$G C^{n}$ continuity conditions for adjacent rational parametric surfaces

Jianmin Zheng *, Guozhao Wang and Youdong Liang
Department of Applied Mathematics, Zhejïang University, Hangzhou, 310027, People's Republic of China

Received February 1992; revised December 1993

Abstract

In this paper, the constraints on the homogeneous surface belonging to a certain rational surface are derived which are both necessary and sufficient to ensure that the rational surface is n th-order geometric continuous. This gives up the strong restriction that requires the homogeneous surface to be as smooth as the rational surface. Further the conditions for the rectangular rational Bézier patches are developed, and some simple and practical sufficient conditions are presented which might give a valid means for the construction of $G C^{n}$ connecting surfaces.

Keywords: Rational surfaces; Bézier patches; Geometric continuity; Total differential vectors; Connecting functions; Parameter transformation

1. Introduction

In recent years geometric continuity between parametric surfaces has been receiving considerable attention in the field of computer aided geometric design (CAGD) (Barnhill, 1985). There was much research done on the geometric continuity condition and its applications. Most of the work concerns the sufficient conditions of tangent plane continuity or curvature continuity for Bézier surfaces based on certain simplifying assumptions (Boehm, 1988; Farin, 1982; Kahmann. 1983; Veron et al., 1976).

One effort to generalize this is the study of necessary and sufficient conditions for tangent plane continuity (Liu, 1986, Liu and Hoschek, 1989). Degen (1990)

[^0]deduced explicit representations for $G C^{1}$ and $G C^{2}$ continuity between adjacent Bézier patches. However, for some special applications such as finite element analysis and ship hull design, higher orders of geometric continuity are needed. Therefore another generalization is the work on the geometric continuity of order n. Hahn (1989) described the characterization of geometric continuity in terms of diffeomorphism. Liang (1990) gave a theoretical foundation for the geometric continuity of arbitrary order.

In geometric modeling, rational surfaces, such as rational Bézier surfaces, are widely used. This is due in part to the fact that they possess many nice properties, one of which is the capability of describing exactly the conic surfaces which are commonly used in engineering. Nonetheless, very little previous work has been done on the rational surface of geometric continuity (Vinacua and Brunet, 1989; DeRose, 1990; Liu, 1990; Zheng et al., 1992). In general, the geometric continuity of rational surfaces is often ensured by requiring the associated homogeneous surfaces to possess the same continuity. However, it is only sufficient. DeRose and Liu, respectively, presented a system of necessary and sufficient conditions to ensure tangent plane continuity (DeRose, 1990; Liu, 1990). (Zheng et al., 1992) discussed curvature continuity between rational Bézier patches and its solutions. In this paper, we will derive the necessary and sufficient conditions of n th-order geometric continuity for the rational surface which are represented by its associated homogeneous surface and the so-called connecting functions. Then the conditions for rational Bézier patches and smooth connection are further analyzed. The main idea is using homogeneous coordinates for rational surfaces to make derivations simple, as for rational Bézier curves in (Degen, 1988; Hohmeyer and Barsky, 1989).

2. Preliminaries

This section introduces some terms used in the rest of the paper.
Let E^{m} be the Euclidean space of dimension m, and Δ be a region in E^{2}. A C^{n} surface of E^{m} is defined as an n-times continuously differentiable mapping $r: \Delta \rightarrow E^{m}$, and is expressed by

$$
\begin{equation*}
\boldsymbol{r}=\boldsymbol{r}(u, v) \in C^{n}(\Delta) \tag{2.1}
\end{equation*}
$$

In this paper, a surface r of E^{3} is always assumed to be regular, i.e.

$$
\begin{equation*}
\frac{\partial \boldsymbol{r}}{\partial u} \times \frac{\partial \boldsymbol{r}}{\partial v} \neq 0 . \tag{2.2}
\end{equation*}
$$

Assume that $\boldsymbol{r}(u, v)$ and $\overline{\boldsymbol{r}}(\bar{u}, \bar{v})$ are two C^{n} surfaces of E^{3}, and curve $C B$ is the intersection curve of \boldsymbol{r} and $\overline{\boldsymbol{r}}$ which is also C^{n}. We call $C B$ the common boundary curve of \boldsymbol{r} and $\overline{\boldsymbol{r}}$. $C B$ responds to edge $E_{1}(s)=\{u(s), v(s)\}$ in domain Δ_{1} of \boldsymbol{r} and edge $E_{2}(s)=\{\bar{u}(s), \bar{v}(s)\}$ in domain Δ_{2} of \bar{r} respectively.

Fig. 1. Geometric interpretation of geometric continuity.

Definition 1. Let $\boldsymbol{r}(u, v)$ and $\overline{\boldsymbol{r}}(\bar{u}, \bar{v})$ be two surfaces possessing a common boundary curve $C B$. If there exists a C^{n}-diffeomorphism φ :

$$
\left\{\begin{array}{l}
\bar{u}=\bar{u}(u, v) \tag{2.3}\\
\bar{v}=\bar{v}(u, v)
\end{array} \quad \in C^{n}\right.
$$

such that

$$
\left.\frac{\partial^{s} \boldsymbol{r}}{\partial u^{i} \partial v^{s-i}}\right|_{C B}=\left.\frac{\partial^{s}(\overline{\boldsymbol{r}} \circ \varphi)}{\partial u^{i} \partial v^{s-i}}\right|_{C B}, \quad i=0, \ldots, s, s=0, \ldots, n
$$

then \boldsymbol{r} and $\overline{\boldsymbol{r}}$ are said to meet along $C B$ with geometric continuity of order n or $G C^{n}$. Meanwhile the diffeomorphism φ is called the parameter transformation of $G C^{n}$ between \boldsymbol{r} and $\overline{\boldsymbol{r}}$.

The definition has an intuitive geometric meaning (see Fig. 1). It expresses that if surfaces \boldsymbol{r} and $\overline{\boldsymbol{r}}$ meet along $C B$ with $G C^{n}$, then there exists a transformation (2.3) so that in the neighbourhood of every point \boldsymbol{P}_{0} along $C B$, any point \boldsymbol{P} in surface \boldsymbol{r} (or $\overline{\boldsymbol{r}}$) and its corresponding point $\overline{\boldsymbol{P}}$ in surface $\overline{\boldsymbol{r}}$ (or \boldsymbol{r}) under the transformation satisfy

$$
\lim _{\boldsymbol{P} \rightarrow \boldsymbol{P}_{n}} \frac{\|\boldsymbol{P} \overline{\boldsymbol{P}}\|}{\left\|\boldsymbol{P}_{0} \boldsymbol{P}\right\|^{n}}=0
$$

where order n is the measure of contact between \boldsymbol{r} and $\overline{\boldsymbol{r}}$.
By differential geometry, it is possible to show that this definition accords with tangent plane continuity for $n=1$ and curvature continuity for $n=2$.

Definition 2. The first-order total differential vector of surface \boldsymbol{r} is defined by $\mathrm{d} \boldsymbol{r}=\boldsymbol{r}_{u} \mathrm{~d} u+\boldsymbol{r}_{v} \mathrm{~d} v$. The total differential vectors of higher order are defined recursively by $\mathrm{d}^{0} \boldsymbol{r}=\boldsymbol{r}$, and $\mathrm{d}^{k} \boldsymbol{r}=\mathrm{d}\left(\mathrm{d}^{k-1} \boldsymbol{r}\right)$.

Lemma 1. We have $\mathrm{d}^{0} \boldsymbol{r}=\boldsymbol{r}$, and

$$
\begin{align*}
\mathrm{d}^{s} \boldsymbol{r} & =\sum_{k=1}^{s} \sum_{r_{1}+\cdots+r_{k}=s} \sum_{h=0}^{k} A_{r_{1} \cdots r_{k}}^{s k h} \cdot \mathrm{~d}^{r_{1}} u \cdots \mathrm{~d}^{r_{h}} u \mathrm{~d}^{r_{h+1}} v \cdots \mathrm{~d}^{r_{k}} v \cdot \frac{\partial^{k} \boldsymbol{r}}{\partial u^{h} \partial v^{k-h}}, \\
s & \geqslant 1, \tag{2.4}
\end{align*}
$$

where r_{i} are positive integers, and

$$
A_{r_{1} \ldots r_{k}}^{s k h}=\frac{s!}{h!(k-h)!r_{1}!\cdots r_{k}!} .
$$

Proof. Formula (2.4) is obviously true for $s=0,1$. Assume it holds for $s(s \geqslant 1)$, then

