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Abstract

This paper first shows how the B�eezier coefficients of a given degree n polynomial are per-

turbed so that it can be reduced to a degree m ð< nÞ polynomial with the constraint that con-

tinuity of a prescribed order is preserved at the two endpoints. The perturbation vector, which

consists of the perturbation coefficients, is determined by minimizing a weighted Euclidean

norm. The optimal degree n� 1 approximation polynomial is explicitly given in B�eezier form.

Next the paper proves that the problem of finding a best L2-approximation over the interval

½0; 1� for constrained degree reduction is equivalent to that of finding a minimum perturbation

vector in a certain weighted Euclidean norm. The relevant weights are derived. This result is

applied to computing the optimal constrained degree reduction of parametric B�eezier curves in
the L2-norm.
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1. Introduction

Degree reduction of polynomial curves and surfaces is a common process in com-

puter aided geometric design. It amounts to approximating a polynomial by a lower

degree polynomial. This process is useful for many tasks in geometric modeling, such
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as data exchange, data compression, data comparison, Boolean operations and ren-

dering [9,13]. For example, degree reduction is needed when data are transferred

from one modeling system to another and these systems have different limitations

on the maximum degree of polynomials. Degree reduction can also be used to gen-

erate a piecewise continuous lower degree approximation to a given curve or surface
so as to simplify some geometric or graphical algorithms like intersection calculation

or rendering.

There have been many methods developed for degree reduction. Forrest [6]

and Farin [5] considered the inverse of degree elevation and obtained two sets

of control points. A simple convex combination of these two sets of control

points was used to generate the control points for the degree reduced curve. This

approach is easy to compute, but not optimal in the usual Lp-norm for any

p ¼ 1; 2; . . . ;þ1. Since degree reduction is a problem of approximation in nature,
methods in the classical approximation theory can be employed. In particular, the

optimal approximations with respect to the L1 or L2 metric are of interest.

Watkins and Worsey [13] used the Chebyshev economization to produce the best

L1-approximation of degree n� 1 to a given degree n polynomial. This best ap-

proximation, however, does not interpolate the given curve at the endpoints. The

endpoint constraints that guarantee a prescribed order of continuity are fre-

quently required in many applications and especially when degree reduction is

combined with subdivision to generate continuous, piecewise approximations. A
modified economization procedure was proposed by Bogacki et al. [1] which

could achieve the best uniform approximation with endpoint interpolation. La-

chance [8] and Eck [3] investigated in depth the Chebyshev economization for

the best L1-approximation with continuity constraints at the boundaries. In gen-

eral, as pointed out in [4], computing a Ck-constrained (kP 1) best degree reduc-

tion in the L1-norm needs a lot of implementation effort, and it seems that there

is no explicit formula for the degree reduced curve. These deficiencies can be

avoided by using the L2-norm. The endpoint constrained degree reduction algo-
rithm that minimized the L2-norm was analyzed by Eck [4]. His method opti-

mized Forrest�s convex combination. The optimal degree reduction with respect

to various norms was studied by Brunnett et al. [2] who also focused on separa-

bility of degree reduction into the different spatial components.

In CAGD the B�eezier form of a polynomial is a popular representation for

curves since the control polygons capture many geometric properties of curves.

It is thus tempting to perform degree reduction based on just the control points,

rather than the polynomials. Recently, Lutterkort, Peters and Reif [9] discovered
a surprising coincidence: finding a best L2-approximation over ½0; 1� from poly-

nomials of degree m to a given polynomial p of degree n ð> mÞ is equivalent

to finding the best Euclidean approximation of the vector of B�eezier coefficients

of p from the vectors of B�eezier coefficents of polynomials of degree m raised

to degree n. This result can be extended to the multivariate case [10], but does

not hold if degree reduction is subject to additional constraints like endpoint

interpolation [9]. For example, Fig. 1(a) shows a degree four polynomial

(solid):



Fig. 1. Examples of degree reduction.
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and its best L2-approximation of degree three (dashed):
�x3 � 39
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x2 þ 23

7
xþ 89

140
:

