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Abstract This paper presents a method for generative
design of decorative architectural parts such as corbel,

moulding and panel, which usually have clear struc-
ture and aesthetic details. The method is composed
of two components: offline learning and online gener-

ation. The offline learning trains a 2D CurveInfoGAN
and a 3D VoxelVAE that learn the feature representa-
tions of the parts in a dataset. The online generation
proceeds with an evolution procedure that evolves to

product new generation of part components by select-
ing, crossing over, and mutating features, followed by
a feature-driven deformation that synthesizes the 3D

mesh representation of new models. Built upon these
technical components, a generative design tool is de-
veloped, which allows the user to input a decorative

architectural model as a reference and then generates
a set of new models that are “more of the same” as
the reference and meanwhile exhibit some “surprising”
elements. The experiments demonstrate the effective-

ness of the method and also showcase the use of clas-
sic geometric modeling and advanced machine learning
techniques in modeling of architectural parts.
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1 Introduction

This paper considers the design of decorative architec-
tural parts, which are often created beautifully and del-

icately to decorate or reflect the characteristic of the
design in industry [1]. Particularly, we focus on three
typical architectural categories: corbel, moulding and
panel. A corbel is a structural piece protruding from a

wall to support a superincumbent weight. A moulding
is a shaped strip of material with various profiles used
to cover transitions between surfaces, especially in a

cornice. A panel is a flat or curved component to cap-
ture a “floating” decoration within a sturdy frame that
sets into the surface of a door, wall or ceiling. Usually
these three models have clear structure and aesthetic
details.

While CAD tools are widely used for traditional de-

sign and manufacturing, they are not necessarily conve-
nient for exploration of decorative architectural shapes,
especially in terms of cost efficiency and creativity es-
sential for design. Considering the shortage of adequate
software/tools for exploration, inspiration and creation
in modeling and the availability of well-designed models
with varying shapes and styles in online warehouse, we
aim to develop efficient design techniques for creating
3D decorative architectural models from examples. This
may provide a cost-effective and easy-to-use solution to

the design of architectural models.

With advance of machine learning and data analyt-
ics, high level geometric design techniques such as ex-
plorative modeling, example-driven synthesis and gen-
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erative design are emerging and becoming popular. In
particular, with simple design specifications, generative
design is able to produce a series of design options using
artificial intelligent techniques [2]. This thus provides
a convenient way for exploration, inspiration and cre-
ation. When we apply generative design, we want the
generated models to contain elements of unexpected-
ness or surprise, which brings inspiration to us. Mean-
while we want the new models to be more of the same
as the examples and specifications, particularly retain-
ing geometric structure and style of architectural parts.
These two requirements actually contradict each other,
hence imposing a technical challenge [3].

This paper is an extension of “creative corbel mod-
eling” we presented at 2020 International Conference
on Cyberworlds [4]. We propose a framework to realize
the generative design of decorative architectural parts
that include corbel, moulding and panel. The frame-
work combines example-based modeling, geometric pro-
cessing, machine learning and evolution. Specifically,
we collect a few well-designed decorative architectural

parts and decompose them into semantically meaning-
ful components to build a dataset. The dataset serves
as an initial design space. The user can provide an ar-

chitectural part or specify an example in the dataset
as input. The evolution based algorithm will generate
a set of novel models. To make the generated models

meet the above-mentioned two requirements, we care-
fully construct high level representations of the col-
lected part models, design a 2D curve Information Max-
imizing Generative Adversarial Net (InfoGAN) and a

3D Variational Autoencoders (VAE) model for learning
the features of the models, and design a generation algo-
rithm involving evolution principle and feature-driven

deformation for generating new models. The main con-
tributions of the paper include the novel framework for
generative design of architectural parts and its under-
lying evolution based generation algorithm.

The rest of the paper is organized as follows. Sec-
tion 2 reviews some relevant work. Section 3 gives an
overview of the proposed method, followed by model
processing in Section 4 and evolution-based design in
Section 5. Section 6 presents the experiments to evalu-
ate the proposed method and Section 7 concludes the
paper.

2 Related Work

Shape design and 3D modeling have been extensively
studied. Various techniques have been developed. This
section briefly reviews example-based synthesis, gener-
ative design and creative modeling, which are relevant
to our work.

2.1 Example-driven synthesis

The idea of synthesizing new 3D models from parts seg-
mented from example shapes was initially proposed by
Funkhouser et al. [5]. It was then extended to the pro-
cesses of part retrieval and composition, and further to
the evolution from a set of 3D models to obtain new
generations of fit and diverse offsprings [6]. Here the
word “fit” emphasizes plausibility with which a design
will generate for instance airplane-like shapes from air-
plane models, and “diversity” implies sort of surprising
designs that are not stuck in an elite population. In
this approach, however, machine does not really learn
knowledge.

Kalogerakis et al. [7] proposed a generative proba-
bilistic model of shape structure, which relates prob-
abilistic relationships between geometric and semantic
properties of shape components to learned latent causes
of structural variability. Thus plausible new shapes can
be synthesized by sampling in the learned spaces. Sung

et al. proposed “CompletementMe”, an incremental syn-
thesis system for constructing a shape by progressively
suggesting complementary components and their place-

ment [8]. To use unlabeled parts and predict a proba-
bility distribution over the space of part embeddings,
embedding and retrieval networks are jointly trained,
which first index parts by mapping them to a low-

dimensional feature space and then map partial assem-
blies to appropriate complements. As a result, individ-
ual new parts are suggested one by one to complement

the partially constructed shape with minimal user in-
put.

