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1. Introduction

In his last letter to Hardy dated on January 12, 1920, Ramanujan gave a list of 17
functions which he called “mock theta functions”. He defined each function as a g-series
in Eulerian form and separated them into four classes: one class of third order, two of
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fifth order, and one of seventh order. Ramanujan also stated identities satisfied by mock
theta functions of the same order. In his lost notebook [39], identities for mock theta
functions of the sixth and tenth orders were recorded. Since then, mock theta functions
have attracted the attention of many mathematicians.

It was some time before researchers understood the modularity of mock theta func-
tions. From the Eulerian forms of mock theta functions, it is difficult to observe any
significant transformation properties. Therefore, finding alternative representations for
mock theta functions becomes the first task for studying their modular behaviors. With
the contribution of many works, Watson [46,47], Andrews [4], Andrews and Hickerson [§],
Berndt and Chan [10], Choi [14-17], Garvan [21], Gordon and McIntosh [24], Hickerson
[28], and Zwegers [50], to name a few, we now know that mock theta functions usually
admit at least one of the two kinds of representations: Appell-Lerch series or Hecke-type
series. A complete list of Appell-Lerch series representations for classical mock theta
functions can be found in [29, Section 5].

Appell-Lerch series are series of the form

> (_l)lnqén(n—i-l)/an

2 T iae (L.1)

n=—oo

Here and throughout this paper, we assume that |¢| < 1. After multiplying the series
(1.1) by the factor a'/? and viewing it as function in the variables a,b and ¢, it is also
usually refereed as a level ¢ Appell function. This kind of series was first studied by
Appell [9] and Lerch [31].

A series is of Hecke-type if it has the following form:

Z (_1)H(m,n)qQ(m,n)—‘,-L(m,n)7

(m,n)eD

where H and L are linear forms, @) is a quadratic form, and D is some subset of Z x Z
such that Q(m,n) > 0 for every (m,n) € D. Historically Q(m,n) was assumed to be
indefinite (see [3] for example). Here we allow Q(m, n) to be definite as well. The following
classical identity of Jacobi expresses an infinite product as a Hecke-type series [3, Eq.
(3.15)]:

oo
@i =Y Y (-ymgtmitm2,
n=—00 m>|n|
Here and later we use the standard g¢-series notation:
n—1 0o

@i o =1, (@@= [[Q-2¢"), (@)oo = (@:0) = [[ (A - 24").

k=0 k=0
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Motivated by Jacobi’s identity, Hecke [26] systematically investigated theta series
related to indefinite quadratic forms. For instance, Hecke [26, p. 425] found that

Z Z m+n (n?—=3m?)/2+(n+m)/2 _ H(l _ qn)27
n=—oo |ml<n/2 nst

which is originally due to Rogers [40, p. 323]. Kac and Peterson [30] illustrated ways for
proving Hecke-type identities using affine Lie algebra.

Appell-Lerch series and Hecke-type series played important roles in g-series. It serves
as bridges between mock theta functions and the theory of modular forms. For example,
for the third order mock theta function'

fore) 2
qn
) =) ——, (1.2)
(-7
Watson [46] found the following Appell-Lerch series representation
2 > (—1)”(]%”24'%"

G (g) = - AN 1.3
79 (¢ 4)os n;w IR (13)

For the fifth order mock theta function

RSN
)=2 (—@a)n’ 14

Andrews [4] showed that it has a Hecke-type series expression as:

(5)( qgn2+%nfj2(1 7q4n+2). (15)

n= 0\J|<n

By using the Appell-Lerch series or Hecke-type series expressions of mock theta functions
such as (1.3) and (1.5), Zwegers [49] successfully fit mock theta functions into the theory
of modular forms. For more detailed introduction to the developments of mock theta
functions, we refer the reader to the survey of Gordon and McIntosh [25], the paper
of Hickerson and Mortenson [29], the recent books of Andrews and Berndt [6], and
Bringmann et al. [11] as well as the references listed there.

There are several ways for establishing Appell-Lerch series or Hecke-type series ex-
pressions for mock theta functions. To deduce Appell-Lerch series representations of
third order mock theta functions, Watson used a transformation formula connecting a

b Throughout this paper, to avoid confusion, we use a superscript (n) to indicate that a mock theta
function is of order n.
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terminated g¢7 series to a terminated 4¢3 series. Andrews [4] used Bailey chain the-
ory to produce Hecke-type series expressions for the fifth and seventh order mock theta
functions. Liu [32] derived some g¢-series expansion formulas and gave new proofs to
(1.5). In a series of works, Liu [33,34] established some transformation formulas for g-
hypergeometric series and thereby proved many interesting Hecke-type identities such as
(see [34, Proposition 1.11])

i nq q q o Z Z n+_7 n®4+n—j* (1.6)
n=0 n=0j=—n

Among a number of nice transformation formulas of Liu, the following one has shown
its power in establishing Hecke-type identities (see [33, Theorem 1.7] or [34, p. 2089]).

Theorem 1.1. For max{|uab/q|, |ual, |ub|,|c|,|d|} < 1, we have®

(ugq, uab/q; q) oo (q/a,q/b,v uab)
— 302 iq, —

(ua, ub; q)oo c,d & q

n

(1 — ug®)(u, q/a,q/b;q)n (n?—3n)/2 q ", ug",v
_E —uab)"q™ 3" ‘q.q). (1
1_u (g, ua, ub: ) (—uab)"q X 362 ca 01 (1.7)

Utilizing Theorem 1.1, several new Hecke-type identities have been found by Wang
and Yee [44,45]. In particular, they proved that [45, Theorem 1.1]

Z Z Z n +J Z(il)nqzn? (18)
n=1 n= 1\j|<n n=1

Note that this is a Hecke-type identity associated with a definite theta series, which is
quite rare in the literature. Furthermore, Wang [43] used Theorem 1.1 to give new proofs
for five false theta function identities of Ramanujan. In a recent work, Chan and Liu [12]
used Theorem 1.1 to establish three Hecke-type identities such as

Z qq _q)ngnn=1/2 = Z Z (1—q") 1)n+j+lq2n2—n—j2. (1.9)

n=1j=—n+1

In this paper, we continue to employ Theorem 1.1 to illustrate a systematic way to
establish various representations for g-series in the Eulerian form. We first generalize
Theorem 1.1 to the following form.

Theorem 1.2. Suppose max{|aabz/q|, |aal, |abl, |aci], -, |acn|} < 1 and m is a non-
negative integer. We have

2 For the convergence, we only need to assume that |uab/q| < 1. We require max{|ual, |ub|, |c|, |d|} < 1
so that the denominator of each term appearing in the identity does not vanish.
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Q/Q,Q/b,ﬂbl,"' 7abm
0,acy, -, acy

(aq, aab/q; q) o

(aa ab: (]) m+2¢m+1 <

i q, cabz/ q)

_ - (L= ag®)(e.q/a, /b q)n(—aab/q)"q" "D/
B Z (1 - Oé) (q7 aa, Oéb; q)n

qina aqn, abla e aabm
X 34, 2q |- 1.10
m+2¢m+1< 0,ac1, - e q,z4 ( )

Theorems 1.1 and 1.2 provide an elegant way for finding alternative representations
for basic hypergeometric series. Indeed, these theorems allow us to write a series in
Eulerian form as a sum involving truncated ,,,+2¢.,+1 series. In suitable situations, this
truncated sum may be further simplified and in turn we obtain very nice representations
of the original series. Such nice representations involve Appell-Lerch series or Hecke-type
series. For example, using Theorem 1.1 we establish the following (a, b)-parameterized
identity (see Theorem 5.12): for max{|ab|, |ag?|, |b¢*|} < 1,

2 .2 2 2 2
(¢%,ab;q );o 3¢2(q Ja,q*/b,q ;q27ab>

(aq?, bg?; ¢2 0,¢>
- N LA

= (1—Q)Z(1+q2 +1)W(—ab) gt Z ¢ (1.11)
n=0 q=,9q97;4% )n j=—n

It turns out that by choosing suitable values for (a, b) in this identity, we get Hecke-type
series representations for four mock theta functions of orders 5, 6 and 8. Namely, we find
that

(5) o0 2n(n+1) oo 2n . ( +1) -
)= 3 e S e () g,
q;9 n+1 7=0j=0
(1.12)
6 — "G Dm2 (0D A
BOESDY I rr D D D DY R
— (¢ G0 = =,

) qn(n+1)(_q2; q2)n
(—Q;(JQ)nH

n=0

_((qq qq o0 Z 4n? 80 (] _ g2t Zn: (_1)jq—2j2—j’ (1.14)

) n=0 j=-n

n

(®) " (—g5)n —qiq Jrgin am P
(e =3 = Loy doa

(¢ 6% )nt1 (€% 0% 2,

n=0 Jj=—n

(1.15)



D. Chen, L. Wang / Advances in Mathematics 365 (2020) 107037 7

Furthermore, the parameterized identity (1.11) also generates new Hecke-type identi-
ties. For instance, if we take (a,b) — (0,1) in (1.11), we get the following identity which
seems to be new:

i( 1) ((q q nn+1 Z Z 1+q2n+1 4an?43n—252 73 (116)

oy aq )n+1 ==

By establishing different (a,b)-parameterized identities, we are able to provide dif-
ferent representations for the same mock theta function. An example is that using two
parameterized identities other than (1.11), we find two Appell-Lerch series representa-

tions for Vl(g)(q). Namely,

2n+1)

8 q q 00
Vl( )(Q) - Z 1 _ q4n+1 (1.17)
_ q q . n n 242n
- Z 1+q4n+2 ! (118)

The formula (1.15) was found by Srivastava [41] and Cui, Gu and Hao [18] using Bailey
pairs, and (1.17) is due to Gordon and McIntosh [24]. The representation (1.18) appears
to be new, and we will show that it is equivalent to (1.17) (see Section 7.5).

We will present 24 parameterized identities like (1.11). Three of them were discovered
by Liu [33]. By choosing suitable values for the parameters, we provide new proofs for
most of the known Appell-Lerch series or Hecke-type series representations for mock
theta functions of orders 2, 3, 5, 6 and 8. Meanwhile, we will also show many new
Hecke-type identities associated to definite or indefinite quadratic forms.

In order to write Appell-Lerch series or Hecke-type series representations in a stan-
dard way and thus having clearer understanding of their modular properties, Hickerson
and Mortenson [29] introduced two functions m(z,q,z) and fopc(x,y,q) (see (2.19)
and (2.20) for definition). They serve as building blocks for Appell-Lerch series and a
large family of Hecke-type series, respectively. Moreover, their modular properties have
been well studied by Zwegers [49]. Hickerson and Mortenson [29] also developed an ap-
proach to express a Hecke-type series in terms of Appell-Lerch series. In particular, they
[29, Section 5] gave representations for all classical mock theta functions in terms of
m(z,q, z).

In this paper, we will follow [29] and write the Appell-Lerch series and Hecke-type
series we obtained in terms of these building blocks. Along this process, we find that there
are certain series whose shape is similar to Appell-Lerch series but cannot be expressed

2n? +2n —1 2n2+2n

in terms of m(z, q, z). For example, in (3.15) we establish the following identity
n n(7z+1) q

o0
Z 1—g2ntl Z 1q_ @ntl

n=0 74 """1 n=0 n=-—oo

(1.19)
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This does not satisfy the definition of Appell-Lerch series in (1.1). Similarly, there are
some Hecke-type series which seems not expressible by fu4.c(z,y,q). An example is (1.8)
(see (2.46)). Therefore, we introduce two new functions m(z, ¢, z) and fa,,w(a:, Y,q) (see
(2.37) and (2.38)). Since the summands in m(x, ¢, z) and m(z, ¢, z) differ by signs, we call
m(x,q, z) a false Appell-Lerch series. We will express almost all the Appell-Lerch series,
false Appell-Lerch series and Hecke-type series in this paper using these building blocks
m(z,q,2), fape(®,y,q), M(z,q,z) and favb,c(:r,y,q). In particular, we use the method
in [29] to convert a representation in terms of f, 5 (2,y,¢) to a representation in terms
of m(x,q, z).

Besides seeing the modularity of a series clearly, there is another advantage for ex-
pressing Appell-Lerch series and Hecke-type series using m(z, ¢, z) or fo (2, y,q). That
is, we can use properties of these building blocks to transform between different forms.
By doing this, we can see if different series representations are equivalent or not. For
example, after writing (1.17) and (1.18) in terms of m(z,q, z) and using properties of
m(z,q, z) established in [29], we find that they are in fact equivalent (see Section 7.5).

The paper is organized as follows. In Section 2, we first recall some formulas from
the theory of basic hypergeometric series. We also discuss some limiting cases of Wat-
son’s g-analog of Whipple’s theorem. The formulas listed in Section 2.1 will be used in
evaluating certain terminated 3¢9 series, which are fundamental for establishing parame-
terized identities. Then in Section 2.2 we give the definitions and useful properties of the
building blocks of Appell-Lerch series, false Appell-Lerch series and Hecke-type series.
As examples, we will rewrite the identities (1.8) and (1.9) using these building blocks.
In Section 3, we shall first prove Theorems 1.1 and 1.2. Then we apply Theorem 1.1 in
Sections 3-7, where we discuss mock theta functions of orders 2, 3, 5, 6 and 8, respec-
tively. For each mock theta function, we correspondingly establish some parameterized
identities. Each of these identities gives us a representation for the mock theta function
and produces new interesting identities.

2. Preliminaries

In this section, we first collect some useful identities on basic hypergeometric series.
Then we introduce several building blocks for expressing Appell-Lerch series and Hecke-
type series and some formulas for simplifying such expressions.

Throughout this paper, we denote ¢, := e2™/". For convenience, we adopt the follow-
ing compact notation:

(a1,a2, -+, am; Qn = (a1;Q)n(a2; On - - - (Am; @)n,
(a1,a2, ,0m; @)oo = (15 9)00(A2; @)oo =+ (Am} @) so-

We recall the Jacobi’s triple product identity:

o0
n

(2:9) = @)oot/ (@ = . (~1)"qHam,

n=—oo
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Again for convenience, we denote

J(@1, 20, w03 q) i = J(2159)J (225 q) - - - G (T3 @) (2.1)

As some special cases, we let a and m be rational numbers with m positive and define

Ja,m = j(qa;qm)’ Ja,m = j(_qa;qm) and Jm = Jdm,3m = (qm7qm)oo

We will use the following identities without mention (see [29, Section 2]).

Y Y
Jop1=2J14=2-", Jip= Jy o= 2L -

0,1 1,4 7 1,2 J%JZ, 1,2 A 1,3 T
oA W 5 BBl

1,4 — J2 ) 1,6 — J2J37 1,6 = 7,]1‘]4(]6 .

We also recall the classical partial fraction expansion for the reciprocal of Jacobi’s
theta product (see [39, p. 1] or [42, p. 136]):

< (_1)ng("3) 3
Z ( 11) q _ .Jl (22)

— ¢z J(zq)

n=—oo

Here z is not an integral power of ¢q. This formula will be used several times for simplifying
expressions.

2.1. Useful basic hypergeometric series identities

In this subsection, we collect some useful identities, which will be important in deduc-
ing Appell-Lerch series or Hecke-type series representations from g-series of the Eulerian
form.

The basic hypergeometric series ,¢, is defined as [23, Eq. (1.2.22)]

A1, 5 Qp = (ah'" 7aTEQ)n n n(n—1)/2\1+s—r n
1q, 2 | = —1 z".
T¢S<b1a"~abs 7 ) nz:;)(qvblv"' 7bsaq)n(( ) 1 )

From [34, Eq. (3.14)], we find

obs (q",cc,w;z", B " q> _ (_C)nqn(nl)/2%3¢2 (qnévog/’j/ﬂ :q, qﬁ/c) .
(2.3)

We also need the following formula [23, p. 28] which relates a 3¢2 series to a o¢y series:

q ", bbzqg"/c (¢ 0)n q",b,
: ; =" ; . 2.4
3¢2< O,bql_"/c MLQ) (C/b, q)n2¢1 ¢ 3 g, % ( )
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Watson’s g-analog of Whipple’s theorem (see, for example, [23, Eq. (2.5.1)]; [32, The-
orem 5]) can be stated in the following form.

Lemma 2.1 (Watson). Let n be a nonnegative integer. We have

(aq, aab/q; q)n p q ", q/a,q/b,acd/q ¢
(aa, ab; q)n, ac, ad, g% /aabg™

_8¢7<q‘",qx/ﬁ7 —qv/a, o, q/a,q/b,q/c.q/d

2 n—2
;1 q, a“abed .
Va, —va, aa, ab, ac, ad, agtl 4 a )

In the rest of this subsection, we discuss some consequences of Lemma 2.1, which will
be used frequently.
From [34, Proposition 2.2] we find

g ", aq™t! acd/q
3¢2< ’ »aed 10,4

ac, ad

_(—a)gnntD)2 (4 )n i i (L= ag¥) (e, q/c,q/d;q); (cd/q)iq—IG+D/2,

(90 q)n 4= (1= a)(g, ac, ad; q);
(2.6)
Lemma 2.2. For any nonnegative integer n, we have
g~ " aq"t q/c
: d
3¢2< Oéd q2/c 74,
(ac, ;q)n (1 —aq¥)(a,q/c,q/d;q), —iG+1)/2
=(q/c d/q il . 2.7
W e LV T g acada, 27
Proof. Replacing « by aq, 8 by acd/q, ¢ by ac and d by ad in (2.3), we have
" ag™t acd
302 (q 1 /q;q’ Q>
ac, ad
2 /.. —-n n+1
o nn—1)/2 (476 Dn ¢ " aq"qfe 58
(—ac)"q (ac ) 302 ad’qQ/c iq,d ). (2.8)

Combining this with (2.6), we get the desired identity. O

1

Letting @ — ¢~ in Lemma 2.2, we get the following result.