This best degree three polynomial can be obtained by minimizing the Euclidean

norm of the perturbation vector of the B�eezier coefficients. However, if some end-

point interpolations (C0 at t ¼ 0 and C1 at t ¼ 1) are enforced, the B�eezier coefficients

based Euclidean approximation method results in a non-optimal polynomial:
� 87

26
x3 � 3

13
x2 þ 40

13
xþ 1

2
;

which is shown as the dotted line in Fig. 1(b), where the dashed line represents the

best constrained L2-approximation:
� 73

16
x3 þ 13

8
x2 þ 39

16
xþ 1

2
:

This paper extends Lutterkort et al.�s discovery and analysis to the constrained degree

reduction case. We prove that finding the best L2-approximation for degree reduction

with endpoint constraints (the continuity order could be different at the two endpoints)

is equivalent to finding the best constrained approximation of B�eezier coefficients under

a certain weighted Euclidean norm. For instance, if the weighted Euclidean norm with

the weights {1, 20/3, 9, 1, 1} is used in the above example, we can get the polynomial

displayed as the dashed line inFig. 1(b). Theseweights are derived fromEq. (24) later in
the paper by using k ¼ 1, l ¼ 2 and n ¼ 4. Furthermore, in computing the best degree

reduced polynomial, unlike the approach in [9] that took use of the degree-raising

matrices, we directly perturb the B�eezier coefficients of the given polynomial so as to

impose an exact degree reduction on the perturbed polynomial. In this way, we can
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easily get the explicit formula for the degree reduced polynomial. Since it has been

shown in [2] that for any Lp-norm, the optimal degree reduction where the norm is

applied to the Euclidean distance function of two curves is identical to the optimal

component-wise degree reduction, the result obtained in this paper can be applied to

computing the degree reduction of parametric B�eezier curves.
The paper is organized as follows. Section 2 gives a review on how the best con-

strained L2-approximation can be solved by the classicalmethod in approximation the-

ory, which will be used in Section 4. Section 3 proposes a new degree reduction

algorithm. This algorithm is based on B�eezier coefficients. The explicit formulas for

the new B�eezier coefficients are derived. Section 4 proves that under a certain weighted

Euclidean norm, the method developed in Section 3 produces the same output as the

method based on theL2-normdoes. The relevantweights are derived. Finally in Section

5 some practical issues are discussed and a few examples are presented.
2. Constrained L2-approximation

We begin with the constrained approximation problem: Given a degree n polyno-

mial f ðtÞ, find a degree mð< nÞ polynomial gðtÞ such that

• gðtÞ and f ðtÞ have the same first k � 1 derivatives at t ¼ 0 and the same first l� 1

derivatives at t ¼ 1, i.e.
gðiÞð0Þ ¼ f ðiÞð0Þ; i ¼ 0; . . . ; k � 1;

gðjÞð1Þ ¼ f ðjÞð1Þ; j ¼ 0; . . . ; l� 1;

lþ k6m ð1Þ
• gðtÞ minimizes the L2-error E ¼ ð
R 1

0
ðf ðtÞ � gðtÞÞ2 dtÞ1=2 for all such possible poly-

nomials of degree 6m that satisfy the endpoint constraints (1).
This problem can be solved through two stages. In the first stage, we construct a

degree k þ l� 1 polynomial F ðtÞ interpolating f ðtÞ at t ¼ 0 up to the ðk � 1Þth order

continuity and at t ¼ 1 up to the ðl� 1Þth order continuity. This polynomial can be

written as
F ðtÞ ¼
Xk�1

i¼0

f ðiÞð0ÞHk;l
i ðtÞ þ

Xl�1

j¼0

f ðjÞð1ÞGl;k
j ðtÞ; ð2Þ
where Hk;l
i ðtÞ and Gl;k

j ðtÞ are the degree k þ l� 1 polynomials satisfying
djHk;l
i ðtÞ
dtj

����
t¼0

¼ 1; j ¼ i
0; otherwise

�
;

dhHk;l
i ðtÞ
dth

����
t¼1

¼ 0;

i; j ¼ 0; . . . ; k � 1; h ¼ 0; . . . ; l� 1;

ð3Þ
and
djGl;k
i ðtÞ
dtj

����
t¼1

¼ 1; j ¼ i
0; otherwise

�
;
dhGl;k

i ðtÞ
dth

����
t¼0

¼ 0;

i; j ¼ 0; . . . ; l� 1; h ¼ 0; . . . ; k � 1;

ð4Þ
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Both Hk;l
i ðtÞ and Gl;k

j ðtÞ have k þ l degrees of freedom, and k þ l constraints as well.
It is easy to show that they are uniquely determined (see Fig. 2 for the case of k ¼ 2

and l ¼ 3). Usually these functions are called Hermite basis functions.

