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1. Introduction

Let r(t) = (x(t), y(t)) be a parametric curve in the plane. The offset curve to r at some (signed) distance d ∈ R can be 
written as rd(t) = r(t) + dn(t), where n(t) = (y′(t), −x′(t))/σ (t) is the unit normal of the curve r(t) and σ(t) = ∥∥r′(t)

∥∥ =√
x′(t)2 + y′(t)2 is its speed. Offset curves arise in a variety of applications, including CNC machining, railway design, and 

shape blending (Tiller and Hanson, 1984; Pham, 1992; Maekawa, 1999), but due to the square root in the definition of σ(t), 
they are usually not rational and can thus not be represented exactly in common CAD systems (Farouki and Sakkalis, 1990; 
Farouki, 1992). Therefore, research on conditions for polynomial curves to have rational offsets and methods for constructing 
such curves has attracted a lot of attention (Farouki and Sakkalis, 1990; Farouki, 1992; Lü, 1994, 1995), and the theoretical 
analysis of the rationality of generalized offsets to irreducible hypersurfaces was studied, too (Arrondo et al., 1997; Sendra 
and Sendra, 2000).

Especially in computer-aided geometric design and manufacturing (Farin et al., 2002), planar polynomial curves are often 
expressed in the Bézier form as r : [0, 1] →R2,

r(t) =
n∑

i=0

pi Bn
i (t), (1)

where Bn
i (t) =

(n
i

)
(1 − t)n−iti are the Bernstein basis polynomials of degree n ∈N and p0, . . . , pn ∈R2 are the control points. 

Connecting the control points forms the control polygon that provides an intuitive approximation and description of the 
curve. A subset of these curves has exactly representable rational offset curves.

The first class of polynomial curves with rational offsets are Pythagorean-hodograph (PH) curves, which were introduced 
by Farouki and Sakkalis (1990). For these curves, the speed σ(t) is a polynomial, so that the two components of the 
curve’s first parametric derivative or hodograph r′(t) = (x′(t), y′(t)) and σ(t) form a polynomial Pythagorean triple, that is, 
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Fig. 1. Examples of C1 Hermite interpolants (top), their speeds (middle), and curvatures (bottom). Note that the prescribed tangents are scaled by a factor 
of 1/5 to better fit the images.

x′(t)2 + y′(t)2 = σ(t)2. PH curves and their applications have been studied intensively, and we refer the interested reader to 
the book by Farouki (2008) and the references therein.

The second class of polynomial curves that have rational offsets with respect to a properly chosen reparameterization 
was discovered by Lü (1994, 1995). For such a (non-PH) offset-rational or indirect Pythagorean-hodograph (iPH) curve (Lu et 
al., 2016), there exists a suitable rational quadratic parameter transformation t : [0, 1] → [0, 1] with t(0) = 0, t(1) = 1, and 
t′(s) > 0 for s ∈ [0, 1], such that the speed σ̃ (s) of the reparameterized curve r̃(s) = r(t(s)) and the two components x̃′(s)
and ỹ′(s) of its first derivative form a rational Pythagorean triple (Lü, 1995; Lu et al., 2016).

In this paper, we study a class of quartic iPH curves, which has been shown to be capable of interpolating first-order 
Hermite data with up to four different solutions (Lü, 1995), akin to quintic PH curves (Farouki, 1992; Farouki and Neff, 
1995); see Fig. 1. We focus on properly parameterized curves, for which the parameter value t and the curve point r(t) are in 
one-to-one correspondence for all t ∈R, except for parameter values corresponding to self-intersections of r (Farouki, 2008). 
For an improperly parameterized polynomial or rational curve, it is always possible to make it properly parameterized by 
reparameterization (Sederberg, 1984, 1986). Following Farouki (1994), we use the complex representation of planar Bézier 
curves to analyse the structure of these quartic iPH curves and derive a simple algebraic characterization, given in terms 
of the complex form of the control edge vectors (see Section 3), which turns out to be useful for the construction of C1

Hermite interpolants (see Section 3.4). We then investigate two geometric characterizations, where the conditions are stated 
in terms of quantities related to the control polygon, which can be used to parameterize this class of quartic iPH curves in 
an intuitive way (see Section 4).

1.1. Related work

Various geometric and algebraic characterizations of lower degree curves with rational offsets have been derived, usually 
in terms of quantities related to their Bézier control polygons, with most work focussing on PH curves.

We know that a cubic curve is a PH curve, if and only if the two interior angles θ1 and θ2 between adjacent edges of 
the Bézier control polygon (see Fig. 2) are the same and the lengths Ei = ‖ei‖ of the control edge vectors ei = pi+1 − pi are 
in geometric progression, that is, E1 = √

E0 E2 (Farouki and Sakkalis, 1990), which is equivalent to the condition that the 
triangles [p0, p1, p2] and [p1, p2, p3] are similar (Pelosi et al., 2007). Interpreting the edge vectors ei as complex numbers, 
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Fig. 2. Notation for the characterization of cubic (left) and quartic (right) PH curves in Bézier form.

these geometric conditions can be combined to the single complex constraint e2
1 = e0e2 (Farouki, 1994), and we derive a 

similar algebraic condition for quartic iPH curves in Section 3.
According to the analysis in Wang and Fang (2009), a quartic curve is a PH curve, if there exists a line, which passes 

through p2 and intersects with the lines p0 p1 and p3 p4 at s1 and s2, respectively, such that the angles �(p1 − s1, p2 − s1)

and �(p2 − s2, p3 − s2) are equal (see Fig. 2) and the lengths Fi = ∥∥ f i

∥∥ of the vectors f 0 = s1 − p1, f 1 = p2 − s1, 
f 2 = s2 − p2, f 3 = p3 − s2, together with the lengths E0 and E3 satisfy the three constraints E0 F2 = 3F0 F1, E3 F1 = 3F2 F3, 
and F1 F2 = 4F0 F3. In Section 4, we show that a generalized version of these conditions characterizes quartic iPH curves.

Further investigations have revealed an additional condition for a quartic PH curve to have monotonic curvature (Zheng 
and Wang, 2018), algebraic (Farouki, 1994) and geometric (Fang and Wang, 2018) characterizations of quintic PH curves, 
three methods for identifying sextic PH curves (Wang et al., 2017), as well as geometric properties for PH curves of degree 
seven (Li et al., 2019; Zheng et al., 2016).

1.2. Contributions

Much less is known for iPH curves, apart from the fact that quadratic curves are iPH, but not PH curves, as long as the 
control points p0, p1, p2 are not collinear (Farouki and Sederberg, 1995; Lü, 1995), and an in-depth analysis of geometric 
conditions for properly parameterized cubic iPH curves (Lu et al., 2016). To the best of our knowledge, this paper is the first 
to take a closer look at quartic iPH curves and to derive algebraic as well as geometric characterizations for an important 
subset of these curves.