Lemma 2.3. For any nonnegative integer n, we have

wor(“ e 08) = o - 2.9
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y ((c—l—d)q—i—cd(q— - +z": . Y (1=¢¥) (¢/cq/d59); (d)jq—j(j+3)/2)_

(c—q)(d—q)(1—-q) qf (1—q¢'71) (c/q,d/q;9);

Jj=

Letting d — oo in (2.6), we find the following transformation formula, which appears

as Proposition 2.3 in [34].
Corollary 2.4. For any nonnegative integer n, we have

q—n’aqn—&-l
2¢1< ;Qac>
ac

n

(gD s ( E (1 —ag¥) (e, q/c Q)'(C/a)jq—j(j-&-l).

(g @)n (1 —a)( q,acq)

Jj=

Lemma 2.5. For any nonnegative integer n, we have

"ot g
3¢2 54,4

0,4%/c
_ (ac7 Q; Q)'VL n n2+2n = (1 - Olq2‘7)(a Q/ ) ] —J —] —]
(¢?/c,aq;q)n (a/e)"q ; (1—a)gacq); &1 '

Proof. Replacing (b, ¢) by (ab, ac) in (2.4), we have

q ", abbzq™"/c (ac; q)n q ", ab
3¢2< O,bqlin/c 7Q7Q> (C/b q) 2¢1 ac 34,2 |-

Now, setting (b, 2) = (¢"*!,¢) in (2.12), we obtain
o1 ag"t,q (acighn o (07" ag"
1.9 ) = jq.c).
392 0,¢2/c q,q (Cq’”’l;q)n2 1 oc q
Substituting (2.10) into (2.13), we complete the proof of Lemma 2.5. O

1

Taking « — ¢~ in Lemma 2.5, we obtain

Lemma 2.6. For any nonnegative integer n, we have

" q"q o /GO0 p2in
17 — 2727
3¢2( 0,q¢%/c ’q’q) S )(qz/C;q)nC 7

q—2c+cq . L—q¢%= 1 (q/c;q), -_-2>
X + . Adqg 7 ).
((1q (c—q Z 1= 1A —=¢) (c/q:9); 1

Kv

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)
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From [34, Proposition 2.5] we find®
. —-n n+1
(71)n7(04q, 2 g Ao, (q My, 1>
(@:9)n ac

:i (1 = ag*)(a,q/c;q); § 47" () (2.15)

—  (1—-a)(gacq);

<.

Lemma 2.7. For any nonnegative integer n, we have

q—n n+1 q/c
3¢2< 4/ 14, q

07q2/c
_ (e @n o a~ (L= 0g®)(a,g/eq); o
7(q2/0704q;€1)n(q/) jgo (1—a)(q, acq); (ac)’q” . (2.16)

Proof. Taking (b,c,2) = (ag"™!, ac, 1) in (2.4), we obtain

7n n+1 . —-n n+1
q ,q/c (ac;q)n q ,aq
, = 1q,1 ). 2.17
3¢2< 07 q2/c iq Q) (cg 1 q)n2¢1( e q ) (2.17)

Together with (2.15), we complete the proof of Lemma 2.7. O

We will also need the ¢-Pfaff-Saalschiitz summation formula [23, p. 40, Eq. (2.2.1)]:

q ", aq", aq/bc (b, ¢;q)n ag\"
. - \BO%n (TN 2.1
3¢2( aq/b,aq/c ’q’q> (ag/b,aq/c;q)n (bc) (2.18)

2.2. Building blocks for Appell-Lerch series, false Appell-Lerch series and Hecke-type
series

Following Hickerson and Mortenson [29], we define

R S N O
mi@, 0 2) = i(z:q) 2 1—q—taz’ (2.19)

T=—00

where z, z € C* := C\{0} with neither z nor zz an integral power of ¢. Let

fopeltyea)i= > sg(r)(—1)Haryqe () torste(s), (2.20)
sg(r)=sg(s)

Here z,y € C* and sg(r) := 1 for r > 0 and sg(r) := —1 for r < 0.

3 There is a typo in [34] that g™ *T1/2 ghould be replaced by (—1)”q"’("’+1)/2.
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In terms of the above building blocks, identities (1.3) and (1.5) can be rewritten (see
[29, Eq. (5.4)]) as

J2
FOg) =2m(—q,¢%, q) + 2m(—q,¢*, ¢*) = 4m(—q.¢*,q) + J%G (2.21)
and [29, Eq. (8.12)]
1 1
f0(5) (q) = J_l (f3,7,3 (q27 q27 q) + q3f3,7,3(q77 q77 q)) = J_1f3’7’3 (q5/87 _q5/87 _q1/4)‘

(2.22)

Hickerson and Mortenson were also able to convert (2.22) into an expression in terms
of m(z,q,z) (see [29, Corollary 1.12]). Since the modular properties of m(z, g, z) and
faw.c(z,y,q) have been well studied in [49], it will be easier for us to understand the
modular properties of an Appell-Lerch series or Hecke-type series after expressing them
using these building blocks.

In this paper, we will also express the Appell-Lerch series or Hecke-type series we
encountered in terms of these building blocks. In some cases, the expressions in m(z, g, 2)
or fopc(x,y,q) may be further simplified. We collect the following properties of m(z, ¢, z)
and fop.c(z,y,q), which will be helpful for simplifying the final expressions. Following
[29], the term “generic” will be used to mean that the parameters do not cause poles in
the Appell-Lerch sums or in the quotients of theta functions.

Lemma 2.8. (Cf. [29, Proposition 3.1].) For generic x,z € C*

m(x,q,z) = m<xaQ7qz)7 (223)
m(x,q,2) =z m(z7 q,271), (2.:24)
m(qm,q,z) =1- xm(x,q,z). (225)

Lemma 2.9. (Cf. [29, Theorem 3.3].) For generic x,zy,z € C*

Z()J?)j 21/205q ] 2202134
m(xaqazl)*m(l',q,zo): - 1 ( / ) ( 5 )

7(2059)7 (215 0)5 (2203 )3 (x215 9) (2.26)

Lemma 2.10. (Cf. [29, Theorem 3.5].) For generic x, z,2' € C*

n—1
m(z,q,2) =3 q 3 (—o)"m(—qB) (—a)m, ¢ )+
r=0
2T nfq@)<—zz>’“j<—q<3)+r<—x>nzz';qn>j<qm“z"/z';q”2>
J(x29)5(2q™) §(—=qB) (—z)m 2, g7z qm) '

(2.27)
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As a corollary of this powerful formula, we have the following result.

Lemma 2.11. (Cf. [29, Corollary 3.7].) For generic x,z € C*

2 . 2. s 3
2 4 4y T 4 JoJsj(—x27;q)j(—x27; q)
m\r,q,z) =m\—qxr ,q , 2 - —"m{——,q ,%2 - . . . .
(@4 2) = m( )™ ) iz i (a2 )
(2.28)

The following lemma contains useful formulas for simplifying expressions in terms of
fa,b,C('ra Y, q)

Lemma 2.12. (Cf. [29, Propositions 6.1-6.2, Corollary 6.4].) For x,y € C*

fabe(®,9,0) = fape(—22¢%, —y?¢, %) — Tfap(—22*, —y?¢ T, ¢*)

— Yfabe(=22¢" T, —12¢%, ¢*) + 2yq” fap(—2? 3T, 23T g,
(2.29)
atbte 2 b 2¢c+b
fa,b,c(wy Y, q) = — fa,b,c(q at /(Ev q ot /y7 q)v (230)
fane(®,9,9) = ~yfapc(@x, %, q) + (x5 ¢%), (2.31)
fabe(@,y,9) = —2fap (q*T,q"y, @) + 7 (y; ¢°). (2.32)

In [29, Eq. (4.6)] it was defined for  being neither 0 nor an integral power of ¢ that

1 e (_1)nqn(n+1)
= . 2.
e, q) 3(4:6?) 2 I (2.33)

It was also proved that for generic x € C* [29, Proposition 4.4]
h(z,q) = -2 'm(z"?q,¢*, x). (2.34)

Meanwhile, Hickerson and Mortenson [29, Eq. (4.8)] also defined for 2% being neither
zero nor an integral power of ¢ that

) 1 e qn(2n+1) 5 35
0= e = 1 —gPna? (2.35)
It was proved that [29, Eq. (4.10)]
J4
wh(z,q) = m(—a%,¢,272) + =2 (2.36)

2J3j(x%q)

We will use (2.34) and (2.36) later.
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While m(z, ¢, z) and fq.p.c(x,y,q) can be used to express Appell-Lerch series and a big
family of Hecke-type series we encountered, there are still some series which are unlikely
to be represented by them. For these series we have to introduce two new building blocks.

We define for x, z € C* with xz not being an integral power of ¢ that

- = (1) sg(r)g)
e = Y e (2:37)
This closely resembles (2.19) except that we do not have a factor of infinite product and
we have introduced sg(r) in the summand.

In a way similar to (2.20), we define
Ta,b,c(xv Y, q) = Z ( 1)r+sxrysqa( )errerc(;). (238)
sg(r)=sg(s)

The difference between this function and f, (2, y,q) is that we have removed sg(r)
from the summand.
We have some formulas similar to Lemma 2.12 for f, , .(z, ¥, q).

Lemma 2.13. We have

7a,b,c($7 Y, Q) = 7(1 b, C(_x2qa7 _y2qc q4) - x?a,b,c(_xQQS y2qc+2bv q4)

=Y ap (=220, 2% ") + 2yq oy (—22P T, PP ),
(2.39)
=z gt 2a+b 2¢+b
fa,b,c(xvyaQ) = Ty fabc( ot /JZ q ot /y q) (240)

Proof. Decompose the definition (2.38) depending on the parity of  and s, we get (2.39).
Replacing (r,s) by (—r —1,—s — 1) we get (2.40). O

At this moment, the modular properties of m(z, g, z) and fmb’c(x, Yy, q) are unclear and
deserve investigation in the future. In particular, m(z, ¢, z) does not meet the definition
of Appell-Lerch series given in (1.1). However, since the summands in m(z,q, z) and
m(x,q,z) only differ by signs, which is similar to the case of false theta functions, we
would like to call m(x,q, z) as a false Appell-Lerch series.

Special cases of the functions m(x, g, z) and fa’b,c(a:, Y,q) exist in the literature. For
example, Wang and Yee [45, Egs. (5.1), (5.5)] established the following identity

0 n 1 n( 2 n(n+1)/2 -1 n(n+1)/2
g " q
— —_— 2.41

=—00

Upon decomposing the sums on the right side according to the parity of n, we can write
the right side as
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i qn(n+1)/2 B —1 qn(n-i—l)/2
2 2n
n=1 1+qn n=-—00 1_|_q77
B o q2n2+n N s q2n2+3n+1 B 1 B —1 q2n2+n B —1 q2n2+3n+1
o 4 4n+2 4 n+2
n:Ol+qn n:01+qn 2 n:7001+qn nzfool—’_qn

(2.42)

N =

:m(qv q4a _q3> + qm(Q? q4a _q5) -

Another example is the following identity proved by Andrews, Dyson and Hickerson
[7, Theorem 1]:

e q" (n+1)/2

Z Z Z n+jqn(3n+1)/2*j2(1 — . (2.43)

= n=0j=—n

We find that we can express the Hecke-type series on the right side by Ta,b,c(x7 Y,q), but
we are not able to express it by fo.c(2,y,q).

Proposition 2.14. We have

o(q) = ?1,5,1(613/8 —q 3/8 1/4) (2.44)

Proof. We have

n

:i Z n-‘rj n(3n+1)/2—35> i zn: (71)n+jqn(3n+l)/2+2n+1—j2

n=0j=—n n=0j=—n

n —1 —n—1

S P30 3R DI ol IEER I

n=0j=—-n n=-o0 j=n+l1

(replace n by —n — 1 in the second sum)

| X+ 3 | () (st = = )

n+j>0 n4j<0
n—j>0 n—j<0

_ Z (_1>rq§r2+%rs+§s2+ir+is
sg(r)=sg(s)

r=s (mod 2)
_ Z q%r2+5rs+%52+%r+%s o Z q%rz+5rs+%sz+%r+%s+2
sg(r)=sg(s) sg(r)=sg(s)

:71,5,1(*‘]7 —q,q) — q271,5,1(*q4a *q47 q)
=F152(a%5, —%%,¢"%). (2.45)



D. Chen, L. Wang / Advances in Mathematics 365 (2020) 107037 17

Here the last equality follows by setting (a,b,c,z,y,q) — (1,5,1,¢%8, —¢%/%,¢'/*) in
(2.39). O

In the same way, we can rewrite (1.8) and (1.9) as

s e
q, n 1 - B
Z (1 lq i) (Fr00(6% ¢ ") +afr101(a" q" ¢") = 1),  (2.46)
n:l n

S (Q7q)ﬂ _1\n,n(n—1)/2
2 (*q;q)n( "

n=1

=1+ ?1,3,1(‘% —q, q2) - 71,3’1(—1, -1, qz)
+ QT1,3,1(_‘147 —q4, 42) - q271’3,1(—q5, —q5, q2)
=1+ 71,3,1(91/47 —q'/*,q'%) - 71,3,1(q_1/4> —q ¢, (2.47)

For false Appell-Lerch series and those Hecke-type series which cannot be expressed
by fab.c(2,y,q), we will express them using m(z, ¢, z) and Ta,b7c(x, Y, q), respectively. In
most of the time, this process is quite routine and just follow the tricks and steps in the
deduction of (2.42) and (2.44). Therefore, we will omit the deduction process and simply
write the final expressions.

Hickerson and Mortenson [29] also gave a way to convert f,p..(%,y,q) to a form in
terms of m(x, q, z) and infinite products. Following [29], we define

Gab,e(T,Y, 4, 21, 20)

- t c( ) T _ a(bgl)—c(agl)—t(bz—ac) (_y)a a(b?—ac) 2
: t=0( y)'q j(¢" ;" )m ( q oy : 0>
c—1
—r)t a(t) _ c(bJrl) (L+1) t(b%—ac) (_‘T)c (b*—ac) P
+;( )'q*2j(q"y; ¢%) ( q =0 : )

(2.48)

Among a number of results, they established the following theorems, which will be used
in this paper as well.

Theorem 2.15. (Cf. [29, Theorem 1.3].) Let n and p be positive integers with (n,p) = 1.
For generic x,y € C*

fn,ner,n(xa Y, Q) = gn,n+p,n(xa Y,4q, _]-a _1) + (bn,p (SL’, Y, Q)a (249)

where

Dy p(T,y,q) =
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J3 p—1 p—1
p~{sn—+p n{" M, +(n+p)(r—(n—-1)/2)(s+(n+1)/2)+n _ \r—(n—-1)/2
_p?(2ntp) g U0t (= (=) /D) sk D/ D+ (TOFDE) = (n-1)/
JO,np(2n+p) r*=0 s*=0
(_y)8+(n+1)/2j(_qnp(sfr)mn/yn; qr )j(qp(2n+p)(T+S)+P(n+p)xpyp; qP (2n+p))
§(qp@ntP)rtp(ntp)/2(—y\ntp /(—g)n qp2ntp)stp(ntp)/2(—g)ntp [(—q)n; gp° (2ntp))
(2.50)

Here, r :==r*+{(n —1)/2} and s := s* + {(n — 1)/2}, with 0 < {a} < 1 denoting the
fractional part of .

Theorem 2.16. (Cf. [29, Theorem 1.9].) Let n be a positive odd integer. For generic
x,y e C*

fn,n+2,n(m7 Y, Q) = 9n,n+2,n (1‘, Y. 4, yn/xn, xn/yn) - @n,Q (33, Y, Q), (251)
where
Ol 9.0) = Y2 o an Janin) s d /2, 0" Pay; ¢ D) (P /2P yP g2 Y)
n2\T,Y,q) = q(n273)/2x(n73)/2j(yn/xn; q4n(n+1))j(,qn+2z2, —qn+2y2; q4(n+1))

(2.52)

Using the above two theorems, we will convert those Hecke-type series expressible
by fap.c(z,y,q) appeared in this paper to a form in terms of m(z,gq, z). Again, since
this process is routine, we will omit the details except for illustrating the methods using
Corollary 3.6 as an example. The interested reader may find more details in the arXiv
version [13].

3. Mock theta functions of order 2

Transformation formulas stated in Theorem 1.2 can be regarded as a consequence of
the following result of Liu.