$$
\begin{aligned}
& \mathrm{d}^{s+1} \boldsymbol{r}=\mathrm{d}\left(\mathrm{~d}^{s} \boldsymbol{r}\right) \\
& =\sum_{k=1}^{s} \sum_{r_{1}+\cdots+r_{k}=s} \sum_{h=0}^{k} A_{r_{1} \ldots r_{k}}^{s k h} \cdot \mathrm{~d}^{r_{1}} u \cdots \mathrm{~d}^{r_{k}} U \\
& \cdot\left(\frac{\partial^{k+1} \boldsymbol{r}}{\partial u^{h+1} \partial v^{k-h}} \mathrm{~d} u+\frac{\partial^{k+1} \boldsymbol{r}}{\partial u^{h} \partial v^{k-h+1}} \mathrm{~d} v\right) \\
& +\sum_{k=1 r_{1}+}^{s} \sum_{\cdots+r_{k}=s} \sum_{h=0}^{k} A_{r_{1} \cdots r_{k}}^{s k h} \cdot \frac{\partial^{k} \boldsymbol{r}}{\partial u^{h} \partial v^{k-h}} \cdot \sum_{i=1}^{k}\left(\mathrm{~d}^{r_{1}} u \cdots \mathrm{~d}^{r_{i}+1} \cdots \mathrm{~d}^{r_{k}} v\right) \\
& =\sum_{k=2 r_{2}+\cdots+r_{k}=s}^{s+1} \sum_{h=1}^{k} h \cdot A_{1 r_{2} \ldots r_{k}}^{s k h} \cdot \mathrm{~d} u \cdot \mathrm{~d}^{r_{2}} u \cdots \mathrm{~d}^{r_{k}} v \cdot \frac{\partial^{k} \boldsymbol{r}}{\partial u^{h} \partial v^{k-h}} \\
& +\sum_{k=2 r_{1}+\cdots+r_{k-1}=s}^{s+1} \sum_{h=0}^{k-1}(k-h) \cdot A_{r_{1} \ldots r_{k-1} 1}^{s k h} \\
& \cdot \mathrm{~d}^{r_{1}} u \cdots \mathrm{~d}^{r_{k-1}} v \cdot \mathrm{~d} v \cdot \frac{\partial^{k} \boldsymbol{r}}{\partial u^{h} \partial v^{k-h}} \\
& +\sum_{k=1}^{s} \sum_{i=1}^{k} \sum_{\substack{r_{1}+\ldots+r_{k}=s+1 \\
r_{i}>1}} \sum_{h=0}^{k} r_{i} A_{r_{1} \ldots r_{k}}^{s k h} \cdot \mathrm{~d}^{r_{1}} u \cdots \mathrm{~d}^{r_{k}} v \cdot \frac{\partial^{k} \boldsymbol{r}}{\partial u^{h} \partial v^{k-h}} \\
& =\sum_{k=2}^{s+1} \sum_{i=1}^{k} \sum_{\substack{ \\
r_{1}+\cdots+r_{k}=s+1 \\
r_{i}=1}} \sum_{h=0}^{k} r_{i} A_{r_{1} \ldots r_{k}}^{s k h} \cdot \mathrm{~d}^{r_{1}} u \cdots \mathrm{~d}^{r_{k}} v \cdot \frac{\partial^{k} \boldsymbol{r}}{\partial u^{h} \partial v^{k-h}}
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{k=1}^{s} \sum_{i=1}^{k} \sum_{r_{1}+\cdots+r_{k}=s+1} \sum_{h=0}^{k} r_{i} A_{r_{1} \ldots r_{k}}^{s k h} \cdot \mathrm{~d}^{r_{1}} u \cdots \mathrm{~d}^{r_{k}} v \cdot \frac{\partial^{k} \boldsymbol{r}}{\partial u^{h} \partial u^{k-h}} \\
= & \sum_{k=1}^{s+1} \sum_{i=1}^{k} \sum_{r_{1}+\cdots+r_{k}=s+1} \sum_{h=0}^{k} r_{i} A_{r_{1} \cdots r_{k}}^{s k h} \cdot \mathrm{~d}^{r_{1}} u \cdots \mathrm{~d}^{r_{k}} v \cdot \frac{\partial^{k} \boldsymbol{r}}{\partial u^{h} \partial v^{k-h}} \\
= & (s+1) \cdot \sum_{k=1 r_{1}+\cdots+r_{k}=s+1}^{s+1} \sum_{h=0}^{k} A_{r_{1} \cdots r_{k}}^{s k h} \cdot \mathrm{~d}^{r_{1}} u \cdots \mathrm{~d}^{r_{k}} v \cdot \frac{\partial^{k} \boldsymbol{r}}{\partial u^{h} \partial v^{k-h}} \\
= & \sum_{k=1}^{s+1} \sum_{r_{1}+\cdots+r_{k}=s+1} \sum_{h=0}^{k} A_{r_{1} \ldots r_{k}}^{(s+1) k h} \cdot \mathrm{~d}^{r_{1}} u \cdot \mathrm{~d}^{r_{k}} v \cdot \frac{\partial^{k} \boldsymbol{r}}{\partial u^{h} \partial v^{k-h}} .
\end{aligned}
$$

By induction, the formula (2.4) is obtained.

By (2.4), the total differential of r to the sth-order is given by the partial derivatives of r and the total differentials of $\mathrm{d} u$, $\mathrm{d} v$, all of which up to the sth-order.

Definition 3. Rational parametric surface $r(u, v)$ is defined as

$$
\begin{equation*}
r(u, v)=\boldsymbol{R}(u, v) / \omega(u, v), \quad(u, v) \in \Delta \tag{2.5}
\end{equation*}
$$

where $\boldsymbol{R}(u, v)$ is a surface of $E^{3}, \omega(u, v)$ is a function $\Delta \rightarrow E^{1}$.

The rational surface r can be thought of as the composition of a surface $Q(u, v)$ of E^{4} with a projection function p, where

$$
\begin{align*}
& p:(\boldsymbol{R}, \omega) \rightarrow \boldsymbol{R} / \omega \tag{2.6}\\
& Q(u, v)=\rho(u, v)(\boldsymbol{R}(u, v), \omega(u, v)) \tag{2.7}
\end{align*}
$$

We refer to Q as the homogeneous surface associated with r and surface r as the projection of Q. In general, we take $\rho \equiv 1$ and suppose that $Q(u, v)$ is C^{n}.

Lemma 2. If the rational surface r of E^{3} is regular at point (u, v), then $Q(u, v)$, $Q_{u}(u, v)$ and $Q_{v}(u, v)$ are linearly independent, i.e., there exists at least one i $(1 \leqslant i \leqslant 3)$ such that $\left\langle\boldsymbol{Q}, \boldsymbol{Q}_{u}, \boldsymbol{Q}_{v}\right\rangle_{i} \neq 0$ at (u, v), where the notation $\langle\cdot, \cdot, \cdot\rangle_{i}$ means

$$
\langle\boldsymbol{R}, \boldsymbol{S}, \boldsymbol{T}\rangle_{i}=(-1)^{i+1} \operatorname{det}\left[\begin{array}{lll}
R_{i+1} & S_{i+1} & T_{i+1} \tag{2.8}\\
R_{i+2} & S_{i+2} & T_{i+2} \\
R_{i+3} & S_{i+3} & T_{i+3}
\end{array}\right], \quad i=1,2,3,4
$$

$\boldsymbol{R}, \boldsymbol{S}, \boldsymbol{T}$ are arbitrary vectors in $E^{4} . R_{i}$ denotes the ith component of \boldsymbol{R}. If $i>4$, $R_{i}=R_{\bmod (i-1,4)+1}$.

3. $G C^{\boldsymbol{n}}$ necessary and sufficient condition for rational surfaces

3.1. A general form of rational $G C^{n}$ conditions

As pointed out in (DeRose, 1990), rational functions are much harder to differentiate than polynomials. Since the geometric continuity of higher order involved the higher-order partial derivatives, it is difficult to deal with the geometric continuity of arbitrary order for rational surfaces. To do that, we attempt to use the homogeneous surface instead of the rational surface itself as in (Degen, 1988; Hohmeyer and Barsky, 1989) with respect to rational Bézier curves. Our objective is to determine the exact conditions imposed on the associated homogeneous surfaces to ensure that two rational surfaces are $G C^{n}$ continuous. This is given in the following theorem which is apparent from projective differential geometry (Bol, 1950).

Theorem 1. Let $\boldsymbol{r}(u, v)$ and $\overline{\boldsymbol{r}}(\bar{u}, \bar{v})$ be two regular rational surfaces which possess a common boundary curve $C B$. Then \boldsymbol{r} and $\overline{\boldsymbol{r}}$ meet with $G C^{n}$ if and only if there exist a C^{n}-diffeomorphism $\varphi:(u, v) \rightarrow(\bar{u}, \bar{v})$ and a scalar function $e(u, v)$ such that

$$
\begin{equation*}
\left.\mathrm{d}^{k}(\overline{\boldsymbol{Q}} \circ \varphi)\right|_{C B}=\left.\mathrm{d}^{k}(e(u, v) \boldsymbol{Q}(u, v))\right|_{C B}, \quad k=0, \ldots, n \tag{3.1}
\end{equation*}
$$

holds for any $\mathrm{d}^{j} u, \mathrm{~d}^{j} v$, where \boldsymbol{Q} and $\overline{\boldsymbol{Q}}$ are the homogeneous surfaces associated with \boldsymbol{r} and $\overline{\boldsymbol{r}}$ respectively.

