

λP 0,2N−1 +
n∑

i=0
Si(n)P i,2N−1

)
k−(n−1) + O(k−n)

)
.

(3.16)

From (3.13), when N is large enough, and for k satisfying q−3N ≤ k ≤ q−N2/n, we can 
guarantee that

(
λP 0,2N−1 +

n∑
i=0

Si(n)P i,2N−1

)
k−(n−1) + O(k−n) < 0. (3.17)

Therefore, for such k and N , we have

2N−1∑
j=1

(−1)j−1vk−j < 0 (3.18)

and by Lemma 1

k∑
j=2N

(−1)j−1vk−j < vk−2N−1 − vk−2N < 0. (3.19)

So we have

(−1)k
2k−1∑
n=0

(−1)nun =
k∑

j=1
(−1)j−1vk−j < 0. (3.20)

By (3.17) we know that there exists a constant c > 0 such that for k large enough,

∣∣∣∣∣
2k−1∑

(−1)nun

∣∣∣∣∣ > c
(k + Λn−1(k−1)k−1)k−2

k! q−k(k−1)/2k−(n−1)
n=0
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>
(k + Λn−1(k−1)k−1)2k

(2k)! qk = u2k. (3.21)

Moreover, since un is decreasing when n > k,

u2k >

∣∣∣∣∣
∞∑

n=2k

un(−1)n
∣∣∣∣∣ . (3.22)

From (3.20), (3.21) and (3.22), we deduce that

(−1)kf(−(k + Λn−1(k−1)k−1)q1−k) =
∞∑

n=0
(−1)nun < 0

for large k.
Similarly, if λ − Cn > 0, we have for large k,

(−1)kf(−(k + Λn−1(k−1)k−1)q1−k) > 0. �
Proof of Theorem 1. For any n ≥ 1, we choose λ′ < Cn < λ′′ where we also require that 
λ′ > 0 when n = 1. Let

ξ′k = −kq1−k

(
1 +

n−1∑
i=1

Cik
−1−i + λ′k−1−n

)
,

ξ′′k = −kq1−k

(
1 +

n−1∑
i=1

Cik
−1−i + λ′′k−1−n

)
.

By Lemma 9 we have f(ξ′k)f(ξ′′k ) < 0. Therefore, by the intermediate value theorem, 
there exists a root in the interval (ξ′k, ξ′′k ). Thanks to (1.5), when k is large enough, we 
know this interval contains only one root and this root must be xk (see also [25, Proof 
of Theorem 1]). Thus we can write the root as

xk = −kq1−k

(
1 +

n−1∑
i=1

Cik
−1−i + θn(k)k−1−n

)
. (3.23)

By letting λ′ and λ′′ tend to Cn from the left side and right side, respectively, we see 
that we must have

lim
k→∞

θn(k) = Cn. (3.24)

Thus θn(k) = Cn + o(1) as k tends to infinity. This means

xk = −kq1−k

(
1 +

n−1∑
i=1

Cik
−1−i + Cnk

−1−n + o(k−1−n)
)
. (3.25)
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This proves (1.9) for any n ≥ 1.
From the definition (3.3) and Lemma 8, it is clear that Ci is a multivariate polynomial 

of A0, A1, . . . , Ai−1 with rational coefficients. �
4. Representations of Cn

4.1. Representation of Cn using A0, A1, · · · , An−1

We have seen in (3.3) that

Cn = −S0(n) + 6S1(n)P1 + 12S2(n)P2 + ... + 3 · 2nSn(n)Pn, (4.1)

where each Pi is given by a recursive formula in Lemma 8, and each Si(n) can be 
determined from (2.62) by setting ai = Ci+1. Indeed, for i = 0, 1, ..., n,

Si(n) = [μνi]Δ(n + 1, 0)

+
n+1∑
N=3

[N/2]∑
m=1

∑
i1+...+im=n−N+m+1

([μνi]Δ(N,m) + [μνi]Δ(N − 2,m− 1))Ci1 · · · Cim ,

(4.2)

where Δ(N, m) was given in (2.43), and [μνi]Δ(N, m) means the coefficient of the term 
μνi in the representation of Δ(N, m) in Proposition 1.

Proposition 2. For n ≥ 1,

Sn(n) = (−1)n−1

3 · 2n(n− 1)! .