Lemma 3.1. (Cf. [3/, Theorem 4.1].) If A,, is a complex sequence, then, under suitable
convergence conditions, we have

o= 3 Anlafas n(ae (3.1)
_ -~ (L= ag®)(ong/a,q/biq)n(—aab/q)"q" " D2 S (7" 0q" q)k(a?/b)"
B ,;) (1 = a)(q, aa, ab; q)n . = (q/b; @) A

Now we give proofs to Theorems 1.1 and 1.2.

Proof of Theorem 1.2. The desired identity follows by setting

(Q/baabla e aabqu)n b_Z

A, =
(Q7a017"'7acm;Q)n q

)" (3.2)
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in Lemma 3.1. O

Proof of Theorem 1.1. If v = 0, the desired identity is clearly true. Now we suppose
u # 0. The theorem follows from Theorem 1.2 after taking (m,a, by, ba,c1,c2,2) —
(2,u,v/u,q/u,c/u,d/u,1). O

Using Theorem 1.1, we can establish numerous identities with two parameters a and
b. These parameterized identities will generate interesting Appell-Lerch series or Hecke-
type series after specializing the choices of a and b. In particular, they will provide
representations for classical mock theta functions as direct consequences. We now start
applications of Theorem 1.1 with mock theta functions of order 2.

In [25, p. 120, Eq. (5.1)] and [36] three mock theta functions of order 2 were defined.
They are

< g P ¢ (=i %)
AD(g a4 A 49 )n (3.3)
nZO Dt nz_:o (@:¢%) 741
n +n
zq Byl = 2o -
n=0 n+1 n=0 79 n+1
[ee] 2
—1)"(¢:¢*)nq"
M(z)(Q) — Z ( ) ( )n ) (3.5)

= (=a%e%)3

These functions appeared in Ramanujan’s Lost Notebook [39]. In particular, the function
B®)(g) arises in the modular transformation formulas for A®)(q) and ) (q).
McIntosh [35] provided the following Appell-Lerch series representations for these

functions.

Theorem 3.2. We have

) o0 n 2n +3n
Al )(q) — Z . q2n+1 , (3.6)
o0 n 2n +2n
q q 00
B®(q) = Z e (3.7)
n=—oo
.42 0 2n’4+n
@)(g) = 2L D) a . 3.8
#0) (*:6%) oo n;w L+¢* (38)

Note that (3.6) appeared in [2, Eq. (3.7)g] and [39, p. 8]. Identity (3.7) can also be
found in [39] and [2, Eq. (4.3)]. Identity (3.8) appeared on pages 8 and 29 in [39].

Using Bailey pairs, Cui, Gu and Hao [18] provided Hecke-type series representations
for mock theta functions of order 2. They also express these Hecke-type series in terms
of fape(x,y,q). See [18, Theorem 1.3].
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We will reprove the identities in Theorem 3.2 by regarding them as corollaries of some
general (a, b)-parameterized identities. As byproducts, we find new representations for
A®)(q) and B@ (q) (see (3.24) and (3.44)).

3.1. Representations for A (q)

Theorem 3.3. For max{|ab|,|ag?|, |bg*|} < 1, we have

2 .2 2 2 2
(4%, ab; ¢*) o 3¢2(q Ja.q*/b.q ;q27ab>

(aq?,b¢%; ¢?) o e, ¢

— 1+ ¢ (¢*/a,¢*/b;¢*)n 2
=(1-q)° Z 2n+1 7oy (—ab) g (3.9)
n—0 1- q + (a‘q 7bq ' q )TL

Proof. Taking (¢, c,d,u,v) — (¢%,¢%,¢%,¢%,¢*) in Theorem 1.1, we deduce that

2 b: 2OO 2 2 b
(qg,a ;ql 3¢2< /G’Q/ q 2ab>
(aq?, bg?; ¢%) 7, q3

—2n . 2n+2

_Z 4n+2 /a7q2/b; q2)’ﬂ (_ab)nqnz—n3¢2(q yd
3

2
yd” o o

;q¢%,q7 ). (3.10
(aqz,qu;qQ)n e, ) (3.10)

Taking (q,a,b,c) — (¢%,¢%, q,q) in (2.18), we deduce that

3¢2(q BT S qz) _ @GP o (-0 (3.11)
¢ (4%, 4% ¢*)n (1—g>nt1)?

The theorem follows after substituting (3.11) into (3.10). O

Corollary 3.4. Identities (3.6) and (3.7) hold. In addition, we have

o' 2n(n+1) 1 oo 14 ont1 .
MOEDI - I e
v 1 q 3.12
=2 (@an (%) Z::O( ) 1 g2ntl (3.12)
=—q¢"'m(q.q"¢*) —q¢"'m(q. ", ¢") (3.13)
-1 6 J3

=—2¢""'m(q,q% ¢*) + Todye’ (3.14)

%) n n n+1)(q2, q2) 00 14 q2n+1 .

! no_ n+2n
Z 2 => 7= pniid (3.15)
n=0 =0

=m(—q°, q*, —q4) + gm(-1,¢* —¢°). (3.16)
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Proof. We use the second expression of A(?)(q) to write it as
n +2n

E Z . (3.17)

Taking (a,b) — (—¢,0) in Theorem 3.3, we obtain (3.6).
We use the second expression of B (q) in (3.4) to write it as

A(Z)(

1—q

B®@(q) =7 Z Jn g, (3.18)
n=0

Taking (a,b) = (0,—1) in Theorem 3.3, we obtain (3.7).

Taking (a,b) — (0,0) and (0,1) in Theorem 3.3, we obtain (3.12) and (3.15), respec-
tively.

Deducing (3.13) and (3.16) are routine exercises. In addition, to get (3.14) from (3.13),
we apply Lemma 2.9 with (z,q, 21, 20) — (¢,¢% ¢% ¢*). O

Remark 1. The expressions (3.13) and (3.14) can be found in [29, Eq. (5.8)].

Theorem 3.5. For max{|abq|,|ag?|,|bg?|} < 1, we have

(q2,abq;q))oo \ ¢2<Q/ ,q/b.q abq)

(aq?,bq2; q 3/2 _ 3/27‘17
22 (¢/a,q/b;q)n n_n%+2n S —j(j+1)/2
= A S ) q . 3.19
Z aq2,bq2;Q)n( ) ; (3.19)

Proof. Taking (c,d,u,v) = (¢*/%, —¢*?,¢%,q) in Theorem 1.1, we deduce that

(QQaGbQ;Q))oo 3@( a/a,q/b.q abq)

(aq?, bq%; q 3/2 3/2,q,
_Z 2n+2 1—- qn+1 (q/a q/b (]) ( abq2)"q("2_?’")/23¢2 q—n7qn+27q.q q
1—q (ag?,b¢?q)n @2 =327 )"
(3.20)

Setting (o, B, ¢,d) = (¢2,q,¢*/%, —¢*/?) in (2.3), we obtain
n+2 -n ,n+2 _ 1/2
’q q n_(n?+42n q »q y —q
3¢2< 3/2, _g3/2 ;q,Q> =(-1) g™+ )/23¢2( 32, — g3 ;q,q1/2). (3.21)

Setting (o, ¢, d) = (¢, —¢'/?,¢'/?) in Lemma 2.2, we deduce that

q " qn+2 _q1/2 L 2 - b/2.
3¢2< B2l ;q,q/>=( 1)"q"/?— nHZ —IUTD/2 - (3.92)
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Substituting (3.22) into (3.21), we obtain

q_n7qn+27q - —
3¢2<q3/27_ ye 1 00) =a"™ R n+1 Zq i/

The theorem follows after substituting (3.23) into (3.20). O

Corollary 3.6. We have

2n+2

n
)nqn2+2n Z qu(j+1)/2,
j=0

) q q ) 1—¢q
A (q)— Zl+q2n+2

et n 21 9n

(3.23)

(3.24)

71w(3 Z — i 2n+2)q2n +3n quj (7+1)/2

n*O )nt1 ® =0 j=0

1 .
=37 (f353(a" 0% 0) — @ f353(a%, 0% a) + j(q* ¢*))

1 4 5
*jlf3,5,3(q »q M])

=—q 'm(—¢*,¢*, —1) — ¢ *m(—¢", ¢*®, 1) — ¢ *m(—¢"%, ¢*%, 1)

_ 1
—q "m(—¢* ¢*, —1) + J—1¢’3,2(q4,q57Q)
, J3
—1 3 12
=—q 'm(g,—¢* q) + —2—,
( ) J3.12J4,12
q" n+3)/2( 0

(e ]
n=0 (¢:4%)n1 n=0 =0
1 — — _

=5 (Frza(=*=a"a") + ¢'Fr20(=¢",~d".a*) —a7"),
(n +3n) /2

1o®) (g Z ~¢Dn

_ q; 4 n+1

q q o0 n n? n - —i3(4
Z _ +1)q(3 +5 )/2Zq JG+1)/2
n=0 7=0

J .
=52 (fi21(d d" ¢®) — d* fr21(d% d",¢%) + (d* %))
J
:J—:;f1,2,1(q37q4,q2)

1

1 JAJ3
—1 2 6 1 296
= =1 4 ¢ -
¢ m(¢", ¢, —1) + 5q TR,

n
q;9)n n n2+5n —i(
Jn _ SO(1+ g gnt /2 3 ity

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)
(3.34)

(3.35)
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=—q 'm(¢*,¢%, ). (3.36)

Proof. We use the first expression of A)(q) to write it as

A (g) = 1 — (—¢% ¢*)nq" (3.37)
l—qg= (¢*¢)n

Taking (a,b) — (i, —i) in Theorem 3.5, we obtain (3.24).

Taking (a,b) — (0,0), (0,1) and (0, —1) in Theorem 3.5, we obtain (3.25), (3.30) and
(3.32), respectively.

Setting (a,b,¢,7,9,q) — (3,5,3,¢%,¢%,q) in (2.31), we get (3.27) from (3.26). Simi-
larly, setting (a, b, c,z,y,q) — (1,2,1,¢%,¢* ¢%) in (2.31), we get (3.34) from (3.33).

The expression (3.28) follows from (3.27) and Theorem 2.15 with (n,p) = (3,2). The
expression (3.35) follows from (3.34) and Theorem 2.15 with (n,p) = (1,1). The equiva-
lence of (3.35) and (3.36) can be seen from (2.26) with (x,q, 21,20) — (¢2,¢% —1,q).

Taking (v, q, z,2',n) = (¢, —¢>, ¢, —1,4) in Lemma 2.10 and using the method in [22]
to prove theta function identities, we obtain (3.29) from (3.28). O

Remark 2. (1) The expression (3.29) can be found in [29, Eq. (5.6)] with a typo that J4
should be J4 12.

(2) The expression (3.36) appears in [29, Eq. (5.26)].

(3) Tt is unclear whether (3.24) can be converted to a Hecke-type series in terms of
fap.e(z,y,q) or fhb’c(x,y,q). Moreover, from [29, Eq. (5.1)] we find that

AD(q) = —m(q, ¢*, ). (3.38)

We are not sure whether this can be deduced from (3.24) or not. A similar problem exists
for (3.44).

From now on, we will omit the details for expressing Hecke-type series or Appell-Lerch
series using the building blocks f, .c(z,y, ), 7a7b,c(x, Y,q), m(z,q,z) and m(z, q, z) and
just write the expressions. The process is quite routine and in the same way as the proof
of Corollary 3.6.

3.2. Representations for B®)(q)

Note that (3.7) has already been proved in Corollary 3.6. Now we establish a new
representation for B (q).

Theorem 3.7. For max{|ab|, |ag|, |bg|} < 1, we have

(g, ab; q) oo 3¢2( q/a,q/b,q. ) (1-q) Z Z Q/a q/b; q ( ab)nqn2+nf(j-§1).

(aq,bq; q) 32, g2 D¢ (aq,bq; q)

n=0j=—n

(3.39)
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Proof. Taking (c,d,u,v) — (¢°/%,—¢*?,q,q) in Theorem 1.1, we deduce that

(g, ab; Q))oo ) <q/a,Q/b’Q. b>

(aq,bq-q 3/27 7q3/27Qaa
g2t (a/a,q/b;q)n wonien (7" g g
Z m(_ab) ¢ 7 302 q3/2’ _ 3/2 34,9 (3.40)

Setting («, 8, ¢,d) = (¢,q,¢*?, —¢*/?) in (2.3), we deduce that

_ 4 -n ,n+l _ 1/2
’q 7(] n_(n?+2n)/2 1—gqz q 9 y —q . 1/2
3¢2< 3/2 - 3/2 7q7Q> _(_1) q( )/ n+% 3¢2< q1/2’7 3/2 34,4 )

1—gq q
(3.41)
Setting (v, ¢,d) = (1,—¢"/?,¢"/?) in Lemma 2.2, we obtain
-n n+l _ 1/2 1 1 n o
q »q y —q . 1/2 n, n/2 t4q —j(G+1)/2
3¢2< q1/2’7q3/2 14,49 > ( ) q 1+qn+2 Z q . (342)
j=—n
Substituting (3.42) into (3.41), we obtain
""" g 2 l-q < G
3¢2< q3/2’ _ 3/2 74,9 | = q(n +an)/2 1— q2n+1 Z q j<]+1)/2' (343)
j=—n
Substituting (3.43) into (3.40), we arrive at (3.39). O
Corollary 3.8. We have
@ n n 24on M +1)/2
B®(q) = Z - + q2n+1 > gV (3.44)
n=0 j=——n
Proof. We use the first expression of B(®)(q) in (3.4) to write it as
1 o (iq"?,—ig"/%;q)
(2) ’ yqd)n n
B™) = 1- q Z (q3/27 *q3/2;Q)n T (3.45)
Taking (a,b) — (ig'/?, —ig"/?) in Theorem 3.7, we obtain (3.44). O
Corollary 3.9. We have
e n (n+1) > n
Z — Z Z n 2n +2n—j(j+1)/2 (346)
n—O 4 n+1 n=0j=—n
1
=57 (f253(0"d",0) = d" fasa(d", 4" ) = J—1f3,5,3(q37q4,Q) (3.47)
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. _
-1 —4 JisJ6,48J 16,48

=—2¢""'m(=¢"%,¢",¢*) — 2¢7°m(—¢%,¢"%.¢*) + ¢ ==
J_3.48J3.48J13,48J 19,48
_ T35 J6 488,48 1
+q7° —= —032(¢% ¢*,9), (3.48)
J_3,48J3.48J5 48 11,48 o
) gD (3n?+3n) /2-(j+1)/2
S Sy b
n=0 q’ n=0j=—n
1 _
=5 (fl 21(—¢ =4, ¢) + q3f1,2,1(—q57 —-¢°.¢%)), (3.50)
n n+1)/2 . n
2 (q 9 ~¢Dn _ q, Joo ng(3n+3n)/2 —j(i+1)/2
= q
(3.51)
Jo 3 5 6 2y _ J2 2 3 9
2J2 (f121(q q »q )*q f1,2,1(q yd 5 q )) = ﬁfl,Q,l(q 147, q7) (3.52)
1
1 JS J3
=—q¢ 'm(1,¢% —1)+ cqg P28 3.53
¢ m(L¢",=1) + 74 T2 0075 (3.53)

Proof. Taking (a,b) — (0,0), (0,1) and (0, —1) in Theorem 3.7, we obtain (3.46), (3.49)
and (3.51), respectively.

As mentioned before, we will not give details for proofs of the remaining equalities.
Here we just point out that (3.48) follows from (3.47) and Theorem 2.16 withn =3. O

Remark 3. (1) Identity (3.46) was also found by Mortenson [37, Eq. (2.6)]. See (4.11).
From [29, Eq. 5.9] we find

J1J3,12

o (3.54)

v®(q) = 2¢7'm(¢?, ¢**, —¢°) +

Taking (7,q,2,2',n) — (¢, ¢'%,—¢3,—¢>,2) in Lemma 2.10 and using the method in
[22] to prove theta function identities, we see that (3.54) is equivalent to (3.48).
(2) From [29, Eq. (5.25)] we find

p9(q) = —¢"'m(1, 4%, q). (3.55)

Taking (w,q,21,20) — (1,65 —1,¢) in Lemma 2.9, we see that (3.55) is equivalent to
(3.53).

3.3. Representations for u(z)(q)

Theorem 3.10. For max{|ab/q|,|al,|b|} < 1, we have
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(¢, ab/q; 4) <Q/a 14/b,q ) 1 (g/a,q/b:0)n (n?—n)/2
;q,ab —1+4E —ab)™q\" /=,
(aab; Q)oo 3¢2 —q,—q /q 1+ q (a,b; Q)n ( )

)

(3.56)

Proof. Taking (¢, d,u,v) = (—¢,—¢,1,¢q) in Theorem 1.1, we deduce that

(¢,ab/q;q) o q/a,q/b,q .
T GRS

q/a q/ ) n (nz—Sn)/Q q—n7qn’q
=1 E 1 b ; . 3.57
+ + q (a b ) ( a ) q 3¢2 —q,—q 34,4 ( )

)

Taking (a,b,¢) — (1,—1,—1) in (2.18), we obtain

a"q"q 4q"
q,q ) = —m——. 3.58
3¢2< —q,—q ° q) (1+4qm)? (3.58)

The theorem then follows after substituting (3.58) into (3.57). O

Corollary 3.11. Identity (3.8) holds. In addition, we have

oo n? [} _1\n (3n2+n)/2
V)= L= — 3.59
o ,;(—q;q)% (¢ @)oo n;w 14 q» (3:59)
5

=4m(—q,4°,¢%) — T2 (3.60)
[e%s} q(n2+n)/2 q q - n n 240 .
DY o e NZOO e (3.61)
=2 (3.62)

= (D

Proof. Taking (¢,a,b) — (¢2,0,q), (a,b) — (0,0) and (—¢,0) in Theorem 3.10, we obtain
(3.8), (3.59) and (3.61), respectively.
Taking (a,b) — (0,—1) in Theorem 3.10, we obtain

0 (nz—n)/Q . q)2
q (L 00 Z ( 4q; q) % (gv ngo =2 0
= (=) S (q,q) (4% ¢%) oo
Remark 4. (1) From [29, Eq. (5.4)] we find
3) i
FI(g) = 4m(=q,¢% q) + == (3.63)

Ji
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Taking (z,q,21,20) — (—¢,¢%, ¢% q) in Lemma 2.9, we see that (3.63) is equivalent to
(3.60).