In particular, if we let $e(u, v) \equiv 1$, then condition (3.1) becomes $\left.\mathrm{d}^{k}(\overline{\boldsymbol{Q}} \circ \varphi)\right|_{C B}$ $=\left.\mathrm{d}^{k} \boldsymbol{Q}\right|_{C B}$, i.e. $\bar{Q}(\bar{u}, \bar{v})$ and $\boldsymbol{Q}(u, v)$ are $G C^{n}$ continuous along $C B$. This shows that if the homogeneous surfaces are $G C^{n}$ then the rational surfaces themselves will have the same continuity, but the converse is not true.

Theorem 1 just gives a descriptive condition. In the following we derive the explicit geometric continuity condition and show how to determine its solution.

Theorem 2. Suppose that rational surfaces $\boldsymbol{r}(u, v)$ and $\overline{\boldsymbol{r}}(\bar{u}, \bar{v})$ are regular. Then \boldsymbol{r} and \bar{r} are $G C^{n}$ along their common boundary curve $C B: r\left(E_{1}(s)\right)=\overline{\boldsymbol{r}}\left(E_{2}(s)\right)$ if and only if, for every set of $\bar{p}_{i}(s), \bar{q}_{i}(s), i=1, \ldots, n$, satisfying

$$
\left|\begin{array}{cc}
\bar{p}_{1} & \bar{q}_{1} \\
\frac{\partial \bar{u}}{\partial s} & \frac{\partial \bar{v}}{\partial s}
\end{array}\right| \neq 0,
$$

there exist scalar functions $c_{0}(s), c_{i}(s), p_{i}(s)$ and $q_{i}(s), i=1, \ldots, n$, satisfying

$$
\left|\begin{array}{cc}
p_{1} & q_{1} \\
\frac{\partial u}{\partial s} & \frac{\partial v}{\partial s}
\end{array}\right| \neq 0,
$$

such that

$$
\begin{align*}
& \left.\bar{Q}(\bar{u}, \bar{v})\right|_{C B}=\left.c_{0}(s) \boldsymbol{Q}(u, v)\right|_{C B}, \\
& \left.\sum_{k=1 r_{1}+\cdots+r_{k}=m}^{m} \sum_{h=0}^{k} A_{r_{1} \ldots r_{k}}^{m k h} \cdot \bar{p}_{r_{1}} \cdots \bar{p}_{r_{h}} \bar{q}_{r_{h+1}} \cdots \bar{q}_{r_{k}} \cdot \frac{\partial^{k} \overline{\boldsymbol{Q}}}{\partial \bar{u}^{h} \partial \bar{v}^{k-h}}\right|_{C B} \\
& \quad=\left.c_{m} \boldsymbol{Q}\right|_{C B}+\sum_{j=1}^{m}\binom{m}{j} c_{m-j}(s) \sum_{k=1}^{j} \sum_{r_{1}+\cdots+r_{k}=j h=0} \sum_{r_{1} \ldots r_{k}}^{k} A_{r_{h}}^{j k k} \\
& \left.\quad \cdot p_{r_{1}} \cdots p_{r_{h}} q_{r_{h+1}} \cdots q_{r_{k}} \cdot \frac{\partial^{k} \boldsymbol{Q}}{\partial u^{h} \partial v^{k-h}}\right|_{C B}, \quad m=1, \ldots, n . \tag{3.2}
\end{align*}
$$

Proof. With the given $\bar{p}_{i}(s), \bar{q}_{i}(s)$, we construct a parameter transformation:

$$
\psi_{1}:\left\{\begin{array}{l}
\bar{u}=\bar{u}(s)+\sum_{i=1}^{n} \bar{p}_{i} t^{i} / i! \tag{3.3}\\
\bar{v}=\bar{v}(s)+\sum_{i=1}^{n} \bar{q}_{i} t^{i} / i!
\end{array}\right.
$$

The transformation ψ_{1} is non-singular because of the condition

$$
\left|\begin{array}{ll}
\bar{p}_{1} & \bar{q}_{1} \\
\frac{\partial \bar{u}}{\partial s} & \frac{\partial \bar{v}}{\partial s}
\end{array}\right| \neq 0
$$

If \bar{r} meets r with $G C^{n}$ along $C B$, by Theorem 1 , there exist a parameter transformation $\varphi: \bar{u}=\bar{u}(u, v), \bar{v}=\bar{v}(u, v)$ and a function $e(u, v)$ such that $\left.\mathrm{d}^{m}(\overline{\boldsymbol{Q}} \circ \varphi)\right|_{C B}=\left.\mathrm{d}^{m}(e \cdot \boldsymbol{Q})\right|_{C B}$. This gives us that

$$
\begin{array}{ll}
\left.\bar{Q}(\bar{u}, \bar{v})\right|_{C B}=\left.c_{0}(s) \boldsymbol{Q}(u, v)\right|_{C B}, & c_{0}(s)=\left.e(u, v)\right|_{C B}, \\
\left.\mathrm{~d}^{m}(\bar{Q} \circ \varphi)\right|_{C B}=\left.\left.\sum_{j=0}^{m}\binom{m}{j} \mathrm{~d}^{m-j} e\right|_{C B} \mathrm{~d}^{j} \boldsymbol{Q}\right|_{C B}, & m=1, \ldots, n .
\end{array}
$$

Composing the transformation $\tau=\varphi^{-1} \circ \psi_{1}:(s, t) \rightarrow(u, v)$, which is also non-singular, we have

$$
\begin{equation*}
\left.\frac{\partial^{m}\left(\overline{\boldsymbol{Q}} \circ \psi_{1}\right)}{\partial t^{m}}\right|_{C B}=\left.\left.\sum_{j=0}^{m}\binom{m}{j} \frac{\partial^{m-j}(e \circ \tau)}{\partial t^{m-j}}\right|_{C B} \frac{\partial^{j}(\boldsymbol{Q} \circ \tau)}{\partial t^{j}}\right|_{C B} \tag{3.4}
\end{equation*}
$$

Let $c_{i}(s)=\partial^{i}(e \circ \tau) /\left.\partial t^{i}\right|_{C B}$. In terms of Lemma 1, we obtain

$$
\begin{align*}
\left.\frac{\partial^{m}\left(\bar{Q} \circ \psi_{1}\right)}{\partial t^{m}}\right|_{C B}= & \sum_{k=1}^{m} \sum_{r_{1}+\cdots+r_{k}=m} \sum_{h=0}^{k} A_{r_{1} \ldots r_{k}}^{m k h} \cdot \bar{p}_{r_{1}} \cdots \bar{p}_{r_{h}} \cdot \bar{q}_{r_{h+1}} \cdots \bar{q}_{r_{k}} \\
& \left.\cdot \frac{\partial^{k} \bar{Q}}{\partial \bar{u}^{h} \partial \bar{v}^{k-h}}\right|_{C B}, \quad m=1, \ldots, n . \tag{3.5}
\end{align*}
$$

If $p_{i}=\partial^{i} u /\left.\partial t^{i}\right|_{C B}, q_{i}=\partial^{i} v /\left.\partial t^{i}\right|_{C B}$ are set, then

$$
\left|\begin{array}{cc}
p_{1} & q_{1} \\
\frac{\partial u}{\partial s} & \frac{\partial v}{\partial s}
\end{array}\right| \neq 0
$$

Therefore (3.2) will be arrived at by substituting (3.5) into (3.4).
We now turn to prove the sufficiency. Define two non-singular transformations ψ_{1} and $\psi_{2}: \psi_{1}$ is expressed by (3.3), and ψ_{2} is expressed by

$$
\psi_{2}:\left\{\begin{array}{l}
u=u(s)+\sum_{i=1}^{n} p_{i} t^{i} / i! \tag{3.6}\\
v=v(s)+\sum_{i=1}^{n} q_{i} t^{i} / i!
\end{array}\right.
$$

For $c_{i}(s)$, it is easy to construct a function $e(u, v)$ such that

$$
\begin{equation*}
\left.\frac{\partial^{i}\left(e \circ \psi_{2}\right)}{\partial t^{i}}\right|_{C B}=c_{i}(s) \tag{3.7}
\end{equation*}
$$

Thus from condition (3.2) and expression (3.5),

$$
\begin{aligned}
\left.\frac{\partial^{m}\left(\overline{\boldsymbol{Q}} \circ \psi_{1}\right)}{\partial t^{m}}\right|_{C B} & =\left.\left.\sum_{j=0}^{m}\binom{m}{j} \frac{\partial^{m-j}\left(e \circ \psi_{2}\right)}{\partial t^{m-j}}\right|_{C B} \frac{\partial^{j}\left(\boldsymbol{Q} \circ \psi_{2}\right)}{\partial t^{j}}\right|_{C B} \\
& =\left.\frac{\partial^{m}\left((e Q) \circ \psi_{2}\right)}{\partial t^{m}}\right|_{C B}
\end{aligned}
$$

Taking the partial derivatives of both sides of the above expression with respect to s, yields

$$
\left.\frac{\partial^{m+j}\left(\overline{\boldsymbol{Q}} \circ \psi_{1}\right)}{\partial t^{m} \partial s^{j}}\right|_{C B}=\left.\frac{\partial^{m+j}\left((e \boldsymbol{Q}) \circ \psi_{2}\right)}{\partial t^{m} \partial s^{j}}\right|_{C B}
$$

As m and j are arbitrary, we have

$$
\left.\mathrm{d}^{m}\left(\overline{\boldsymbol{Q}} \circ \psi_{1}\right)\right|_{C B}=\left.\mathrm{d}^{m}\left((e \cdot \boldsymbol{Q}) \circ \psi_{2}\right)\right|_{C B}
$$

Therefore r and \bar{r} are $G C^{n}$ continuous along $C B$, and $\psi_{1} \circ \psi_{2}^{-1}$ is the parameter transformation of $G C^{n}$ between \boldsymbol{r} and $\overline{\boldsymbol{r}}$.

