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This paper presents an O(n2) algorithm, based on Gröbner basis techniques, to compute

the µ-basis of a degree n planar rational curve. The prior method involved solving a set
of linear equations whose complexity by standard numerical methods was O(n3). The

µ-basis is useful in computing the implicit equation of a parametric curve and can express
the implicit equation in the form of a determinant that is smaller than that obtained by
taking the resultant of the parametric equations.
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1. Introduction

Consider a degree n planar rational curve r(t) in homogeneous form

(x, y, w) = (a(t), b(t), c(t)) (1)

where n = max{deg(a), deg(b), deg(c)}, and a(t) =
∑n
i=0 ait

i, b(t) =
∑n
i=0 bit

i, c(t) =∑n
i=0 cit

i (6= 0) are relatively prime. There always exists a non-zero homogeneous polyno-
mial f(x, y, w) for which f(a(t), b(t), c(t)) is identically zero. The equation f(x, y, w) = 0
is called the implicit equation of r(t), and (1) is called the parametric equation. The
process of computing the implicit equation given the parametric equation is called im-
plicitization, and the inverse process (i.e. computing the rational parametric equation
of an implicitly defined curve) is known as parameterization. A plane implicit curve ad-
mits a rational parameterization if and only if its genus is zero. A few algorithms have
been developed to check the rationality of an implicit curve, and to compute a ratio-
nal parameterization if one exists (Abhyankar and Bajaj, 1988; Sendra and Winkler,
1991, 1998). Sendra and Winkler further studied the problem of computing an optimal
parameterization (Sendra and Winkler, 1999).

The main algorithmic approaches to implicitization involve either resultants or Gröbner
bases. The former is to take the resultant of

ρ1 = c(t)x− a(t)w and ρ2 = c(t)y − b(t)w (2)

with respect to t (Goldman et al., 1984). This yields f(x, y, w) in the form of the de-
terminant of an n × n matrix if Bezout’s resultant is used, or a 2n × 2n matrix if
Sylvester’s resultant is used (Sederberg et al., 1997). The latter considers the ideal
〈c(t)x−a(t), c(t)y−b(t)〉 ⊂ K[x, y, t] where K is a computable field of characteristic zero.
The Rational Implicitization Theorem (Cox et al., 1992) states that if GCD(a, b, c) = 1,
then the variety of 〈cx − a, cy − b〉 ∩ K[x, y] is the smallest variety in K2 containing
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the parametric curve. Thus Gröbner bases can be used to implicitize a curve. Exten-
sions based on Gröbner basis techniques have also been proposed (Gao and Chou, 1992;
Alonso et al., 1995; Gonzalez-Vega, 1997). In general, resultant-based methods are more
efficient than Gröbner basis methods from a computational point of view, but Gröbner
basis methods provide more insights, and deal with curves and surfaces with base points.

A recent development in the problem of implicitizing planar rational parametric curves
is the “moving curve” method (Sederberg and Chen, 1995; Sederberg et al., 1994, 1997;
Cox et al., 1998b). A moving curve is defined as

C(x, y, w; t) :=
m∑
i=0

fi(x, y, w)ti,

where fi(x, y, w) is a homogeneous polynomial of degree d. Thus C(x, y, w; t) = 0 is
a family of algebraic curves, with one curve corresponding to each t. When d = 1,
C(x, y, w; t) = 0 is a family of lines and is called a moving line of degree m. Like-
wise, C(x, y, w; t) = 0 is called a moving conic of degree m when d = 2. A moving
curve C(x, y, w; t) = 0 is said to follow a planar rational curve r(t) = (x(t), y(t), w(t))
if C(x(t), y(t), w(t); t) is identically zero, that is, if for all values of t, the point r(t) lies
on the moving curve C(x, y, w; t) = 0. Each row of Bezout’s matrix or Sylvester’s matrix
corresponds to a moving line following the curve.

It has been proven (Cox et al., 1998b) that for any planar rational curve r(t), there
exist two moving lines p and q of degree µ(≤ n/2) and n − µ respectively, which follow
the curve r(t) and satisfy:

1. p has the lowest degree in t among the moving lines following the curve r(t).
2. Any moving line A(t)x + B(t)y + C(t)w = 0 that follows the curve r(t) can be

written in the form
Ax+By + Cw = h1(t)p+ h2(t)q

where h1 and h2 are polynomials in t.