2. Preliminaries

For the analysis of PH and iPH curves, it has turned out to be useful to exploit the complex representation of R2 (Farouki, 
1994). We follow this approach and throughout this paper identify the planar point (x, y) ∈ R2 with the complex number 
x + i y ∈C and likewise for vectors and planar curves. The starting point of our investigations is a necessary and sufficient 
condition that was discovered by Lü (1995).

Theorem 1. A properly parameterized polynomial curve r(t) has rational offsets, if and only if its hodograph can be written in the 
complex form as

r′(t) = p(t)(1 + kt)w(t)2, (2)

where p(t) is a real polynomial, k is a complex constant, and w(t) = x(t) + i y(t) is a complex polynomial with x(t) and y(t) relatively 
prime.

Without loss of generality, we can assume the leading coefficient of p(t) in (2) to be equal to 1, since all other cases can 
be reduced to this situation by multiplying w(t) with the square root of this leading coefficient. Moreover, the curve r(t) is 
a PH curve, if Im(k) = 0, and an iPH curve, otherwise.

In this paper, we focus on quartic iPH curves. For these curves, we have deg(1 + kt) = 1 and consequently deg(r) =
deg(r′) + 1 = deg(p) + 2 deg(w) + 2 = 4, and we distinguish the following cases:

• Class I: deg(p) = 2 and deg(w) = 0.
In this case, we can rewrite the hodograph in (2) as

r′(t) = (
(t − a)2 + b

)
(1 + kt)w (3)
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for some a, b ∈ R and k, w ∈ C with Im(k) �= 0 and w �= 0. These curves have a linearly varying normal (Ahn and 
Hoffmann, 2011), and we further recognize three sub-cases:
– Class I.0: b > 0. These curves are regular.
– Class I.1: b = 0. These curves are singular, but tangent continuous at t = a.
– Class I.2: b < 0. These curves have two cusps at t = a ± √−b.

• Class II: deg(p) = 0 and deg(w) = 1.
In this case, we can rewrite the hodograph in (2) as

r′(t) = (1 + kt)(w0(1 − t) + w1t)2 (4)

for some k, w0, w1 ∈C with Im(k) �= 0, w0 �= 0, w1 �= 0, and Im(w1/w0) �= 0. These curves are regular.

In particular, we are interested in class II quartic iPH curves, since they can be used for solving the C1 Hermite interpo-
lation problem (Lü, 1995), but we will see that class I.1 quartic iPH curves, quartic and cubic PH curves, and quadratic iPH 
curves play a role in this context, too (see Section 3.4).

3. Algebraic considerations

3.1. Class II quartic iPH curves

Our first observation, which was also mentioned in Lü (1995), but without further explanation, is that there exists an 
alternative representation for the hodograph of class II quartic iPH curves.

Corollary 1. A properly parameterized quartic curve r(t) is an iPH curve of class II, if and only if its hodograph can be written in the 
complex form as

r′(t) =
(

u0(1 − t) + u1

a2
t

)
((1 − t) + at)2, (5)

where u0, u1, a ∈C with u0 �= 0, u1 �= 0, Im(a) �= 0, and Im(a2u0/u1) �= 0.

Proof. If r′(t) is given as in (4), then we can rewrite it as in (5) by letting u0 = w2
0, u1 = (1 +k)w2

1, a = w1/w0. Vice versa, 
we can convert a hodograph from the form in (5) to the form in (4) by letting k = u1/(u0a2) − 1, w0 = ±√

u0, w1 = w0a. 
Note that the additional conditions on k, w0, w1 in (4) and on u0, u1, a in (5) imply each other. �

In order to derive an algebraic characterization of class II quartic iPH curves in terms of the control edges ei = pi+1 − pi
from their Bézier representation, we recall that the hodograph of a quartic curve r(t) can be written, by differentiating its 
Bézier representation in (1), as

r′(t) = 4
(
e0 B3

0(t) + e1 B3
1(t) + e2 B3

2(t) + e3 B3
3(t)

)
. (6)

Comparing the two expressions of r′(t) in (5) and (6) for t = 0 and t = 1, we observe that

e0 = 1

4
u0, e3 = 1

4
u1, (7)

and, by similarly comparing their derivatives, that is, the two forms of r′′(t) that they induce,

e1 = 2

3
ae0 + 1

3
a−2e3, e2 = 1

3
a2e0 + 2

3
a−1e3. (8)

Moreover, we need to introduce the concept of non-degenerate Bézier control polygons.

Definition 1. We say that the Bézier control polygon of a quartic curve r(t) is non-degenerate, if and only if the first and 
last control edge do not vanish and the control points are not collinear, that is, e0 �= 0, e3 �= 0, and Im(ei/e0) �= 0 for some 
i ∈ {1, 2, 3}.

This kind of non-degeneracy rules out curves that are singular at either t = 0 or t = 1 and those that describe a (possibly 
improperly parameterized) straight line. We are now ready to present our main result.

Theorem 2. A properly parameterized quartic curve r(t) is an iPH curve of class II, if and only if its Bézier control polygon is non-
degenerate and its control edges satisfy
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(e0e3 − e1e2)
2 = 4(e0e2 − e2

1)(e1e3 − e2
2) (9)

and either

e0e3 = e1e2 (10)

or

Im

(
2

e1e3 − e2
2

e0e3 − e1e2

)
�= 0 and Im

(
4

(
e1e3 − e2

2

e0e3 − e1e2

)2 e0

e3

)
�= 0. (11)

Proof. Let us start by assuming that r(t) is a properly parameterized class II quartic iPH curve. To show that the Bézier 
control polygon of r(t) is non-degenerate, we first recall from Corollary 1 that u0 �= 0, u1 �= 0, and Im(a) �= 0, hence a �= 0. It 
then follows from (7) that e0 �= 0 and e3 �= 0. Now assume that all ei are parallel, that is, ei = λie0 for i = 1, 2, 3 and some 
λ1, λ2, λ3 ∈R \ {0}. By (8), we then have λ2 = a(2λ1 − a) and λ3 = a2(3λ1 − 2a). Since Im(a(2λ1 − a)) = 2 Im(a)(λ1 − Re(a))

and Im(a) �= 0, we conclude that λ1 = Re(a), because λ2 would otherwise not be a real number. With this, however, we 
find that Im(a2(3λ1 − 2a)) = 2 Im(a)3 �= 0, which contradicts the assumption that λ3 ∈ R. We now proceed to prove the 
algebraic conditions. It follows from (8) that

e0e3 − e1e2 = −2

9
a(ae0 − a−2e3)

2
, (12a)

e0e2 − e2
1 = −1

9
(ae0 − a−2e3)

2
, (12b)

e1e3 − e2
2 = −1

9
(a2e0 − a−1e3)

2
, (12c)

which immediately implies (9). By (12a), condition (10) is equivalent to a3e0 = e3, because a �= 0, and using (8), we see that 
more generally ei = aei−1 = aie0 for i = 1, 2, 3 in this special case, which means that the control edges are in geometric 
progression, just like the control edges of a cubic PH curve. Otherwise, e0e3 �= e1e2, and it follows from (12a) and (12c) that

2
e1e3 − e2

2

e0e3 − e1e2
= a.