(2) The curious identity (3.62) appeared in the work of Andrews [1, Eq. (4.4)], where it
was proved combinatorially. Our proof of this identity is new.

(3) It seems that (3.61) cannot be expressed as a nice form in terms of m(x, g, z).

4. Mock theta functions of order 3

In his last letter to Hardy and lost notebook [39], Ramanujan gave seven mock theta
functions of order 3. They are defined as

oo
>
2
= (g4
> 2n(n+1)

XP(g) = %, w®(q) := Z (q

q;9 )n+1

n(n+1) > q2n(n+1)(

V@ (q) = i qi P ) =Y 4 4% )n+1

= (@%4)nm

Watson [46] provided Appell-Lerch series representations for these functions as follows.

Theorem 4.1. We have

2 el (_1)nqn(3n+1)/2
FPq) = @9 > T (4.1)
y4)oo [\ T o
¢ (q) = — - : (4.2)
(4 9)oo 1+q
. TR
P (q) = @ Z g (4.3)
¥ (q) = T Z e , (4.4)
1 o 1+q2n+1
3 n 3n(n+1
w' )(Q) W z:o(_l) g*" )m, (4.5)
n=
o N jrgintn+1)/2 ] - (4.6)
1 + q2n+1 ’ :
n= O
00 3n%+3n
p®)(q) Z gty 2 (4.7)

2n+1 An+2 "
® n=0 1—|—q" —|—qn
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We will provide new proofs for these formulas by establishing more general (a,b)-
parameterized identities. As byproducts, we find a new Hecke-type series representation
for ¢)(3)(q) (see (4.37)), which is different from the following two given by Andrews [5,
Eq. (1.10)] and Mortenson [37, Eq. (2.5)], respectively:

(g ) 2n (] — q6n+6)zq—(j+1)j/2 —1, (4.8)
0 7=0
(3) > n Qn +n 2n+1 - -3 _ l 4.9
¥¥(q) Z L+ > 2 (4.9)
n=0 j=-n

Applying routine arguments, we can show that these two representations are equivalent.
In fact, both of them can be expressed directly as

1 1

3 (q) = —5t 57 (f353(a*, @% q) — @ f353(a%,d".q)) - (4.10)
1

In contrast, our new representation for )(®(q) has different form in f,.(z,y,q) (see
(4.38)). However, after converting (4.10) and our expression to forms in m(z,q, z), we
can show that they can be deduced from each other.

Mortenson [37, Eq. (2.6)] also found that

l/(3)(—q) — (q(ll) Z(_l)nq2n2+2n Z q_(j;rl)7 (4.11)
7470 =0 j=—-n

which coincides with (3.46). We will provide a different Hecke-type series representation
for v(3)(q) in (6.30), and we can also show that it is equivalent to (4.11) using their forms
in m(x,q, 2).

It is worthy mention that Garvan [20] established two-variable Hecke-Rogers identi-
ties for three universal mock theta functions. As a direct consequence of one of these
identities, he showed that each of Ramanujan’s third-order mock theta function has a
Hecke-type series representation. See [20, Theorem 1.1, Corollary 1.2] for details.

4.1. Representations for f(3)(q)
Identity (4.1) has been established in (3.59).
4.2. Representations for ¢ (q)

Theorem 4.2. For max{|ab/q|,|a|, |b|} < 1, we have

(q,ab/q; q) o p (q/a ,q/b,q
(a,b;9)00 2\ ig,—ig

;q,ab/ q)
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1+4q" q/a Q/b (J) (n?—n)/2
1+2 ng\" T, 4.12

Proof. Taking (¢, d,u,v) — (iq, —ig, 1, q) in Theorem 1.1, we deduce that

7ab ) [ee) a
wm a/a.a/b, ©. 0 ab/a
(a;059) o0 iq, —iq
M n m2eanyyz (44"
_1+Z (@ b;9)n (—ab)"q 302 i, —ig iq,q ). (4.13)

Setting (a,b,c) = (1,4, —1) in (2.18), we obtain

", q"q 2q"
: =" 4.14
3¢2< iq, _Z.q vq7Q> 1+q2n ( )

Substituting (4.14) into (4.13), we obtain the theorem. O

Corollary 4.3. Identity (4.2) holds. In addition, we have

X . (n2—n)/2 e 1 J5
Z( % 4)ng _ qqoo Z +q") —1)"q"2:1—|—

2
2 (415
—= (%P 14 g2 Ji I3 (15
I e L S L

— B S B JEI;

g )n qq N 1+q2” n 2n%4n

U0 =3 = 2o Ty
n=0 +q

=m(—q,q¢", ¢ ") —q_lm(—q‘ .4 q) =2m(—q,q%, ¢%). (4.18)

Proof. Taking (a,b) — (0,0), (0,—1) and (0, —¢) in Theorem 4.2, we obtain (4.2) and
the first equalities in (4.15) and (4.16), respectively.

Taking (g, a,b) — (¢%,0,—q) in Theorem 4.2, we obtain (4.17).

Taking (q,2) — (¢?,—1) in (2.2), we obtain

oo 2
—_1)"g™ “+n J4
S e o)
1+ ¢ 2J3

n=-—oo
From this identity we get the second equalities in (4.15) and (4.16). O
Remark 5. From [29, Eq. (5.39)] we find

U (q) = 2m(—q,¢", - 1). (4.20)

Taking (,q, 21, 20) — (—¢q,¢*,¢>,—1) in Lemma 2.9, we see that (4.20) is equivalent to
(4.18).
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4.8. Representations for ¢(3)(q)

Theorem 4.4. For max{|ab|, |qa|, |¢b|} < 1 and x being neither zero nor an integral power
of q, we have

(¢, ab; q) oo 2<q/a7q/b7q,qab>

(aq,bq; q)oo xq,q*/x

— g2+ (1—-2)1—-q/x) (g/a,q/b;q)n B2
Z (1 —2q™)(1 —q"*t1/z) (aq,bg;q)n (—ab)"q . (4.21)

Proof. Taking (c,d,u,v) — (2q,q*/x,q,q) in Theorem 1.1, we deduce that

(¢, ab; ¢) o 2<q/a,q/b7q_qab>

(aq,bq; )0 xq,q*/x 7
_ g2+ (9/a,a/50)n o 0 (n2onyj2 4" g 199
Z 7(aq,bq;q)n (—ab)"q 302 vqgtfe 00 (4.22)

Setting (a,b,¢) = (q,x,q/x) in (2.18), we deduce that

Q*",anrl’q' B (1fx)(1fq/x)q"
3@( 74.4* [ ’q’q) T (a1 =g ) (4.23)

The theorem follows after substituting (4.23) into (4.22). O

Theorem 4.4 allows us to give alternative representations for the universal mock theta
function

- n? B 0 qn(n+1)
9(,q) = < bt Z (23 @)nt1 q/w n ) =2 (@3 Onr1(q/TQntr’ (4.24)

n=0

where x is neither 0 nor an integral power of ¢. This function was defined by Hickerson
[27, Definition 2.0].
We can write

(z,q) ! i Vi (4.25)
x,q) = . .
J (1—2)(1 — q/z) & (g, /7 0)n
Taking (a,b) — (0,0) in Theorem 4.4, we get
1 el —1)" (3n243n)/2 1 — g2ntl
gzq) = —— S e g (4.26)
(D)oo = (1 —zq")(1—q""/2)

We may further write
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1 > -1 nq(3n2+3n)/2 > (-1 n+1q(3n2+3n)/2+2n+1
g(x, q) = . Z ( )n n+1 + Z ( ) n n+1
(€ @)oo \fm (L —2q")(1 — ¢ /2) = (1—2q")(1—q""/x)
1 Z (—1)nq(3n2+3")/2 i (_l)nq(3n2+3n)/2—2n—l
= +
@0 \ &= T— 2 (A=) * 22 (A —aq (1= q/2)
(69 = (L—aqm)(1 =gt /) '
Moreover, we can also write
g(x q i q(?m +3n)/2 ((1 _ qn-&-l/x) + (1 _ an)qn-i-l/x)
S o (I —aq")(1 —q"!/x)

i 3n +3n)/2 N i (_l)nq(3n2+3n)/2 . qn+1/x
e

e n n —1 n— n n) 7n

Z 1)rg® 213n)/2 . Z (—1)~"1¢® 243 ) Jz

= 1 —xqm 1—q~ "/w

n=-—oo

OO

1)n 3n(n+1)/2

T (@ Q)oo n;oo 1 —agn (4.28)
Identity (4.28) appears as Lemma 7.9 in the work of Garvan [19].
Corollary 4.5. Identity (4.3) holds.
Proof. We have
i q(2n+1) i q(2n)2 _ g N i q4n2+4n+1 + q4n2(1 _ q4n+1)
(P (@GP 1-q = (¢ ¢)2n+1
1 & an? 1 & 4n?
1 - ¢ 1-q nz::l (q3ch2)2n T n;) (q3,cf15;q4)n' (4.29)

Thus by (4.24) we have ¥ (q) = qg(q, ¢*). Identity (4.3) then follows from (4.28). O

We can give another Hecke-type series representation for w(3)(q). For this we establish
the following parameterized identity.

Theorem 4.6. For max{|ab/q|,|al,|b|} < 1, we have

(q,ab/¢; )0 (q/a,q/b .q >
T 1) q,ab/q

(avb; Q)OO q1/27 - 1/2’ &
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- 25, (q/a,q/b;q)n (n+1)/ = j+1)/2
=14 (14¢")g" 2 (—ab) (¢ "2 — (1= ™) Y g7
2 (a,b;q)n J;J
(4.30)
Proof. Taking (q,c,d,u,v) — (¢,¢"/%,—¢"/?,1,¢) in Theorem 1.1, we deduce that
(¢;ab/¢; q)oo q/a,q/bq
W3¢>2 g2, — 1/2, q,ab/q
q/a qa/b;q)n n_(n?—3n)/2 a",q".q
—1+Z 1+q") @b ) (—ab)"qt™ =3/ 230, /2 g2 91)- (4:31)

Setting (a, B,¢,d) = (1,q,¢"/%, —¢'/?) in (2.3), we obtain
""" q gtz (AR 439
3¢2 q1/27_q1/23q7q - (7 ) q 3¢2 q1/27_q1/2 34,4 . ( . )
Taking (c,d) — (—¢*/%,¢*/?) in Lemma 2.3, we deduce that
¢t =g g,
3¢2< q1/27_q1/2 34,4 /

N (1 —q 1)g2—i+/2
- - (7

2 qj 1 =) (4.33)

Note that
l-¢Hd=01-¢ ") -(1-¢).

We deduce that

n -1\ ,.25—3(5+1)/2 n
3 (1-q7)g” It ‘)/ _ unff)/z 1 1
I-¢ Hl-¢) = l—gi  1—¢i7!

Jj=2

n gtz L gmiGHn/2 gID/2(1 — gd) 1 g tD/2

:Z 1—¢ 72 1—¢ 772 1—¢ 1—qJr 1—qn

Jj=2

n o 1 q—n(7z+1)/
_ G2 , 4.34
Zq I—¢q T qr (4.34)

Substituting (4.34) into (4.33), we conclude that

¢ g —q no
3¢2< ql’/2 ’,ql/z ?‘1"13/2> = (=1)"q 2 (g2 (1= g Y gD
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Substituting (4.35) into (4.32), we obtain

" 4" q n?—n —n(n
3¢z<q1/2 _q1/2;q,q>q( 2 gt (1 g Zq JGED/2 ) (4.36)

The theorem follows after substituting (4.36) into (4.31). O

Corollary 4.7. We have

[e%s) n—1
1 n n n?—n —3(7
¥ (q) = - @ PG S t e W A ARl (4.37)
b o0 n:1 i
1
=57 (af353(a", 0" q) — fs53(1,4,q) = _J_f3,5,3(17q7Q) (4.38)
1 1
3 It
=-m(q,—¢",—q) + Uiiadons’ (4.39)
(n?4n)/2 1:
1+ 20(6) Z q (=L @)n
= (@G
( n 3n?—n)/2( —n(n+1)/2 n - —j(G+1)/2
= (qq <1+22 (q —(1—(1)2)(1 ))
=
(4.40)
19”2 1,q? 4.41
=1l-= J—12f1,2,1((17 ,q7) (4.41)
=1-2m(¢*,¢° q). (4.42)

Furthermore, (4.37) can be deduced from (4.8) or (4.9) and vice versa.

Proof. Taking (a,b) — (0,0) and (0,—g) in Theorem 4.6, we obtain (4.37) and (4.40),
respectively. O

Remark 6. (1) The expression (4.39) can be found in [29, Eq. (5.6)]. See Remark 2 (1).
(2) The expression (4.42) also appears as [29, Eq. (5.26)].

Theorem 4.8. For max{|ab/q|, |a|, |b|} < 1, we have

(qyab/q;q)oowz( q/a,q/b,q ab/q>

,q’
(@, 5 9)oo —(3q,—C2q
o) 1 n . 2

1—q"+¢"  (a,b;q)n
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Proof. Taking (c,d,u,v) = (—(3q,—(3q,1,q) in Theorem 1.1, we deduce that

(q,ab/q;Q)w3¢2< q/a,q/b,q ab/q>

(a,b5¢)oo —Goq,—C2¢" 7
q/a q/b;@)n n (n?—3n)/2 ( a7 ",q"q )
=1+ E DR () : : . (444
(CL b q) ( ) q 3¢)2 <3q7 2q q,4 ( )

Setting (a,b,c) = (1, —(3,—(2) in (2.18), we obtain

qa"q",q q"
¢ ( 34, q) _ . 4.45
T\ G, —Ga 1—q" +¢* ()

The theorem follows after substituting (4.45) into (4.44). O

Corollary 4.9. Identity (4.4) holds. In addition, we have

Z g+ /z ql)—q ' Dn q q oo n:Z = qz : ;r; )
:1122 (m(GGa, 4% —C§) —m(—Ceq: 4%, C6)) »  (447)

Z g =m/2( ,q) % qq,q = n_i 1_q i;g )’ (4.48)
%* %(m(ngvq?—Cé)—m(—cﬁq,q%cﬁ)). (4.49)

Proof. Taking (a,b) — (0,0), (0, —¢) and (0, —1) in Theorem 4.8, we obtain (4.4), (4.46)
and (4.48), respectively.
To write the Appell-Lerch series in terms of m(z, g, z), we use the fact that

1 __1 ( L, G > (4.50)

L—g"+¢™ 1+G \1-Cq"  1+(Fqn

Then we can rewrite the Appell-Lerch series on the right side of (4.46) as

oo 2 o0 2 [e'e) pe 2
3 (=Drgm 1 3 (=)™ 6 S (=Drg™*
1—q"+¢> 1+ 1 —Ceq 14 Gqn

n=—oo n=—oo n=—oo

=mj(q;q2) (h(¢6, ) + Ch(—=C5,q)) - (4.51)

Here we used (2.33). Now applying (2.34) we arrive at (4.47).
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Observe that

(—1)"q" (14 ¢")? 2 (1)
=(-1)"¢" +3—F—"——. 4.52
The identity (4.49) then follows from (4.47). O
Remark 7. Comparing (4.47) with (4.49) we deduce the following identity:
(n®—n)/2 0 _(n%4n)/2 1. —g¢: 1
Zq (—q Z q g . ¢On 1 (4.53)
—= (=) (=43 ¢%)n 2

4.4. Representations for w® (q)

As for w®(q), a two parameter generalization of (4.5) has already been given in
Theorem 3.3. Identity (4.5) already appears as (3.12).