Proof. By Lemma 6, (2.29) and (2.30) we have

G(N, 0) = QN (j) = (−1)N

2NN ! j
2N + (−1)N (2N − 5)

3 · 2N (N − 1)! j
2N−1 + O(j2N−2),

H(N, 0) = (−1)NqN (j) = (−1)N

2NN ! j
2N − (−1)N (2N + 1)

3 · 2N (N − 1)! j
2N−1 + O(j2N−2).

Then by (2.43) we have

Δ(N, 0) = (−1)N

3 · 2N−2(N − 2)!j
2N−1 + O(j2N−2). (4.3)

So

Δ(n + 1, 0) = (−1)n+1

n
μνn + lower degree terms. (4.4)
3 · 2 (n− 1)!
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Thanks to (2.58), we know that in (4.2), Δ(n + 1, 0) is the only term containing μνn, so 
Sn(n) is exactly the coefficient of μνn in (4.4). �
Proposition 3. For n ≥ 3,

S0(n) =
∑

i1+i2=n−1
Ci1Ci2 .

Proof. Recall that S0(n) = 0 if n = 1, 2. From Proposition 1 we know that when n ≥ 3, 
any other Δ(N, m) with (N, m) �= (2, 1) in (4.2) must have the factor μν. Recall that 
Δ(2, 1) = μ. So

S0(n) = [μ]Δ(2, 1)
∑

i1+i2=n−1
Ci1Ci2 =

∑
i1+i2=n−1

Ci1Ci2 . �

Proposition 4. For 1 ≤ i ≤ n − 1, Si(n) is a polynomial of C1, ..., Cn−i with degree 
≤ min{[ 2(n−i)+1

3 ], [n+1
2 ]}. Moreover, this polynomial has the form

F̃ (C1, ..., Cn−i−1) + (−1)i

2ii! Cn−i, (4.5)

when F̃ is a polynomial depending on n and i.

Proof. To show that the subscripts of Ck’s in Si are at most n −i, we need to analyze the 
terms associated with each [μνi]Δ(N, m) in (4.2). Recall that (2.58) gives the restriction 
[ 2N−3m−1

2 ] ≥ i on these (N, m). We consider two different cases. When m ≥ 1, we have 
N − 2 ≥ [ 2N−3m−1

2 ] ≥ i, so N ≥ i + 2. The term associated with [μνi]Δ(N, m) is

∑
i1+...+im=n−N+m+1

Ci1 ...Cim +
∑

i1+...+im+1=n−N+m

Ci1 ...Cim+1 . (4.6)

(Note that when N = n, n + 1, the second sum vanishes.) So the maximal subscript

max
l

il ≤ n−Nmin + 2 = n− i.

When m = 0, the term associated with [μνi]Δ(N, 0) is Cn−N if N ≤ n −1, is 0 if N = n, 
and is 1 if N = n +1. Since N −1 = [ 2N−3m−1

2 ] ≥ i, we have N ≥ i +1. So the subscript

n−N ≤ n−Nmin = n− i− 1 < n− i.

Consequently, Si(n) contains only C1, ..., Cn−i.
Since [ 2N−3m−1

2 ] ≥ i, we have m ≤ [ 2N−2i−1
3 ]. The degree of (4.6), as a polynomial of 

C1, ..., Cn−i, is m + 1 when N ≤ n − 1, and is m when N = n, n + 1. When N ≤ n − 1,

m + 1 ≤ [ 2(n−1)−2i−1 ] + 1 = [ 2(n−i) ].
3 3
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When N = n, n + 1,

m ≤ [ 2(n+1)−2i−1
3 ] = [ 2(n−i)+1

3 ].

Recall that m ≤ [N/2]. So the degree of Si(n), as a polynomial of C1, ..., Cn−i, is at most 
min{[ 2(n−i)+1

3 ], [n+1
2 ]}.

The coefficient of Cn−i in (4.2) is [μνi]Δ(i +2, 1) +[μνi]Δ(i, 0). By (2.56), (2.57), and 
(4.3), we have

Δ(i + 2, 1) = (−1)i

2ii! μνi + lower degree terms,

Δ(i, 0) = (−1)i

3 · 2i−1(i− 2)!μν
i−1 + lower degree terms,

which implies [μνi]Δ(i + 2, 1) + [μνi]Δ(i, 0) = (−1)i
2ii! . �

Proposition 5. For any n ≥ 1,

Cn = F (A0, ..., An−2) + (−1)n−1

(n− 1)! An−1, (4.7)

where F is a polynomial depending on n and has degree at most n.