From the above proof, we can also obtain the following result.
Theorem 3. Suppose that the regular rational surfaces $\boldsymbol{r}(u, v)$ and $\overline{\boldsymbol{r}}(\bar{u}, \bar{v})$ share a common boundary curve $C B: r\left(E_{1}(s)\right)=\bar{r}\left(E_{2}(s)\right)$. If equations (3.2) hold for one system of functions $\bar{p}_{i}(s), \bar{q}_{i}(s), i=1, \ldots, n$, satisfying

$$
\left|\begin{array}{ll}
\bar{p}_{1} & \bar{q}_{1} \\
\frac{\partial u}{\partial s} & \frac{\partial v}{\partial s}
\end{array}\right| \neq 0
$$

then they hold for any other system of $\bar{p}_{i}(s), \bar{q}_{i}(s), i=1, \ldots, n$, satisfying

$$
\left|\begin{array}{cc}
\bar{p}_{1} & \bar{q}_{1} \\
\frac{\partial u}{\partial s} & \frac{\partial v}{\partial s}
\end{array}\right| \neq 0,
$$

with new scalar functions $c_{i}(s), p_{i}(s)$ and $q_{i}(s)$ obtained by the corresponding parameter transformation.

Generally, the scalar functions $c_{i}(s), p_{i}(s)$ and $q_{i}(s)$ are called the connecting functions of \boldsymbol{r} and $\overline{\boldsymbol{r}}$. They are the solutions of differential equation (3.2). In order to determine them, we rewrite (3.2) as

$$
\begin{aligned}
& \left.\overline{\boldsymbol{Q}}\right|_{C B}=\left.c_{0}(s) \boldsymbol{Q}\right|_{C B}, \\
& \left.c_{m} \boldsymbol{Q}\right|_{C B}+\left.c_{0} p_{m} \boldsymbol{Q}_{u}\right|_{C B}+\left.c_{0} q_{m} \boldsymbol{Q}_{v}\right|_{C B}=F^{m}
\end{aligned}
$$

where

$$
\begin{align*}
F^{m}= & \left.\sum_{k=1 r_{1}+\cdots+r_{k}=m h=0}^{m} \sum_{h=0}^{k} A_{r_{1} \cdots r_{k}}^{m k h} \cdot \bar{p}_{r_{1}} \cdots \bar{p}_{r_{h}} \bar{q}_{r_{h+1}} \cdots \bar{q}_{r_{k}} \cdot \frac{\partial^{k} \bar{Q}}{\partial \bar{u}^{h} \partial \bar{v}^{k-h}}\right|_{C B} \\
& -c_{0}(s) \sum_{k=2 r_{1}+\cdots+r_{k}=m}^{m} \sum_{h=0}^{k} A_{r_{1} \ldots r_{k}}^{m k h} \cdot p_{r_{1}} \cdots p_{r_{h}} q_{r_{h+1}} \cdots q_{r_{k}} \\
& \left.\cdot \frac{\partial^{k} Q}{\partial u^{h} \partial v^{k-h}}\right|_{C B}-\sum_{j=1}^{m-1}\binom{m}{j} c_{m-j}(s) \sum_{k=1}^{j} \sum_{r_{1}+\cdots+r_{k}=j} \sum_{h=0}^{k} A_{r_{1} \ldots r_{k}}^{j k h} \\
& \left.\cdot p_{r_{1}} \cdots p_{r_{h}} q_{r_{h+1}} \cdots q_{r_{k}} \cdot \frac{\partial^{k} Q}{\partial u^{h} \partial v^{k-h}}\right|_{C B}, \\
m= & 1, \ldots, n . \tag{3.8}
\end{align*}
$$

Then F^{m} are functions of $s, \bar{p}_{i}, \bar{q}_{i}, p_{j}$ and $q_{j}(i=1, \ldots, m ; j=1, \ldots, m-1)$. According to Lemma 2, $\boldsymbol{Q}, \boldsymbol{Q}_{u}, \boldsymbol{Q}_{v}$ are independent. Thus we can verify whether equations (3.8) have solutions or not by recursively solving a set of linear equations. And further the solutions c_{i}, p_{i}, q_{i} can be found if they satisfy (3.8). So far the problem of checking the geometric continuity conditions can be simplified to solve a system of linear equations.

Example. Consider two surfaces \boldsymbol{r} and \bar{r} given by the equations:

$$
\begin{aligned}
& \boldsymbol{r}= \frac{1}{1+v}\{u, v, 0\}, \\
& \overline{\boldsymbol{r}}= \frac{1}{1+\bar{u}+\frac{1}{2} \bar{v}+(1+2 \bar{u})\left(\bar{u}-\frac{1}{2} \bar{v}\right)^{3}} \\
& \times\left\{\bar{u}-\frac{1}{2} \bar{v}+1+\left(\bar{u}-\frac{1}{2} \bar{v}\right)^{3}, \bar{u}+\frac{1}{2} \bar{v}+\left(\bar{u}-\frac{1}{2} \bar{v}\right)^{3}\left(\bar{u}+\frac{1}{2} \bar{v}-\sin \left(\bar{u}-\frac{1}{2} \bar{v}\right)\right),\right. \\
&\left.5\left(\bar{u}+\frac{1}{2} \bar{v}\right)\left(\bar{u}-\frac{1}{2} \bar{u}\right)^{5}\right\} .
\end{aligned}
$$

It can be verified that they are connected with $G C^{3}$ continuity along the common boundary $C B: E_{1}(s)=\{1, s\}$ and $E_{2}(s)=\{s / 2, s\}$. If we choose $\bar{p}_{1}=0.5, \bar{q}_{1}=-1$ and $\bar{p}_{i}=\bar{q}_{i}=0$ for $i>1$, then the connecting functions are $c_{0}=1, c_{3}=6, p_{1}=1$, $c_{i}=p_{j}=q_{k}=0$ for $j>1, k>0$ and $i \neq 0,3$. After the parameter transformations:

$$
\psi_{1}:\left\{\begin{array}{l}
\bar{u}=\frac{1}{2}(s+t) \\
\bar{v}=s-t
\end{array} \quad \text { and } \quad \psi_{2}:\left\{\begin{array}{l}
u=t+1 \\
v=s
\end{array}\right.\right.
$$

surfaces \boldsymbol{r} and $\overline{\boldsymbol{r}}$ become

$$
\begin{aligned}
& r \circ \psi_{2}=\frac{1}{1+s}\{t+1, s, 0\} \\
& \bar{r} \circ \psi_{1}=\frac{1}{1+s+(1+s+t) t^{3}}\left\{1+t+t^{3}, s+t^{3}(s-\sin t), 5 s t^{5}\right\}
\end{aligned}
$$

We have

$$
\begin{aligned}
& \left.\boldsymbol{r} \circ \psi_{2}\right|_{t=0}=\left.\overline{\boldsymbol{r}} \circ \psi_{1}\right|_{t=0}=\frac{1}{1+s}\{1, s, 0\}, \\
& \left.\frac{\partial\left(\boldsymbol{r} \circ \psi_{2}\right)}{\partial t}\right|_{t=0}=\left.\frac{\partial\left(\overline{\boldsymbol{r}} \circ \psi_{1}\right)}{\partial t}\right|_{t=0} \\
& =\left.\frac{\partial^{k}\left(\boldsymbol{r} \circ \psi_{2}\right)}{\partial t^{k}}\right|_{t=0}=\left.\frac{\partial^{k}\left(\overline{\boldsymbol{r}} \circ \psi_{1}\right)}{\partial t^{k}}\right|_{t=0}=\{0,0,0\}, \quad k=2,3 .
\end{aligned}
$$

Thus $\boldsymbol{r} \circ \psi_{2}$ and $\overline{\boldsymbol{r}} \circ \psi_{1}$ are C^{3} continuous (see Figs. 2 and 3).