Two such moving lines p and q are referred to as a µ-basis of the curve r(t), because they
generate the ideal 〈ρ1, ρ2〉 (that is, 〈p, q〉 = 〈ρ1, ρ2〉).

The µ-basis is very useful for performing implicitization. Using a variant of Bezout’s
resultant, the implicit equation of r(t) can be written as the determinant of an (n −
µ) × (n − µ) matrix with µ rows whose elements are quadratic in x, y and w, and the
remaining n− 2µ rows with elements that are linear in x, y and w. In the generic case,
µ = bn/2c, and the determinant has dimension n

2 ×
n
2 if n is even and n+1

2 × n+1
2 if

n is odd—a significant improvement over the n × n matrix generated by conventional
implicitization methods (De Montaudouin and Tiller, 1984).

A µ-basis has practical value in addition to performing curve implicitization. For ex-
ample, it can help reveal the singular locus of the rational curve, and the parametric
equation is easily found from the µ-basis by doing a single cross product (Cox et al.,
1998b).

The previous known algorithm for computing the µ-basis of a curve is the method in
Cox et al. (1998b) which proceeds in the following manner.

Observe that a degree m moving line

C(x, y, w; t) =
m∑
i=0

(Aix+Biy + Ciw)ti = 0 (3)
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follows a rational curve (1) if
m∑
i=0

(Aia(t) +Bib(t) + Cic(t))ti ≡ 0

which can be expressed as Mv = 0, where M is the (n+m+ 1)× (3m+ 3) matrix

M =



a0 b0 c0 0 · · · 0 0 0
a1 b1 c1 a0 · · · 0 0 0
a2 b2 c2 a1 · · · 0 0 0
...

...
...

...
...

...
...

...
an bn cn an−1 · · · 0 0 0
0 0 0 an · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · an−1 bn−1 cn−1

0 0 0 0 · · · an bn cn


(4)

and
v = [A0 B0 C0 · · · Am Bm Cm]T .

Solving Mv = 0 for v yields a degree m moving line (3) that follows the curve.
In the generic case, µ = bn2 c. It is easy to determine if the generic case holds by simply

checking how many solutions Mv = 0 has if we choose m = bn2 c − 1. If Mv = 0 has no
solution, then it is true that µ = bn2 c. Otherwise, µ can be determined by computing
Rank(M) whenm = bn2 c−1 as follows. Let Nm be the number of the linearly independent
solutions of Mv = 0, where Nm = 3m+3−Rank(M). As is shown in Cox et al. (1998b),
µ ≤ bn2 c, and

Nm =

{ 0, 0 ≤ m < µ
m− µ+ 1, µ ≤ m < n− µ− 1
2m+ 2− µ, n− µ− 1 ≤ m.

(5)

Since we have chosen m = bn2 c − 1, we have µ ≤ m < n − µ − 1 (i.e. Nm = m − µ + 1)
or m = µ − 1 < µ (i.e. Nm = 0) corresponding to µ < bn2 c or µ = bn2 c, respectively.
Therefore µ = m+ 1−Nm holds for both cases.

Once the value of µ is obtained, we can solve Mv = 0 with m = µ for a moving line p.
The moving line q can be obtained by solving the equation with m = n−µ and choosing
a solution which is not of the form h(t)p where h(t) is a polynomial in t.

In this paper, we present a new algorithm for computing a µ-basis that is more straight-
forward and faster than the method just reviewed. Section 2 provides the relevant math-
ematical background. The new theory and method are developed in Section 3, along with
a numerical example. Section 4 analyzes the computational complexity, concluding that
the new algorithm is O(n2) while the previous method is O(n3).

2. Preliminary

We assume that the coefficients of the polynomials defining the rational curve belong
to Q, the field of rational numbers. Let Q[t]3 be the set of 3-dimensional row vectors
with entries in the polynomial ring Q[t]. Q[t]3 is a module over Q[t] (Cox et al., 1998a).
Denote the standard basis vectors in Q[t]3 by

E1 = (1, 0, 0), E2 = (0, 1, 0), E3 = (0, 0, 1).
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Then any element f ∈ Q[t]3 can be written

f = f1(t)E1 + f2(t)E2 + f3(t)E3

with fi(t) ∈ Q[t]. Furthermore,

f =
deg(f1)∑
i=0

e1,it
iE1 +

deg(f2)∑
i=0

e2,it
iE2 +

deg(f3)∑
i=0

e3,it
iE3

where ek,i ∈ Q and ek,deg(fk) 6= 0. The element tiEk is a monomial in Q[t]3.
Now we define an ordering relation>M on the monomials ofQ[t]3: we say tiEj >M tkEl

if i > k, or if i = k and j < l. This order sorts the monomials first by the degrees, and
then breaks ties using the position within the vector in Q[t]3. It is easy to show that
(Cox et al., 1998a):

1. >M is a total ordering relation, which means the terms appearing within any
f ∈ Q[t]3 can be uniquely listed in increasing or decreasing order under >M .