2.2 Generative design

Machine learning, particularly deep neural networks,
has achieved great success in imaging processing, com-
puter vision and natural language processing [9,2]. A
steady stream of methods applying deep learning mod-
els in the geometric field has also been proposed for
generative design of 3D shapes. A simple extension from
2D image synthesis to 3D shape generation is to directly
apply machine learning to 3D voxels. In 3D-GAN [10],
Wu et al. combined volumetric CNN and GAN to map
a 643 volume to a 200D latent vector. The voxel based
representations usually require huge memory and com-
putation costs especially when the volumetric resolu-

tion is high. When the geometry is sparse, octrees are
often used to reduce the costs [11].

Compared to standard GAN [2], InfoGAN (Infor-
mation Maximizing GAN) [12]), which introduces addi-

tional parameters – latent codes automatically learned
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by the networks, allows some control over the gener-
ated data. VAE [9] is another class of generative mod-
els, which encodes latent variables to describe the data.
Both InfoGAN and VAEs could recreate the input from
the latent space in a compressed way. Compared to In-
foGAN where the discriminator is calibrated on latent
codes, VAE is on real data and good at feature dimen-
sion reduction.

Shape representation and encoding are important
in design. Various schemes have been proposed for the
representation and encoding of 3D shapes. Su et al. [13]
converted 3D shapes into multi-view images by multi-
ple projections and developed a neural network for 3D
shape recognition. Qi et al. proposed PointNet [14] and
PointNet++ [15] for 3D classification and segmenta-
tion. Learning from irregular point clouds is challeng-
ing, especially for relatively complex geometry. In [16],

Chen and Zhang proposed to learn implicit fields for
generative shape modeling. A signed distance function
is reconstructed to distinguish the inside and outside

regions of a closed shape. The generative model can
be applied to various applications including shape au-
toencoding, generation, interpolation, completion, and
single-view reconstruction. A shape could also be en-

coded as the deformation of a mesh template model [17].
This simplifies the specification of vertex connectivity
of the shape, but meanwhile limits the topological and

geometric complexity of generated shapes. With multi-
chart representations [18], AtlasNet generates a shape
as a collection of patches, each of which is parameter-
ized to a 2D domain as an atlas.

Man-made shapes are often highly structured. This
motivates decoupling of geometry and structure. The
structure-aware generative design pays attention to high-
level shape abstractions [19,20,21,22]. Li et al. trained
independent networks for structure and geometry and
particularly proposed a generative recursive autoencoder

for structure using Recursive Neural Networks [19]. Wang
et al. [20] introduced a global-to-local generative archi-
tecture where GAN is built for structure and condi-
tional autoencoder is augmented to refine the struc-
ture at part level. Wu et al. [21] proposed a structure-
aware generative model (SAGNet) for 3D shape design,
in which the part structure and geometry are jointly
learned and fused into a single latent code to inter-
twine two types of features. Gao et al. proposed a two-
level VAE that consists of a PartVAE learning a de-

formable model of part geometry and a structured part
VAE jointly learning part structure and geometry [22].

2.3 Creative modeling by evolution

Evolutionary algorithms (EAs) are a class of popular al-
gorithms in computational intelligence. They mimic bi-
ological evolution in nature and are good at producing
surprise via the operations of selection, mutation and
cross-over. Thus EAs are good tools for creative mod-
eling. To realize this, the contents should be encoded
and the cross-over and mutation operators should be
appropriately designed to allow the contents to evolve
and produce surprises. Moreover, controllability is im-
plemented by the selection process, where a fitness func-
tion determines whether a new creation is allowed to
survive and further produce offsprings [3].

Xu et al. [6] proposed to perform EA-based stochas-
tic object modeling with a design gallery to achieve set
evolution. The set evolution starts with an initial pop-
ulation of 3D objects belonging to a category. Then
stochastic mutation of object components and cross-

over between objects drive the evolution and produce
offspring generations. During the process, user prefer-
ence is used to determine the fitness for the evolution

in selecting shapes from the gallery that are deemed to
be fit to breed the next generation.

3 Overview of the Proposed Method

The basic problem addressed in the paper can be de-

scribed as follows: given a 3D decorative architectural
model inputted by the user, we want to develop an al-
gorithm that automatically generates a group of new
models that are similar to the input and also show some

“unexpected” effects.
Our proposed solution is illustrated in Figure 1 and

consists of model collection and processing, offline learn-
ing, and online generation.

– We first collect a set of decorative architectural mod-
els designed by the professional and convert them
into triangular mesh representation. Then we de-
compose the models into components. Each corbel
model is decomposed into base, main body and dec-
oration. Each moulding or panel model is decom-
posed into main body and decoration. The decora-
tion components are shared across the three archi-
tectural categories. Finally we extract features for
each component. The components together with the
features form the underlying representation for our
design task.

– In the offline learning stage, we develop 2D CurveIn-

foGAN and 3D VoxelVAE. The 2D CurveInfoGAN
model is trained for feature curves of main body for
corbel, moulding and panel, respectively. New fea-
ture curves could be generated and controlled by
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Fig. 1: The workflow of the proposed design.

sampling and adjusting the variables in the latent

space. The 3D VoxelVAE model is trained to en-

code voxelized decoration component into a 64D la-

tent space where similar and dissimilar decoration

models could be easily retrieved.