3.2. A simple form of $G C^{n}$ conditions

Note that there are very few restrictions on the common boundary curve $C B$ in the preceding sections. Here we consider a simple case in which the parametric representations of the common boundary in the domains of r and \bar{r} are respectively $u=1, v=v$ and $\bar{u}=0, \bar{v}=v$. Meanwhile, we take $\bar{p}_{1}=1, \bar{p}_{i}=\bar{q}_{j}=0$ ($i=1, \ldots, n ; j=0, \ldots, n$). Clearly, the condition

$$
\left|\begin{array}{cc}
\bar{p}_{1} & \bar{q}_{1} \\
\frac{\partial \bar{u}}{\partial s} & \frac{\partial \bar{u}}{\partial s}
\end{array}\right| \neq 0
$$

is preserved. In this case, $G C^{n}$ conditions of \boldsymbol{r} and $\overline{\boldsymbol{r}}$ can be simplified.
Theorem 4. Regular rational surfaces $r(u, v)$ and $\bar{r}(\bar{u}, \bar{v})$ meet with $G C^{n}$ along their common boundary curve $C B: \overline{\boldsymbol{r}}(0, \bar{v})=\boldsymbol{r}(1, v)(\bar{v}=v)$ if and only if there exist functions $c_{0}(v), c_{i}(v), p_{i}(v)$ and $q_{i}(v)\left(p_{1} \neq 0\right)$ such that

$$
\begin{align*}
&\left.\frac{\partial^{s} \bar{Q}}{\partial \bar{u}^{s}}\right|_{C B}=\left.c_{s} Q\right|_{C B}+\sum_{j=1}^{s}\binom{s}{j} c_{s-j}(v) \\
& \times\left.\sum_{k=1}^{j} \sum_{r_{1}+\cdots+r_{k}=j h=0} \sum_{r_{1}}^{k} A_{r_{1} \cdots r_{k}}^{j k h} \cdot p_{r_{1}} \cdots p_{r_{h}} q_{r_{h+1}} \cdots q_{r_{k}} \cdot \frac{\partial^{k} Q}{\partial u^{h} \partial v^{k-h}}\right|_{C B}, \\
& s=0, \ldots, n . \tag{3.9}
\end{align*}
$$

Fig. 2. Isoparametric lines of a surface consisting of patches r and \bar{r}.

Since parametric continuity is a special case of geometric continuity which requires the transformation (2.3) being an identical mapping, we know $p_{1}=1$, $p_{i}=q_{j}=0, i=2, \ldots, n ; j=1, \ldots, n$ from the proof of Theorem 2. Thus we have

Corollary. Regular rational surfaces $\boldsymbol{r}(u, v)$ and $\overline{\boldsymbol{r}}(\bar{u}, \bar{v})$ are C^{n} parametric continuous along $C B: \overline{\boldsymbol{r}}(0, \bar{v})=\boldsymbol{r}(1, v)(\bar{v}=v)$ iff there exist scalar functions $c_{i}(v), i=$ $0, \ldots, n$ such that

$$
\begin{equation*}
\left.\frac{\partial^{s} \overline{\boldsymbol{Q}}}{\partial \bar{u}^{s}}\right|_{C B}=\left.c_{s} \boldsymbol{Q}\right|_{C B}+\left.\sum_{j=1}^{s}\binom{s}{j} c_{s-j}(v) \frac{\partial^{j} \boldsymbol{Q}}{\partial u^{j}}\right|_{C B}, \quad s=0, \ldots, n . \tag{3.10}
\end{equation*}
$$

Fig. 3. Cross sections of the same surface.

Now let us give the first few geometric continuity conditions.

$$
\begin{align*}
& s=0:\left.\overline{\boldsymbol{Q}}\right|_{C B}=\left.c_{0}(v) \boldsymbol{Q}\right|_{C B}, \tag{3.11}\\
& s=1:\left.\bar{Q}_{\bar{u}}\right|_{C B}= \tag{3.12}\\
&\left.c_{1} \boldsymbol{Q}\right|_{C B}+\left.c_{0} p_{1} \boldsymbol{Q}_{u}\right|_{C B}+\left.c_{0} q_{1} \boldsymbol{Q}_{v}\right|_{C B}, \\
& s=2:\left.\bar{Q}_{\bar{u} \bar{u}}\right|_{C B}= \tag{3.13}\\
&\left.c_{2} \boldsymbol{Q}\right|_{C B}+\left.\left(2 c_{1} p_{1}+c_{0} p_{2}\right) \boldsymbol{Q}_{u}\right|_{C B}+\left.\left(2 c_{1} q_{1}+c_{0} q_{2}\right) \boldsymbol{Q}_{v}\right|_{C B} \\
& \quad+\left.c_{0} p_{1}^{2} \boldsymbol{Q}_{u u}\right|_{C B}+\left.2 c_{0} p_{1} q_{1} \boldsymbol{Q}_{u v}\right|_{C B}+\left.c_{0} q_{1}^{2} \boldsymbol{Q}_{v v}\right|_{C B}
\end{align*}
$$

It can be shown that the above formulas include many analogous conditions occurring in the computer aided geometric design literature as their special cases. In (Liu, 1990), the conditions are (3.11) and (3.12) with $c_{0}(v)=1$ which is due to the fact that its position continuity is defined as " C^{0} continuity". In this paper, the position continuity is defined as " $G C^{0}$ continuity" which belongs to the second definition presented in the "Remark" of (Liu, 1990). Therefore we have obtained more general results.

In fact, if we let $c_{0}=1$ and $c_{i}=0$ for $i \geqslant 1$ then rational geometric continuity reduces to simple geometric continuity. On the other hand, if $p_{1}=1$ and $p_{i}=q_{j}=0$ for $i \geqslant 2$ and $j \geqslant 1$, then rational geometric continuity reduces to the rational parametric continuity. Finally, if c_{i}, p_{i} and q_{i} are all specified as above, the rational geometric continuity conditions reduce to simple parametric continuity conditions.

4. $G C^{\boldsymbol{n}}$ condition for rational polynomial patches

In CAGD applications, rational Bézier surfaces belong to the most widely used surfaces. Other rational polynomial surfaces can be converted into rational Bézier form. In this section we only discuss the geometric continuity for rational Bézier surfaces.

Suppose that the rational Bézier surfaces \boldsymbol{r} of degree $m \times l$ and \bar{r} of degree $\bar{m} \times l$ are expressed in homogeneous coordinates by

$$
\begin{array}{lll}
\boldsymbol{r}: & \boldsymbol{Q}(u, v)=\sum_{i=0}^{m} \sum_{j=0}^{l} Q_{i j} B_{i}^{m}(u) B_{j}^{l}(v), & 0 \leqslant u, v \leqslant 1 \\
\overline{\boldsymbol{r}}: & \overline{\boldsymbol{Q}}(\bar{u}, \bar{v})=\sum_{i=0}^{\bar{m}} \sum_{j=0}^{l} \bar{Q}_{i j} B_{i}^{\bar{m}}(\bar{u}) B_{j}^{l}(\bar{v}), & 0 \leqslant \bar{u}, \bar{v} \leqslant 1
\end{array}
$$

where

$$
\boldsymbol{Q}_{i j}=\left(\boldsymbol{P}_{i j} \omega_{i j}, \omega_{i j}\right), \quad \bar{Q}_{i j}=\left(\bar{P}_{i j} \bar{\omega}_{i j}, \bar{\omega}_{i j}\right)
$$

$P_{i j}, \bar{P}_{i j}$ are control points, $\omega_{i j}, \bar{\omega}_{i j}$ are weights.

$$
B_{i}^{l}(t)=\binom{l}{i} t^{i}(1-t)^{l-i} \text { are Bernstein polynomials of degree } l .
$$

In general, if $\boldsymbol{Q}_{i j}$ are found, then $\boldsymbol{P}_{i j}$, $\omega_{i j}$ will be determined.

4.1. $G C^{n}$ necessary and sufficient condition

The $G C^{n}$ necessary and sufficient conditions for general rational surfaces have been given in Section 3. Here we concern ourselves with the rational Bézier surfaces and show that their connecting functions are rational polynomials.

Theorem 5. A necessary and sufficient condition for $G C^{n}$ continuity between two adjacent rational Bézier patches r of degree $m \times l$ and $\overline{\boldsymbol{r}}$ of degree $\bar{m} \times l$ along CB: $\boldsymbol{r}(1, v)=\overline{\boldsymbol{r}}(0, \bar{v})(0 \leqslant v=\bar{v} \leqslant 1)$ is that

$$
\begin{aligned}
& G(v) \overline{\boldsymbol{Q}}=H(v) \boldsymbol{Q}, \quad G(v) H(v) \neq 0, \\
& D^{2 s-1} H^{s-1} \frac{\partial^{s} \overline{\boldsymbol{Q}}}{\partial \bar{u}^{s}}= \underline{c}_{s} \boldsymbol{Q}+\sum_{k=1}^{s} \sum_{r_{1}+\cdots+r_{k}=s h=0} \sum_{h=0}^{k} A_{r_{1} \cdots r_{k}}^{s k h} \cdot G^{k-1} D^{k-1} \underline{p}_{r_{1}} \cdots \underline{q}_{r_{k}} \\
& \cdot \frac{\partial^{k} Q}{\partial u^{h} \partial v^{k-h}}+\sum_{d=1}^{s-1}\binom{s}{d} \underline{c}_{s-d}(v) \sum_{k=1}^{d} \sum_{r_{1}+\cdots+r_{k}=d} \sum_{h=0}^{k} A_{r_{1} \ldots r_{k}}^{d k h} \\
& \cdot G^{k} D^{k} \underline{p}_{r_{1}} \cdots \underline{p}_{r_{h}} \underline{q}_{r_{h+1}} \cdots \underline{q}_{r_{k}} \cdot \frac{\partial^{k} Q}{\partial u^{h} \partial v^{k-h}}
\end{aligned}
$$

$$
\begin{equation*}
s=1, \ldots, n \tag{4.1}
\end{equation*}
$$

hold at every point of $C B$, where $G, H, D, \underline{c}_{i}, \underline{p}_{i}, \underline{q}_{i}$ are all polynomials of c, $D(v) \not \equiv 0, \underline{p}_{1} \not \equiv 0$, their degrees are as follows:

	G, H	D	$\underline{c}_{i}, \underline{p}_{i}$	\underline{q}_{i}
degrees \leqslant	l	$3 l-1$	$(2 i-1)(3 l-1)$	
		$+(i-1) l$	$(2 i-1)(3 l-1)$	
		$+(i-1) l+1$		

Proof. First, assume that \boldsymbol{r} and $\overline{\boldsymbol{r}}$ are $G C^{n}$ continuous. Then by Theorem 4, there exist $c_{0}(v), c_{i}(v), p_{i}(v)$ and $q_{i}(v), i=1, \ldots, n$, such that (3.9) holds.