Proof. From the definition of Pn in Lemma 8, one can prove by induction that for any 
n ≥ 1, the degree of the multivariate polynomial Pn is n, and

Pn = An−1 + higher degree terms (without An−1). (4.8)

So the coefficient of An−1 in Cn is exactly (−1)n−1

(n−1)! by (4.1) and Proposition 2. To show 
the degree of Cn is at most n, we use induction. Suppose deg(Cl) ≤ l, 1 ≤ l < n. Then 
one can estimate the degree of Cn directly by (4.1) and (4.2). For example, the term

[μνi]Δ(N,m)Pi

∑
i1+...+im=n−N+m+1

Ci1 · · · Cim

has degree at most

[2N − 3m− 1
2

]
+ (n−N + m + 1) =

[
n− 1

2m + 1
2

]
≤ n.

Other terms can be estimated similarly. So deg(Cn) ≤ n. �
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4.2. The linear terms in the representation of Cn

We have known that Cn is a multivariate polynomial of A0, ..., An−1, which has the 
form (4.7) and can be determined recursively by (4.1). However, from the examples pre-
sented in Section 1, we see that this multivariate polynomial may have a very complicated 
structure, since it contains nonlinear terms as well as linear terms. In this section, we 
will see that at least the linear terms can be understood.

For i = 1, ..., n, let Si,0(n) be the constant term in Si(n). By (4.2), we have

Δ(n + 1, 0) = Qn+1(j) − (−1)n+1qn+1(j) = Sn,0(n)μνn + ... + S2,0(n)μν2 + S1,0(n)μν.

Then by (4.8) and (4.1), the coefficient of the linear term Ai−1 in Cn equals to

3 · 2iSi,0(n).

We have obtained the coefficient of the linear term An−1 in Proposition 5. However, 
to determine the explicit formulas of the coefficients for other linear terms, we have to 
obtain the explicit expansion of qn+1(j) (i.e., the unsigned Stirling number of the first 
kind c(j, j − n − 1)). Although it is possible to determine the first several terms in the 
expansions (see Lemma 6 for the first two terms), complete expansions are difficult and 
unknown. Fortunately, the sum of these coefficients has a simple closed form, which gives 
the coefficient of q in the expansion of Cn(q) in q (see Remark 3).

Proposition 6. The sum of the coefficients of the linear terms A0, A1, ..., An−1 in Cn

equals to (−1)n−1.

Proof. The sum of the coefficients of the linear terms A0, A1, ..., An−1 in Cn equals to

6S1,0(n) + 12S2,0(n) + ... + 3 · 2nSn,0(n). (4.9)

Note that

Δ(n + 1, 0) = Sn,0(n)μνn + ... + S2,0(n)μν2 + S1,0(n)μν. (4.10)

To compute the value of (4.9), we only need to set μ = 3 and ν = 2, namely j = 2 in 
(4.10). Note that when j = 2

G(N, 0) = (−1)N , H(N, 0) = 0, N = 2, 3, ....

So Δ(n + 1, 0) = G(n + 1, 0) −H(n + 1, 0) = (−1)n+1. �
Although it is difficult to find Si,0(n) for all 0 ≤ i ≤ n, we are able to find explicit 

formulas for S1,0(n) and S2,0(n), which give us explicit formulas for the coefficients of 
the linear terms A0 and A1. These results are useful in proving Theorem 2.
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Proposition 7. For any n ≥ 1,

S1,0(2n) = 0, S1,0(2n− 1) = B2n

n
, S2,0(2n) = −B2n

2n . (4.11)

Proof. Since Δ(n, 0) = Qn(j) − (−1)nqn(j), we have Qn(j) = Δ(n, 0) + (−1)nqn(j). By 
(2.28) we have

(−1)nqn(j) + Δ(n, 0) = −
n−1∑
m=0

qn−m(j) ((−1)mqm(j) + Δ(m, 0)) .

This implies

Δ(n, 0) = −
n−1∑
m=0

Δ(m, 0)qn−m(j) −
n∑

m=0
(−1)mqm(j)qn−m(j). (4.12)

Note that for any n ≥ 1, qn(j) is divisible by ν = j(j − 1). Since Δ(0, 0) = Δ(1, 0) = 0, 
from (4.12), we know Δ(n, 0) is divisible by ν. Replacing n by 2n + 1 in (4.12) and 
observing that

2n+1∑
m=0

(−1)mqm(j)q2n+1−m(j)

=
n∑

m=0

(
(−1)mqm(j)q2n+1−m(j) + (−1)2n+1−mq2n+1−m(j)qm(j)

)
= 0,

we obtain

Δ(2n + 1, 0) = −
2n∑

m=0
Δ(m, 0)q2n+1−m(j). (4.13)

Since both Δ(m, 0) and q2n+1−m(j) are divisible by ν, we know that Δ(2n + 1, 0) is 
divisible by ν2. Therefore, from (4.10) we know S1,0(2n) = 0.