– In the online generation stage, we encode architec-

tural models by gene vectors using the dataset and

two feature latent spaces created earlier. We ap-

ply evolution algorithm to generate new models via

crossover, mutation and selection from the one pro-

vided by the user. The new models are expected

to meet the requirements of fitness and diversity.

The final mesh models are synthesized by applying

feature-driven deformation to generated main bod-

ies, decorations and bases.

The detailed processes of these stages are presented in

the next two sections.

4 Model Processing

We have collected 125 corbel models, 254 moulding

models and 193 panel models. All these models are tri-

angular meshes in OBJ format, designed by industry

designers. To facilitate generative design, we decompose

parts, and extract structure and feature information.

4.1 Decomposition

According to the characteristics of decorative architec-

tural parts, the parts can be decomposed into seman-

tically meaningful components. The decomposition can

be done manually or by partitioning algorithms [8]. In

particular, a corbel can be decomposed into base, main

body and decoration. The base usually has very regu-

lar shape and is used to touch the supporting structure

such as a wall or ceiling. The main body stands for the

overall shape of the corbel. The decoration accounts for

geometric texture or details (see Figure 2).

Fig. 2: Decomposition of a corbel model into base

(left), main body (middle) and decoration (right) com-

ponents.

A moulding model can be decomposed into main

body and decoration as shown in Figure 3. Similarly,

a panel model can also be decomposed into main body

and decoration as shown in Figure 4.

Fig. 3: Decomposition of a moulding model.
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Fig. 4: Decomposition of a panel model.

4.2 Geometric Feature Extraction

For a main body, its front face corresponds to the dec-

oration component and is usually characterized by a

curved profile. We propose to fit a planar cubic B-spline

curve to the curved profile, as shown in Figure 5. The

starting and ending points of the B-spline curve are

used to guide the alignment of the decoration to the

main body.

(a) (b) (c)

Fig. 5: Feature extraction of a corbel’s main body:

(a) Main body with decoration; (b) Main body without

decoration; (c) a B-spline feature curve, and the start-

ing and ending points (in red and blue, respectively) for

aligning decoration.

Similarly, for the decoration, we can also fit a cubic

B-spline curve to its back face that corresponds to the

main body (see Figure 6). These B-spline curves serve

as the feature curves for the main body and decoration

components. They will be used to deform both compo-

nents in the process of synthesizing new models.

For a base component that only corbel models have,

the feature is captured by the width, height and depth

of the component, together with a reference point as

(a) (b)

Fig. 6: Feature extraction of a decoration component:

(a) Decoration component; (b) Feature curve of the dec-

oration component.

illustrated in Figure 7. The base component works as

a connector to attach the main body to a wall or ceil-

ing. The reference point is a pivot point for the main

body to be aligned to the base. The height and depth

values are not necessarily always available since some

base components do not have a top or back.

(a) (b) (c)

Fig. 7: Feature extraction of 3 base components: (a)

Features of a base component; (b) Features of a base

component without top; (c) Features of a base compo-

nent without back.

4.3 Design Space

Thereafter, each model can be decomposed into compo-

nents. Each of these components has corresponding fea-

ture. We treat each component and feature as a design

element or building block, and assembly them accord-

ing to their categories to form a design space. Specifi-

cally, we have three decorative architectural part collec-

tions {M corbel
i }125i=1, {M

moulding
i }254i=1 and {Mpanel

i }193i=1.

Our design space is composed of the following elements:

– Main body: a set of triangular meshes {Mmbxi } and

a set of feature curves in B-spline representation

{Cmbxi }, where the superscript ‘x’={corbel, mould-

ing, panel} denotes the part category.

– Decoration: a set of triangular meshes {Mdi} and

a set of feature curves in B-spline representation

{Cdi}.
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– Base: a set of triangular meshes {Mbi} and a set
of features in the form of reference points together
with width, height and depth {Cbi}.

5 Evolution-Based Design

We now present our evolution-based design, the core
techniques of which include machine learning, genera-
tion by evolution and feature-driven deformation.

5.1 Offline Learning

To facilitate generating new models by evolution prin-
ciple, we develop 2D CurveInfoGAN and 3D VoxelVAE
models and train low dimensional vectors to represent
feature curves and decorations.

5.1.1 2D CurveInfoGAN

In the standard GAN, the generator G maps an arbi-
trary noise distribution to the data distribution while

the discriminator D distinguishes candidates produced
by the generator G. G and D improve during training
by competing with each other. However, the noise in-

put z of the standard GAN has no clear interpretation.
To solve this issue, the Information Maximizing Gen-
erative Adversarial Nets (InfoGAN) [12] was proposed,
which splits the input of the Generator into two parts:

the random noise vector and a new latent code vector c.
InfoGAN is a useful framework that learns a latent code
representation to control varying factors related to the

input dataset. InfoGAN’s objective can be expressed as
the following equation by adding a regularization term
LI to GAN’s objective function.

min
G,Q

max
D

VI(D,G) = V (D,G)− λILI(G,Q) (1)

where

V (D,G) = Ex∼Pdata
[logD(x)] + Ez∼Pz

[log(1−D(G(z)))]
LI(G,Q) = Ex∼PG

[Ec′∼P (c|x)[logQ(c′|x)]] +H(c),

Q is the auxiliary distribution for approximating P (c|x),
H(c) is the entropy of the latent codes, and λI is the
regularization constant and is typically set to 1. Info-
GAN regularizes c by maximizing mutual information

LI between c and the generated data.