The second stage is then to determine gðtÞ � F ðtÞ (or equivalently gðtÞ). Note that

the polynomials f ðtÞ � F ðtÞ and gðtÞ � F ðtÞ have k-fold zeros at t ¼ 0 and l-fold ze-
ros at t ¼ 1. A common factor tkð1� tÞl can be factored out from f ðtÞ � F ðtÞ and

gðtÞ � F ðtÞ. Thus, the settings of f ðtÞ � F ðtÞ ¼ tkð1� tÞlFn�k�lðtÞ and gðtÞ � F ðtÞ ¼
tkð1� tÞlGm�k�lðtÞ with a degree n� k � l polynomial Fn�k�lðtÞ and a degree

m� k � l polynomial Gm�k�lðtÞ are appropriate. Next we use the least squares meth-

od to evaluate Gm�k�lðtÞ.
In least squares problems, choosing proper basis functions often simplifies the

computation. It allows the coefficients of the approximant to be determined directly,

without solving a linear system. In our case, the appropriate basis functions should

be orthogonal over the interval ½0; 1� with respect to the weighting function

t2kð1� tÞ2l. The Jacobi polynomials that have been thoroughly studied in the past

[11,12] are just such a set of orthogonal polynomials. Denote by JiðtÞ the Jacobi poly-
nomials of degree i with respect to the weighting function t2kð1� tÞ2l, (k; lP 0) on

the interval ½0; 1�. They are defined by Rodrigues� formula
JiðtÞ ¼
ð�1Þi

i!
t�2kð1� tÞ�2l d

i

dti
t2kþið1
h

� tÞ2lþi
i

for i ¼ 1; 2; . . . ð5Þ
and J0ðtÞ ¼ 1. The first few polynomials are J0ðtÞ ¼ 1, J1ðtÞ ¼ 2ðk þ lþ 1Þt�ð2k þ 1Þ
and J2ðtÞ ¼ ðk þ lþ 2Þð2k þ 2lþ 3Þt2 � 2ðk þ 1Þð2k þ 2lþ 3Þt þ ðk þ 1Þð2k þ 1Þ.
These Jacobi polynomials satisfy the orthogonality relation
Z 1

0

t2kð1� tÞ2lJiðtÞJjðtÞdt ¼
1

2iþ2kþ2lþ1

iþ 2k
2k

� �
iþ 2k þ 2l

2k

� � if i ¼ j;

0 if i 6¼ j:

8>>>><
>>>>:

ð6Þ
Fig. 2. The graphs of H 2;3
i and G3;2

i .



356 J. Zheng, G. Wang / Graphical Models 65 (2003) 351–368
Now coming back to our problem of determining Gm�k�lðtÞ, we assume Fn�k�lðtÞ is
expressed:
Fn�k�lðtÞ ¼ a0J0ðtÞ þ � � � þ an�k�lJn�k�lðtÞ; ð7Þ

where the coefficients ai can actually be evaluated by
ai ¼
ð2iþ 2k þ 2lþ 1Þ iþ 2k þ 2l

2k

� �
iþ 2k
2k

� � Z 1

0

tkð1� tÞlðf ðtÞ � F ðtÞÞJiðtÞdt:
We also write Gm�k�lðtÞ in terms of Jacobi polynomials symbolically:
Gm�k�lðtÞ ¼ b0J0ðtÞ þ � � � þ bm�k�lJm�k�lðtÞ where the bi are the coefficients to be de-

termined.

Consider the square of the L2-error
E2 ¼
Z 1

0

½f ðtÞð � F ðtÞ� � ½gðtÞ � F ðtÞ�Þ2 dt

¼
Z 1

0

t2kð1� tÞ2l
Xm�k�l

i¼0

ðai

 
� biÞJiðtÞ þ

Xn�k�l

i¼m�k�lþ1

aiJiðtÞ
!2

dt:
Differentiating it with respect to the coefficient bj gives
oE2

obj
¼ �2

Z 1

0

t2kð1� tÞ2l
Xm�k�l

i¼0

ðai

 
� biÞJiðtÞJjðtÞ þ

Xn�k�l

i¼m�k�lþ1

aiJiðtÞJjðtÞ
!
dt:
To minimize E, we equate this derivative to zero. Upon invoking the orthogonality

relation, we obtain bi ¼ ai for i ¼ 0; . . . ;m� k � l. Thus, the best degree m con-

strained L2-approximant is
gðtÞ ¼ F ðtÞ þ tkð1� tÞl a0J0ðtÞ½ þ � � � þ am�k�lJm�k�lðtÞ�: ð8Þ