4.5. Representations for 3 (q)

Theorem 4.10. For max{|abl,|aq|,|bq|} < 1, we have

M?’@( a/aafba ab) (4.54)

(agq,bg; q iq3/2, —ig3/27

— 1—¢*"*! (q/a,q/b;q) 2
=(1 E ’ PN ab)? (n +n)/2.
+g) 1+ ¢* 1 (aq,bq; q)n (Zab)"e

n=0

Proof. Taking (c,d,u,v) — (ig>'?, —ig®>/?,q,q) in Theorem 1.1, we deduce that

(q,ab;q)c;o 5 ( q/a,q/b,q b)

(aq, bg; ¢? iq3/2,—iq3/2’q’a
- ) (¢/a,q/b;q)n 2 s g
Z ! W(_ab)nq(n n)/ 3¢2 iq3/2’ 77;(]3/2 ’ q: q . (455)

Setting (a, b, c) = (g,ig"/?, —ig'/?) in (2.18), we deduce that

n+1

" " q _ (T+q)q”
3¢2<2q3/2 Zq3/27q7Q> — 1—{—(]42”""'1 (456)

The theorem follows after substituting (4.56) into (4.55). O

Corollary 4.11. Identity (4.6) holds. In addition, we have
2n+1

00
% @n 1—¢q i 2 g
Z )n+1 Z 1+ q2n+1 q - m(q7 q,—9 ), (457)
n=0 a9

n n(n+l)/2(
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oo qn(n+l)/2(_q;q)n q’ oo Z a1 = q2n+1qn2+n _ J_f (458)

n=0 (7(]; q2)n+l 1+ q2n+1 J2 )

R G DR Gt g2 +on
1 nz% nt1 (4%¢*) oo n;m( ) 1+ gin+2 (4.59)
:—m(_Q7q47q)7 (460)

[ee] n-‘,—l . %) o1
q q 2n (_(L q)oo n 1-— q n?ion
—1 ' 4.61
z=:0 n+1 (Q; 7)o ;::0( ) 1 4 gin+2 ( )
1

== 3L+ mi.¢"q). (4.62)

Proof. Taking (a,b) — (0,0), (0,1) and (0,—1) in Theorem 4.10, we obtain (4.6) and
the first equalities in (4.57) and (4.58), respectively.

Taking (q,a,b) — (¢%,0,—¢q) and (¢?, —¢q, —1) in Theorem 4.10, we obtain (4.59) and
(4.61), respectively.

The second equality in (4.58) follows since

o n oo n?4+n
I M O e s Y
1_|_q2n+1 1_|_q2n+1 J22

n=0 n=-—oo

Here the last equality follows by (2.2) with (¢,2) — (¢?,—q). O

Remark 8. (1) In (6.30) we will provide a Hecke-type series representation for v(3)(q).
(2) From [29, Eq. (5.40)] we find

U (q) = —m(—q.4*, —¢). (4.64)

Taking (x,q, 21, 20) — (—¢,¢*, ¢, —¢*) in Lemma 2.9, we see that (4.64) is equivalent to
(4.60). From [29, Eq. (5.42)] we find that

N (q) = —m(e*, 4%, q). (4.65)
This can be shown to be equivalent to (4.62) by using Lemmas 2.9 and 2.10. We omit
the details.
(3) If we set « = ¢ in [38, Eq. (2.12)], we get (4.62).

4.6. Representations for p®(q)

Theorem 4.12. For max{|ab|, |aq?|, |bg*|} < 1, we have

M 5 (qQ/a,qZ/a qQ;qQ,ab> (4.66)

(ag?,bg?; ¢? G3¢%, 3¢
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oo
1— 4n+2 2 a, 2 b; 2
=(l+a+4d*) ) 2n+ql int2 (q /2 ; 2/ g )n(_ab)nqn2+n-
1+t 4 g (aq®,bG°; ¢*)n

Proof. Taking (¢, c,d,u,v) — (¢%,{3¢%,(3¢3, ¢, ¢*) in Theorem 1.1, we deduce that

(q27ab;q2);o 3¢2< a*/a,¢*/b, ¢? 2 ab)

(ag?, bg?; ¢* (343, G5
2 b —2n 2n+4+2 2

N <—abwf—*3¢z(q g ). (o)

(aq bq%;%)n (3¢, (3q

Taking (q,a,b,c) — (¢%,¢%, (3¢, (3q) in (2.18), we obtain

7277,7 2n+2’ 2 1_|_ + 2\ 2n
B KL ST O S B Ul e 0L (4.68)

C3q3’C32q3 1+q2n+1 +q4n+2

The theorem follows after substituting (4.68) into (4.67). O

Corollary 4.13. Identity (4.7) holds. In addition, we have

i n n n+1)(‘]; qz)n+1(q2; q2)n _ i 1- q4n+2 q2n2+2n (4 69)
v q ;qﬁ)nJrl — 1+ q2n+1 + q4n+2
1 __ _ _
1% (m(-Gd* q*, —a") + Gam(=G. ¢*, —¢®) — m(—Gd® ¢, —q")

—qm(—Cs, 4", —4%), (4.70)

2
3 (=D)"¢" " (4:6°)n(@:6%)ni1 _ (66%)so i L4+t e,
(qg; qﬁ)n+1 2 ~ = 1+ q2n+1 + q4n+2

n=0

(4.71)
_ 1
1

Proof. Taking (a,b) — (0,0), (0,1) and (0,¢q) in Theorem 4.12, we obtain (4.7), (4.69)
and (4.71), respectively. O

g (m(=Gq, 4%, —q) — Gsm(—Ga, 4", —q)) - (4.72)

5. Mock theta functions of order 5

In his last letter to Hardy, Ramanujan gave ten mock theta functions of order 5. They

are defined as

q) = nz_:o (_Cf]m, () = ;}qnz(—q )

> 2n? e qn(n+l)

v () Zq(n+2)(n+1)/2( GOn FO@) =3 e, P =% Caan

= = (:6°)n = (=g
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oo +1
—_ +1)2 L2 o) "
)= q" T (=g ¢%)n, 7 Zq
n=0
2n(n+1
e W0 =3 G 0=
n+1 ? X1 n+1

FPq) =Y A,
' T;J (4 ¢*)n+1 — — Dn+1

Thanks to the work of Andrews [4], except for X( )( ) and Xf)(q), we know that there
are single Hecke-type series representations for mock theta functions of order 5.

Theorem 5.1. We have

oo n

1 1 n n(b5n —42
(55)((1) _ @ Z Z (-1)(1 — gt +2)q (5n+1)/2—j , (5.1)
’ o0 n=0j=—n
¢g5)(q) _\= ; oo Z Z ] 5n24+2n—3;52 —J(l _q6n+3)7 (5.2)
Joo 1= 0ljl<n
co n—1
) (q) = q, )oo Z Z 1—¢") q"BnD/2=iBi+1)/2 (5.3)
n=1j=—n
co 2n
5 n n n— n
FO( )(q ZZ 5 242 ( )(1+q6 -5-3)7 (54)
n=0 j=0
f1(5) Z Z j n(5n+3)/2—j2(1 _q2n+1)’ (55)
¢ 4)s n=0 |j|<n
7q oo n n— - n
) = 0 D D0 (FLT T (1 - g, (5.6)
! n>0|j|<n
§5)( _ (74 9) oo Z Z n(5n+3)/2— ](3]+1)/2( q2n+1), (5.7)
q q n>0|j|<n
FO(q) = ZZ Jrgon’+an= (ng)(1+q2n+1). (5.8)
7L>0_] 0

As for the remaining two functions, from [47] we know that
5 5 5 5 5 —1,(5
X0 (@) = 265" (@) = 67 (~0). V(@) =2F @)+ 07 (-a) (59)

This means that Xé5)(q) and X§5) (q) can be expressed as combinations of two Hecke-
type series. In addition, Zagier [48] stated indefinite theta series identities for these two
functions. Using Bailey pairs, Zwegers [50] found triple sum identities for x( )( ) and
(5)( ). In a recent work, Garvan [21] gave some Hecke-type series representations for
them.
We will provide new proofs for the Hecke-type series representations in Theorem 5.1.
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5.1. Representations for fé5)(q)

Theorem 5.2. For max{|ab/q|, |al|, |b|} < 1, we have

b/q¢; )0
e (V%
/a q/b q n "2;3" n _1\n—177 _ n _1\i,n?—3>
—HZ @ bia), “(—ab)"q 2"+ (=1)" M1 —q") D (—1)g
lil<n

Proof. Taking (¢,d,u,v) — (0,—q,1,q) in Theorem 1.1, we deduce that

(¢,ab/q; @) q/a,q/b,q.
aereal G

a, b 2_3,
_1—1—2 +4q") q/a Z/q)q) (—ab)g™ 3 )/23¢>2<q

—n

4" q
q,q). (511
0._q 9 q) (5.11)

Setting ¢ = —¢ in Lemma 2.6, we deduce that

a".q"q
3¢2( 0.—q ,Q;Q)

21-¢" [ 3-¢ -~ 1-¢¥! -5
= 2(—1)"¢" - + : 1)igi— 5.12
(=) 1+g» \ 2(1-q) ;(1—q"1)(1—q1)( ) (512)
We have
n 1— g%t o, " (1 — P+ 1 —¢ S 2
Z — - (_1)qu J :Z( 1_1 ( - )(_1)3(13 J
= 1-gd (1 -¢) = (-¢Hl-¢)
(g (i (i R ()
=) g Tl gt T g g
j=2 =2 j=2 J=1
n 7’{7,2
(g - PR Gt
/ 1—q l1-g¢g 1—q»
j=1
" 1 —1)ng™
1P 4 - 4 1) " (5.13)
3:1 —q —q

Substituting (5.13) into (5.12), we deduce that

7n’ n’ 2q™ n 1— nf
3¢2<q ! q;q,q)= (1 ' q Z L (5.14)

0,—
q lil<n
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The theorem follows after substituting this identity into (5.11). O

Remark 9. Identity (5.14) appears as [34, Eq. (3.10)]. Our proof for this identity is new.

Corollary 5.3. Identity (5.1) holds. In addition, we have

Z q _ 4 ) Zqzm +n 6n+3) Z (_1)jq72j2
n=0 j

j=-n
(5.15)
J-
=2 (fi31(¢® ¢ ¢") + ¢ fr31(a* . q' . q")) = == frs1(0,—q. —q) (5.16)
Ja TiJa
J1gJ?
=2m(=a’ g~ + g 5 (5.17)
3,8
Proof. Taking (a,b) — (0,0) in Theorem 5.2, we deduce that
S 5n2—n _ 42
e n=t lil<n
<]_ +2 Z 3n +n)/2 4 Zq(5n +n)/2 Z (_1)jq_j2
(q n=1 j=—n
o WS LG DS (~1Pq7). (518)
n=1 n—0 =

After simplifications, we obtain (5.1).

Similarly, taking (¢,a,b) — (¢?,0,—q) in Theorem 5.2, after rearrangements and
simplifications, we obtain (5.15). O

Remark 10. (1) Theorem 5.2 appears as Proposition 6.14 in [33] in slightly different form.
Identity (5.1) was also obtained by Liu as Proposition 6.15 in [33].

(2) The expression (5.17) appears in [29, Eq. (5.35)].

(3) Identity (5.15) was also obtained by Cui, Gu and Hao [18, Eq. (1.9)] using Bailey
pairs.

5.2. Representations for ¢é5)( ) and 7,/1(5)( )
Theorem 5.4. For max{|ab/q|,|a|, |b|} < 1, we have

(g,ab/q; @)oo

(@b Z q/a,q/b; q)n(ab/q)"

n=0
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_ o0 (q/a, q/b q)n(a b)nq2n2 B (a_qn+1>(b_qn+1)q2n ey
- 7;) a b; @)n <1 (1—ag™(1 _bqn) > Z( 1) q *

l7]<n

(5.19)

Q/CL q/b;q)n (n®—3n)/2
=1 1+ ¢) LLLY 2D (o pyngn=3n
+Z T @), (Zab)"q

% qn + (_1) ( (3n —n)/2 Z 7J (35+1)/2 ) (5.20)

l7l<n

Identity (5.19) appears as [33, Proposition 6.10]. However, its equivalent form (5.20)
was not presented there. Here we follow Liu’s arguments to prove (5.20).

Proof. Taking (¢, d,u,v) — (0,0, 1,q) in Theorem 1.1, we deduce that

(q,ab/q 7)o Z q/a,q/b;q)n(ab/q)"

(@b 9)e =
— (¢/a,q/b; @)n 2 smya (44"
=14+ Y (14 g L L gpyngn®-an 21
+n:1( +q ) (a,b; q)n ( a ) q 3¢2 0,0 ;4,4 (5 )

Taking ¢ — oo in Lemma 2.6, we deduce that

qa"q9"q.
3¢2( 070 04, Q)

2_ -2 <« 1—¢¥! i —(352—35)/2
— (—1)" l_qn q(3n n)/2 + i (=1 Jq (34 7))/
SRS 1—¢ ;(1_qj,l)(1_qj)( )
(5.22)
We have
n 2j—1
> o (1
1—¢ 1—¢f

_ L= N+ =), i _@2si)2
B e

U (—1)ig B8 2 L (—1)it g (897 40)/2

=2 j=1

1—¢ i 1—qn

_ _ zn: (_1)j(1 - qzj)q—(3j2+j)/2 1 (_l)nq*(3n2+n)/2
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1 (_1)nq—(3n2+n)/2

Z 1_|_q q —-(35% +/2 + -
= 1oy I—q

Substituting (5.23) into (5.22), we obtain

3¢2<q ,q" q,q q) =" +( 1)n 1(1 _qn)q(3n2_n)/2 Z (—l)jq_j(3j+1)/2,

0,0

l7l<n

Substituting (5.24) into (5.21), we arrive at (5.20). O

Remark 11. We may also use the following arguments to deduce (5.24).
From [33, Lemma 4.1] we find

z": (" aq"; @)rg" _ )n zn: ciq)ja g/
= (cG9k (cq;q )n = 44);
Setting (a,c) = (1,0) in (5.25), we obtain
S @ q" " =q" (@ R
k=0 j=o \ &9
From [33, (6.2)] we find
n 7' n(n+1)/2 n
Z 1 g (—1)igIGi+D/2,
= (@D 2=,

Substituting (5.27) with n replaced by n — 1 into (5.26), we obtain

S0 g ed” = g+ (1)L - g)gPr T2 YT (1) G/,

k=0 |7l<n
and this is (5.24).
Corollary 5.5. Identities (5.2) and (5.3) hold.
Proof. Taking (q,a,b) — (¢%,0,—q) in (5.19), we obtain (5.2).
By definition and (5.20) with (a,b) — (0, —¢q), we have

oo

1420 (q) = Z(*l;q)nq(ngl)

n=0

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

_ ( (1+QZ n " 24n QZ Z 1_q ] n(5n 1)/2— ](3]+1)/2).

(q, =0
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After rearrangements and simplifications, we arrive at (5.3). O
For more identities deduced from Theorem 5.4, see [33, Propositions 6.11, 6.12, 6.13].
5.8. Representations for Fé5)(q)

Theorem 5.6. For max{|ab/q?|, |a|,|b|} < 1, we have

2,Clb 2;200 2a72b72
(q y l{qqz)q) 3¢2<q/ OQq/ q ;q2,ab/q2>

00 2 a q2 b q o an?—an . 2n i 2n—2 i
5 n =0 =0

(5.28)

Proof. Taking (¢, ¢, d,u,v) —

(q2, ab/q2; qz)oo 2o (

(a,b;¢%)
o0
=1+ (1+¢)
n=1

Taking (q,c¢) —

2 2 2
Q/Q,Q/b,q 2 2
; b
0.q ;q”,ab/q

(¢*/a,q*/b;q*)n
(a,b;¢%)n

(¢%,¢®) in Lemma 2.6, we deduce that

—2n . 2n 2
q yd™ 5 4
3¢2< ;q2,q2>

0,q

—2n

(—ab)"q"2_3n3¢2 <q

(¢%,0,q,1,¢%) in Theorem 1.1, we deduce that

2n 2
47,4 2 2
5q°, . (5.29
0. q q> (5.29)

(I+¢¥ H1—-q) 35252

1—q—q2+zn: - (5.30)
= (=1 - g7 2" -

2—11
— (1 _ q2n)q2n
j=
Note that
(1—¢ HA+¢ ) =01-¢""?) -
We have
" (14 ¥ (1 - q_l)q3j‘2j2 _ i: (
_ 127 _ q25—2
= (1=¢¥)(1—¢¥72) =
UPRTEET R TS ~2j%~
q q
DRI
j=2 =1
2 n
q72n —n q

¢ '(1—q¥). (5.31)

1—q%

q ! 3j—2;2
g2 q

—2n%—n

q q

> A+ %),

j=1

1*(]2” 1*(]2

(5.32)
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Substituting (5.32) into (5.30), we deduce that

NN P 2 2ny 2n? - i(2j+1
3¢2< oq ;q,q>=q_"—(1—qn)q"_”Zq‘”]“- (5.33)

j=—n

Now we substitute (5.33) back into (5.29). Note that

Z q—3(23+1) _ Zq—% 2j+1)/2 4 Zq—((2j 1)-25)/2 _ Zq—J(J-i'l)/Z (5.34)

]_771

and

2_3n —2n n n?—n S —73(27
(1+q2n)qn 3 q 2 _(1_q2 )qQ Z q J(25+1)

j=—n

2n—2

Fr—n 4nzq (3 -3 3. (5.35)
7=0

We eventually arrive at the desired identity. O

Remark 12. We may also use different arguments based on a result of Andrews. Replacing
q by ¢? and setting (a,c) = (1,¢71) in (5.25), we deduce that

n —2n. 2 2n. 2\ 2k 2. 2 n —1.,2\ 2j(1-n)
5 (g ,q()k(q R 2w (45540 5 (4% 0%)iq  (5.36)

P % 4%k (@) = (¢%6%);

The sum on the right side has been evaluated by Andrews [4, Eq. (5.8)]. Indeed, from
[4, Eq. (5.8)] we deduce that

n 2j(1—n 2n 2n—2

¢"(1+¢™" ”}: ’q ):wf"E:q*U?)AVE:qfﬁﬁg.(53n
=0 j=0

Jj=

The theorem follows after substituting (5.37) into (5.36) and then applying to (5.29).