The structure of our 2D CurveInfoGAN adapts from
the BézierGAN [23], where there is an additional pa-
rameter transforming layer and a B-Spline layer in the

generator network (see Figure 8). For each feature curve,
we sample a sequence of 192 points. The discriminator

takes 2D coordinates of the sample points as data rep-
resentation x. The 2D CurveInfoGAN adds a regular-
ization term R(G) to the InfoGAN objective:

min
G,Q

max
D

V (D,G)− λILI(G,Q) + µRR(G) (2)

where µR is a tradeoff factor (we set µR = 0.5 in our
experiments), and the term R(G) is to regularize the
cubic B-Spline’s control points and knots, which is ex-
pressed as

R(G) =
1

N

N∑
i=1

‖Pi − Pi−1‖+ max
i
‖Pi − Pi−1‖

+
1

N + 4

N+5∑
i=0

∣∣ui − u0i ∣∣ (3)

Here we assume that the B-spline curve has N + 1 con-
trol points Pi, and ui are the knots. The first two terms
of R(G) are the average and maximum Euclidean dis-
tances between two adjacent control points and the last
term is to make knots close to the initial knots u0i . With
the B-Spline layer, the B-Spline curve is learned and

then passed into the discriminator. This ensures that
both the synthesized data and real data are the same
when passed into the discriminator for identification.

In our database, there are 78 main body feature
curves for corbel collection, 125 for moulding collection
and 61 for panel collection. For each category, we will
learn an InfoGAN model. However, the number of main

body feature curves is insufficient for training a good
model. Hence data augmentation is carried out to in-
crease the diversity of feature curves. Specifically, for

each control point of a B-spline feature curve, we first
assign it a vector that is the normal of the curve at the
point nearest to the control point. Then we move the
control point along the normal direction by an offset
value in a range between -2 to 2 units. This results in
the change of the control points and thus the shape of
the feature curve. The augmentation randomly selects
control points for offsetting. The augmentation process
is applied to all feature curves. Eventually we produce
2989 feature curves for corbel, 4187 for moulding and

2413 for panel.
The dimension of the latent code L2D is specified

to be 3. Then 3 control variables are provided to con-
trol the shape of the generated curve. As shown in Fig-
ure 9, the latent codes provide a controller for gener-
ating the feature curves. Figure 9(a) shows a series
of curves generated by setting L0

2D = (0.0, 0.1, ..., 1.0)
with L1

2D = L2
2D = 0.5. Similarly, in Figure 9(b) and

(c), we sample the value of the second latent code, and
the third latent code from 0.0 to 1, respectively. Each
latent code has different controls on the shape of the
generated curves, which help to generate desired curves
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Fig. 8: Architecture of 2D CurveInfoGAN.

in a high level and also narrow down the sampling space
for the evolution process.

5.1.2 3D VoxelVAE

VAE is a neural network that allows machine to learn

a compact representation of data and generate new in-
stances or reproduce the input by sampling in the la-
tent space. To compress the representation of decora-
tion component into a low dimensional space so that a

quick enquiry of similar or dissimilar decoration could
be made, we design a 3D VoxelVAE that is a variant
model of VAE. In VoxelVAE, there is an additional

voxel conversion layer before the data is passed into
the encoder. The meshes of all decorations are first con-
verted into 3D voxel representations. The dimension of

the voxel grid is chosen to be 128× 128× 16 for width,
height and depth, respectively. Each grid is associated
with the number of sampled points of the surface mesh
that are within the voxel, which we call the voxel den-

sity.

In our dataset, we have 379 decoration components
(102 from corbel, 121 from moulding and 156 from
panel), which are used to train the VAE model. The
goal is to make the encoding and decoding of the data
with minimum information lost. Figure 10 shows the
architecture of our 3D VoxelVAE model. The input
voxel is represented as x of 128 × 128 × 16 dimen-

sion. Let Enc(·), Dec(·) denote the encoder and de-
coder, z = Enc(x) represent the latent encoding vector
and x′ = Dec(z) be the reconstructed voxel of the dec-
oration component. The relationship between the input
x and the latent vector z can be defined by prior pθ(z),
likelihood pθ(x|z) and posterior pθ(z|x). The estimated
posterior qφ(z|x) should be very close to pθ(z|x). The
3D VoxelVAE aims to minimize the following loss:

L3DV oxelV AE = λLrecnt + µLKL + LReg (4)

where Lrecnt = 1
n

∑
‖x− x′‖2 measures the reconstruc-

tion error in mean squared error which encourages x′ ≈
x, LKL = DKL(qφ(z|x) ‖ pθ(z|x)) is the Kullback-
Leibler divergence to promote Gaussian distribution in
the latent space, LReg is the regularization term of the

network parameters in L2 norm, and λ and µ are the
tradeoff factors. In our experiments, we empirically set
λ = 1.0 and µ = 0.5.

With a trained 3D VoxelVAE model using the dataset
of n = 379 decorations, the representation of the dec-
orations is learned. The output is a 64D vector where
64 is the dimension of the latent space. In the latent

space, similar decorations will have a small Euclidean
distance and dissimilar decorations will have a big Eu-
clidean distance.