2. if tiEj >M tkEl, then ti+αEj >M tk+αEl for any non-negative integer α.
3. >M is well-ordering, i.e. every non-empty collection of monomials has a smallest

element under >M .

Once we have the ordering>M on the monomials ofQ[t]3, we can express each f ∈ Q[t]3

as a sum of monomials mi

f =
l∑
i=1

eimi

with ei 6= 0 and m1 >M m2 >M · · · >M ml. We define the leading coefficient, leading
monomial, and leading term of f :

LC(f) = e1, LM(f) = m1, LT (f) = e1m1.

The leading monomial m1 is of the form tdEk. We say the degree of f is d, and the leading
term contains the standard basis vector Ek or the leading term is located in the kth
component of the vector in Q[t]3. Obviously, deg(f) = max{deg(f1), deg(f2), deg(f3)}.

3. Algorithm for Computing a µµµ-basis

This section presents a new algorithm for computing the µ-basis of a parametric curve.
The algorithm is in the spirit of Buchberger’s algorithm for computing the Gröbner basis
of a polynomial ideal. However, unlike Buchberger’s algorithm which adds remainders of
S-polynomials, our algorithm never needs to keep track of more than three generators
for the module. This is the key to the efficiency of our algorithm.

3.1. generators for moving lines

Consider the module P = {Ax + By + Cw : A(t), B(t), C(t) ∈ Q[t]} over Q[t]. Since
the map ϕ : Ax + By + Cw → (A,B,C) from the set P to Q[t]3 is an isomorphism,
in the following we use the triple (A,B,C) or Ax + By + Cw for moving lines without
distinction. When we refer to “the moving line (A,B,C)”, we mean the line defined by
the equation Ax+By + Cw = 0.
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For a planar rational curve r(t) = (a(t), b(t), c(t)), let

M = {(A(t), B(t), C(t)) : A(t)a(t)+B(t)b(t)+C(t)c(t) ≡ 0, A(t), B(t), C(t) ∈ Q[t]}. (6)

Geometrically, M consists of all moving lines that follow the curve r(t). Given the equa-
tion of a parametric curve, we have three trivial moving lines that can serve as the
generators of M . In fact,

Proposition 1. Let r(t) be a planar rational curve defined by (1), and let M be the set
of all moving lines that follow r(t). Then M can be generated by (b,−a, 0), (c, 0,−a) and
(0, c,−b).

Proof. It is obvious that moving lines (b,−a, 0), (c, 0,−a) and (0, c,−b) follow the curve
r(t). If an additional moving line (A(t), B(t), C(t)) follows the curve, then

A(t)a(t) +B(t)b(t) + C(t)c(t) ≡ 0.

Since a(t), b(t) and c(t) are relatively prime, there exist three polynomials k1(t), k2(t),
k3(t) ∈ Q[t] such that k1a+ k2b+ k3c = 1. Therefore

(A,B,C) = (k1a+ k2b+ k3c)(A,B,C) = k1(Aa,Ba,Ca)
+k2(Ab,Bb, Cb) + k3(Ac,Bc,Cc)

= k1(−Bb− Cc,Ba,Ca) + k2(Ab,−Aa− Cc,Cb) + k3(Ac,Bc,−Aa−Bb)
= (k2A− k1B)(b,−a, 0) + (k3A− k1C)(c, 0,−a) + (k3B − k2C)(0, c,−b). 2

A set of moving lines Li, i = 1, . . . , λ is said to be linearly dependent over Q[t] if there
exist polynomials hi(t) ∈ Q[t] (not all zero) such that

∑λ
i=1 hi(t)Li ≡ 0. The generators

(b,−a, 0), (c, 0,−a) and (0, c,−b) are linearly dependent over Q[t], because we can choose
h1 = c, h2 = −b and h3 = a. In addition, it can be shown that two of (b,−a, 0), (c, 0,−a)
and (0, c,−b) have leading terms containing the same standard basis vector. Actually, we
can make a more general statement:

Proposition 2. Let p(t) = (p1, p2, p3), q(t) = (q1, q2, q3), g(t) = (g1, g2, g3) ∈ Q[t]3 be
linearly dependent over Q[t]. Then at least two of the three triples p, q, and g have leading
terms that contain the same standard basis vector.