Eq. (8) shows that if the decomposition
f ðtÞ ¼ F ðtÞ þ tkð1� tÞl½a0J0ðtÞ þ � � � þ an�k�lJn�k�lðtÞ� ð9Þ

for a given polynomial f ðtÞ is available, the constrained L2-approximation of degree

m can be immediately obtained by just removing the last n� m terms in the square

bracket of (9). This implies that a single multidegree reduction is equivalent to step-

by-step reductions of one degree at a time.
3. Weighted least squares perturbation

Instead of pursuing the decomposition (9) for degree reduction, in this section

we perform degree reduction directly based on the B�eezier coefficients of the given

polynomial. A similar idea was also used in [7].

A degree n� 1 B�eezier polynomial gðtÞ ¼
Pn�1

i¼0 qiB
n�1
i ðtÞ can always be degree

elevated to a degree n B�eezier polynomial
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f ðtÞ ¼
Xn
i¼0

piBn
i ðtÞ ð10Þ
with the new B�eezier coefficients p0 ¼ q0; pi ¼ ði=nÞqi�1þððn� iÞ=nÞqi; i ¼ 1; � � � ; n� 1;
pn ¼ qn�1. However, the converse is generally not true unless the coefficients pi
satisfy
Xn
i¼0

ð�1Þi n
i

� �
pi ¼ 0: ð11Þ
This is because
Xn
i¼0

ð�1Þi n
i

� �
pi ¼

1

n!
dnf ðtÞ
dtn
is the coefficient of the nth degree term of f ðtÞ or the nth forward difference of the

B�eezier coefficients. It is also easy to prove by induction that under the condition (11),

we have (see [3])
qi ¼
ð�1Þi

n� 1
i

� � Xi

j¼0

n
j

� �
pj; i ¼ 0; . . . ; n� 1: ð12Þ
Therefore we hope to perturb the coefficients of the given polynomial f ðtÞ so that the

perturbed polynomial can be degree reduced and meanwhile the perturbation is as

small as possible in some measure. More specifically, given f ðtÞ as in (10) we want to

find a perturbation vector ð�0; �1; . . . ; �nÞ such that the perturbed polynomial
f�ðtÞ ¼
Xn
i¼0

ðpi þ �iÞBn
i ðtÞ ð13Þ
satisfies
Pn

i¼0ð�1Þið n
i
Þðpi þ �iÞ ¼ 0 and the sum

Pn
i¼0 wi�

2
i is minimized for a given set

of positive weights wi. This is demonstrated by Fig. 3 where �0 ¼ �4 ¼ 0 and the

polylines stand for the control polygons.

This formulation is very convenient for imposing the continuity conditions on the

endpoints. If f�ðtÞ is required to match f ðtÞ up to the ðk � 1Þth order continuity at

t ¼ 0, just set �0 ¼ � � � ¼ �k�1 ¼ 0. Similarly, �n�lþ1 ¼ � � � ¼ �n ¼ 0 guarantees Cl�1

continuity between f� and f ðtÞ at t ¼ 1. In the following we derive the explicit
formula for �i under such constraints.

Introducing a Lagrange�s multiplier k and including the constraints into the objec-

tive function, we obtain a single unconstrained objective function:
Lð�k; . . . ; �n�l; kÞ ¼
Xn�l

i¼k

wi�
2
i � k

Xn
i¼0

ð�1Þi n
i

� �
pi � k

Xn�l

i¼k

ð�1Þi n
i

� �
�i:
Taking the partial derivative of L with respect to �i and setting the derivative equal to

zero lead to



Fig. 3. Coefficient perturbation for C0-continuous degree reduction.
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1