By (7), we further find that e0/e3 = u0/u1, and the conditions in (11) then follow from Corollary 1, which guarantees that 
Im(a) �= 0 and Im(a2u0/u1) �= 0.

Let us now assume that r(t) is a properly parameterized quartic curve with a non-degenerate Bézier control polygon 
and control edges ei that satisfy conditions (9) and (10). Then, either e0e2 = e2

1 or e1e3 = e2
2, but as both identities actually 

imply each other, by (9) and under the non-degeneracy assumption of the control polygon, which guarantees e0 �= 0 and 
e3 �= 0, we can safely assume both of them to be true. Consequently, e2 = e2

1/e0 and e3 = e3
1/e2

0, which means that the 
control edges are in geometric progression, and it is not hard to verify that both conditions in (8) hold for a = e1/e0. 
Consequently, and in view of (7), we can write the hodograph of r(t) as in (5) with u0 = 4e0 �= 0 and u1 = 4e3 �= 0, and 
it actually simplifies to r′(t) = u0((1 − t) + at)3 in this case. To show that Im(a) �= 0, let us assume the opposite, that is, 
Im(e1/e0) = 0. We then have Im(e2/e0) = Im(a2) = 0 and Im(e3/e0) = Im(a3) = 0, thus contradicting the assumption that 
the ei are not all parallel to each other. Therefore, Im(a) �= 0, which also implies Im(a2u0/u1) = Im(a−1) �= 0.

Finally, let us assume that (11) holds instead of (10), and note that e0e3 �= e1e2, by (9), implies e0e2 �= e2
1. Letting

a1 = e0e3 − e1e2

2(e0e2 − e2
1)

, a2 = 2(e1e3 − e2
2)

e0e3 − e1e2
,

it then follows from (9) that a1 = a2, and it can further be verified that

4a2
1e1 = (e0e3 − e1e2)

2

(e0e2 − e2
1)

2
e1 = e2

0e1e2
3 − 2e0e2

1e2e3 + e3
1e2

2

(e0e2 − e2
1)

2
,

2a2
1a2e0 = (e0e3 − e1e2)(e1e3 − e2

2)

(e0e2 − e2
1)

2
e0 = e2

0e1e2
3 − e2

0e2
2e3 − e0e2

1e2e3 + e0e1e3
2

(e0e2 − e2
1)

2
,

a1a2e1 = (e0e2 − e2
1)(e1e3 − e2

2)

(e0e2 − e2
1)

2
e1 = e0e2

1e2e3 − e0e1e3
2 − e4

1e3 + e3
1e2

2)

(e0e2 − e2
1)

2
.

Therefore, 4a2
1e1 = 2a2

1a2e0 + a1a2e1 + e3, and we conclude that the condition for e1 in (8) holds for a = a1 = a2. The 
condition for e2 can be checked similarly. As in the previous case, we can then write the hodograph of r(t) as in (5) with 
u0 = 4e0 �= 0 and u1 = 4e3 �= 0, and the conditions Im(a) �= 0 and Im(a2u0/u1) �= 0 follow directly from (11). �



6 K. Hormann, J. Zheng / Computer Aided Geometric Design 79 (2020) 101873
The key ingredient to the characterization of class II quartic iPH curves in Theorem 2 certainly is condition (9), and we 
will now show that this condition is also valid for other quartic Bézier curves with rational offsets, which are not iPH of 
class II.

3.2. Cubic PH and quadratic iPH curves

If r(t) is a cubic Bézier curve with control edges d0, d1, d2, then the control edges after degree elevation are

e0 = 3

4
d0, e1 = 1

4
d0 + 1

2
d1, e2 = 1

2
d1 + 1

4
d2, e3 = 3

4
d2, (13)

and a straightforward calculation reveals that

(e0e3 − e1e2)
2 − 4(e0e2 − e2

1)(e1e3 − e2
2) = 3

64
(d0d2 − d2

1)(d0 − 2d1 + d2)
2.

Therefore, condition (9) is true, if d2
1 = d0d2 or d1 = 1

2 (d0 + d2), that is, d1 must be the geometric or the arithmetic mean 
of d0 and d2. Note that the first case holds, if r(t) is a cubic PH curve, while the second case occurs, if and only if r(t) is 
a degree-raised quadratic curve. This suggests that there might be characterizations of cubic PH and quadratic iPH curves 
that are similar to the one in Theorem 2, but before we get to the additional algebraic conditions that are needed for this 
purpose, let us state the equivalents of Corollary 1.

Corollary 2. A properly parameterized cubic curve r(t) is a PH curve, if and only if its hodograph can be written in the complex form 
as in (5) with u0 �= 0, u1 �= 0, Im(a) �= 0, and a2u0 = u1 .

Proof. We first recall from Farouki and Sakkalis (1990) that the hodograph of a properly parameterized cubic PH curve can 
written as in (2) with k = 0, deg(p) = 0, and deg(w) = 1, that is, as

r′(t) = (w0(1 − t) + w1t)2 (14)

for some w0, w1 ∈ C with w0 �= 0, w1 �= 0, and Im(w1/w0) �= 0. It follows directly, that we can then rewrite r′(t) in the 
form (5) by letting u0 = w2

0, u1 = w2
1, and a = w1/w0. Vice versa, if r′(t) is given as in (5), then we get back to the form 

in (14) by letting w0 = ±√
u0 and w1 = w0a. Note that the additional conditions on w0, w1 in (14) and on u0, u1, a in 

the statement imply each other. �
Corollary 3. A properly parameterized quadratic curve r(t) is an iPH curve, if and only if its hodograph can be written in the complex 
form as in (5) with u0 �= 0, u1 �= 0, a = 1, and Im(a2u0/u1) = Im(u0/u1) �= 0.

Proof. Properly parameterized quadratic iPH curves have a hodograph as in (2) with Im(k) �= 0, deg(p) = 0, and deg(w) = 0, 
that is, w(t)2 ≡ u0 for some u0 ∈C with u0 �= 0, which can be rewritten as in (5) by letting u1 = (1 + k)u0 �= 0 and a = 1, 
and vice versa. �

In view of Corollaries 2 and 3, our previous discovery is actually not surprising, because the identities in (12), which 
imply (9), follow only from the representation of the hodograph in (5), but do not depend on the specific conditions on u0, 
u1, and a. Let us now present the analogues of Theorem 2.