When $n=0,\left.\overline{\boldsymbol{Q}}\right|_{C B}=\left.c_{0} \boldsymbol{Q}\right|_{C B}$ implies

$$
\left.\overline{\boldsymbol{R}}\right|_{C B}=\left.c_{0} \boldsymbol{R}\right|_{C B} \quad \text { and }\left.\quad \bar{\omega}\right|_{C B}=\left.c_{0} \omega\right|_{C B} .
$$

If $H=\left.\bar{\omega}\right|_{C B}, G=\left.\omega\right|_{C B}$ are set, then $G \overline{\boldsymbol{Q}}=H \boldsymbol{Q}$, and $c_{0}=H / G$.
When $n=1$,

$$
\left.\overline{\boldsymbol{Q}}_{\bar{u}}\right|_{C B}=\left.c_{1} \boldsymbol{Q}\right|_{C B}+\left.c_{0} p_{1} \boldsymbol{Q}_{u}\right|_{C B}+\left.c_{0} q_{1} \boldsymbol{Q}_{v}\right|_{C B} .
$$

In terms of Lemma 2 , there exists $i(1 \leqslant i \leqslant 3)$ such that $\left.\left\langle\boldsymbol{Q}, \boldsymbol{Q}_{u}, \boldsymbol{Q}_{t}\right\rangle_{i}\right|_{u-1, v=1} \neq 0$. Taking

$$
\begin{array}{ll}
D(v)=\left.\left\langle\boldsymbol{Q}, \boldsymbol{Q}_{u}, \boldsymbol{Q}_{v}\right\rangle_{i}\right|_{C B}, \quad \underline{c}_{1}=\left.\left\langle\overline{\boldsymbol{Q}}_{\bar{u}}, \boldsymbol{Q}_{u}, \boldsymbol{Q}_{v}\right\rangle_{i}\right|_{C B}, \\
\underline{p}_{1}(v)=\left.\left\langle\boldsymbol{Q}, \overline{\boldsymbol{Q}}_{\bar{u}}, \boldsymbol{Q}_{v}\right\rangle_{i}\right|_{C B}, \quad \underline{q}_{1}(v)=\left.\left\langle\boldsymbol{Q}, \boldsymbol{Q}_{u}, \overline{\boldsymbol{Q}}_{\bar{u}}\right\rangle_{i}\right|_{C B} \tag{4.2}
\end{array}
$$

gives

$$
\left.D \overline{\boldsymbol{Q}}_{\bar{u}}\right|_{C B}=\left.\underline{c}_{1} \boldsymbol{Q}\right|_{C B}+\left.\underline{p}_{1} \boldsymbol{Q}_{u}\right|_{C B}+\left.\underline{q}_{1} \boldsymbol{Q}_{v}\right|_{C B}
$$

and

$$
\underline{c}_{1}=D c_{1}, \quad \underline{p}_{1}=D c_{0} p_{1}, \quad \underline{q}_{1}=D c_{0} q_{1}
$$

Obviously, the degrees of $D, \underline{c}_{1}, \underline{p}_{1}, \underline{q}_{1}$ are not larger than $3 l-1,3 l-1,3 l-1$
 Then when $n=s$,

$$
\begin{equation*}
\left.\frac{\partial^{s} \overline{\boldsymbol{Q}}}{\partial \bar{u}^{s}}\right|_{C B}=\left.c_{s} \boldsymbol{Q}\right|_{C B}+\left.c_{0} p_{s} \boldsymbol{Q}_{u}\right|_{C B}+\left.c_{0} q_{s} \boldsymbol{Q}_{v}\right|_{C B}+\delta \tag{4.3}
\end{equation*}
$$

where

$$
\begin{aligned}
\delta= & \left.\sum_{k=2 r_{1}+}^{s} \sum_{+r_{k}=s} \sum_{h=0}^{k} A_{r_{1} \ldots r_{k}}^{s k h} c_{0} \cdot p_{r_{1}} \cdots q_{r_{k}} \cdot \frac{\partial^{k} Q}{\partial u^{h} \partial v^{k-h}}\right|_{C B} \\
& +\sum_{d=1}^{s-1}\binom{s}{d} c_{s-d}(v) \sum_{k=1}^{d} \sum_{r_{1}+\cdots+r_{k}=d} \sum_{h=0}^{k} A_{r_{1} \cdots r_{k}}^{d k h} \cdot p_{r_{1}} \cdots p_{r_{h}} q_{r_{h+1}} \cdots q_{r_{k}} \\
& \left.\cdot \frac{\partial^{k} Q}{\partial u^{h} \partial v^{k-h}}\right|_{C B} .
\end{aligned}
$$

Let

$$
\begin{aligned}
\bar{\delta} & =D^{2 s-2} H^{s-1}\left(\left.\frac{\partial^{s} \overline{\boldsymbol{Q}}}{\partial \bar{u}^{s}}\right|_{C B}-\delta\right) \\
& =D^{2 s-2} H^{s-1}\left(\left.c_{s} \boldsymbol{Q}\right|_{C B}+\left.c_{0} p_{s} \boldsymbol{Q}_{u}\right|_{C B}+\left.c_{0} q_{s} \boldsymbol{Q}_{v}\right|_{C B}\right)
\end{aligned}
$$

We have

$$
\begin{aligned}
\bar{\delta}= & D^{2 s-2} H^{s-1} \frac{\partial^{s} \overline{\boldsymbol{Q}}}{\partial \bar{u}^{s}}-\sum_{k=2}^{s} \sum_{r_{1}+\cdots+r_{k}=s h=0} \sum_{h=1}^{k} A_{r_{1} \cdots r_{k}}^{s k h} \cdot G^{k-1} D^{k-2} \underline{p}_{r_{1}} \cdots \underline{q}_{r_{k}} \\
& \left.\cdot \frac{\partial^{k} \boldsymbol{Q}}{\partial u^{h} \partial v^{k-h}}\right|_{C B}-\sum_{d=1}^{s-1}\binom{s}{d} \boldsymbol{c}_{s-d}(v) \sum_{k=1 r_{1}+\cdots+r_{k}=d}^{d} \sum_{h=0}^{k} A_{r_{1} \cdots r_{k}}^{d k h} \\
& \left.\cdot G^{k} D^{k-1} \underline{p}_{r_{1}} \cdots \underline{p}_{r_{h}} \underline{q}_{r_{h+1}} \cdots \underline{q}_{r_{k}} \cdot \frac{\partial^{k} \boldsymbol{Q}}{\partial u^{h} \partial v^{k-h}}\right|_{C B} .
\end{aligned}
$$

It is easy to show that $\bar{\delta}$ is a curve of degree not larger than $s(7 l-2)-6 l+2$. If we let

$$
\begin{align*}
& \underline{c}_{s}=\left.\left\langle\bar{\delta}, \boldsymbol{Q}_{u}, \boldsymbol{Q}_{v}\right\rangle_{i}\right|_{C B}, \quad \underline{p}_{s}(v)=\left.\left\langle\boldsymbol{Q}, \bar{\delta}, \boldsymbol{Q}_{v}\right\rangle_{i}\right|_{C B}, \\
& \underline{q}_{s}(v)=\left.\left\langle\boldsymbol{Q}, \boldsymbol{Q}_{u}, \bar{\delta}\right\rangle_{i}\right|_{C B} \tag{4.4}
\end{align*}
$$

then

$$
\begin{equation*}
\underline{c}_{s}=c_{s} D^{2 s-1} H^{s-1}, \quad \underline{p}_{s}=c_{0} p_{s} D^{2 s-1} H^{s-1}, \quad \underline{q}_{s}=c_{0} \dot{q}_{s} D^{2 s-1} H^{s-1}, \tag{4.5}
\end{equation*}
$$

and

$$
D \cdot \bar{\delta}=\left.\underline{c}_{s} \boldsymbol{Q}\right|_{C B}+\left.\underline{p}_{s} \boldsymbol{Q}_{u}\right|_{C B}+\left.\underline{q}_{s} \boldsymbol{Q}_{v}\right|_{C B}
$$

The degrees of $\underline{c}_{s}, \underline{p}_{s}, \underline{q}_{s}$ are not larger than $(2 s-1)(3 l-1)+(s-1) l,(2 s-1)(3 l$ $-1)+(s-1) l$ and $(2 s-1)(3 l-1)+(s-1) l+1$ respectively, and the second equation of (4.1) holds for $n=s$. Thus the necessity is fulfilled by induction.