5.2 Online Generation

In online generation, the user provides one model or
specifies an example in the dataset. Then the algorithm
automatically generates a set of new models. The pro-

cess involves evolution and deformation.

5.2.1 Generation by Evolution

To realize generative design, we propose an evolution
algorithm. With all the design elements in the dataset
and two trained models, we encode each model by a
gene vector DNA which is defined as follows:

DNA =< Idmb, Idd, Idb, LC
0,1,2
mbfc, Par(start,end) > (5)

where Idmb, Idd and Idb are indices of main body, dec-
oration and base in the dataset, respectively, LCmbfc
is the 3D latent code of the main body feature curve
learned by 2D CurveInfoGAN, and Par(start,end) rep-

resents the starting/ending points of the alignment. Idb
is set to -1 if there is no base for moulding or panel.
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(a) Latent code: L0
2D = (0.0, 0.1, ..., 1.0); L1

2D = 0.5; L2
2D = 0.5

(b) Latent code: L0
2D = 0.5; L1

2D = (0.0, 0.1, ..., 1.0); L2
2D = 0.5

(c) Latent code: L0
2D = 0.5; L1

2D = 0.5; L2
2D = (0.0, 0.1, ..., 1.0)

Fig. 9: Feature curves generated by adjusting control variables in the latent space.

Fig. 10: Architecture of 3D VoxelVAE.

The outline of the algorithm is given in Algorithm 1.

We first generate the gene vector DNA for the input ref-

erence model. Then the best-fit candidates are selected

by selectParents function. By evolution, a set of new

gene vectors is produced by cross-over and mutation.

For each new gene vector, a decorative architectural

model is synthesized using the feature-driven deforma-

tion that will be described in Section 5.2.2. The gener-

ated models are evaluated by function EvalPopulation

and only the models in good geometric and physical

quality survive. The evolution continues until the num-

ber of generated models reaches the target number or

the number of evolution reaches the threshold specified

by the user.

The functions in the algorithm are explained below.

– DNAref ← encodeDNA(Mref )

The reference model could be provided by the user,

which is not in the database, or be selected from

the existing database. For the former case, the in-

put model Mref is decomposed and its features are

extracted using the method described in Section 4.

Idmb and LC0,1,2
mbfc are obtained from a main body

component in the database which is most similar to

that of the input model. The latent code for the dec-

oration component of Mref is calculated by the en-

coder of the learned 3D VoxelVAE. Idd is obtained

by finding a decoration component in the database

with minimal difference in the latent space, and Idb

Algorithm 1: Evolution-Based Generation

Input: initialize population G0 = {Mi}
Input: 2D CurveInfoGAN latent space L2D

Input: 3D VoxelVAE latent space L3D

Input: user input model Mref

Input: the target number of generated models N
Input: the maximum number of iterations IteMAX
//Encode gene vector for the input model
DNAref ← encodeDNA(Mref ) ;
Background set B ← G0 ;
i = 0 ;
O ← NULL;
while TRUE do

//select the best-fit individuals for reproduction
Pi ← selectParents(B,L3D, DNAref ) ;
//breed new generations via crossover & mutation
Gi+1 ← Reproduce(Pi) ;
//evaluate the fitness of new individuals
Gi+1 ← EvalPopulation(Gi+1) ;
O ← O ∪ Gi+1 ;
if #(O) ≥ N or i ≥ IteMAX then

return O;
else

B ← B ∪ Gi+1 ;
i = i+ 1 ;

is obtained by finding a base having the most similar

dimensions. Par(start,end) is inferred during feature

extraction.

– Pi ← selectParents(B,L3D, DNAref )

This function selects 0.2N best-fit models from B.
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They are used with the user input model as par-

ents for crossover and mutation as well. In addition,

based on the user input Mref , we inquire top 0.5N

similar and 0.25N dissimilar decorations in the la-

tent space L3D for mutation. We also select 0.6N

bases from B for mutation.

– Gi+1 ← Reproduce(Pi)

The cross-over operation is applied on DNAref and

selected 0.2N models’ DNA. The mutation opera-

tion is then applied by randomly selecting Idmb,

Idd, and Idb in DNA and replacing them with the

selected candidates. Latent code LC0,1,2
mbfc may be

perturbed in the latent space L2D for generating

new feature curves. The values of the start and end

points for aligning decoration are inferred from the

corresponding main body and also undergo random

minor adjustments.

– Gi+1 ← EvalPopulation(Gi+1)

This function is to evaluate the fitness of generated

model. The geometric quality is evaluated by check-

ing the existence of self-intersection and the physical

quality is evaluated by checking the centroid of the

side section of the main body. If the centroid locates

near the boundary or outside of the side section,

it implies that the shape of the model will likely

lead to a high gravitational torque, which should be

avoided.

5.2.2 Synthesis by Feature-Driven Deformation

We finally describe how to synthesize a new 3D model

for a given gene vector.

Given a new main body feature curve, we apply de-

formations to the main body and the decoration such

that their feature curves match the new curve.