Theorem 3. A properly parameterized cubic curve r(t) is a PH curve, if and only if its degree-raised, quartic Bézier control polygon is 
non-degenerate and its control edges satisfy (9), e0e3 �= e1e2 , and

Im

(
2

e1e3 − e2
2

e0e3 − e1e2

)
�= 0 and 4

(
e1e3 − e2

2

e0e3 − e1e2

)2 e0

e3
= 1. (15)

Proof. To prove the necessity of the conditions, let us assume that r(t) is a cubic PH curve with a hodograph as stated 
in Corollary 2. The non-degeneracy of the degree-raised, quartic Bézier control polygon then follows as in the proof of 
Theorem 2, because we still have u0 �= 0, u1 �= 0, and Im(a) �= 0, and the validity of (9) was derived above. Now, if e0e3

were equal to e1e2, then a3e0/e3 = 1, by (12a), but it also follows from (7) and Corollary 2 that a2e0/e3 = a2u0/u1 = 1, 
which implies a = 1, thus contradicting the fact that Im(a) �= 0. Expressing the ei in terms of the cubic Bézier control edges 
di as in (13) and substituting d2 = d2

1/d0, a straightforward calculation shows that

2
e1e3 − e2

2 = d1 = d2
, (16)
e0e3 − e1e2 d0 d1



K. Hormann, J. Zheng / Computer Aided Geometric Design 79 (2020) 101873 7
which has a non-vanishing imaginary part, if and only if all di and thus also all ei are parallel, but we just showed that the 
latter cannot happen. The remaining identity in (15) follows directly from (16), because e0/e3 = d0/d2. The sufficiency of 
the conditions can be shown with the same arguments as in the proof of Theorem 2. �
Theorem 4. A properly parameterized quadratic curve r(t) is an iPH curve, if and only if its twice degree-raised, quartic Bézier control 
polygon is non-degenerate and its control edges satisfy (9), e0e3 �= e1e2 , and

2
e1e3 − e2

2

e0e3 − e1e2
= 1 and Im

(
4

(
e1e3 − e2

2

e0e3 − e1e2

)2 e0

e3

)
= Im

(
e0

e3

)
�= 0. (17)

Proof. Let us first assume that r(t) is a quadratic iPH curve with a hodograph as stated in Corollary 3 and quadratic Bézier 
control edges c0, c1. After degree elevation, the control edges of the quartic Bézier control polygon are

e0 = 1

2
c0, e1 = 1

3
c0 + 1

6
c1, e2 = 1

6
c0 + 1

3
c1, e3 = 1

2
c1. (18)

As before, it is clear that e0 �= 0 and e3 �= 0. Moreover, since Im(e0/e3) = Im(u0/u1) �= 0 by (7) and Corollary 3, we conclude 
that at least e0 and e3 are not parallel, hence the quartic control polygon is non-degenerate. We already discussed above 
that (9) holds; to show the remaining conditions, we use (18) to get

e0e3 − e1e2 = 2(e0e2 − e2
1) = 2(e1e3 − e2

2) = − 1

18
(c1 − c0)

2

and recall Im(e0/e3) = Im(c0/c1) �= 0, which implies c0 �= c1 and further e0e3 �= e1e2, as well as (17). The sufficiency of the 
conditions can again be shown with the same arguments as in the proof of Theorem 2. �
3.3. Quartic PH and class I.1 quartic iPH curves

Let us now extend the results above to quartic PH and class I.1 quartic iPH curves. We first observe that Corollary 1 can 
be extended to both kinds of curves, if we exclude the occurrence of singularities at t = 0 and t = 1.

Corollary 4. A properly parameterized quartic curve r(t) is a PH curve with r′(0) �= 0 and r′(1) �= 0, if and only if its hodograph can 
be written in the complex form as in (5) with u0 �= 0, u1 �= 0, Im(a) �= 0, Im(a2u0/u1) = 0, and a2u0 �= u1 .

Proof. We first recall from Farouki and Sakkalis (1990) that the hodograph of a properly parameterized quartic PH curve 
can be written as in (2) with either k = 0, deg(p) = 1 or k �= 0, Im(k) = 0, deg(p) = 0, and deg(w) = 1, that is, as

r′(t) = (t − a)(w0(1 − t) + w1t)2 (19)

for some a ∈ R and w0, w1 ∈ C with w0 �= 0, w1 �= 0, and Im(w1/w0) �= 0. This representation shows that quartic PH 
curves have a cusp at t = a, hence a /∈ {0, 1}, because of the restrictions stated above. It then follows that we can rewrite 
r′(t) in the form (5) by letting u0 = −aw2

0, u1 = (1 − a)w2
1, and a = w1/w0. Vice versa, if r′(t) is given as in (5), then 

we get back to the form in (19) by letting a = a2u0/(a2u0 − u1), w0 = ±
√

u1 − a2u0/a, and w1 = aw0. Note that the 
additional conditions on a, w0, w1 above and on u0, u1, a in the statement imply each other. �
Corollary 5. A properly parameterized quartic curve r(t) is an iPH curve of class I.1 with r′(0) �= 0 and r′(1) �= 0, if and only if its 
hodograph can be written in the complex form as in (5) with u0 �= 0, u1 �= 0, Im(a) = 0, a /∈ {0, 1}, and Im(a2u0/u1) �= 0.

Proof. If r′(t) is given as in (3) with a /∈ {0, 1} and b = 0, then we can rewrite it as in (5) by letting u0 = a2 w , u1 =
(1 − a)2(1 + k)w , and a = (a − 1)/a. Vice versa, we can convert a hodograph from the form in (5) to the form in (3) by 
letting a = 1/(1 −a), b = 0, k = (u1 −a2u0)/(a2u0), and w = (1 −a)2u0. As in the previous proofs, the additional conditions 
imply each other. �

As before, these corollaries pave the way for an algebraic characterization of these kind of quartic curves in terms of the 
Bézier control edges.