Proof. Suppose the leading terms of p(t), q(t), and g(t) contain different basis vectors.
Without loss of generality, we can assume they contain E1, E2, and E3 respectively. Then
for any polynomial h(t) ∈ Q[t], we have

deg(hp1) ≥ deg(hp2), deg(hp3);
deg(hq1) < deg(hq2) ≥ deg(hq3);
deg(hg1), deg(hg2) < deg(hg3). (7)

Since p(t), q(t), and g(t) are linearly dependent over Q[t], there exist three polynomials
h1(t), h2(t), h3(t) ∈ Q[t] such that

h1(t)(p1, p2, p3) + h2(t)(q1, q2, q3) + h3(t)(g1, g2, g3) ≡ 0. (8)

Now consider the first component. We try to derive a contradiction. From h1p1 + h2q1 +
h3g1 = 0, we know that among the three polynomials h1p1, h2q1 and h3g1, at least two
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of them have the same degree. The degree of the third is less than or equal to the degree
of the other two. Thus there are only four cases:

Case 1 deg(h1p1) < deg(h2q1) = deg(h3g1).
From (7), deg(h1p2) ≤ deg(h1p1) < deg(h2q1) < deg(h2q2). Consider the sec-
ond component of the equation (8). As discussed above for the first component,
deg(h2q2) must equal deg(h3g2) from equation h1p2 + h2q2 + h3g2 = 0.
Similarly, deg(h1p3) ≤ deg(h1p1) < deg(h3g1) < deg(h3g3), so deg(h2q3) =
deg(h3g3) by analyzing the third component of (8).
Thus we obtain deg(h3g3) > deg(h3g2) = deg(h2q2) ≥ deg(h2q3) = deg(h3g3), a
contradiction.

Case 2 deg(h2q1) < deg(h1p1) = deg(h3g1).
In this case, we have deg(h3g3) > deg(h3g1) = deg(h1p1) ≥ deg(h1p3). There-
fore deg(h3g3) = deg(h2q3). This leads to deg(h2q2) ≥ deg(h2q3) = deg(h3g3) >
deg(h3g2). Thus the equation h1p2+h2q2+h3g2 = 0 implies deg(h2q2) = deg(h1p2).
Combining these results, we have deg(h3g1) = deg(h1p1) ≥ deg(h1p2) = deg(h2q2)
≥ deg(h2q3) = deg(h3g3) > deg(h3g1), which cannot be true.

Case 3 deg(h3g1) < deg(h1p1) = deg(h2q1).
In a similar fashion we can obtain

deg(h3g2) = deg(h2q2) > deg(h2q1) = deg(h1p1) ≥ deg(h1p3)
= deg(h3g3) > deg(h3g2)

which is impossible.
Case 4 deg(h1p1) = deg(h2q1) = deg(h3g1).

Likewise, we can obtain in this case deg(h3g2) = deg(h2q2) > deg(h2q1) = deg(h1p1)
≥ deg(h1p3) = deg(h3g3) > deg(h3g2). This cannot occur.

Therefore the assumption does not hold and the proposition is proved. 2

3.2. algorithm

Starting with the three moving lines (b,−a, 0), (c, 0,−a), and (0, c,−b), we now devise
an algorithm to produce two generators for M with lowest degree. First we outline the
algorithm.

Input: (a, b, c)—the parametric equation of a planar rational curve r(t)
Output: two moving lines p and q that form a µ-basis of r(t)
Procedure:

step 1. (initialize) Set v1 = (b,−a, 0), v2 = (c, 0,−a), v3 = (0, c,−b).
step 2. The coefficients of a, b, and c are rational numbers. Step 4 requires that

those coefficients are integers. Therefore, multiply v1, v2, and v3 by the
least common multiple of the denominators of the coefficients of a, b,
and c. Then set S = {v1, v2, v3}.

step 3. Choose vi, vj from S so that LT (vi) and LT (vj) contain the same basis
vector, and deg(vi) ≥ deg(vj).

step 4. Replace vi with

vi ←
LCM(LC(vi), LC(vj))

LC(vi)
vi −

LCM(LC(vi), LC(vj))
LC(vj)

tdeg(vi)−deg(vj)vj

(9)
where LCM(i, j) is the least common multiple of i and j.
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step 5. If vi = 0, remove vi from S.
step 6. If the leading term of each non-zero element in S has a different basis

vector, then output S;
else goto step 3.