On the other hand, take $c_{0}(v)=H(v) / G(v)$, and assume that $D(v)$ has j zero points v_{1}, \ldots, v_{j} in [0, 1]. From Eq. (4.5), we know that c_{1}, \ldots, v_{j} are also the roots of $\underline{c}_{s}, \underline{p}_{s}, \underline{q}_{s}$ with multiplicity $2 s-1$. These zero factors can be eliminated by

$$
\begin{aligned}
& \bar{D}=D / V J, \quad \bar{c}_{i}=\underline{c}_{i} / V J^{2 i-1}, \quad \bar{p}_{i}=\underline{p}_{i} / V J^{2 i-1}, \\
& \bar{q}_{i}=\underline{q}_{i} / V J^{2 i-1}, \quad i=1, \ldots, n,
\end{aligned}
$$

where $V J=\left(v-v_{\underline{1}}\right) \cdots\left(v-v_{j}\right)$.
It is clear that $\bar{D} \neq 0, v \in[0,1]$ and (4.1) still holds if $D, \underline{c}_{i}, \underline{p}_{i}, \underline{q}_{i}$ are replaced by $\bar{D}, \bar{c}_{i}, \bar{p}_{i}$ and \bar{q}_{i} respectively. Thus the sufficiency follows immediately if we take

$$
\begin{array}{rlr}
c_{i}=\bar{c}_{i} /\left(\bar{D}^{2 i-1} H^{i-1}\right), & p_{i}=G \bar{p}_{i} /\left(\bar{D}^{2 i-1} H^{i}\right), \\
q_{i}=G \bar{q}_{i} /\left(\bar{D}^{2 i-1} H^{i}\right) . & \square
\end{array}
$$

Note that there is no loss of generality by assuming the degree of \boldsymbol{r} with respect to v to be equal to that of \bar{r} with respect to \bar{v} in Theorem 5 because of the elevation formula.

We now deal with two special cases.
Case 1. If the position continuity of \boldsymbol{r} and $\overline{\boldsymbol{r}}$ along $C B$ is defined as " $C^{\text {" }}$ continuity" of (Liu, 1990), i.e. $\left.\overline{\boldsymbol{Q}}\right|_{C B}=\left.\boldsymbol{Q}\right|_{C B}$, then $c_{0}=1$. Without loss of generality, taking $H=G=1$, conditions (4.1) become

$$
\begin{align*}
&\left.\bar{Q}\right|_{C B}=\left.\boldsymbol{Q}\right|_{C B}, \\
&\left.D^{2 s-1} \frac{\partial^{s} \overline{\boldsymbol{Q}}}{\partial \bar{u}^{s}}\right|_{C B}=\left.\underline{c}_{s} \boldsymbol{Q}\right|_{C B}+\sum_{k=1 r_{1}+\cdots+r_{k}=s}^{s} \sum_{h=0}^{k} A_{r_{1} \ldots r_{k}}^{s k h} \\
&\left.\cdot D^{k-1} \underline{p}_{r_{1}} \cdots \underline{q}_{r_{k}} \cdot \frac{\partial^{k} \boldsymbol{Q}}{\partial u^{h} \partial v^{k-h}}\right|_{C B} \\
&+\sum_{d=1}^{s-1}\binom{s}{d} \underline{c}_{s-d}(v) \sum_{k=1 r_{1}+\cdots+r_{k}=d h=0}^{d} \sum_{r_{1} \ldots r_{k}}^{k} \\
&\left.\cdot D^{k} \underline{p}_{r_{1}} \cdots \underline{p}_{r_{h}} \underline{q}_{r_{h+1}} \cdots \underline{q}_{r_{k}} \cdot \frac{\partial^{k} \boldsymbol{Q}}{\partial u^{h} \partial v^{k-h}}\right|_{C B}, \quad s=1, \ldots, n . \tag{4.6}
\end{align*}
$$

After an analogous discussion, we obtain
Corollary 1. If regular rational Bézier surfaces \boldsymbol{r} of degree $m \times l$ and \bar{r} of degree $\bar{m} \times l$ satisfy " C " continuity" along their common boundary curve $C B$, then they meet with $G C^{n}$ iff there exist some polynomials $D(v), \underline{c}_{i}(v), \underline{p}_{i}(v), \underline{q}_{i}(v)$, whose
degrees are respectively not larger than $3 l-1,(2 i-1)(3 l-1),(2 i-1)(3 l-1)$, $(2 i-1)(3 l-1)+1, D(v) \neq 0, p_{1}(v) \neq 0$ such that (4.6) hold .

Case 2. If surfaces \boldsymbol{r} and $\overline{\boldsymbol{r}}$ are integral Bézier surfaces, then it is a natural choice that $H=G=1$. For any $s \geqslant 1, \partial^{s} \omega / \partial u^{h} \partial v^{s-h}=0$, and (4.1) imply $0=\underline{c}_{s} \omega+$ $0=\underline{c}_{s}$. Thus conditions (4.1) become

$$
\begin{align*}
& \left.\overline{\boldsymbol{r}}\right|_{C B}=\left.\boldsymbol{r}\right|_{C B}, \\
& \left.D^{2 s-1} \frac{\partial^{s} \overline{\boldsymbol{r}}}{\partial \bar{u}^{s}}\right|_{C B}=\left.\sum_{k=1}^{s} \sum_{r_{1}+\cdots+r_{k}=s h=0} \sum_{h=0}^{k} A_{r_{1} \cdots r_{k}}^{s k h} \cdot D^{k-1} \underline{p}_{r_{1}} \cdots \underline{q}_{r_{k}} \cdot \frac{\partial^{k} \boldsymbol{r}}{\partial u^{h} \partial v^{k-h}}\right|_{C B} . \tag{4.7}
\end{align*}
$$

Similarly, the degrees of $D, \underline{p}_{i}, \underline{q}_{i}$ must be properly adjusted.
Corollary 2. Bézier surfaces r of degree $m \times l$ and \bar{r} of degree $\bar{m} \times l$ are $G C^{n}$ continuous along $C B: \overline{\boldsymbol{r}}(0, \bar{v})=\boldsymbol{r}(1, v)(0 \leqslant \bar{v}=v \leqslant 1)$ iff conditions (4.7) hold, where $D(v)(\not \equiv 0), p_{i}(v)\left(p_{1}(v) \not \equiv 0\right), q_{i}(v), i=1, \ldots, n$, are all polynomials of v with degrees not larger than $2 \bar{l}-1,(2 i-\overline{1})(2 l-1)$ and $(2 i-1)(2 l-1)+1$.

4.2. Some practical sufficient conditions

One application of geometric continuity is the construction of smoothly connecting surfaces by using the continuity conditions. In general, as shown in (Zheng et al., 1992), conditions (4.1) provide the designer numerous coefficients while they include a system of constraint equations which these coefficients have to satisfy. In practice, too many free coefficients will confuse the designer and the complicated constraints will give rise to difficulties for CAGD application. For this reason, we reduce the degrees of the connecting functions, and let the position continuity be " C^{0} continuity". Thus some $G C^{n}$ sufficient conditions are obtained.

Theorem 6. Regular rational Bézier surfaces \boldsymbol{r} of degree $m \times l$ and \boldsymbol{r} of degree $\bar{m} \times l$ are $G C^{n}$ along $C B: \bar{r}(0, \bar{v})=\boldsymbol{r}(1, v)(0 \leqslant \bar{v}=v \leqslant 1)$ if conditions (4.6) hold, where D $(\not \equiv 0), \underline{c}_{i}, \underline{p}_{i}\left(\underline{p}_{1} \not \equiv 0\right), \underline{q}_{i}$ are all polynomials of v respectively with degrees not larger than $\sigma,(2 \bar{i}-\overline{1}) \sigma,(2 i-1) \sigma,(2 i-1) \sigma+1$. The number σ is an integer ranging from 0 to $3 l-1$. If $\sigma=3 l-1$, the condition is also necessary.