Theorem 5. A properly parameterized quartic curve r(t) is a PH curve with r′(0) �= 0 and r′(1) �= 0, if and only if its Bézier control 
polygon is non-degenerate and its control edges satisfy (9), e0e3 �= e1e2 , and

Im

(
2

e1e3 − e2
2

)
�= 0 and 4

(
e1e3 − e2

2
)2 e0 ∈R \ {1}. (20)
e0e3 − e1e2 e0e3 − e1e2 e3
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Proof. Everything can be shown as in the proof of Theorem 3, except for the necessity of the conditions in (20). The first 
of these conditions follows exactly as in the proof of Theorem 2, and the second is a direct consequence from Corollary 4, 
which guarantees that a2u0/u1 ∈R \ {1}. �
Theorem 6. A properly parameterized quartic curve r(t) is an iPH curve of class I.1 with r′(0) �= 0 and r′(1) �= 0, if and only if its 
Bézier control polygon is non-degenerate and its control edges satisfy (9), e0e3 �= e1e2 , and

2
e1e3 − e2

2

e0e3 − e1e2
∈R \ {1} and Im

(
4

(
e1e3 − e2

2

e0e3 − e1e2

)2 e0

e3

)
�= 0. (21)

Proof. Again, the proof is similar to the ones above and hinges on the conditions related to a in Corollary 5. In particular, 
the control polygon is non-degenerate, because Im(u0/u1) = Im(a2u0/u1)/a2 �= 0, as in the proof of Theorem 4, and the 
case e0e3 = e1e2, which is equivalent to a3e0/e3 = a3u0/u1 = 1 is ruled out by this property, too. �
3.4. C1 Hermite interpolation

An important consequence of Theorems 2–6 is that the C1 Hermite interpolation problem can always be solved by a 
quartic Bézier curve that admits rational offsets. Given two points q0, q1 and two non-vanishing tangent vectors t0, t1 in 
the plane, the C1 Hermite interpolation problem consists of finding a curve r(t) that interpolates this data at its endpoints. 
For a quartic Bézier curve, these constraints are met, if and only if

p0 = q0, p1 = q0 + t0/4, p3 = q1 − t1/4, p4 = q1, (22)

and the remaining control point p2 may be used to guarantee that the curve has rational offsets. Without loss of generality, 
let us assume that the four control points in (22) are not collinear, since otherwise the problem is solved by a straight line, 
which clearly admits rational offsets. It then remains to substitute

e0 = t0/4, e1 = p2 − p1, e2 = p3 − p2, e3 = t1/4,

in (9), using the values of p1 and p3 from (22), yielding a quartic equation in the unknown p2. This equation can be solved 
algebraically, with at least one and up to four solutions. Note that the existence of these solutions was also derived by Lü 
(1995), albeit by resorting to a different quartic equation in an auxiliary variable x, and the advantage of our approach is 
that we compute p2 directly.

Due to the assumption above, each solution corresponds to a quartic Bézier curve r(t) with a non-degenerate control 
polygon, and Theorems 2–6 allow us to distinguish the following cases:

• If e0e3 = e1e2, then r(t) is a class II quartic iPH curve with control edges in geometric progression.
• If e0e3 �= e1e2, then a = 2(e1e3 − e2

2)/(e0e3 − e1e2) is well-defined and nonzero, and we have five sub-cases:
– If Im(e0a2/e3) �= 0 and Im(a) �= 0, then r(t) is a class II quartic iPH curve.
– If Im(e0a2/e3) �= 0 and a ∈R \ {1}, then r(t) is a class I.1 quartic iPH curve with a tangent continuous singularity at 

t = 1/(1 − a).
– If Im(e0a2/e3) �= 0 and a = 1, then r(t) is a quadratic iPH curve.
– If e0a2/e3 ∈R \ {0, 1} and Im(a) �= 0, then r(t) is a quartic PH curve with a cusp at t = e0a2/(e0a2 − e3) /∈ {0, 1}.
– If e0a2/e3 = 1 and Im(a) �= 0, then r(t) is a cubic PH curve.

Note that the missing case with e0e3 �= e1e2, Im(e0a2/e3) = 0, and Im(a) = 0, with a �= 0 defined as in the second set 
of cases, cannot occur. Indeed, if Im(a) = 0, then it follows from Im(e0a2/e3) = 0 that e0 and e3 are parallel. We further 
conclude as in the proof of Theorem 2 that e1 and e2 can be expressed as in (8), that is, as linear combinations of e0 and 
e3, and therefore they are also parallel to e0, which contradicts our assumption that p0, p1, p3, and p4 are not collinear.

Fig. 3 shows several examples of quartic Bézier curves with rational offsets that interpolate the Hermite data given in 
Table 1 and compares them to the corresponding quintic PH interpolants. The examples confirm that all the cases listed 
above can occur in practice as special cases and that there are often two quartic curves that are quite similar to the visually 
most pleasing quintic curve (see also Fig. 1). An exception is the example in Fig. 3 (c), where all quartic curves have 
vanishing first derivative at t = 1/2. Two of these curves (dotted) are quartic PH curves with cusps at t = 1/2, and the 
third curve (dashed) is a class I.1 quartic iPH curve. The latter actually corresponds to a double root of the quartic equation 
induced by condition (9), just like the class II quartic iPH curve with control edges in geometric progression in Fig. 3 (b), 
which explains why there are only three different quartic Bézier curves that solve the Hermite interpolation problem in 
both examples.
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Fig. 3. Examples of C1 Hermite interpolation with quartic iPH (left) and quintic PH curves (right), including some special cases (dashed and dotted curves): 
(a) quadratic iPH curve, (b) class II quartic iPH curve with control edges in geometric progression, (c) irregular class I.1 quartic iPH curve with singularity 
at t = 1/2 (dashed) and irregular quartic PH curves with cusps at t = 1/2 (dotted), (d) cubic PH curve, (e) regular class I.1 quartic iPH curve. Note that the 
prescribed tangents are scaled by a factor of 1/5 to better fit the images.

Table 1
Data for the C1 Hermite interpolants in Fig. 3.

q0 q1 t0 t1

(a) (0,0)
( 1

6 , 8
15

)
(1,0)

(− 2
3 , 16

15

)
(b) (0,0)

( 78857
500000 , 54819

125000

)
(1,0)

(− 85293
125000 , 8019

31250

)
(c) (0,0)

( 1
6 , 1

6

)
(1,0) (0,1)

(d) (0,0)
(

29
75 −

√
2
√

26+2
15 , 4

15 −
√

2
√

26−2
15

)
(1,0)

( 4
25 , 4

5

)
(e) (0,0)

( 11969
97200 , 523

2025

)
(1,0)

(− 16
25 , 12

25

)
(f) (0,0)

( 3
40 , 3

40

)
(1,0) (0,1)

4. Geometric considerations

In Section 3, we learned that there are several kinds of polynomial curves with degree at most four, which admit rational 
offsets and are characterized by the common property that the control edges from the representation as a quartic Bézier 
curve satisfy condition (9). We shall now turn to two different geometric characterizations of these curves, but let us first 
introduce a common name for uniting them.

Definition 2. We say that a properly parameterized polynomial curve r(t) is a quartic (i)PH curve, if it is either a class II or 
class I.1 quartic iPH curve, a quartic or cubic PH curve, or a quadratic iPH curve with r′(0) �= 0 and r′(1) �= 0.