The algorithm works based on the following observations:
1. The set S contains at most three moving lines at any time.
2. Each replacement can be written

v
(l+1)
i = d1v

(l)
i + d2t

αv
(l)
j , v

(l+1)
j = v

(l)
j , v

(l+1)
k = v

(l)
k

where α(≥ 0), d1(6= 0) and d2 are integers, and l denotes the iteration number. Therefore
when v

(l+1)
i 6= 0, the elements v(l+1)

i , v(l+1)
j and v

(l+1)
k generate M since v(l)

i , v(l)
j and

v
(l)
k also generate M . If v(l)

i , v(l)
j and v

(l)
k are linearly dependent over Q[t], then so are

v
(l+1)
i , v(l+1)

j and v
(l+1)
k . When v

(l+1)
i = 0, then v

(l+1)
j and v

(l+1)
k generate M if v(l)

i , v(l)
j

and v(l)
k are a generator set. Since the initial three moving lines serve as a generating set

for M and are linearly dependent over Q[t], we know by induction that at each stage S
is a generating set for all moving lines following the curve, and as long as there are three
elements in S, they are also linearly dependent over Q[t].

3. The algorithm terminates after a finite number of steps, because each update lowers
the ordering of the leading term of one moving line.

4. At the final stage, S contains only two elements. S cannot contain three elements
when the algorithm terminates because in that case, those three elements must be linearly
dependent over Q[t]. But by Proposition 2, at least two of them have leading terms
containing the same basis vector and therefore the algorithm will continue to iterate.

On the other hand, S cannot consist of a single element (g1, g2, g3) because since
that one element must generate M , there exist three non-zero polynomials h1(t), h2(t),
h3(t) ∈ Q[t] such that

(b,−a, 0) = h1(t)(g1, g2, g3), (c, 0,−a) = h2(t)(g1, g2, g3),
(0, c,−b) = h3(t)(g1, g2, g3).

This leads to g1 = g2 = g3 = 0, a contradiction.

3.3. the outputs are the µ-basis

Section 3.2 shows that the algorithm finally outputs two elements. Denote those two
elements by p(t) and q(t) with deg(p) ≤ deg(q). Since p and q generate M , any moving
line following the curve r(t) can be generated by p(t) and q(t). Now we prove that p(t)
and q(t) are a µ-basis. This can be shown by the following two propositions.

Proposition 3. The moving line p(t) has the lowest degree in t.

Proof. By the construction of p and q, we know that the leading terms of p and q
contain different basis vectors. Denote these basis vectors by Ei and Ej (i 6= j). Without
loss of generality, we assume that i > j. For any moving line L = (l1, l2, l3) following the
curve r(t), there exist two polynomials h1(t), h2(t) ∈ Q[t] such that L = h1p + h2q, i.e.
(l1, l2, l3) = h1(p1, p2, p3) + h2(q1, q2, q3). Thus if deg(h1pj) 6= deg(h2qj), then

deg(L) ≥ deg(lj) ≥ max{deg(h1pj), deg(h2qj)} ≥ deg(qj) = deg(q) ≥ deg(p).



626 J. Zheng and T. W. Sederberg

Otherwise, if deg(h1pj) = deg(h2qj), then

deg(h1pi) > deg(h1pj) = deg(h2qj) ≥ deg(h2qi)

and thus deg(L) ≥ deg(li) = deg(h1pi) ≥ deg(pi) = deg(p). Therefore the degree of L is
never less than the degree of p in either case. This completes the proof. 2

Proposition 4. The sum of deg(p) and deg(q) is equal to the degree of the curve r(t).

Proof. Let deg(p) = µ and deg(q) = η. Then µ ≤ η.
First, (b,−a, 0), (c, 0,−a) and (0, c,−b) are moving lines following the curve, so they

can be represented by p and q. Thus

(b,−a, 0) = h1p+ h2q, (10)
(c, 0,−a) = h3p+ h4q, (11)
(0, c,−b) = h5p+ h6q (12)

with some polynomials hi(t) ∈ Q[t]. Taking the cross product of (10) and (11) gives

a(a, b, c) = (h1h4 − h2h3)p× q.