Corollary 5.7. Identity (5.4) holds. In addition, we have
(8 q
2(1-+v5 2:
n=0

S Sy iy 3 s o
7=0
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34 (f1,3,1(q3,q5, q4) - q6f1,3,1(q117 q137 q4)) (5~39)

J? Js g JugJ3
—1/2y _ 1, 1, 87 /2y —1/2 5,8 25" 7 5.40
)—q m(lq",q¢ ") —q T2 hdasdiads (5.40)

1+2T(8 Z q” +n ) _ (7 ) <1+22 n 2n —2n

=m(q*, ¢% ¢q

(%4
2n
—9 Z n 4n —-n 1 _ an) Zq—j(j-i-l)/Q (5.41)
§=0
J4
=1-2% (fisa(l,¢*,4") = ¢’ f31(4" ¢"", ¢")) (5.42)
2
Js 4 JyJ3
=1 —2m(¢®,¢*,q"/%) — 2¢"/> 212 (5.43)
J1 4d38 2
Proof. Taking (a,b) — (0,0) in Theorem 5.6, we deduce that
£y (q)
o +1 [e’s} 2n—2 <,+1>
Z n 571 +2nz J Z n 5n —2n Z q 75
(@ ) n=0 3=0 n=1 3=0
0 . oo 2n ]
Z K ot Zq—(ﬂgl) _ Z(_l)n+lq5n2+8n+3 Zq_(fgl)
q q n=0 7j=0 n=0 7=0
[oe]
s =" g Zq J(1 459, (5.44)
*© n=0

This proves (5.4).
Similarly, taking (a,b) — (0,—¢q) and (0, —¢?) in Theorem 5.6, after rearrangements
and simplifications, we obtain (5.38) and (5.41), respectively. O

Remark 13. (1) From [29, Eq. (5.41)] we find

—2

7
Vi¥(q) = —2¢7'm(1,¢%, q) — f: (5.45)

Using Lemma 2.9 and the following fact [29, Eq. (3.3)]:

1
m(qaq27_1) = 57 (546)
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we can show that (5.45) is equivalent to (5.40). We omit the details.
(2) From [29, Eq. (5.37)] we know that

13 (q) = —m(=¢*, 4%, ¢*). (5.47)

Applying Lemma 2.9 with (z,q,21,20) — (¢%,¢%,¢"/?,¢%), we see that (5.47) can be
deduced from (5.43) and vice versa.

5.4. Representations for f1(5)(q)

Theorem 5.8. (Cf. [33, Proposition 6.6].) For max{|ab|, |ag|, |bq|} < 1, we have

(g, ab; q))oo 3¢2<q/a »q/0, ‘. ab)

(aq,bq; q 0,—
2+l (¢/a,q/b;q)n by (3D /2=5°
Mi™ha/BHAn q . 5.48
,;)J_X_:n ) (ag, bg; q)n ~(ab) (548)

For the sake of completeness, we provide its proof here.

Proof. Taking (¢,d,u,v) — (0,—q,q,q) in Theorem 1.1, we have

(q,ab; q)oo q/a, q/b q
(ag,b¢; 9)o b 5.49
(agbg.0)"?\ 0,—q 10° (5.49)
g2y (/3 Q/b; Dn vn n(n—1)/2 (q"vqw,q )
- “agbg g, ¢ 14,0 ).
Z (aqa bQ»Q)n ( ) 3¢2 O’_q
Taking (a,c) — (1, —¢q) in Lemma 2.5 and simplifying, we find
" g s & o,
3¢2< 0,—q ;q’q> = (_l)nqn +n Z (_1>]q—J . (5.50)

j=—n

Combining the above two equations, we complete the proof of Theorem 5.8. O

Corollary 5.9. Identity (5.5) holds. In addition, we have

0o
Z(_l)n (Q:.Q) n(n+1)/2 Z Z n+_7 q2n+1)q2n2+n—j2 (5.51)

n=0 (7q1Q) n=0j=—n
2?1,3,1( q ) q 4 ) q371,3,1(—q67—q6,q2)7 (5.52)
— (=D"0"(6:)n _ (46°) <
2(6) q) = ( — 1 nan(n+1)/2 _
9 ,,Z::O (4 9)n (4% 4%) oo 7;)( ) ]Z;n(

(5.53)
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J
2J2 (frsa(=a* =@ q) — @ frs1(—0", —¢°,q)) = J—§f1,5,1(—q2, —¢*.q) (5.54)
2
_ J
:461 1m<_q6,(1247 _1) + J_12®1,4(_q27 _q27q)a (555)
2
oo 2
_l)nqn +2n(q. q2)
OIS ol 10°)n
r () ,;) (—¢%¢*)n
7 oo Z 1+q2n+1)q4n +3n Z (71)jq72j2 (556)
j——n
J
ZJ—; (fiza(=d°,—d".q") — q" fiz(—¢"*, =", ¢")) = J—lzf1,3,1(q27 —q°,q) (5.57)
2 2
1 JEI8JE 16

=2¢"'m(q,¢% —1) — ¢! (5.58)

.
J5J3,16J5,16

Proof. Taking (a,b) — (0,0), (0,1) and (¢*/?, —¢'/?) in Theorem 5.8, we obtain (5.5),
(5.51) and (5.53), respectively. Similarly, taking (g, a,b) — (¢2,0,q) in Theorem 5.8, we
obtain (5.56). O

Remark 14. (1) Identity (5.5) was proved by Liu using Theorem 5.8. See [33, Proposition
6.9].
(2) From [29, Eq. (5.27)] we find

J1,2J3,12

AO(q) =2¢7 m(1, % —¢?) + ==
Ji4

(5.59)

Taking (x,q,z,2',n) — (1,¢°% —¢?,—1,2) in Lemma 2.10, and using the method in [22]
to prove theta function identities, we can show that (5.59) is equivalent to (5.55).
(3) From [29, Eq. (5.36)] we find

_ 1 Jssd3
S (@) = —20 'ml(—q.q% 1) + g T (5.60)
18
This is the same as (5.58) upon replacing ¢ by —gq.
(5) (5)
5.5. Representations for ¢1”’ (q) and ;" (q)
Theorem 5.10. (Cf. [35, Proposition 6.1].) For max{|abl, |aql,|bq|} < 1, we have
JCLLTIES Z q/a,q/b; q)n(ab)"
(ag,¢; ¢)oc
© n (1 — g2nt1 . n 2n%4+n—7j(3j+1)/2
:Z Z (_1)3( q )(a/a,q/b;q)n(ab)"q . (5.61)

(aq,bq; q)n
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Corollary 5.11. Identities (5.6) and (5.7) hold.

Proof. Taking (q,a,b) — (¢%,0,—q) in Theorem 5.10, we obtain (5.6). Taking (a,b) —
(0, —1) in Theorem 5.10, we obtain (5.7). O

As before, identity (5.7) appears as [33, Proposition 6.4]. But it was not pointed out
there that (5.6) also follows from Theorem 5.10.

5.6. Representations for F1(5) (q)

Theorem 5.12. For max{|abl, |ag?|,|b¢*|} < 1, we have

2 .2 2 2 2
(q 7ab7q )C)>0 3¢ (q /a’7q /b7q ;q2,ab>

(aq?, bg?; ¢? 0,¢>
oo 2 2 2 n
n q a7q b7q n n 'r7,2 n —9242_
-0 Y LA B i S L )
n—0 ’ ’ n j=—n

Proof. Taking (¢, c,d,u,v) — (¢%,0,¢%, 4%, ¢*) in Theorem 1.1, we deduce that
(4%, ab; ¢*) oo la, /b, b
(ag?, 4% 4%) oo 32 020 ¢

a, 2 b7 2 n 2 q—2n’q2n+2’q2
_Z 4n+2 / q/ q) (_ab)nqn n3¢2( . ;q27q2)_ (5.63)

(an,qu;QQ)n

Taking (q,a,c) — (¢%,1,¢q) in Lemma 2.5 and simplifying, we find

—2n 2n+2 2 n

/Y Y 1—gq 2 242

y%( 0.4 ;qédﬁ::szgng”+M/§ q 2. (5.64)
7

j=-n

The theorem follows after substituting (5.64) into (5.63). O

Corollary 5.13. Identity (5.8) holds. In addition, we have

- (¢*¢*)n SRS
Z(_l)n 72 n(n+1 Z Z 1+q2n+1 4n?43n—25%—j (565)
n=0 (q’q )n n=0j=—n
=7131(—q4,—q6,dﬂ<+q7?131(—012w—q“5q4x (5.66)
j;i q"(”+1) q ¢*)n
n—0 n+1

n
q q ) 2n+1 ) an?+43n —252—j
E q > ¢ (5.67)
n=0

j=—n
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Ju

=5 (fiza(d*,d® q") — " frsai(a*?, d* q") (5.68)
2
Jz J3
_ -1 8 —1/2 -1 5,878
— ¢ 'mg &b, I S L 5.69
g m(q, ¢, %) +q Jéng,SJZ,S (5.69)
q"
W) = 3 T
n=1
—g q, oo Z n 3n +3n Z q—zg —j (5.70)
n=0 j=-n
1 Jo J
=507 = (fisa(d®, ¢, q)*qul,s,l(qg,q”,f)):qjifl,s,l(q3,q57q2) (5.71)
1 1
_ J:
= m(_q187q487 _1) + q 3m(_q67 q48a _1) + qJ_z(I)lA(qga q57q2) (572)
1

2 2
2 JQ J12J24J4,24

=-m(=a"a% a0+ : 5.73
AL J12J1 24J10 24J11 24 (5.73)
n 1 n
Z q + ) )n _ q;q OO Z n 4" +4n Z q_2j2_j
n=0 n+1 =,
(5.74)
L ) 5 7 4 8 13 15 4
T2 - - 5.75
2977, (fr310¢° 4" 0") = *f131(¢7, 4", ¢Y)) = qJ frza(@® " q*)  (5.75)

3
Js 55

_ 2 8 —1/2
=-m(¢",q,q¢ )+ —"F—.
J1 g 18738

(5.76)
Proof. Taking (a,b) — (0,0) in Theorem 5.12, we obtain (5.8) upon using (5.34).

Taking (a,b) — (0,1) and (0,—1) in Theorem 5.12, we obtain (5.65) and (5.67),
respectively.

We write
i "~ Q2m-—2 _ 4 <~ (00 ¢)nd" (5.77)
= (@) l—qg~=  (¢*¢)n
Taking (a,b) — (—¢, —1) in Theorem 5.12, we obtain (5.70).
Similarly, taking (a,b) — (0, —¢) in Theorem 5.12, we obtain (5.74). O
Remark 15. (1) From [29, Eq. (5.38)] we know that
7 (q) = 7 'm(—q, 6%, ). (5.78)

Taking (z,q, 21, 20) — (¢,¢%,¢~/?,¢%) in Lemma 2.9, we see that (5.78) is equivalent to
(5.69).
(2) From [29, Eq. (5.31)] we find the following representation:
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3

(6) __1 1 Jg
Y (q) = Qm(l ¢, q) + 2975 (5.79)

Setting (z,q,2,2",n) = (1,¢%,q,—1,4) in Lemma 2.10 and using the method in [22] to
prove theta function identities, we see that (5.79) is equivalent to (5.72).

(3) Taking (z,q, 21, 20) — (¢%,4%, ¢ /%, q) in Lemma 2.9, we see that (4.65) is equivalent
o (5.76).

6. Mock theta functions of order 6
In his lost notebook [39], Ramanujan recorded seven mock theta functions of order 6.
They are defined as

¢ (q) == Z (—1)"(Q;q2)nq (g i": q(n+1) (¢:¢®)n |

~= (G —G; q)2n+1

o] n+1

q

pO(g) = LD

n=0 0

o~ (=1)"¢"(¢:¢%)n I 1K (—1)"g" (1 + ™) (q; ¢*)n

2O (q) ;:ZM7 19 (q) ::§+§Z( ) ( )(q;¢°)
n=0

= (G Dn (=@ D

n+1

)

qu
)=

In Ramanujan’s original definition of u(G)(q), the series does not converge, and the defi-
nition here is the correct understanding.
In 2007, Berndt and Chan [10] defined two new mock theta functions as:

¢(6 q n—l 7 w(ﬁ q

These two functions were discovered after an examination of the summands of ¢(®)(q)
and 1/)(6)((]) over the negative and non-positive integers.

The following representations for sixth order mock theta functions were proved by
Andrews and Hickerson [8], and Berndt and Chan [10].

Theorem 6.1. We have

¢(6)(Q) = (((]CL% 1+ 22(]2” -n Z _l)nq3n27n(l _ q2n) Z (_1)j+1q,j2 7

n=1 j=—n

oo n

PO (g) = g L) Z S (mpnHigintan (6.2)

n=0j=—n
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oo n

Q7 n n(n —i(7

p(ﬁ)( )oo Z Z >t /2-iG+0/2
n=0j=—n

q q o0 - n n? n . —i3(5
0(6)((]) — Z _ +1)q(3 +5 )/22(1 JG+1/2,

(4 4)oo n=0 =0
/\(6)( _ q q o0 Z )" 3n(n+1 /2 Z (_1)jq7j27

[71<n
(6) (q;q2)oo — n, (3n%4n)/2 2n+1 - i3
1 (Q):WZ(—UQ (1+gq )Z(—l)q ;
? S n=0 j=—n

1 e 1+qn 3n2+n
©)(q) = 143y (-1)r——%
7o) (q;q)oo< " ;( ) Trgntgn? =)

n

q’ oo n n 3n24+5n i —242-35

¢(6)( Z 2 +2 1) q3 +5n+1 Z(1+q2j+1)q 2j 3]7
j=0

q7 00 n n" n — —

w(_ﬁ)(q): Z ¢ 543 Z q 2j%~j
n=0 j=—n

51

We will provide parameterized identities which recover these representations. As a

byproduct, a new Hecke-type series representation for v(3)(q) will be provided in (6.30).

6.1. Representations for ¢ (q)

Theorem 6.2. For max{|ab|/q?|, |al|,|b|} < 1, we have

(4%, ab/q*; ¢*) o ( a*/a,q /b ¢ >
e e e q*,ab/q*
¢

(a,0;6%) oo —q, —

(6.10)

Ry (0 PP gy (o1 = (1) Y (1)

(a,b;¢?)

j=-n

2

Proof. Taking (q,c,d,u,v) = (¢%,—q, —q¢*,1,¢*) in Theorem 1.1, we deduce that

2 2. .2 2
q°,ab/q%; ¢%) o a,¢* bq
—2n

a,q*/b; - 2 2
,1+Z " w( ab)"q" 3”3¢2<q e ;qz,q2>. (6.11)

(a7 b7 q )n —q, _q2

Taking (q, @, 8,¢,d) — (¢%,1,¢%, —q, —¢*) in (2.3), we obtain
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—2n 2n 2 —2n . 2n
a7 q 2 g -1
3¢2< ) ;qQ,q2> =q" 3¢2< § ;q2,—q3>~ (6.12)
—q,—q —-q,—q
Now taking (q,¢,d) — (¢%, —¢?, —¢®) in Lemma 2.3, we deduce that
—2n . 2n
q »q 7_1
3¢2< , 4 —q3>
—q,—q

20-¢*") [ -1-2¢+¢ jojop(+qg (1 —¢¥h)

T s aare PRV o Ena @)
(6.13)
Note that
QI+¢ HA—-¢" ) =1—-¢")+q (1 —g%). (6.14)
We have

_ ; i 42
i Vg 2A+gHa—g¢¥ ) i g% n(—1)igHit

1_q2j 2 1_q2] 1_q2_] + 1_q2j—2

Jj=2 J= Jj=2
n P G A VA e
e
=2 q j=1 q
—1 n 2n—n? n—1
q (=1)"q TRR
= —1)7* I, 6.15
1—q2+ 1— g2 +j§( Y ( )

Substituting (6.15) into (6.13), after simplifications, we obtain
—2n . 2n
q »d ,_]—
3¢2< , q3)
—q,—q
21—¢*) [(—)"¢™ 1 ¢

. .2
DA el Bl RD WL A B (6.16)

The theorem follows after substituting (6.16) into (6.12) and then combining with
(6.11). O

Corollary 6.3. Identity (6.1) holds. In addition, we have
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1 - n?—2n S i —42
*52 1—g")g™ Z (=1)/q™’ (6.17)
n=1 j=—n

Ja
=1- J (f1»271(1 4)+Q.f1,2,1(q6aq65q4)) (618)

2

J1J3J2 T2

=1 2 —1 2 12 —1) = —1J143J8J12 6.19
+2¢ ml¢", ¢ —1) —¢ Todado T2, (6.19)

[} n2

Y@= (—qg,qQ)n

_(( Q7q S 1+22 n 2n —n i 3n —-n Z (_l)jquz) (620)

q q j=-n
J 2 T 7 4

=2- 50 (frzala,¢.q") + P fr2(d" 4" q") (6.21)

2 72
=2 —2m(q",¢"% 1) +2¢ 'm(q,¢"?, —1) — ¢! N1Jg J§ (6.22)

J2J4J24

JS
=2m(q, —¢>, —1) + 2¢—2—. (6.23)
J3.12J412

Proof. Taking (a,b) — (0,q), (0,—1) and (0, —¢q) in Theorem 6.2, we obtain (6.1), (6.17)
and (6.20), respectively. O

Remark 16. (1) The Hecke-type series in (6.17) will be reproved in (6.30). Taking
(2,q, 21, 20) — (¢,¢'2, —1,—¢?) in Lemma 2.9 and using the method in [22] for proving
theta function identities, we see that (3.54) is equivalent to (6.19).