Note that the additional conditions on the regularity of r(t) at t = 0 and t = 1 avoid that the edges e0 and e3 of the 
quartic Bézier control polygon vanish and that they apply only to class I.1 quartic iPH and quartic PH curves, since the other 
curves are regular for all t ∈R.

4.1. First characterization

Theorem 7. A properly parameterized quartic Bézier curve r(t) with non-degenerate control polygon is a quartic (i)PH curve, if and 
only if there exist two points r1 and r2 such that the four triangles
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Fig. 4. Notation for points, edges, and angles related to the Bézier control polygon of a quartic (i)PH curve used in Theorem 7.

[q0, p1,q1], [q1, r1,q2], [q2, r2,q3], [q3, p3,q4] (23)

are similar,1 where

q0 = p0 + 2p1

3
, q1 = p1 + r1

2
, q2 = r1 + r2 − p2, q3 = r2 + p3

2
, q4 = 2p3 + p4

3
, (24)

as shown in Fig. 4.

Proof. We first prove the necessity and assume, by Corollaries 1–5 and (7), that the hodograph of r(t) can be written as 
in (5) for some a �= 0 and with u0 = 4e0 �= 0 and u1 = 4e3 �= 0. Letting r1 = p1 + 2

3 ae0 and r2 = p3 − 2
3 a−1e3, we then 

use (8) and the definition of the qi in (24) to get

q1 − p1

p1 − q0
=

1
3 ae0

1
3 (p1 − p0)

= a,
q2 − r1

r1 − q1
= e2 − 2

3 a−1e3
1
3 ae0

=
1
3 a2e0
1
3 ae0

= a,

which, according to the triangle similarity test with two sides and included angle (SAS), implies that the triangles [q0, p1, q1]
and [q1, r1, q2] are both similar to the triangle [0, 1, 1 + a], where 0 = (0, 0) and 1 = (1, 0). The similarity of the triangles 
[q2, r2, q3] and [q3, p3, q4] to [0, 1, 1 + a] can be shown analogously.

To prove the sufficiency, we first conclude from the similarity of the triangles in (23) that the four ratios

a1 = q1 − p1

p1 − q0
, a2 = q2 − r1

r1 − q1
, a3 = q3 − r2

r2 − q2
, a4 = q4 − p3

p3 − q3
(25)

are all equal to a common value a = a1 = a2 = a3 = a4. By the definition of the qi in (24), we then have

r1 − p1 = 2(q1 − p1) = 2a1(p1 − q0) = 2

3
ae0

and

p2 − r1 = r2 − q2 = a−1
3 (q3 − r2) = a−1

3 (p3 − q3) = a−1
3 a−1

4 (q4 − p3) = 1

3
a−2e3.

Therefore,

e1 = p2 − p1 = 2

3
ae0 + 1

3
a−2e3,

which is the first condition in (8), and the second condition can be shown similarly. �

1 Note that we call two triangles similar, if one can be obtained from the other by translation, rotation, and uniform scaling, but not by reflection. That 
is, both triangles have the same shape and orientation.
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Fig. 5. Special cases of quartic (i)PH curves, corresponding to the characterization in Theorem 7.

If r(t) is a quartic Bézier curve that satisfies the geometric conditions in Theorem 7, then we can further identify a 
number of special cases (see Fig. 5). On the one hand, if the common value a = a1 = a2 = a3 = a4 of the ratios in (25)
has a vanishing imaginary part, then it follows from Corollaries 3 and 5 that r(t) is either a quadratic iPH curve, if a = 1, 
or a class I.1 quartic iPH curve, if a �= 1. In both cases, the points p0, p1, q1, r1, q2 are collinear and partition the line 
segment [p0, q2] in the ratios 3 : a : a : a2, and the points q2, r2, q3, p3, p4 are collinear and partition [q2, p4] in the ratios 
1 : a : a : 3a2. Moreover, the curve is regular for t ∈ [0, 1], if and only if a > 0.

On the other hand, if the vectors r1 − p1 = 2
3 ae0 and p3 − r2 = 2

3 a−1e3 are parallel, then ae0 = λa−1e3 for some 
λ ∈ R \ {0}, hence a2u0 = λu1, and it follows from Corollaries 2 and 4 that r(t) is either a cubic PH curve, if λ = 1, or a 
quartic PH curve, if λ �= 1. The curve is regular for t ∈ [0, 1], if and only if λ > 0, that is, whenever r1 − p1 and p3 − r2 do 
not point in opposite directions.

Finally, if p1, p2, and r1 are collinear, with r1 splitting the segment [p1, p2] in the ratio 2μ : 1 for some μ > 0, then 
p2, p3, and r2 are also collinear, with r2 splitting the segment [p2, p3] in the ratio μ : 2, and vice versa. This indicates the 
case of a curve, for which all exterior angles of the control polygon are equal to the argument of a, and the special case of 
a class II quartic iPH curve with control edges in geometric progression occurs if and only if μ = 1.

4.1.1. Construction of quartic (i)PH curves
Moreover, we would like to point out that the geometric characterization in Theorem 7 can also be used to construct 

the control polygons of quartic (i)PH curves. To this end, we may start with arbitrary control points p0, p1 �= p0, p2, and 
choose some a �= 0. We then let q0 be the point that splits [p0, p1] in the ratio 2 : 1 and construct q1 such that [q0, p1, q1]
is similar to T = [0, 1, 1 + a]. Adding q1 − p1 to q1 gives r1 and q2 is determined by the condition that also [q1, r1, q2]
must be similar to T . We further construct r2 such that [r1, p2, r2, q2] is a parallelogram, q3 according to the similarity of 
[q2, r2, q3] to T , and p3 by adding q3 − r2 to q3. The condition that [q3, p3, q4] must be similar to T specifies q4, and we 
finally get p4 by adding 2(q4 − p3) to q4.

Alternatively, we may choose some r1 �= p1 instead of a. In this case, we first construct q0 as before and q1 as the 
midpoint between p1 and r1. The rest of the construction remains the same, except that we use [q0, p1, q1] as the triangle 
T to which the other three triangles must be similar. Note that we do not need a in this approach, but that it can be 
constructed or computed easily. In fact, the signed angle α = �(p1 − q0, q1 − p1) gives the argument of a (see Fig. 4) and 
the inverse of the ratio between the lengths of these vectors gives the modulus of a, and any of the ratios in (25) can be 
used to determine a in terms of complex arithmetic.

In both cases, the considerations above can be taken into account for constructing the quartic Bézier control polygons of 
quadratic and class I.1 quartic iPH curves, cubic and quartic PH curves, and class II quartic iPH curves with control edges in 
geometric progression by appropriately constraining the choice of a or the position of r1.

4.2. Second characterization

Let us now turn to the second geometric characterization and start with an auxiliary result.