Let us begin with the deformation for the main

body. The deformation for the decoration can be done

similarly. We use direct manipulation of free form defor-

mation (FFD) and sample points on the feature curves

as manipulating points. The xyz-coordinate system and

the 3D FFD grid for the main body are set up such that

the plane the main body feature curve lies on is parallel

to the xy-plane and the projection of the grid on the

xy-plane is a 2D FFD for the feature curve (see Fig-

ures 11(a) and (b) for an example). If we constrain the

FFD control points lying on a row parallel to the z-axis

to have the same offsets, the 3D FFD is simplified to a

2D FFD. Without ambiguity, our 2D FFD function of

degree m× n can be written

P (s, t) =

m∑
i=0

n∑
j=0

PijB
3
i (s)B

3
j (t) (6)

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Fig. 11: Feature curve driven deformation. (a&b):

3D&2D views of initial FFD grids for the main body;

(c&d): the deformed FFD grids for the main body;

(e&f): 3D&2D views of initial FFD grids (in green)

for the decoration; (g&h): the deformed FFD grids (in

green) for the decoration; (i): combination of the de-

formed main body and decoration; (j): combination of

deformed main body, decoration and base.

where P (s, t) represents the point corresponding to lo-

cal coordinates (s, t), Pij are the 2D FFD control points,

and B3
i (s) and B3

j (t) are cubic B-spline basis functions.

The deformation is driven by deforming 100 sam-

pled points P (sk, tk) on the original feature curve (in

purple color) to Qk on the target feature curve (in blue

color). This is achieved by solving the following con-
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strained minimization problem:

min
{Pij}

100∑
k=1

‖P (sk, tk)−Qk‖2 + λES (7)

subject to

Pij = P oriij for i = 0 or j = 0 (8)

where λ is the trade-off parameter, P oriij represents the
original position of Pij , the constraints are introduced
to make sure that the shape of the model at top and
left does not change much, and

ES =
∑∥∥Pi,jPi+1,j − P orii,j P

ori
i+1,j

∥∥2
+
∑∥∥Pi,jPi,j+1 − P orii,j P

ori
i,j+1

∥∥2 (9)

is to constrain the edge length between two neighbor-
ing control points so as to reduce the chance of self-

intersection of the deformed model.

The new positions of control points Pij are the so-
lution of the minimization problem (7). Refer to Fig-

ures 11(c) and (d) for the new FFD grids for the main
body in 3D and 2D. It can be seen that the main body is
deformed such that its feature curve matches the target

one.

To deform a decoration, the mesh Mdj and its fea-
ture curve Cdj are first scaled and translated to match

the starting and ending points on the feature curve of
the main body. Then a similar direct manipulation FFD
method of (7) without the constraint (8) is applied to

the decoration component as shown in Figures 11(e)-
(h). Figure 11(i) is the combination of the deformed
main body and decoration. Finally we simply scale the

base component according to the size of the bounding
box of the main body and add it to the main body,
which gives Figure 11(j).

After deformation is performed on each component,
all the components are ready to be combined into a sin-
gle mesh model. This is achieved by a union operation
and then a new model is finally generated.

6 Experiments

We have implemented the proposed algorithm and de-
veloped a generative design tool. In this section, we
conduct a series of experiments to evaluate the un-
derlying techniques. We run our tool on a x64-based
PC with Intel Core i9-9900K CPU3.60GHz, 64G RAM,
Samsung 1TB SSD and NVIDIA GeForce RTX 2080
Ti × 2 CPU. We train the 2D CurveInfoGAN and 3D

VoxelGAN on two parallel NVIDIA 2080T GPUs with
Tensorflow-GPU 2.4.1.

6.1 2D CurveInfoGAN

We first evaluate the 2D CurveInfoGAN model. The pa-
rameters are set as follows: latent dim = 3, train step =
20000 and batch size = 32. It takes 35 minutes to
train our 2D CurveInfoGAN model for 2989 corbel main
body feature curves; 49 minutes for 4187 moulding fea-
ture curves and 28 minutes for panel collection, respec-
tively. Figure 12a gives 64 feature curves of main bodies
of the original corbel collection. These curves show the
characteristics of the main bodies of the corbel mod-
els in the dataset. Using the feature curve generator
learned by 2D CurveInfoGAN, we create 64 new fea-
ture curves by randomly adjusting the values of the
control variables, which are displayed in Figure 12b. It
can be seen that the curves in Figure 12b are generally
different from those in Figure 12a, but both sets have
similar overall curvature variation.

To evaluate the 2D CurveInfoGAN quantitatively,
we use the metrics introduced in papers [23] and [24],
which include likelihood, smoothness, consistency and

diversity.

– Likelihood: The mean log likelihood (MLL) is widely
used to measure the distribution of generative mod-

els. A higher MML value manifests that the gen-
erator could approximate the real data distribution
better.

– Smoothness: Smoothness is an important metric

for a 2D curve generator. A 2D curve could be sam-
pled and represented by a sequence of points de-
noted by x. The variance of difference is expressed

by V OD(x) = 1
m−1

∑m−1
i=1 V ar(xi+1 − xi). A rela-

tive varaiance of difference (RVOD) calculated by
RV OD = Ex∼Pdata

V OD(x)/Ex∼PG
V OD(x) could

be used to measure the relative smoothness between
the generated 2D curves and those in the datasets.
A larger RV OD value means better performance.