(2) The expression (6.23) can be found in [29, Eq. (5.5)] with a typo that Js should
be Jy 12. Mortenson [37, Eq. (2.14)] gave a different Hecke-type series representation for

@ (q).
6.2. Representations for w(ﬁ)(q)

Theorem 6.4. For max{|abl|, |ag?|, |bg®|} < 1, we have

2 .2 2 2 2
(¢%,ab; q )30 3¢2<q Ja,q*/b,q ;qz,ab)

(aq?,bq?; ¢ —¢%, —¢
(¢*/a,q®/b;¢*)n i oan?in—j?2
1+q§ E i B kALY (7)) LT (R B L 6.24
0= (a2, b% ), Y (6.24)

Proof. Taking (¢, c,d,u,v) — (¢%,—¢*, —¢>,4?,¢*) in Theorem 1.1, we deduce that

2 .2 2 2 2
(q ,ab; q )C;O 3¢2<q /aaq /b7q ;q2,ab)

(aq?,bg?; ¢* —q%,—¢°
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2n+2

:i 4n+2 C] /aqu/b; q2)'ﬂ (_ab)nqnz—n3¢2( - n’q

2

4™ o o

. . (6.25
(an,qu;qQ)n 2 - ) (6.25)

Taking (¢, @, 8,¢,d) — (¢%,¢%, ¢*, —¢*, —¢>) in (2.3), we deduce that

—2n 2n+2 2 —2n 2n+2
N N P P W . (q ST =g 2>
302 147,47 ) =4q 302 g7, —q" ). 6.26

( -¢* —¢* > —¢%, - (6.26)
Taking (¢, a,c,d) — (¢%,1,—¢q, —¢?) in Lemma 2.2, we deduce that

—2n ,2n+2
qa"q =4 o 9\ _ 1+g
3¢>2( —q2,—¢3 197, —4q > = (*1)nqn_1+q2n+1

(—1)ig=7".  (6.27)

j=—n

The theorem follows after substituting (6.27) into (6.26) and then combining with
(6.25). O

Corollary 6.5. Identity (6.2) holds. In addition, we have

-~ (1) i Xn: +i( 2n+1y 3n°+2n—j5>
3 JrHI(1 = g2t )t (6.28)
n=0 ( 4 q>2n+1 n=0j=—n
:71 )2, 1(—q : *q4 q4) - q571 )2, 1(7(110’ 7q10’q4) = 71 )2, 1(q3/2, 7q3/2’q)‘ (6.29)
o0 n (n+1) _ 2 o 2 +1 3 249 n ] -
(6.30)
_ N 5 10 10 4
=7 5 (freald a* ") + @ fr21(0, 0" q%)) (6.31)
2
=2 71m( 2 12 _1) -1 J1J3J82J122 (6 32)
=2q qa,q9", 4J2J4J6J224' .

Furthermore, (6.30) is equivalent to (3.46).

Proof. Taking (a,b) — (0,q), (0,1) and (0, —1) in Theorem 6.4, we obtain (6.2), (6.28)
and (6.30), respectively. O

Remark 17. The Hecke-type series representation (6.30) appears to be new. Using
Lemma 2.9 with (z,q,21,20) — (¢%,¢'2,—1,—¢®), we can show that (6.32) is equiva-
lent to (3.54).

6.3. Representations for p'® (q), ¢© (q) and A (q)

Identities (6.3), (6.4) and (6.5) have already been established in (3.51), (3.32) and
(5.53), respectively.
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6.4. Representations for u(®(q)

Theorem 6.6. For max{|abq|,|ag?|,|bg?|} < 1, we have

(4, abg; 9) a/a,q/b,q c- on2 (@/a4/0; @)n (8n215
N DA™Y, . b — 1—ag?™ M AT AR )T n n)/2
(an’qu;q)w3¢2 O,—q ; 4, a0q Z( q ) (an,qu;q)n (a‘ ) q

n=0

n

<[ 2(=1)mg T = (14 ") D (=1)ig | (6.33)

j=—n

Proof. Taking (c,d,u,v) — (0,—¢q, ¢?, q) in Theorem 1.1, we deduce that

(¢, abq; ) o q/a,q/b,q
BAE thake A VS -q, ab 6.34
(aq?,b42; q) o 3¢z 0,—q T (6.34)

- b; q) 2_ " 9", q
_ 1— 2n+2 1— n+1 (q/a7 q/ q)n b 2\n (n“—3n)/2 ) » 4, )
T;)( q )( q )(aqg,qu;q)n( aoq ) q 3¢2 34,4

Setting (o, ¢) = (¢, —¢) in Lemma 2.5, we obtain

n 2j+1

—-n ,n+2 n+1
q »q , 4 1+q 249 ].—q .2
; =2(-1)"———q" ”E , : 1) g7,
3¢2( 0’ —q 7qaq) ( ) 1— qn+1q o (1 —i—qj)(l —+ qj+1>( ) q

(6.35)
Note that

n 1— q2j+1 ( ) 5
: __(1)igI
= L+ )1+ ¢

n

Ltd) -0+ ™) 5
(1+¢)(1+ ¢

(=)

<.

1 + qj-‘rl

n j—1, —35(j— n,—n%—n P
(-1 tq?E=h (=1)q 1 _Z (=1)7q~7
1+¢ 14 gt 2 '

ST (-1)ig (6.36)

Therefore,
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" q" g
3¢>2< 14, q

07 —q
qn2+2n s 1 n S
= (D" 21" —(L+g"™) Y (=17 | (6.37)
j=—-n

The theorem then follows after substituting (6.37) into (6.34). O

Corollary 6.7. Identity (6.6) holds. In addition, we have

0 n 2n+1

4 ¢%)n
Z )

2 n
q;q n? n j o~
- _2+(<(]272)<>°Z(_1)nq<3 (L4 gt ) ST (-1 (6.38)

j=—n

J
=—2+3§UMJP%—%w+fm4Ffrﬂ?@+qﬂmbw§—fﬂD (6.39)
2

JiaJ Ji2J
=207 m(1,¢%, —%) + dm(g?,¢°, ~1) — 2 TEE - 22l (6.40)
Ji4 J14

Proof. Taking (a,b) — (¢'/2, —¢'/?) in Theorem 6.6, we deduce that

oo
4 9°) o (1+q)(1—¢*") 3n247n)/2
H(q) =q Z 2 (1 7q2n+3)(_1)nq( R
2 n -2
2= = L+ ") ) (—1)g (6.41)
j=-n
This gives [8, Eq. (2.28)].
Let S,, = Z]__n( 1)jq*j2. Since Spi1 — Sy = 2(71)"“(1*"2*2”*1, we have
) n 4 Y
2-1)"g " " = (14" Y (-1 g
j=-n
= —¢""M(Shi1—Sn) — (1 +¢"™S, = —¢""S 1 — S, (6.42)
Substituting (6.42) into (6.41), and noting that
1 1— 2n+-2 1
A+ =g q (6.43)

(1= @2nt1)(1 — g2nF3) — 1 — g2nt1 Tz g2nt3’

we deduce that
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(¢; qz)oo oo q(3n2+7n+2)/25n oo q(3n2+9n+4)/25n+1
H(q) = — 7< - -1H"
@ (4% ¢%) o nz;;( - I 2} ) 1— gt
(3n? +7n+2)/25 o (Bn®+9n+4)/2 g
nq nq n+1
+qz — 2 ts +a)y (-1) 1= g2n+s )
n=0
(6.44)

Replacing n by n— 1 in the last second and last sum in (6.44), after rearrangements and
simplifications, we obtain

H(q) =— % (L _ i(_l)nq(3n2+3n)/2sn

(0% \1—q =
+ Z q(?m +9:: S St Z 7(1(3” :)ﬁ Su1). (6.45)
Now we substitute the relations
Sp_1 =8, —2(=1)"q™™,  Spp1 = Sy +2(—1)" g 21 (6.46)
into (6.45) to deduce that
i = (B 3y (s,
+ q<3”2+”>/2<1 P8, = 2(=1)" ), (6.47)
from which (6.38) follows.
Andrews and Hickerson [8] showed that
21 (q) = 2+ H(q) = A9 (q). (6.48)
Combining (6.48) with (6.45) and (6.5), we get (6.6). O
Remark 18. From [29, Eq. (5.28)] we find
1Ji2J13 '

19 (q) = 2m(q®,¢%,—1) - (6.49)

2 Ji4

The expression (6.40) can also be deduced from (6.49) and (5.59) upon using (6.48).



58 D. Chen, L. Wang / Advances in Mathematics 365 (2020) 107037

6.5. Representations for 7(6)((])

Theorem 6.8. For max{|ab/q/, |a|, |b|} < 1, we have

O ey

(a,b;q)oc (34, C3q
_ 1+3i Ltg" @/ a/bDn o 2o (6.50)

=1 L+q"+¢"  (a,b5q)n
Proof. Taking (c,d,u,v) — ((3¢,(3q,1,q) in Theorem 1.1, we deduce that

(¢,ab/q;4) o q/a,q/b,q.
(a,b;¢)o0 3¢ ( (3¢,¢3q ’q’ab/q>

1 (14 ) P gy

" q
3@( (3q,(3q ’q,q) (6:51)

Setting (a, b, c) = (1,(3,¢3) in (2.18), we obtain

" q"q 3q"
B _—— 6.52
3¢2< (3q,C3q 4 q) L+q™ +¢* (6.52)

The theorem follows after substituting (6.52) into (6.51). O

Corollary 6.9. Identity (6.7) holds. In addition, we have

[e’s} (nz_n)/Z 2; 2 n - 1 n
Z . (4% (g)”q ) q q Z 1_|_q +q23 ) (6.53)
3 31

:§ B ﬁ (m(<§q7 q2a CB%) - m(<3q7q27 <3)) ) (654)
(1) (@ 9)2n _ 3 ( (] 4 g2n)

2 (4% ¢%)n 5 Z 1+q2n+q4n (6.55)

! (m(_<3q2a q, CSQ) - m(_<§q27 q, CB)) : (656)

Proof. Taking (a,b) — (0,0) and (0,—1) in Theorem 6.8, we obtain (6.7) and (6.53),
respectively.

Taking (g, a,b) — (¢%,0,q) in Theorem 6.8, we obtain (6.55).

The deductions of (6.54) and (6.56) use (2.34) and (2.36), respectively. The process
is similar to the proof of Corollary 4.9 and we omit the details. O
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6.6. Representations for (;5(,6)(61)

Theorem 6.10. For max{|abq?|, |aq?|, |bg*|} < 1, we have

2,0,()2;200 2&,2b,2
UKL/ .q> soa T1OTINT 2 g (6.57)
(aq*,bq*; %) o 0,¢3

— Q/GQ/bQ) 3n%+6 2j+1y —2j2—3;
=(1—q) Y (1= g (—ab) g™ O (14 g ),
— (ag*, bq*; ¢*)n =

Proof. Taking (¢, c,d,u,v) — (¢%,0,¢%,¢*, ¢*) in Theorem 1.1, we deduce that

(q“,aqu;q2)m3¢2(q2/a,q2/b,q2,qz aqu)
(ag*, bag*; ¢%) s 0,¢> 7

Z 4n+4 C] ) q2/a> qz/b; qz)’ﬂ (_ab)nqnz-‘rn3¢2 q—2n7 q2n+47 q2 . q2 q2
(qz, aq*,bg*; ¢%)n 0, ¢ o)

(6.58)

Taking (g, o, ¢) — (¢2, 4%, q) in Lemma 2.5, we obtain

—2n ,2n+4 2 2n2+5n n
q »q »q q _942_
3¢2< 0.4 ;q2,q2) =(1-07 5 7 E (1+¢¥ g 2% (6.59)

The theorem follows after substituting (6.59) into (6.58). O

Corollary 6.11. Identity (6.8) holds. In addition, we have

S )"q" +3n(q2§q2)n S 2n+2\ An2+7 S 2j+1y —2j2—3;
Z = (4" TS (14 g7 g Y (6.60)
n=0 ¢ 0 )n+1 n=0 =0
=—2¢%+ 71,3,1(*‘167 -, q") + q1171,3,1(*ql4’ ¢, q"), (6.61)
©  n243n
—27(8) e A G
q TO (_(]) T . 92
= ()

(] q 00 2n+2 an2+7n - 1 2j+1y,,—252—3j 6.62
Z )q > (1 +¢¥ g (6.62)
n=0 §=0

J4
=7 (f1.31(¢% a2, ¢") — "' f131(¢", 4%, ¢")) (6.63)
3
2 3 8 —3/2 2 J% Sjg
=—qm(® ¢ )+ P ——. (6.64)

3
J% sJ2,8J38
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Proof. Taking (a,b) — (—=1,—¢71), (0,1) and (0, —1) in Theorem 6.10, we obtain (6.8),
(6.60) and (6.62), respectively. O

Remark 19. If we take (z,q, 21, 20) — (¢%,¢%, ¢*/?,¢?) in Lemma 2.9, we see that (6.64)
is equivalent to (5.47).

6.7. Representations for 1/1(_6)(q)
Identity (6.9) has already been established in (5.70).
7. Mock theta functions of order 8

Gordon and Mclntosh [24] studied four mock theta functions of order 8. They are
defined as

X nn+2)(_ .2
8 q 8 q (=4 ¢%)n
( ) E S§ )(Q) = E : (=% ) )
n=0 n=0 ’ n
(n+1)(n+2) (_ 2. 2 n+1)
8 Z q (—¢%;q%)n ®)( Z q" q *)n
n=0 (=4 ¢%)n+1 )n+1

The following functions appear in the transformation laws of the eighth order mock theta

functions:
Z 7" = So(q*) + 451(¢°); (7.1)
n=0
% (nt1)?(_ .
q q;9" )n

U9 (q) == Z W =To(¢*) + ¢T1(¢*), (7.2)
n=0 ’ n

v (q) 1+22q _—1+2§:M, (7.3)

n=0 q;9 n=0 (Qa q )2n+1

2
V®) (g) = g (=g ¢ o P (=gt g i (=)
! (¢ 4%)nt1 (¢;4%)2n+2

n=0 n=0

The following Appell-Lerch series representations of Uég) (q), U1(8)(q), Vo(g) (¢) and Vl(s) (q)
were obtained in [24].

Theorem 7.1.

(®) (0% ~= 1+ oot
Up '(q) = @) 1—|—q4”(_1) e, (7.5)

n=—oo
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2n2%+43n
(8) - OO n q
Uy (q) = _2: Wu (7.6)
8 q q oo n 4n +2n
Vi (g) = -1 +2 Z 4n+1 , (7.7)
n,(2n+1)2
8 q q 00 "q
Vl( )(q) o Z 4n+1 : (7.8)
From the relations
1 1 _
(@) = 5 (U7 @) + Uo(=a")) - 89(@) = 507/ (Usla"/?) = Uo(=q"/?)) .
(7.9)
1 1 _
TO(S)(q) _ 5 (Ul(S)(ql/Q) + Ul(—q1/2)> 7 558)(q) _ Eq 1/2 (Ul(ql/Q) _ Ul(_q1/2)) ’
(7.10)

It is clear that Appell-Lerch series representations for S((JB) (9), S%S) (q), Tés) (¢) and Tl(s) (q)
can also be deduced from Theorem 7.1, and so here we omit them.

We will give new proofs to Theorem 7.1. Moreover, we also find the following repre-
sentations for the eighth order mock theta functions.

Theorem 7.2. We have

? 00 n n n i —242
55q) = Zq4 L= ) ST (<) (7.11)
j=-n
7 n n n - i —242
$i¥(q) = Jes Z (g gttty N (-1 g (7.12)
j=-n
n
q q n n n ) —29°—37
To(g)(q)z ooz 4n®+7 ¢ +2) Z (—1)7q 2;2 3, (7.13)
n= j=—n—1
q q o - g2
Tf%)— Z () gty N (1) g (7.14)
n=0 j=-n
Vi (g) = oy Z )rgtan N g (7.16)
j=—n
oo 1 _ 2n+1
_ q, Z q qn2+2n_ (7.17)

1 + q4n+2
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Furthermore, (7.17) is equivalent to (7.8).