Now we compare the coefficients of μν2 in both sides of (4.13). For the left hand side, 
it is clearly equal to S2,0(2n). For the right hand side, if 0 ≤ m ≤ 2n − 1 is odd, then 
Δ(m, 0) is divisible by ν2 and q2n+1−m(j) is divisible by ν. If 0 ≤ m ≤ 2n − 1 is even, 
then Δ(m, 0) is divisible by ν and q2n+1−m(j) is divisible by ν2 (see Lemma 7). Hence 
for any 0 ≤ m ≤ 2n −1, Δ(m, 0)q2n+1−m(j) is always divisible by ν3. Thus the term μν2

only appears in Δ(2n, 0)q1(j), and hence equals to −1
2S1,0(2n − 1)μν2. Thus we obtain

S2,0(2n) = −1
2S1,0(2n− 1). (4.14)
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Now we determine S1,0(2n − 1). Replacing n by 2n in (4.12), we obtain

Δ(2n, 0) = −2q2n(j) −
2n−1∑
m=1

(−1)mqm(j)q2n−m(j) −
2n−1∑
m=0

Δ(m, 0)q2n−m(j). (4.15)

Comparing the coefficient of j on both sides, we obtain

S1,0(2n− 1) = −2[j]q2n(j). (4.16)

From (2.49) we know that

[j]pm(j) = (−1)mBm, m ≥ 2. (4.17)

From (2.53) we get

m[j]qm(j) = −Bm, m ≥ 2. (4.18)

Replacing m by 2m, we obtain

[j]q2m(j) = −B2m

2m , m ≥ 1. (4.19)

Substituting (4.19) into (4.16) and (4.14), we complete the proof. �
Proposition 8. For any n ≥ 2,

S2,0(2n− 1) = −3B2n

n
. (4.20)

Proof. From Proposition 7 we know it suffices to show that

S2,0(2n− 1) + 3S1,0(2n− 1) = 0. (4.21)

We observe that

[j2]
(
x2μν

2 + x1μν
)

= [j2]
(
x2j

2(j − 1)2(2j − 1) + x1j(j − 1)(2j − 1)
)

= −x2 − 3x1.

Comparing the coefficients of j2 on both sides of (4.15), we deduce that

− S2,0(2n− 1) − 3S1,0(2n− 1)

= − 2[j2]q2n(j) −
2n−1∑
m=1

(−1)m[j]qm(j) · [j]q2n−m(j) −
2n−1∑
m=0

S1,0(m− 1)[j]q2n−m(j)

= − 2[j2]q2n(j) −
n−1∑

[j]q2m(j)[j]q2n−2m(j) −
n−1∑

S1,0(2m− 1)[j]q2n−2m(j)

m=1 m=1
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= − 2[j2]q2n(j) +
n−1∑
m=1

[j]q2m(j) · [j]q2n−2m(j), (4.22)

where in the last equality we used (4.16). Hence the proposition is equivalent to the 
assertion that for any n ≥ 2,

2[j2]q2n(j) =
n−1∑
m=1

[j]q2m(j) · [j]q2n−2m(j). (4.23)

From (2.49) we deduce that

[j2]pm(j) = (−1)m−1

2 mBm−1.

Hence for m ≥ 2,

[j2]p2m(j) = 0. (4.24)

From (2.53) we deduce that for n ≥ 2,

2n[j2]q2n(j) = −[j2]p2n(j) +
2n−1∑
k=2

(−1)k−1[j]pk(j)[j]q2n−k(j).

Using (4.17), (4.19) and (4.24), we obtain

[j2]q2n(j) = 1
2n

n−1∑
k=1

B2kB2n−2k

2n− 2k . (4.25)

From (4.19) we have

n−1∑
m=1

[j]q2m(j) · [j]q2n−2m(j)

=
n−1∑
m=1

B2m

2m · B2n−2m

2n− 2m

=
n−1∑
m=1

B2mB2n−2m
1
2n

(
1

2m + 1
2n− 2m

)

= 1
n

n−1∑
m=1

B2mB2n−2m

2n− 2m . (4.26)

Comparing (4.25) and (4.26), we complete the proof of (4.23) and the proposition. �
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4.3. Alternative representations of Cn

The representations of Cn are not unique. Indeed, it is possible to represent Cn using 
only A0, A1 and A2. For this we need to know the relation between A3 and A0, A1, A2. 
Recall that E2, E4 and E6 denotes three Eisenstein series as given in (1.11)–(1.13). The 
following identities of Ramanujan are well-known (see e.g. [1, Theorem 4.2.3]):

Θ(E2) = E2
2 − E4

12 , (4.27)

Θ(E4) = E2E4 − E6

3 , (4.28)

Θ(E6) = E2E6 − E2
4

2 . (4.29)

We first express E2, E4 and E6 in terms of A0, A1 and A2.