Corollary 6. A properly parameterized quartic Bézier curve r(t) with non-degenerate control polygon is a quartic (i)PH curve, if and 
only if its hodograph can be written in the complex form as
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Fig. 6. Notation for points, edges, angles, and lines related to the Bézier control polygon of a quartic (i)PH curve used in Theorem 8.

r′(t) = ((1 − t) + b2t)

(
v0(1 − t) + v1

b
t

)2

(26)

with v0 �= 0, v1 �= 0, b �= 0, and arg(b) ∈ (−π
2 , π2 ].

Proof. We recall from Corollaries 1–5, that r(t) is a quartic (i)PH curve, if and only if its hodograph can be expressed 
as in (5) for some u0 �= 0, u1 �= 0, and a �= 0. Given this form, we can rewrite r′(t) as in (26) by letting v0 = ±√

u0, 
v1 = ±√

u1, b = a−1 v1/v0 and choosing the signs of v0 and v1 appropriately such that arg(b) ∈ (−π
2 , π2 ]. Vice versa, if 

r′(t) is given as in (26), then we get back to the form in (5) by letting u0 = v2
0, u1 = v2

1, and a = b−1 v1/v0. �
To proceed, let h = √

e0e3. In terms of vectors, h is the halfway vector2 between e0 and e3, either in clockwise or 
counterclockwise direction, with length ‖h‖ = √‖e0‖‖e3‖. We further define the lines

L1 = {p1 + λe0 : λ ∈R}, L2 = {p2 + λh : λ ∈R}, L3 = {p3 + λe3 : λ ∈ R},
as shown in Fig. 6. For any β ∈ R, we denote by L2(β) the line that we get after rotating L2 by β around p2, that is 
L2(β) = {p2 + λh exp(iβ) : λ ∈R} and consider the rays

R1(β) = {p1 + λe0 exp(2iβ) : λ ∈R, λ > 0}, R3(β) = {p3 − λe3 exp(−2iβ) : λ ∈R, λ > 0}.
Moreover, we let s1(β) and s2(β) be the intersections of R1(β) and R3(β) with L2(−β) and L2(β), respectively. Note that 
the point s1(β) may not exist for certain values of β and that it is not unique, if p1 ∈ L2(−β) and p2 ∈ R1(β). In that case, 
s1(β) may be any point of R1(β), and likewise for s2(β).

Theorem 8. A properly parameterized quartic Bézier curve r(t) with non-degenerate control polygon is a quartic (i)PH curve, if and 
only if there exists some β ∈ (−π

2 , π2 ] such that s1(β) and s2(β) exist and lie on the same side of L2, and the lengths E0 = ‖e0‖, 
E3 = ‖e3‖, and Fi = ∥∥ f i

∥∥, where

f 0 = s1(β) − p1, f 1 = p2 − s1(β), f 2 = s2(β) − p2, f 3 = p3 − s2(β), (27)

satisfy the conditions

E0 F2 = 3F0 F1, E3 F1 = 3F2 F3, F1 F2 = 4F0 F3. (28)

2 That is, the signed angles �(e0, h) and �(h, e3) are equal.
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Proof. To prove the necessity, we recall from Corollary 6 that the hodograph of r(t) can be expressed as in (26). Comparing 
the hodograph in (26) with the one in (6), we observe that

e0 = 1

4
v2

0, e3 = 1

4
v2

1,

and

e1 = 1

3
b2e0 + 2

3
b−1h, e2 = 2

3
bh + 1

3
b−2e3, (29)

where h = v0 v1/4 = √
e0e3. Now let β = arg(b), s1 = p2 − 2

3 b−1h, and s2 = p2 + 2
3 bh. Since

�(h, p2 − s1) = arg
( p2 − s1

h

)
= arg(b−1) = −β = −arg(b) = −arg

( s2 − p2

h

)
= −�(h, s2 − p2),

it is not only clear that s1 and s2 are on the same side of L2, but also that they lie on L2(−β) and L2(β), respectively. To 
see that s1 lies on R1(β), we let b = ‖b‖ and use (29) to rewrite s1 as

s1 = p1 + e1 − 2

3
b−1h = p1 + 1

3
b2e0 = p1 + b2

3
exp(2iβ)e0.

A similar argument shows that s2 lies on R3(β), and therefore s1 = s1(β) and s2 = s2(β). By (27), we then have

f 0 = 1

3
b2e0, f 1 = 2

3
b−1h, f 2 = 2

3
bh, f 3 = 1

3
b−2e3

and further, since ‖h‖ = ∥∥√
e0e3

∥∥ = √
E0 E3,

F0 = b2

3
E0, F1 = 2

3b

√
E0 E3, F2 = 2b

3

√
E0 E3, F3 = 1

3b2
E3,

which implies (28).
For proving the sufficiency, let b = √

3F0/E0 and b = b exp(iβ). As s1(β) lies on R1(β), we have f 0 = λ0e0 exp(2iβ)

for λ0 = F0/E0 > 0, hence f 0 = 1
3 b2e0. Similarly, we find that f 3 = 1

3 b−2e3 after noticing that the first two conditions 
in (28) give F3 = 1

9 E0 E3/F0 = 1
3 E3/b2. Since s1(β) and s2(β) lie on L2(−β) and L2(β), respectively, and are on the same 

side of L2, we can assume without loss of generality that h is oriented such that �( f 1, h) = �(h, f 2) = β . Otherwise, 
we simply replace h by −h. Therefore, f 1 = λ1h exp(−iβ) for λ1 = F1/h > 0 and f 2 = λ2h exp(iβ) for λ2 = F2/h > 0, 
where h = ‖h‖ = ∥∥√

e0e3
∥∥. We now observe that the first condition in (28) implies F2 = b2 F1, and substituting this, as well 

as the previous expression for F3, into the last condition in (28) gives b2 F 2
1 = 4

9 E0 E3 and further F1 = 2
3 h/b. Therefore, 

f 1 = 2
3 b−1h and similarly f 2 = 2

3 bh, which yields the conditions in (29), because f 0 + f 1 = e1 and f 2 + f 3 = e2. Setting 
v0 = ±2

√
e0 and v1 = ±2

√
e3, with the signs chosen such that v0 v1 = 4h, we can then write the hodograph of the curve 

as in (26). �
Let us now take a closer look at the special cases of quartic Bézier curves r(t) that satisfy the geometric conditions in 

Theorem 8 (see Fig. 7). The first case occurs when β = 0, so that s1 and s2 are the intersection points of L1 and L3 with 
L2. The length conditions in (28) are then identical to the conditions in Wang and Fang (2009, Theorem 5) and reveal that 
r(t) is a PH curve (cf. Fig. 2). More precisely, r(t) is a cubic PH curve, if p2 is the midpoint of the segment [s1, s2] and, 
equivalently, if p1 and p3 split the segments [p0, s1] and [p4, s2] in the ratio 3 : 1. Otherwise, r(t) is a quartic PH curve 
and regular for t ∈ [0, 1]. The second case occurs when β = π/2, so that s1 and s2 are the intersection points of L1 and 
L3 with the line L⊥

2 through p2 and orthogonal to L2. In this case, as shown in Wang and Fang (2009), r(t) is a quartic 
PH curve with a cusp at some t ∈ (0, 1). Note that in both cases we have Im(b2) = 0, so that the previous statements also 
follow from Corollaries 2, 4, and 6 by observing that b−2 = a2u0/u1. Moreover, these corollaries reveal that r(t) is a cubic 
PH curve, if b = 1, and a quartic PH curve with a cusp at t = 1/(1 − b2), otherwise.