Similarly,

b(a, b, c) = (h1h6 − h2h5)p× q,
c(a, b, c) = (h3h6 − h4h5)p× q.

Since a, b and c are relatively prime, there exist three polynomials k1(t), k2(t), k3(t) ∈
Q[t] satisfying k1a+ k2b+ k3c = 1. Hence

(a, b, c) = [k1(h1h4 − h2h3) + k2(h1h6 − h2h5) + k3(h3h6 − h4h5)](p× q). (13)

Recall that LT (p) and LT (q) contain different basis vectors. Thus deg(p× q) = deg(p) +
deg(q) = µ+ η. The degree of the expression on the left side of equation (13) is n, while
the degree on the right side of equation (13) is at least deg(p × q) = µ + η. This gives
η ≤ n− µ.

Second, by Proposition 1, (b,−a, 0), (c, 0,−a) and (0, c,−b) also serve as a generating
set. Therefore we can find polynomials di(t) ∈ Q[t], i = 1, . . . , 6 such that

p = d1(t)(b,−a, 0) + d2(t)(c, 0,−a) + d3(t)(0, c,−b),
q = d4(t)(b,−a, 0) + d5(t)(c, 0,−a) + d6(t)(0, c,−b).

Taking the cross product we arrive at

p× q = d1d5a(a, b, c) + d1d6b(a, b, c)− d2d4a(a, b, c)
+d2d6c(a, b, c)− d3d4b(a, b, c)− d3d5c(a, b, c)

= [(d1d5 − d2d4)a+ (d1d6 − d3d4)b+ (d2d6 − d3d5)c](a, b, c).

Hence we have the degree estimation:

µ+ η = deg(p) + deg(q) = deg(p× q) ≥ deg((a, b, c)) = n

i.e. η ≥ n− µ.
Therefore we obtain deg(q) = η = n− µ. 2
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3.4. numerical example

We now present an example to illustrate how the algorithm works.

Example. A planar rational curve is defined by (x, y, w) = (2t2 + 4t+ 5, 3t2 + t+ 4, t2 +
2t + 3). We apply the algorithm to this curve. The elements in S at each iteration are
listed below:

v
(0)
1 = (3t2 + t+ 4,−2t2 − 4t− 5, 0)
v

(0)
2 = (t2 + 2t+ 3, 0,−2t2 − 4t− 5)
v

(0)
3 = (0, t2 + 2t+ 3,−3t2 − t− 4)

=⇒


v

(1)
1 = v

(0)
1 − 3v(0)

2 = (−5t− 5,−2t2 − 4t− 5, 6t2 + 12t+ 15)
v

(1)
2 = v

(0)
2 = (t2 + 2t+ 3, 0,−2t2 − 4t− 5)

v
(1)
3 = v

(0)
3 = (0, t2 + 2t+ 3,−3t2 − t− 4)

=⇒


v

(2)
1 = v

(1)
1 + 2v(1)

3 = (−5t− 5, 1, 10t+ 7)
v

(2)
2 = v

(1)
2 = (t2 + 2t+ 3, 0,−2t2 − 4t− 5)

v
(2)
3 = v

(1)
3 = (0, t2 + 2t+ 3,−3t2 − t− 4)

=⇒


v

(3)
1 = v

(2)
1 = (−5t− 5, 1, 10t+ 7)

v
(3)
2 = 5v(2)

2 + tv
(2)
1 = (5t+ 15, t,−13t− 25)

v
(3)
3 = v

(2)
3 = (0, t2 + 2t+ 3,−3t2 − t− 4)

=⇒


v

(4)
1 = v

(3)
1 = (−5t− 5, 1, 10t+ 7)

v
(4)
2 = v

(3)
2 + v

(3)
1 = (10, t+ 1,−3t− 18)

v
(4)
3 = v

(3)
3 = (0, t2 + 2t+ 3,−3t2 − t− 4)

=⇒


v

(5)
1 = v

(4)
1 = (−5t− 5, 1, 10t+ 7)

v
(5)
2 = v

(4)
2 = (10, t+ 1,−3t− 18)

v
(5)
3 = v

(4)
3 − tv(4)

2 = (−10t, t+ 3, 17t− 4)

=⇒


v

(6)
1 = v

(5)
1 = (−5t− 5, 1, 10t+ 7)

v
(6)
2 = v

(5)
2 = (10, t+ 1,−3t− 18)

v
(6)
3 = −v(5)

3 + 2v(5)
1 = (−10,−t− 1, 3t+ 18)

=⇒


v

(7)
1 = v

(6)
1 = (−5t− 5, 1, 10t+ 7)

v
(7)
2 = v

(6)
2 = (10, t+ 1,−3t− 18)

v
(7)
3 = v

(6)
3 + v

(6)
2 = (0, 0, 0) (to be removed from S).