2

oL
o�i

¼ wi�i �
1

2
kð�1Þi n

i

� �
¼ 0 for i ¼ k; . . . ; n� l
which gives
�i ¼
ð�1Þi n

i

� �
wi

k
2
; i ¼ k; . . . ; n� l: ð14Þ
In addition,
oL
ok

¼ �
Xn
i¼0

ð�1Þi n
i

� �
pi �

Xn�l

i¼k

ð�1Þi n
i

� �
�i ¼ 0:
Combining this with (14), we have
k ¼ �2
Xn
i¼0

ð�1Þi n
i

� �
pi

Xn�l

i¼k

n
i

� �2

wi

,
: ð15Þ
Thus, we obtain the perturbed B�eezier coefficients
pi þ �i ¼ pi �
ð�1Þi n

i

� �Pn
j¼0ð�1Þj n

j

� �
pj

wi
Pn�l

j¼k
n
j

� �2

=wj

; i ¼ k; . . . ; n� l: ð16Þ
With such perturbed coefficients, the degree of f�ðtÞ is less than n. Substituting (16)

into (12), we have the polynomial in degree n� 1 B�eezier form: f�ðtÞ ¼
Pn�1

i¼0 qiB
n�1
i ðtÞ,

with the B�eezier coefficients qi explicitly given by
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qi ¼ ð�1Þi

n� 1

i

� � Pi
j¼0ð�1Þj n

j

� �
pj; i¼ 0; . . . ;k� 1;

qi ¼ ð�1Þi

n� 1
i

� � Pi
j¼0ð�1Þj n

j

� �
pj þ ð�1Þi

n� 1
i

� �Pi
j¼k

n
j

� �2

wj

k
2
; i¼ k; . . . ;n� l;

qi ¼ ð�1Þi

n� 1

i

� � Pn�1

j¼i ð�1Þj n
jþ 1

� �
pjþ1; i¼ n� lþ 1; . . . ;n� 1;

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð17Þ

where k is given by (15).

Remark. (1) When the polynomial f ðtÞ is of degree < n, k and thus all �i are equal to
zero, which implies f�ðtÞ ¼ f ðtÞ. That is, the accurate solution can be obtained using

the perturbation method whenever the exact degree reduction exists. (2) Note that

the above approach reduces the degree only by one. If we would like f�ðtÞ to be of

degree m (6n� 1), n� m constraints
Xj
i¼0

ð�1Þi j
i

� �
pi þ

Xminðn�l;jÞ

i¼k

ð�1Þi j
i

 !
�i ¼ 0
for j ¼ mþ 1; . . . ; n should be put in. Construct the objective function by intro-

ducing n� m Lagrange multipliers k1; . . . ; kn�m:
Lð�k; . . . ; �n�l; k1; . . . ; kn�mÞ

¼
Xn�l

i¼k

wi�
2
i �

Xn
j¼mþ1

kj�m

Xj
i¼0

ð
"

� 1Þi j
i

� �
pi þ

Xminðn�l;jÞ

i¼k

ð � 1Þi j
i

� �
�i

�
:

Then solving the minimization problem:
minimize Lð�k; . . . ; �n�l; k1; . . . ; kn�mÞ
gives the perturbation coefficients �i and thus the degree reduced polynomial f�ðtÞ.
Compared to the case of m ¼ n� 1, �i are unlikely to have simple explicit formulas
for m < n� 1. Nevertheless, with the special choice of the weights, the multidegree

reduction can be decomposed into several reductions of one degree at a time that

have explicit formulas. This will be discussed in Section 5.1.
4. Equivalence of two methods

The L2-norm of the polynomials and the weighted Euclidean norm of the co-
efficients are in general different. It is not surprising that minimizing these two
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norms in degree reduction leads to different results. However, under some

circumstances, we can expect the same solution. Lutterkort et al. [9] have studied

the case of unconstrained degree reduction. In this section we analyze the

constrained case.

Let Pn denote the linear space of polynomials in t of degree less than or equal to n.
We also introduce four notations: h; iL, h; iLþ, h; iE and h; iEþ. h; iL stands for the