As an example, consider the case of $\sigma=0$. Then $D, \underline{c}_{i}, \underline{p}_{i}$ are constants, and q_{i} are linear polynomials. Assume that $D(v)=1, \underline{c}_{i}=\gamma_{i}, \underline{p}_{i}=\bar{\alpha}_{i}, \underline{q}_{i}=\beta_{i}^{0}(1-v)+\beta_{i}^{1} \bar{v}$. Then conditions (4.6) become

$$
\begin{aligned}
&\left.\overline{\boldsymbol{Q}}\right|_{C B}= \boldsymbol{Q}\left|\left.\right|_{C B},\right. \\
&\left.\frac{\partial^{s} \overline{\boldsymbol{Q}}}{\partial \bar{u}^{s}}\right|_{C B}=\left.\gamma_{s} \boldsymbol{Q}_{s}\right|_{C B}+\sum_{d=1}^{s}\binom{s}{d} \gamma_{s-d}(v) \sum_{k=1}^{d} \sum_{r_{1}+\cdots+r_{k}=d} \sum_{h=0}^{k} A_{r_{1} \ldots r_{k}}^{d k h} \\
& \times\left\{\alpha_{r_{1}} \cdots \alpha_{r_{k}} \cdot\left(\beta_{r_{h+1}}^{0}(1-v)+\beta_{r_{h+1}}^{1} v\right) \cdots\left(\beta_{r_{k}}^{0}(1-v)+\beta_{r_{k} v}^{1}\right)\right\} \\
& \times\left.\frac{\partial^{k} \boldsymbol{Q}}{\partial u^{h} \partial v^{k-h}}\right|_{C B}, \\
& s=1, \ldots, n .
\end{aligned}
$$

After some calculations, it is possible to obtain the first $(n+1)$-columns of the control points of surface \bar{r} which meets r with $G C^{n}$ along $C B$:

$$
\begin{align*}
& \bar{Q}_{0 i}=Q_{m i}, \quad i=0, \ldots, l, \\
& \overline{\boldsymbol{Q}}_{s i}=-\sum_{j=0}^{s-1}\binom{s}{j}(-1)^{s-j} \overline{\boldsymbol{Q}}_{j i}+\frac{(\bar{m}-s)!}{\bar{m}!} \\
& \times\left\{\gamma_{s} \boldsymbol{Q}_{m i}+\sum_{d=1}^{s} \sum_{k=1}^{d} \sum_{r_{1}+\cdots+r_{k}=d} \sum_{h=0}^{k} \sum_{\substack{j=0 \\
j-i_{h+1}+\cdots+i_{k}=i}}^{l-k+h} \sum_{\substack{i_{h+1} \\
j}}^{1} \sum_{i_{k}=0}^{1}\right. \\
& \times\binom{ s}{d} A_{r_{1} \ldots r_{k}}^{d k h} \frac{m!}{(m-h)!} \frac{l!}{(l-k+h)!} \\
& \left.\cdot\left[\left(\binom{l-k+h}{j} /\binom{l}{i}\right) \gamma_{s-d} \alpha_{r_{1}} \cdots \alpha_{r_{h}} \beta_{r_{h+1}}^{i} \cdots \beta_{r_{k}}^{i} \nabla_{1}^{h} \nabla_{2}^{k-h} Q_{m-h i j}\right]\right\}, \\
& s=1, \ldots, n \tag{4.8}
\end{align*}
$$

where

$$
\begin{array}{ll}
\nabla_{1} Q_{i j}=Q_{i+1 j}-Q_{i j}, & \nabla_{1}^{h} Q_{i j}=\nabla_{1}\left(\nabla_{1}^{h-1} Q_{i j}\right) \\
\nabla_{2} Q_{i j}=Q_{i j+1}-Q_{i j}, & \nabla_{2}^{h} Q_{i j}=\nabla_{2}\left(\nabla_{2}^{h-1} Q_{i j}\right)
\end{array}
$$

and $\gamma_{i}, \alpha_{i}, \beta_{i}^{0}, \beta_{i}^{1}\left(\alpha_{1} \neq 0\right)$ are free coefficients which are sometimes called shape parameters in the literature.

Further, suppose that r and \bar{r} are bicubic, that is $m=l=\bar{m}=3$. If we choose the first two columns of the control points of \bar{r} as follows, then \bar{r} meets r with $G C^{1}$ continuity.

$$
\begin{aligned}
& \overline{\boldsymbol{Q}}_{0 i}=\boldsymbol{Q}_{3 i}, \quad i=0, \ldots, 3, \\
& \overline{\boldsymbol{Q}}_{10}=\gamma_{1} \boldsymbol{Q}_{30}+\alpha_{1}\left(\boldsymbol{Q}_{30}-\boldsymbol{Q}_{20}\right)+\beta_{1}^{0}\left(\boldsymbol{Q}_{31}-\boldsymbol{Q}_{30}\right), \\
& \overline{\boldsymbol{Q}}_{11}=\gamma_{1} \boldsymbol{Q}_{31}+3 \alpha_{1}\left(\boldsymbol{Q}_{31}-\boldsymbol{Q}_{21}\right)+\frac{2}{3} \beta_{1}^{0}\left(\boldsymbol{Q}_{32}-\boldsymbol{Q}_{31}\right)+\frac{1}{3} \beta_{1}^{1}\left(\boldsymbol{Q}_{31}-\boldsymbol{Q}_{30}\right), \\
& \overline{\boldsymbol{Q}}_{12}=\gamma_{1} \boldsymbol{Q}_{32}+3 \alpha_{1}\left(\boldsymbol{Q}_{32}-\boldsymbol{Q}_{22}\right)+\frac{1}{3} \boldsymbol{\beta}_{11}^{0}\left(\boldsymbol{Q}_{33}-\boldsymbol{Q}_{32}\right)+\frac{2}{3} \beta_{1}^{1}\left(\boldsymbol{Q}_{32}-\boldsymbol{Q}_{31}\right), \\
& \boldsymbol{Q}_{13}=\gamma_{1} \boldsymbol{Q}_{33}+\alpha_{1}\left(\boldsymbol{Q}_{33}-\boldsymbol{Q}_{23}\right)+\beta_{1}^{1}\left(\boldsymbol{Q}_{33}-\boldsymbol{Q}_{32}\right) .
\end{aligned}
$$

5. Conclusion

This paper has presented a set of necessary and sufficient conditions of $G C^{n}$ continuity for two adjacent rational surfaces along a general intersection curve, which do not require the homogeneous surfaces to be smooth. These conditions
are represented by the associated homogeneous surfaces and a set of connecting functions. Thus they can be further treated like integral surfaces. Specifically, for rational Bézier surfaces, it can be shown that these conditions can be converted into a series of constraints represented by the control points and weights as in (Zheng et al., 1992). This is convenient for constructing the connecting surfaces and examining by a program if two given rational Bézier patches are $G C^{n}$.

This paper has also shown that geometric continuity is, in essence, the existence of a reparameterization. If two given surface patches are $G C^{n}$, then transformations (3.3) and (3.6) present a method to reparameterize the two surfaces so that they are C^{n}. This is an important feature in some CAGD applications.

Acknowledgements

The authors thank the referees for their helpful comments and suggestions. We also thank Professor Jin Tongguang for very valuable discussions. This work has been supported by the National Natural Science Foundation of China and the Natural Science Foundation of Zhejiang Province.

References

Barnhill, R. (1985), Surface in computer aided geometric design: a survey with new results, Computer Aided Geometric Design 2, 1-17.
Boehm, W. (1988), Visual continuity, Computer-Aided Design 20, 307-311.
Bol, G. (1950/1967), Projektive Differentialgeometrie, Vols. 1-3, Vandenhoeck u. Ruprecht, Göttingen.
Degen, W. (1988), Some remarks on Bézier curves, Computer Aided Geometric Design 5, 259-268.
Degen, W. (1990), Explicit continuity conditions for adjacent Bézier surface patches, Computer Aided Geometric Design 7, 181-189.
DeRose, T. (1990), Necessary and sufficient conditions for tangent plane continuity of Bézier surfaces, Computer Aided Geometric Design 7, 165-179.
Farin, G. (1982), A construction for the visual C^{1} continuity of polynomial surface patches, Comput. Graph. and Image Processing 20, 272-282.
Hahn, J.M. (1989), Geometric continuous patch complexes, Computer Aided Geometric Design 6, 55-67.
Hohmeyer, M.E. and Barsky, D.A. (1989), Rational continuity: parametric and geometric continuity for rational curves, ACM Trans. Graph. 8, 335-359.
Kahmann, J. (1983), Continuity of curvature between adjacent Bézier patches, in: Barnhill, R.E. and Boehm, W., eds., Surfaces in CAGD, North-Holland, Amsterdam.
Liang, Y.D. (1990), Geometric continuity for curves and surfaces, Chinese Annals of Mathematics 11A, 374-386 (in Chinese).
Liu, D. (1986), A geometric condition for smoothness between adjacent Bézier surface patches, Acta Math. Appl. Sinica 9, 432-442 (in Chinese).
Liu, D. (1990), GC ${ }^{1}$ continuity conditions between two adjacent rational Bézier surface patches, Computer Aided Geometric Design 7, 151-163.
Liu, D. and Hoschek, J. (1989), GC ${ }^{1}$ continuity conditions between adjacent rectangular and triangular Bézier surface patches, Computer-Aided Design 21, 194-200.

Veron, M., Ris, G. and Musse, J.P. (1976), Continuity of biparametric surface patches, Computer-Aided Design 8, 267-273.
Vinacua, A. and Brunet, P. (1989), A construction for VC^{1} continuity of rational Bézier patches, in: Lyche, T. and Schumaker, L., eds., Mathematical Methods in CAGD, Academic Press, New York, 601-611.
Zheng, J.M., Wang, G.Z. and Liang, Y.D. (1992), Curvature continuity between adjacent rational Bézier patches, Computer Aided Geometric Design 9, 321-335.

[^0]: * Corresponding author.

 0167-8396/95/\$09.50 © 1995 Elsevier Science B.V. All rights reserved SSDI 0167-8396(94)00005-D