– Consistency: Latent Space Consistency (LSC) is
a quantitative measure of shape change consistency
along any direction in the latent space. Distance Dc

between two samples ci and cj along a certain di-
rection in the latent space should be consistent with
the dissimilarity Dx between the generated curves
xi = G(cj) and xj = G(cj). Pearson correlation
coefficient is computed to measure the consistency:
LSC(c, x) = cov(Dc,Dx)

σ(Dc)σ(Dx)
. A higher LSC indicates

more consistent shape change.
– Diversity: Relative Diversity,RDiv = Div(Xg)/Div(Xdata),

measures the relative level of diversity of the synthe-
sized designs, where Xg and Xdata denote the set of
synthesized designs and the set of designs from the
dataset, and Div(X) = 1

N trace(cov[X,X]). When
the RDiv value is close to zero, it indicates that the
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(a) (b)

Fig. 12: Feature curves of main body Component: (a) Original feature curves; (b) feature curves generated by 2D
CurveInfoGAN

diversity of the synthesized designs is very limited.
When the RDiv value is close to 1.0, it indicates
that the synthesized designs have a similar level of

variability with the dataset. However, a higher di-
versity does not always indicate better performance
since some unrealistic designs might be synthesized
to increase diversity.

Table 1 gives the quantitative performance measures
for our 2D CurveInfoGAN and the 2D CurveVAE pro-
posed in paper [4]. It can be seen that the 2D Curve-

InfoGAN could generate smooth curves with more di-
versity and approximate the distribution of real data
better. The latent space L2D is also more consistent.

To demonstrate the interpretability of 2D CurveIn-
foGAN, we sample 10 values in the range of [0.0, 1.0]
for L0

2D and L1
2D, and the value of L2

2D is fixed as 0.5,
which generate 100 (10 by 10) curves displayed in Fig-

ure 13. These curves show how the first two dimensions
of the latent code control the distribution of generated
curves. The trained latent space L2D could be used to
control the shape of generated curves semantically.

6.2 3D VoxelVAE

The 3D VoxelVAE encodes each decoration component
into a 64D vector. The output of the 3D VoxelVAE is
a latent feature space L3D. The difference between two
decoration components can be measured based on the
Euclidean distance between their corresponding vectors

in L3D. Similar decoration components will have a rel-
atively small Euclidean distance and dissimilar deco-
ration components will return a relatively large dis-
tance. The parameters of our 3D VoxelVAE model are
set as follows: latent dim = 64, train step = 10000,

batch size = 64. It takes about 5 hours to train the
3D VoxelVAE model for 379 voxel data in decoration
collection.

Figure 14(a) shows an input that is a component

with leaf decoration and an overall simple structure.
Figure 14(b) lists the top 5 similar results that are re-
trieved from the latent space and all have a leaf-like

design. The top 5 dissimilar results are displayed in Fig-
ure 14(c). We can see that they are far from leaf-like
shape and have textures that are much more compli-
cated compared to the input component.

Another example is given in Figure 15 where the
top 5 similar and dissimilar decoration models returned
based on the query of a flower shaped decoration are
displayed. The results are reasonable visually.

Table 2 reports the Euclidean distances between the
input and the returned components from the two en-
quiries given in Figure 14 and Figure 15. It can be
observed that the distance value between two latent
vectors well reflects the similarity of the corresponding
two 3D components. The experiments demonstrate that
the compressed low dimensional latent space L3D can
represent decorations well.

6.3 Combination of main bodies and decorations

Experiments were conducted on how the deformed main
body and decoration components are combined. Fig-
ure 16 shows some results of mounting a decoration to
a main body with different parameter values. It can be
seen that all these results look aesthetically pleasing.

However, not all parameter values, especially the
mounting positions, are suitable for combination. Fur-
ther selection and fine-tuning the parameter values are
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Table 1: Quantitative comparison between the 2D CurveInfoGAN and the 2D CurveVAE of [4].

Model MLL RVOD LSC RDiv
2D CurveInfoGAN 201.5 +/- 4.5 1.239 +/- 0.007 0.967 +/- 0.002 0.702 +/- 0.006

2D CurveVAE 142.7 +/- 5.7 1.060 +/ 0.006 0.422 +/- 0.010 0.301 +/- 0.003

Fig. 13: Interpretability of 2D CurveInfoGAN.

Table 2: Quantitative comparisons

Distance
Ranking

Enquiry 1 (Fig 14) Enquiry 2 (Fig 15)
Similar Dissimilar Similar Dissimilar

1 0.051960 0.639880 0.024021 0.591412
2 0.062439 0.605853 0.025578 0.537924
3 0.076452 0.594287 0.039865 0.518931
4 0.089057 0.583578 0.045792 0.516223
5 0.092496 0.579836 0.048035 0.507816

required during the evolution procedure. In Figure 17,
we just simply align different decorations to a main
body using the same parameter setting. Some of the

results exhibit overlaps or intersections with elements
present in the main body. These results should be re-
jected during the evolution.

With proper parameter setting, visually pleasing com-
binations could be obtained, as shown in Figure 18 for
some examples with one decoration and different main
body components. These examples demonstrate the im-
portance of the positions of the starting and ending

point on the main body component. Note that the po-
sitions of the starting and ending points on the main
body will automatically affect the size of the decoration
in the output.

6.4 Evolution

Figure 19 shows our evolution design from an input cor-
bel model displayed in Figure 19(a). In the first round,

12 new corbel models are generated as shown in Fig-
ure 19(b). Then the user selects one as his/her preferred
model, which is highlighted with a red box. It can be
observed that several of these generated models have
the main body components that are similar to that of
the input model in style, but vary in curvatures and
shapes. Meanwhile there are also a few models that ex-
hibit other styles of the main body components in the
database. The decoration components look in a similar
style, but have different details or textures. The starting

and ending points for the mounting of decorations vary
from model to model. The base components are ran-
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(a) Input 1

(b) Top 5 similar decoration (ranking from left to right: 1-5) components

(c) Top 5 dissimilar decoration (ranking from left to right: 1-5) components

Fig. 14: The enquiry results of the decoration components from the latent space.