L2-inner product on Pn:
hf ; giL :¼
Z 1

0

f ðtÞgðtÞdt ð18Þ
and h; iLþ stands for the weighted L2-inner product with respect to the weighting

function t2kð1� tÞ2l:
hf ; giLþ :¼
Z 1

0

t2kð1� tÞ2lf ðtÞgðtÞdt: ð19Þ
h; iE is a map from Pn � Pn to the real number field R:
hp; qiE :¼
Xn
i¼0

wipiqi; pðtÞ; qðtÞ 2 Pn; ð20Þ
where pi and qi are the B�eezier coefficients of the polynomials pðtÞ and qðtÞ when they

are expressed in the degree n B�eezier form, and the weights wi are given positive

numbers. With the same weights, h; iEþ is a map from Pn�k�l � Pn�k�l to R:
hp; qiEþ :¼
Xn�l

i¼k

wi

n� k � l
i� k

� �2

n
i

� �2
pi�kqi�k; pðtÞ; qðtÞ 2 Pn�k�l; ð21Þ
where pi�k and qi�k are the B�eezier coefficients of the polynomials pðtÞ and qðtÞ ex-

pressed in the degree n� k � l B�eezier form. Obviously, h; iE and h; iEþ are inner

products on Pn and Pn�k�l, respectively.
Now we consider a polynomial f ðtÞ 2 Pn, It has been shown in Section 2 that f ðtÞ

can be expressed as
f ðtÞ ¼ F ðtÞ þ tkð1� tÞlfn�k�lðtÞ; fn�k�lðtÞ 2 Pn�k�l; ð22Þ

where F ðtÞ is a degree k þ l� 1 polynomial defined by (2). Furthermore, any degree

m polynomial gðtÞ that matches f ðtÞ up to the ðk � 1Þth order derivative at t ¼ 0 and

up to the ðl� 1Þth order derivative at t ¼ 1 must have the decomposition
gðtÞ ¼ F ðtÞ þ tkð1� tÞlgm�k�lðtÞ; gm�k�lðtÞ 2 Pm�k�l: ð23Þ
The perturbation method is actually to find the polynomial gðtÞ with minimum

hf � g; f � giE among all possible polynomials having the form of (23). The

following lemma shows that this is equivalent to finding gm�k�lðtÞ through an
unconstrained minimization procedure.
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Lemma 4.1. Given a polynomial f ðtÞ 2 Pn expressed by (22), the equality
hf � g; f � giE ¼ hfn�k�l � gm�k�l; fn�k�l � gm�k�liEþ holds for any polynomial gðtÞ
having the form of (23).

Proof. Assume fn�k�lðtÞ ¼
Pn�k�l

i¼0 aiBn�k�l
i ðtÞ. Degree elevate gm�k�lðtÞ to n� k � l

and let gm�k�lðtÞ ¼
Pn�k�l

i¼0 biBn�k�l
i ðtÞ. Then
tkð1� tÞl fn�k�lðtÞð � gm�k�lðtÞÞ ¼
Xn�k�l

i¼0

ðai � biÞ
n� k � l

i

� �
ð1� tÞn�k�itiþk

¼
Xn�l

j¼k

ðaj�k � bj�kÞ

n� k � l
j� k

� �
n
j

� � bnj ðtÞ;
which implies
ðaj�k � bj�kÞ
n� k � l
j� k

� ��
n
j

� �
is the jth B�eezier coefficient of polynomial tkð1� tÞlðfn�k�lðtÞ � gm�k�lðtÞÞ in the de-

gree n B�eezier form. So if gðtÞ ¼ F þ tkð1� tÞlgm�k�lðtÞ, we have
hf � g; f � giE ¼ htkð1� tÞlðfn�k�l � gn�k�lÞ; tkð1� tÞlðfn�k�l � gn�k�lÞiE

¼
Xn�l

j¼k

wj

n� k � l

j� k

� �2

n

j

� �2
ðaj�k � bj�kÞ2

¼ hfn�k�l � gm�k�l; fn�k�l � gm�k�liEþ: �
The constrained L2-approximation method is to find the polynomial gðtÞ with

minimum hf � g; f � giL among all possible polynomials in the form of (23). In a

similar way, we can easily prove.

Lemma 4.2. If polynomials f ðtÞ and gðtÞ are expressed by (22) and (23), respectively,
then the following equality holds:
hf � g; f � giL ¼ hfn�k�l � gm�k�l; fn�k�l � gm�k�liLþ:
Before developing our main result, let us recall one nice property of B�eezier coef-
ficients. That is [9].

Lemma 4.3. A polynomial pðtÞ ¼
Pn

i¼0 piB
n
i ðtÞ is of degree 6 k if and only if there

exists a polynomial qðtÞ of degree 6 k such that the B�eezier coefficients pi ¼ qðiÞ.