If f 1 is parallel to e0, say f 1 = 2
3 λe0 for some λ ∈ R \ {0}, that is, λ = b−1h/e0 = b−1 v1/v0, then it follows from 

Corollaries 3, 5, and 6 that r(t) is either a quadratic iPH curve, if λ = 1, or a class I.1 quartic iPH curve, if λ �= 1. Moreover, 
the curve is regular for t ∈ [0, 1], if and only if λ > 0, that is, whenever f 1 and e0 do not point in opposite directions. The 
initial condition on f 1 is actually equivalent to the condition that f 2 is parallel to e3 with f 2 = 2

3 λ−1e3, and both imply 
that f 0 = 1

3 λ−2e3 and f 3 = 1
3 λ2e0. Moreover, r(t) is a quadratic iPH curve, if and only if e0 = f 1 + f 3 and e3 = f 0 + f 2.

The last special case happens when p1, p2, and s1 are collinear, with s1 splitting the segment [p1, p2] in the ratio 1 : 2μ
for some μ > 0. This condition turns out to be equivalent to the condition that p2, p3, and s2 are collinear, with s2 splitting 
the segment [p2, p3] in the ratio 2 : μ, and this case is further characterized by the condition that all exterior angles of the 
control polygon are equal, with �(ei−1, ei) = 2β for i = 1, 2, 3. Moreover, r(t) is a class II quartic iPH curve with control 
edges in geometric progression, if and only if μ = 1.
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Fig. 7. Special cases of quartic (i)PH curves, corresponding to the characterization in Theorem 8.

4.2.1. Construction of quartic (i)PH curves
As in Section 4.1.1, we can use the geometric characterization in Theorem 8 to construct the control polygons of quartic 

(i)PH curves. Like before, we start with arbitrary control points p0, p1 �= p0, p2, and choose some s1 with s1 �= p1 and 
s1 �= p2. The choice of s1 uniquely determines the angle β ∈ (−π

2 , π2 ], as well as the lines L2(−β), L2, and L2(β) (see 
Fig. 6). The location of s2 is then given by the first condition in (28) and the constraint that s2 must lie on the same side 
of L2 as s1, and p3 is determined by the third condition in (28) and the observation that �( f 2, f 3) must be equal to �( f 0, f 1). Using β , we finally construct L3 and p4 by using the second condition in (28).

The considerations above further indicate how the special cases of quartic Bézier control polygons for cubic and quartic 
PH curves, quadratic and class I.1 quartic iPH curves, and for class II quartic iPH curves with control edges in geometric 
progression can be constructed by suitably constraining the position of s1.

5. Conclusions

In this paper, we set out to find algebraic and geometric characterizations of quartic iPH curves. While deriving a set 
of algebraic conditions for the subset of class II quartic iPH curves, we noticed that these conditions naturally extend to 
other quartic Bézier curves with rational offsets, namely quartic and cubic PH, as well as class I.1 quartic and quadratic iPH 
curves. After all, this is not too surprising, as these curves can be seen as “limit cases” of class II quartic iPH curves. Going 
back to Theorem 1 and the representation of the hodograph in (4), it is clear that r′(t) becomes the hodograph of a PH 
curve as Im(k) → 0, and that the degree of this curve is cubic if and only if k → 0 and quartic otherwise. Similarly, r′(t)
turns into the hodograph of a class I.1 quartic or quadratic iPH curve as Im(w1/w0) → 0, with the quadratic case occurring 
if and only if w1/w0 → 1. This motivated us to introduce a new term and to refer to all these curves with rational offsets 
as quartic (i)PH curves. We further derived two different sets of geometric conditions that can be used for identifying and 
constructing quartic (i)PH curves. Note that we did not include the case when Im(k) → 0 and Im(w0/w1) → 0, so that r′(t)
is the product of a real polynomial p(t) of degree at most 3 with a complex constant w �= 0, since it corresponds to the 
trivial case where the curve r(t) is a line segment. Our algebraic and geometric characterizations also do not cover class I.0 
and class I.2 quartic iPH curves, since they are not “limit cases” of class II quartic iPH curves, and it remains future work to 
analyse them.

Quartic (i)PH curves constitute an interesting family of polynomial curves with rational offsets, as they can be used for 
solving the general C1 Hermite interpolation problem and thus offer a viable alternative to quintic PH curves, sharing with 
the latter the fact that there can be up to four solutions (see Fig. 1). This allows a curve designer to select from eight 
instead of only four curves and to find the “best” Hermite interpolant with rational offsets, for example, by considering 
the absolute rotation index (Farouki and Neff, 1995) or the elastic bending energy (Farouki, 1996). It remains future work to 
investigate under which conditions quartic (i)PH curves are “better” than quintic PH curves and vice versa. More analysis is 
also needed for identifying upfront, if one or more of the quartic (i)PH Hermite interpolants might be irregular, which can 
happen for quartic PH or iPH curves of class I.1. We should further stress that the rational offsets of quartic (i)PH curves 
are generally of degree 14, compared to the degree 9 rational offsets of quintic PH curves, which may be considered a 
disadvantage of quartic (i)PH curves.

Last but not least we would like to return to our observation that a special case of quartic (i)PH curves are the quartic 
Bézier curves with control edges in geometric progression, a property which also happens to characterize cubic PH curves. 



K. Hormann, J. Zheng / Computer Aided Geometric Design 79 (2020) 101873 15
This is actually not coincidental and carries over to Bézier curves of arbitrary degree. In fact, if r(t) is a non-degenerate 
Bézier curve with control edges ei = aie0 for i = 1, . . . , n and some constant a with Im(a) �= 0, then the hodograph of the 
curve is

r′(t) = n
n−1∑
i=0

aie0 Bn−1
i (t) = n((1 − t) + at)n−1e0,

which shows, by Theorem 1, that r(t) is a PH curve for n odd and an iPH curve for n even.
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