Thus we obtain the µ-basis in Cartesian coordinates:

p(t) = (−5t− 5)x+ y + (10t+ 7) = (−5x+ 10)t+ (−5x+ y + 7)
q(t) = 10x+ (t+ 1)y + (−3t− 18) = (y − 3)t+ (10x+ y − 18).
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The implicit equation is thus the resultant of p(t) and q(t) with respect to t:

(−5x+ 10)(10x+ y − 18)− (−5x+ y + 7)(y − 3) = −50x2 + 175x− y2 + 6y − 159 = 0.

4. Computational Complexity

We now discuss the performance of the algorithm. Assume the curve r(t) = (a, b, c) has
degree n. The algorithm starts with moving lines v(0)

1 = (b,−a, 0), v(0)
2 = (c, 0,−a) and

v
(0)
3 = (0, c,−b), and eventually yields a µ-basis, i.e. a moving line p of degree µ and a

moving line q of degree n−µ. Without loss of generality, we assume that v(k)
1 = p, v(k)

2 = q

and v
(k)
3 = 0 after k iterations. First let us derive an upper bound on k, the number of

iterations. Note that each iteration performs one update (9), and each update operation
lowers the ordering of the leading term of a certain vi. For each vi, to decrease its degree
by one, at most three updates are required. Since p has degree µ, v(k)

1 is obtained from
v

(0)
1 by performing at most 3(n−µ) + 2 update operations, where number “2” is counted

for the case where the leading terms of v(0)
i and v

(k)
i are located in the first and third

components, respectively. In the same way, v(k)
2 comes from v

(0)
2 through at most 3µ+ 2

operations. However, the leading terms of p and q lie in the different components within
the vector in Q[t]3, so at most 3n+ 3(= (3(n−µ) + 2) + (3µ+ 2)−1) updates are needed
to produce v(k)

1 and v(k)
2 . For v(k)

3 , suppose it comes from v
(j)
3 by performing one update

operation. Then v
(j)
3 is of degree at least µ since µ is the lowest degree of any moving

line following the curve. Also notice that the first component of v(0)
3 is 0. Therefore, v(k)

3

can be obtained from v
(0)
3 by at most 3(n − µ) + 2 updates. In consequence, we have

k ≤ 6n− 3µ+ 5(= 3n+ 3 + 3(n− µ) + 2).
Next we estimate the number of arithmetic operations required for producing v

(k)
i

which is obtained from v
(0)
i with λ updates. If a moving line v(j)

i has N coefficients, the
update (9) requires at most 2(N − 1) multiplications and N − 1 additions, producing a
new element with at most N−1 coefficients. The initial moving line v(0)

i can be considered
to have at most 3(n + 1) coefficients (actually at most 2(n + 1) since one component is
zero). Then the λ updates need

λ∑
i=1

2(3(n+ 1)− i− 1) = 2λ
(

3n+ 2− λ+ 1
2

)
multiplications and λ

(
3n+ 2− λ+1

2

)
additions. Applying these formulas to v(k)

1 , v(k)
2 and

v
(k)
3 and summing them up, we find that the k iterations need at most 18n2 + 30n +

18nµ + 6 + 3µ(1 − 9µ) multiplications and 9n2 + 15n + 9nµ + 3 + 3µ(1−9µ)
2 additions.

Therefore the computational complexity of the proposed algorithm is O(n2).
By comparison, we briefly consider the previously published method of computing a

µ-basis by solving linear equations. The coefficient matrix of the equations for a degree m
moving line has dimension (n+m+ 1)× (3m+ 3) (see (4)). Solving this set of equations
using Gaussian elimination is O(n3) (Kronsjö, 1987) for the generic case of µ = bn2 c.

Our analysis shows that this new method is straightforward and needs much less
computation than the previous method. This leads to a simpler algorithm for performing
implicitization of curves and for solving other problems related to the µ-basis.
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