We are now ready to derive the particular weights wi that enable the inner pro-

ducts h; iEþ and h; iLþ to define the same orthogonal complements.
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Theorem 4.1. The orthogonal complements of Pm�k�l in Pn�k�l with respect to the
weighted L2-inner product h; iLþ and the weighted Euclidean inner product of the B�eezier
coefficients h; iEþ are equal if the weights wi are chosen to be
wi ¼
ðiþ kÞ � � � ðiþ 1Þðn� iþ lÞ � � � ðn� iþ 1Þ
i � � � ði� k þ 1Þðn� iÞ � � � ðn� i� lþ 1Þ
for k6 i6 n� l.

Proof. Let P?
m�k�l denote the orthogonal complement of Pm�k�l in Pn�k�l with respect

to the weighted Euclidean inner product, and let E1; . . . ;En�m be some basis of this

complement space. By equality of dimensions, it suffices to show that P?
m�k�l is

contained in the orthogonal complement of Pm�k�l in Pn�k�l with respect to the

weighted L2-inner product h; iLþ. That is, the polynomials Eh, ð16 h6 n� mÞ, have
to be orthogonal to all polynomials in Pm�k�l with respect to h; iLþ:
hEh; tiiLþ ¼
Z 1

0

t2kð1� tÞ2lEhti dt ¼ 0; 06 i6m� k � l:
Let Eh ¼
Pn�k�l

j¼0 ajBn�k�l
j ðtÞ. Then
hEh; tii2þ ¼
Xn�k�l

j¼0

Z 1

0

t2kð1� tÞ2lajBn�k�l
j ðtÞti dt

¼
Xn�k�l

j¼0

aj

Z 1

0

n� k � l
j

� �
ð1� tÞn�kþl�jtjþ2kþi dt

¼
Xn�k�l

j¼0

aj
nþ k þ lþ iþ 1

n� k � l
j

� �
nþ k þ lþ i
2k þ iþ j

� ��
:

The last equality is due to the identity
R 1

0
Bn
i ðtÞdt ¼ 1=ðnþ 1Þ. Comparing with the

inner product h; iEþ, we further rewrite
hEh; tiiLþ ¼
Xn�l

j¼k

wj

n� k � l
j� k

� �2

n
j

� �2

n� k � l
j� k

� �
nþ k þ lþ i
k þ iþ j

� � aj�k

nþ k þ lþ iþ 1

� 1

wj

n
j

� �2

n� k � l
j� k

� �2

¼
Xn�l

j¼k

wj

n� k � l
j� k

� �2

n
j

� �2
aj�kbj�k;



J. Zheng, G. Wang / Graphical Models 65 (2003) 351–368 363
where
bj�k ¼
1

nþ k þ lþ iþ 1

1

wj

n
j

� �2

nþ k þ lþ i
k þ iþ j

� �
n� k � l
j� k

� � ;

06 i6m� k � l; k6 j6 n� 1
or for i ¼ 0; . . . ;m� k � l; j ¼ 0; . . . ; n� k � l,
bj ¼
1

nþ k þ lþ iþ 1

1

wjþk

n

jþ k

� �2

nþ k þ lþ i

2k þ iþ j

� �
n� k � l

j

� �

¼ ðn� k � jþ lÞ � � � ðn� k � jþ 1Þðjþ 2k þ iÞ � � � ðjþ k þ 1Þ
ðjþ kÞ � � � ðjþ 1Þðn� j� kÞ � � � ðn� j� k � lþ 1Þ

� n!=ðnþ k þ lþ iþ 1Þ!ðn� k � lÞ!wjþk:
So if
wi ¼
ðiþ kÞ � � � ðiþ 1Þðn� iþ lÞ � � � ðn� iþ 1Þ
i � � � ði� k þ 1Þðn� iÞ � � � ðn� i� lþ 1Þ ;
then
bj ¼
n!