(a) Input 2

(b) Top 5 similar decoration (ranking from left to right: 1-5) components

(c) Top 5 dissimilar decoration (ranking from left to right: 1-5) components

Fig. 15: Another example. The enquiry results of the decoration components from the latent space.

domly selected for cross-over. In the second round, our
evolution algorithm lets 50% of generated models have

the main body similar to that of the selected model in
the previous round, 30% of the models have the main
body similar to that of the models generated in the pre-
vious round, and 20% of the models randomly choose
the main body components in the database. If two user-
selected models have the similar body components, the
chance of occurrence of the similar component in the

next round will increase. It can be seen in Figure 19(d)
that our algorithm generates corbels by synthesizing
similar main bodies and decorations with different fea-
ture curve latent codes and parameters for placing the
decoration. When the user repeatedly selects corbels
with L-shaped bases, the algorithm will follow the user’s
preference and select L-shaped bases from the dataset
with a high probability to do cross-over.

In moulding design, multiple decorations are allowed
to be combined to a main body to form a pattern. In

Figure 20, various patterns are randomly chosen to gen-
erate new moulding models.

We also generate 10 panel models according to an
input panel using our generative design tool, as shown
in Figure 21. We can see that six generated panels have
a square-shaped main body, which is similar to the in-
put model, and 4 panels have the main bodies with a
round or irregular shape. Similarly, the decoration com-

ponents of the new panels are mostly similar in style
except for three panels.

The above experiments with corbel, moulding and
panel models demonstrate that our developed gener-
ative design tool is able to produce new models that
are of “fit and diversity”. This is due to the evolution
process with proper selection, crossover and mutation.
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(a) (b) (c) (d) (e)

Fig. 16: Aligning a decoration component to a main body with different parameter values

(a) (b) (c) (d) (e)

Fig. 17: Results of combining different decoration components to a main body using the same parameter values.

(a) (b) (c) (d) (e)

Fig. 18: Results of aligning a decoration component to several main bodies using different positions of the starting
and ending points.

6.5 Limitations

Our method has some limitations. First, we only use the
decoder of the trained 3D VoxelVAE to compress the
decoration component represented in triangular mesh

into a low dimensional space to achieve quick enquiry
of similar or dissimilar decoration. However, we have
not utilized the decoder to generate a 3D decoration
component due to the difficulty of reconstructing de-
sign details in high resolution. Second, when evaluating
the fitness of generated models in Section 5.2.1, we only

check self-intersection and centroid bias due to a trade-
off between effectiveness and efficiency of the EvalPop-
ulation function. A more sophisticated process could be

incorporated in future. Third, the feature-driven FFD
method proposed in Section 5.2.2 is rather 2.5D than
3D. Hence some models as shown in Figure 22 might
not be properly handled. The base models are gener-
ally characterized by extruding the side section curve
along a straight line. Since the front surface of Fig-
ure 22(a) is bent, the deformed decoration component
could not be attached perfectly. To resolve this issue,
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(a) Input

(b) Round 1: 12 new corbel models are generated according to the input. The user then identifies one
he/she prefers, which is highlighted with a red box.

(c) Round 2: 6 new corbel models are generated from the results of round 1 and the user’s preference.
Similarly, a model of the results is identified by the user as his/her preference.

(d) Round 3: 6 new corbel models are generated from results of round 2 and the user’s preference.

Fig. 19: The evolution design of corbel models.

the boundary of the decoration model could be pro-

jected onto the main body first and then the As-Rigid-

As-Possible deformation algorithm is used to deform

the decoration model. However, for the models shown

in Figure 22(b)&(c), self-intersection might occur when

the warping of the decoration component is too large.

7 Conclusions

We have described a method for generative design of

decorative architectural parts. The underlying techniques

include geometric processing, part learning, and compo-

nent evolution. In particular, InfoGAN and VAE mod-

els are constructed to learn the latent representation

of feature curves and decoration shape, evolution prin-

ciple is used to evolves model components to produce

new offsprings, and feature-driven geometric deforma-

tion is developed to realize the synthesis of new mod-

els. Based on these techniques, a creative modeling tool

is developed for designing corbel, moulding and panel

shapes. The experimental results show that the devel-

oped method and tool have the capability of generating

a multitude of “fit and diverse” decorative architectural

models from a small dataset.

Though this paper is focused on the design of ar-

chitectural parts such as corbel, moulding and panel,

it should be pointed out that the developed method

can be extended to handle those shapes that can be de-

composed into an overall shape and a detailed shape.

Hence our future work will extend the method to de-
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(a) Input

(b) Generated 10 new moulding models

Fig. 20: The results of evolution from an input moulding model.

(a) Input

(b) Generated 10 new panel models

Fig. 21: The results of evolution from an input panel model.

(a) (b) (c)

Fig. 22: Failure examples of the feature-driven FFD

method.

sign a broader class of shapes and also further optimize

the underlying algorithms such as using more sophis-

ticated blending methods for the union operation [25]

and considering curvature continuity [26] in blending.
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