Proposition 9. We have

E2 = 1 − 24A0, (4.30)

E4 = 1 − 48A0 + 576A2
0 + 288A1, (4.31)

E6 = 1 − 72A0 + 1728A2
0 − 13824A3

0 + 432A1 − 10368A0A1 − 864A2. (4.32)

Proof. The relation (4.30) follows from definition.
Since Θ(A0) = A1, (4.27) implies

E4 = E2
2 − 12Θ(E2) = E2

2 + 288A1 = 1 − 48A0 + 576A2
0 + 288A1.

This proves (4.31).
Next, we have

Θ(E2
2) = Θ(1 − 48A0 + 576A2

0) = −48A1 + 1152A0A1. (4.33)

Applying Θ to both sides of (4.27), by (4.28) and (4.33) we obtain

Θ2(E2) = 1
12Θ(E2

2 −E4)

= 1
12Θ(E2

2) − 1
36(E2E4 −E6)

= 96A0A1 − 4A1 −
1
36(E2E4 −E6).

On the other hand, we have

Θ2(E2) = −24Θ2(A0) = −24A2. (4.34)
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So we deduce that

A2 = −4A0A1 + 1
6A1 + 1

864(E2E4 −E6). (4.35)

This implies

E6 = E2E4 − 3456A0A1 + 144A1 − 864A2. (4.36)

Substituting (4.30) and (4.31) into (4.36) and simplifying, we obtain (4.32). �
From Proposition 9, it is easy to express A0, A1 and A2 as polynomials in E2, E4 and 

E6.

Corollary 2. We have

A0 = 1
24(1 −E2),

A1 = 1
288(E4 −E2

2),

A2 = − 1
1728(E3

2 − 3E2E4 + 2E6).

Lemma 10. For any n ≥ 1, An can be written as a multivariate polynomial in A0, A1
and A2 with integer coefficients and degree at most n − 1. In particular, we have

A3 = A2 + 36A2
1 − 24A0A2. (4.37)

Proof. Applying the Θ operator to both sides of (4.35), upon using (4.27)–(4.29) and 
simplifying, we obtain

A3 = −4Θ(A0A1) + 1
6Θ(A1) + 1

864Θ(E2E4 − E6)

= −4A0A2 − 4A2
1 + 1

6A2 + 1
864 (Θ(E2)E4 + E2Θ(E4) − Θ(E6))

= −4A0A2 − 4A2
1 + 1

6A2 + 5
10368

(
E2

2E4 + E2
4 − 2E2E6

)
.

Now substituting (4.30)–(4.32) into the above identity and simplifying, we obtain (4.37).
Since Am+1 = Θ(Am), the first assertion follows by using (4.37) and induction 

on m. �
Finally, we present a proof of Theorem 2.

Proof of Theorem 2. From Lemma 10 and Proposition 5, we know that Cn can be rep-
resented as a polynomial of A0, A1 and A2. For the uniqueness, it is known that E2, 
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E4 and E6 are algebraically independent over C (see [16, Lemma 117], for example). 
Therefore, Corollary 2 implies that A0, A1 and A2 are also algebraically independent 
over C. Hence the expression of Cn as a polynomial in A0, A1 and A2 is unique. From 
Theorem 1 and Lemma 10, it is easy to see that all the coefficients are rational numbers.

From Lemma 10, we see that An = A2 + higher degree terms for all n ≥ 3. So Propo-
sition 6 still holds for this representation of Cn in A0, A1 and A2, and the coefficients 
of A0 and A1 do not change. Therefore, the coefficients of the linear terms A0, A1, A2

in this representation of Cn are 6S1,0(n), 12S2,0(n), (−1)n−1 − 6S1,0(n) − 12S2,0(n), 
respectively. Since S1,0(n) and S2,0(n) are given explicitly in Propositions 7 and 8, we 
complete our proof of Theorem 2. �
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