From the relations (7.1) and (7.2), it is clear that Hecke-type series representations
for UéS)(q) and Ul(g) (¢) can be deduced from (7.11)—(7.14), and so we omit them.

The Hecke-type series representations in Theorem 7.2 were earlier found by Srivastava
[41] as well as Cui, Gu and Hao [18] by Bailey pairs. Moreover, expressions in terms of
fap.c(z,y,q) of them were also given in [18, Theorem 1.4].

7.1. Representations of S’ég) (q) and S’%g)(q)

Identity (7.11) has already been established in (5.15). Identity (7.12) has already been
established in (5.56).

7.2. Representations of TO(S) (q)

Theorem 7.3. For max{|abg?|, |aq®|, |bg*|} < 1, we have

(4% abg*; ¢*) o ?la, /b, ® 5
2. ab 7.18
(aq‘*,bq“;q?)oog’¢2 0,—g3 1M (7.18)

:(1 + q) i(l _ q4n+4) (q2/a7 q2/b; q2)n (ab)nq3n2+6n Z(_l).](]_ _ q2j+1)q—2j2—3j.

1 pod. 2
= (aq*,bq*; ¢%)n =
Proof. Taking (¢, c,d,u,v) — (¢%,0,—¢% ¢*, ¢*) in Theorem 1.1, we deduce that
4 b 2. .2 2 2 b
(Q7CLQ7Q)OO¢ /aq/q 2 abg?
(ag*, bg*; ¢%) oo 0,—¢*

_Z gy L= > (¢*/a, ¢ /b; q2)n(_ab)nqn2+n3¢2 q‘2",q2"+4aq2.qz 2
1—q*  (ag*,bg*; q%)y 0,—¢% '

(7.19)

Taking (¢, a,c) — (¢%,¢%, —¢q) in Lemma 2.5, we deduce that
n

—2n ,2n+4 2

q yq » q 1+ q 2 . . C0:2 o

3¢2< 0. — g ;(]2,(]2> _ m(_l)ann +5n Z(_l)J(l _ q2j+1)q 2j7 =35
) 7=0

(7.20)

The theorem follows after substituting (7.20) into (7.19). O

Corollary 7.4. Identity (7.13) holds. In addition, we have

(8) - G4 )n
047 -3 >n

n=1
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n

. q2 0 2 ] : 2 q-
=T SN gy gt SN 11— 2 (7.1)

L o =
J —
=- QT; (fraa(=a® —a"q") — " frsa(=4"%, —d",¢") + ¢! (7.22)
2
1 1 8 1 Jl J4
1 L . 2
5 T4 m(lg, —q) — 3 T3 s (7.23)

Proof. Taking (a,b) — (0,—1) and (0,¢~!) in Theorem 7.3, we obtain (7.13) and (7.21),
respectively. O

Remark 20. Note that (7.23) is equivalent to (5.45).
7.8. Representations for TI(S)(q), Uég)(q), UI(S)(q)

Identities (7.14), (7.5) and (7.6) have already been established in (5.67), (4.17) and
(4.59), respectively.

7.4. Representations for \/5(8)((])

Identity (7.15) follows from (5.38).
To get (7.7), we first establish the following identity.

Theorem 7.5. For max{|ab/q*|,|al,|b|} < 1, we have

(¢*,ab/q*; ¢") oo s q4/a,q4/b,q4.q4 ab/q*
(@,biN) ° e,
> 1+q4n (q4/a7q4/b; q4)n n 2n%2—2n—1
=1-(1-q) Z AN (@b, ) . (7.24)

Proof. Taking (q,c,d,u,v) — (¢* ¢3, ¢°,1,¢*) in Theorem 1.1, we deduce that

MS@ q4/a,q4/b,q4.q4 ab/q*
(CL b q4) qg,q5 ) )
a b; 2 6n —4n’ 4n7 4
*1+Z W(ab)"qzn 6 3¢2(q ngq5 ¢ ;q4,q4). (7.25)

Replacing ¢ by ¢* and setting (a, b,c) = (1,q,¢71) in (2.18), we obtain

—4n 4n 4 1
q yd 54" 4 4\ (l—q)(l—q ) in
3¢2( A 10 ) S n? (7.26)

The theorem then follows after substituting (7.26) into (7.25). O
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Corollary 7.6. Identity (7.7) holds. In addition, we have

> (1) 2n? 2; 4 . 2; 4 - o0 an?42n
3 (=1"q i (% q")n _ (q4 q4) oo (7.27)
—= (62 O e S '
1 J3 1 1 J3
2 2 2
o 1 _1. 1 , 2
m( q,q,q)+2J12Jz RSN (7.28)
Proof. Taking (a,b) — (0, —¢?) in Theorem 7.5, we deduce that
2. 4 > 4n n An?+2n
®) (-4 [ 1 (1+¢")(=1)"q
=1 2 .
Vo ' (a) + (@ %) oo (1—(1 7; 4n D1 — gint1)
(7.29)
Note that
1-g HA+¢") =01-¢"") —g (1 -¢"). (7.30)
We obtain
2.4 st n 4n +2n 0 (_1)nq4n2+2n—1
VO () = 1490 ) - |
0 (q) + (q47 q4)oo 1 —q ng 1 _ q4n+l ngl 1 _ q4n—1
Upon replacing n by —n in the second sum, we obtain (7.7).
Similarly, taking (a,b) — (0, ¢?) in Theorem 7.5, we obtain (7.27).
From (2.35) we have
- q4n2+2n 1/2 2. 8 1/2. 2
Z m:q/y(—q;q)k(q/ 1q°). (7.31)
n=—oo
By (2.36) we obtain the first equality in (7.28).
To get the second equality in (7.28), we need to prove that
9 1
m(=4.4q) = 5. (7.32)
In fact, setting (x,q,2) — (—¢~1,¢2,q) in (2.25), we deduce that
m(_qv q27 q) =1+ q_lm(_q_lv q2a q) =1- m(_qv q27 Q) (733)

The equality in (7.32) then follows. O

Remark 21. (1) Comparing (4.15) with (7.28), we deduce the following interesting iden-
tity:
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(2) If we set z = —q in [38, Eq. (2.16)], we get the first equality in (7.28).

(n? —n)/2 n 2n

(4% ¢%)n (7.34)
)2n+1

Z (—¢;9)nq

= (a5

7.5. Representations for Vl(s)(q)

The Hecke-type series representation (7.16) follows from (5. 7"’ ) and the first expression
of Vl(s)(q) in (7.4). The Appell-Lerch series representation (7.17) follows from (4.61) and
the third expression of V1( )( ) in (7.4).

To get (7.8), we establish the following result.

Theorem 7.7. For max{|ab|, |ag*|,|bq*|} < 1, we have
(6% abigYee o (a*/0a' /b 4y
(ag",bg"5q)o” °\ @PgT T

—ab)"g®" 2 (7.35)

(-1 - i qg"+4 (q4/a,q4/b;q4)n(
= 0)(1-¢%) - ) (1 — ¢*+3) (ag®, ba*; )

Proof. Taking (¢, c,d,u,v) — (¢*,¢°,47,¢*,¢*) in Theorem 1.1, we deduce that

4 b 400 4 4b 4
(¢, ab;q )) 3¢2(q Ja,q*/b,q ;q4’ab)

(ag*, bg*; ¢* @, q7
4 —4n  4An+4 4
Z q*/a,q"/b;q 2_ g g
— 8n+4 (a/q4 bq/ q )) ( ab)ann 2n3¢2< q q ;q47q4) .
(7.36)

Replacing ¢ by ¢* and setting (a, b, c) = (¢*, ¢, ¢%) in (2.18), we deduce that

P A ST PR W el €l (7.37)
T e (1= g )(1 - ¢int3)” '

The theorem then follows after substituting (7.37) into (7.36). O
Corollary 7.8. Identity (7.8) holds. In addition, we have

4n2+4n -1 4n2+4n

pRLEURELAEURINS D i sy
n=0 2n+2 — 1-— q4n+1 = 1— q4n+1
=m(—q¢*,¢%, —qg) +qm(—q %, ¢% —q”), (7.39)
f: (—1>nq2n2+4n(q q ) ; oo io: 4n +6n (7 40)
n—"0 (235 ¢%)2n+1 et 1— q4n+1
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=¢*m(-1,¢%,—¢*) — ¢ 'm(—q¢*,¢*, —¢°) (7.41)
1., 1, J3

_ 1 1 . 7.42
2?1 T31 g (7.42)

Proof. We use the second expression of Vl(g) (q) to prove (7.8). We first write

®) o 2n2+2n
Vi (q 7.43
9= (1—q1—qz_% qqq) (743)
Taking (a,b) — (0,—1) in Theorem 7.7, we deduce that
0 4 2n®+2n
V(s)(q)zq (=4 q")nyg
! RZ;) ( )2n+2
4)00 Z 1 _ q8n+4)( 1)nq4n2+4n
- — ) (1 = gins
Voo = (L—gHH)(1—g'n+?)
B q q - Z ((1— q4n+3) + q4n+3(1 _ q4n+1))(71)nq4n2+4n
o (1 _ q4n+1)(1 _ q4n+3)
(_q4§q4)oo s (_1)nq4n2+4n e (_1)nq4n2+8n+3
=49 1 a Z 1 — gin+1 +Z 1 — gin+3
(%4 \/z q o q
—g*: OO n 4n +4n
S G Gl )
This proves (7.8).
In the same way, taking (a,b) — (0,1) in Theorem 7.7, we obtain (7.38).
Taking (a,b) — (0,¢?) in Theorem 7.7, we deduce that
oo o0 2
Z n 2n +4n(q2;q4)n _ (1 B q) (q2;q4)oo (1 + q4n+2)q4n +6n . (745)
2 ot (75070 2= (L — @) (1 = gor¥3)
Note that

1= +¢"?) = (1—¢"") —q(1 —¢""*).
Applying this identity to (7.45), after simplifications, we obtain (7.40). O
Remark 22. Comparing (7.42) with (7.28), we obtain the following interesting identity:
n 2n n 2n%4+4n+1

i (qz;q‘*)n _ i (=1"q (@500 (7.46)

0 ?)2n+1 0 (2% q*)2n+1

n=
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Though (7.8) and (7.17) look different, they can be deduced from each other.

Proof of the equivalence of (7.8) and (7.17). We can rewrite (7.17) as

e o] 2 [e%e] 2 ee] 2
3 J2 (*1)”(]“ +2n JQ q4n +4n q4n +8n+3
W ¥ ST 0 (8 - Y T

R
Jo J126 2 8 Jg 2 8 4
2 , , —1) — —=— R ,— . 7.47
_J12 ( q Ts m(q q ) JEJIQG m(q q q ) ( )

Here the first equality follows by splitting the sum in (7.17) into two sums and then
replacing n by —n — 1 in the second sum. The second equality follows by decomposing
the sum according to the parity of n.

We can also rewrite (7.8) as [29, Eq. (5.42)]

V1(8) (q) = _m(q27 q8’ Q) (748)
Taking (7, q, 21, 20) — (¢%,¢%,—1,q) in Lemma 2.9, we deduce that

Jgjngjg,g . 1 JélJél

m(qzvqga_l) _m(qzvqsaq) =q - = - 5 . (749)
JisJostzsdas 2035
Taki 2 8 4 N\
aking (z,q, z1,20) — (¢°,¢%, —¢*, ¢) in Lemma 2.9, we deduce that
m(e®,¢%, —¢*) —m(®, ¢, q) = ¢— 2" — = ¢ : (7.50)
J1,8J1,8J38J6,3 JRJuJg
Note that
']85 J126 S 4an? S 2n+41)2 - 2 J12
—2 —2¢=2 = N g2t = (-1)"¢" =—=. (7.51)
Ji T Jg n;oo n:z_:oo n;oo J2

Substituting (7.49) and (7.50) into (7.47), and applying (7.51), we get (7.48). O
8. Concluding remarks

Below in Table 1 we list the theorems that can be applied to give representations to
at least two mock theta functions. Clearly, the mock theta functions in the same row of
this table share similar Hecke-type series representations. A natural question to ask is
that whether they have further deep relations.

Another question we can ask is about mock theta functions of orders 7 and 10. The
alert readers may have already noted that we have skipped them. The reason is that we
do face difficulties in applying the previous procedure to these functions.
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Table 1

Theorems applicable to at least two mock theta functions.

Theorem 3.3
Theorem 3.5
Theorem 3.7
Theorem 3.10
Theorem 4.2
Theorem 4.6
Theorem 4.10
Theorem 5.2
Theorem 5.6
Theorem 5.8
Theorem 5.10
Theorem 5.12
Theorem 6.2
Theorem 6.4
Theorem 6.10

AP (q), B®)(q), w®(q)
AP (g), v (q), (P (q)
B®(q), v (q), p¥(q)
1 (a), 1 (a)

6@ (a), U3 (a)

¥ (q), 7V(q)

v (0), U1 (@), ¥ (@)
15 (@), 567 (a)

72 (0), V™ (@), T (@)
17(@, X% (a), 817 (a)
o4 (@), ¥1”) ()

B2 (@), 2 (a), T (a), Vi* ()
@ (q), ¥ (q), ¥ (q)
v (q), ) (q)

o0 @), 75" (a)

In his last letter to Hardy, Ramanujan gave three mock theta functions of order 7:

TL2

S
}—37)((1)1:ZM7 ]:1(7)((1)

n=0

n%+4n

g () — q
=S T K=Y
nz::l (@™ a)n" 77 (@0:=2, (@ @1

n=0

In his lost notebook [39], Ramanujan recorded four mock theta functions of order 10:

0 n(n+1)/2

M

¢(1O

;
X0 Z

n+1

qqzn’

© qn(n+1)/2
1g) =Y T,
= (6%
> n—1,n?
(10) — (=1) q )
X (q) nz::( q,Q)Qn 1

Using Bailey pairs, Andrews [4] gave the following Hecke-type series representations for

the seventh order functions:

Fq) = P

(Z Z 7n?4n—j? _ 120

n=01j]<n

_ QQZ qu +8n—5"=j(1 _ q12n+13)), (8.1)

n=075=0

Fi'a) = @

+§: Z q7n2+5n+17j2(1

n=0 |j|<n

co n—1

(—222 (1 - g

n=0 j=0

_ qéanrZ))7 (82)
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]:' ( <Z Z n24n—j2 q8n+3)
n=0|j|<n
- 2(]2 i Xn:q7n2+8nfj2fj(l o q8n+7)). (8.3)
n=0 j=0

Using Bailey pairs, Garvan [21] found new Hecke-type series for these three functions.
Again by Bailey’s Lemma, Choi [14,15] gave Hecke-type series representations for the
tenth order mock theta functions:

¢(10)(q) qq Z 0o (Z Z q5n +2n—j2 — o)

n= O‘]|<n
o0 n 2 R
—9 Z Zq5n +Tn+4+2—j —](1 _ q6n+6>)7 (8.4)
n=0 j=0
q q (o9} n n n
1/)(10)(11) (Z Z 5n2+4n+1—j (17(12 +1)
n=01j]<n
zz<>) o)
n=0 j=0
X(lo)(q) _ (Z Z 10n%+2n—2;52 (1 — g6n+8)
n=01j]<n
19 Z Zq10n2+12n+372j272j(1 _ q16n+16)), (8.6)
n=0 j=0
X(lO) (q) = ( qulon +16n+6—252 =21 — q8n+8)
n=0 j=0
>0 2 -2
+ Z Z glon* Hon+1-25% (1 _ q8n+4)). (8.7)
n=0 |j|<n

Unfortunately we are not able to provide new proofs for the representations in (8.1)—(8.7).
The major difficulties arise from evaluating certain terminated 4¢3 and 3¢o series. For
example, for the seventh order mock theta function ]-'én(q), we first write it as

0 n2

(7)
=X o i (8:8)

Taking (m7a7aab7 b17b27b3701a627c37z) - (371a0707Q70705q1/2a7q1/277Q71) in Theo-
rem 1.2, we deduce that
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7 2_ q_n7q 7q70
F$(q) = G ( +Z (14 ¢")g®" ”)/24¢3<_q7q1/27_ql/z;%q))~

We do not know how to evaluate the terminated 4¢3 series on the right side. The same
problems exist for f1(7) (¢) and .F2(7)(q).

As for the tenth order functions, the situation is quite similar. Taking ¢(!9)(q) as an
example, we first write it as

(10) 1§ g bz
¢a) = 1 p ngO (qs/z 3% )

(8.10)

Taking (¢, d,u,v) = (¢*/%, —¢*/?, —¢,0) in Theorem 1.1, we deduce that

(_Q7 —Clb;Q)oo Q/G,Q/b,o .
WWZ @2, —gr2 —ab
-n qn+1

- —q¢,9/a,q/b;q) 2 q 0
2n+1 9 9 9 n n (n —n)/2 , — ;0.
Z Q7_a97_bQQQ)n (ab)"g 3¢2( ¢*/%, —q3/? ’q’q)' (8.11)

Setting (a,b) — (0,1) in (8.11) would yield a representation for ¢(1%)(g). However, we
cannot find useful formulas for evaluating the terminated 3¢o series on the right side of
(8.11). It would be quite interesting if one could settle the difficulties in calculating these
kinds of terminated sums.
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