ðnþ k þ lþ 1Þ!ðn� k � lÞ! ðjþ 2k þ iÞ � � � ðjþ 2k þ 1Þ
is of degree i in j. Thus, by Lemma 4.3, pðtÞ ¼
Pn�k�l

i¼0 biBn�k�l
i ðtÞ is a polynomial of

degree 6 i. By assumption, we have
hEh; tiiLþ ¼ hEh; pðtÞiEþ ¼ 0: �
Since the best approximation problem is closely related to the orthogonal decom-

position of the space, combining the previous results, we have
Theorem 4.2. If the weights satisfy
wi ¼
1;

i ¼ 0; . . . ; k � 1 or

n� lþ 1; . . . ; n;
ðiþkÞ���ðiþ1Þðn�iþlÞ���ðn�iþ1Þ
i���ði�kþ1Þðn�iÞ���ðn�i�lþ1Þ ; otherwise;

8<
: ð24Þ
then for a given polynomial f ðtÞ 2 Pn, the constrained approximation problem
ming2Pm kf ðtÞ � gðtÞk subject to gðiÞð0Þ ¼ f ðiÞð0Þ for i ¼ 0; . . . ; k � 1 and
gðjÞð1Þ ¼ f ðjÞð1Þ for j ¼ 0; . . . ; l� 1 has the same minimizer for the norm k � k induced
either by the L2-inner product h; iL or the weighted Euclidean inner product h; iE.
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Proof. Let f ðtÞ ¼ F ðtÞ þ tkð1� tÞlfn�k�lðtÞ. From Theorem 4.1, we know that the

polynomial fn�k�lðtÞ 2 Pn�k�l can be decomposed uniquely according to
fn�k�lðtÞ ¼ gm�k�lðtÞ þ g?m�k�lðtÞ; gm�k�l 2 Pm�k�l; g?m�k�l 2 P?
m�k�l:
Thus, by orthogonality, Lemma 4.1 and 4.2, gðtÞ ¼ F ðtÞ þ tkð1� tÞlgm�k�lðtÞ is the
best approximation for both norms induced by h; iL and h; iE. �

Let us look at two simple cases. The C0 continuity at the two endpoints cor-

responds to k ¼ l ¼ 1. The weights for achieving the best L2-approximation in

this case are
C0 :
wi ¼ ðiþ1Þðnþ1�iÞ

iðn�iÞ ; i 6¼ 0; n
w0 ¼ wn ¼ 1

�

The C1 continuity at the two endpoints corresponds to k ¼ l ¼ 2 and in this case the

weights are
C1 :
wi ¼ ðiþ2Þðiþ1Þðnþ2�iÞðnþ1�iÞ

iði�1Þðn�iÞðn�1�iÞ ; i 6¼ 0; 1; n� 1; n
w0 ¼ w1 ¼ wn�1 ¼ wn ¼ 1

�

5. Discussion

In this section we discuss some practical issues related to the L2-degree reduction,

such as the stepwise degree reduction, approximation error and the combination of

degree reduction and subdivision.
5.1. Stepwise degree reduction

In order to reduce the degree of a polynomial from n to any m < n, Section 3

includes n� m constraints on the objective function and solves a complex minimi-

zation problem. An alternative approach is to recursively apply the procedure of

reducing the degree by one at each time. If in each step the weights are chosen ac-

cording to (24), then each degree reduction based on the perturbation method is a

constrained L2-degree reduction. By the property of the constrained L2-approxima-
tion mentioned at the end of Section 2, the best approximation property with

respect to the L2-norm still holds for this stepwise approach. Note that this is

non-trivial to prove directly in the discrete weighted Euclidean norm. Besides the

best approximation property, the continuity at the endpoints also remains the same

after performing this stepwise degree reduction. Fig. 4 illustrates an L2-degree re-

duction of a quintic to degree 4 and degree 3 polynomials with C0 continuity at

t ¼ 0 and C1 continuity at t ¼ 1. The quintic polynomial is with B�eezier coefficients

½1=4; 7=4; 0; 1=2; 1; 1=5�. The best approximating quartic and cubic polynomials are
defined by the B�eezier coefficients ½1=4; 367=200;�9=10; 6=5; 1=5� and ½1=4; 271=
480; 23=15; 1=5�. The weights used to derive these polynomials are {1, 5, 5, 8, 1,

1} and {1, 20/3, 9, 1, 1}.



Fig. 4. Stepwise L2 degree reduction with C0 at t ¼ 0 and C1 at t ¼ 1.
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5.2. Error estimation

From the weighted least squares perturbation approach, we can also estimate the

L1-error. In fact, consider the error between f ðtÞ and f�ðtÞ, where f ðtÞ and f�ðtÞ are
defined by (10) and (13):
jf ðtÞ � f�ðtÞj ¼
Xn�l

i¼k

�iBn
i ðtÞ

�����
�����

¼
Xn�l

i¼k

ð�1Þi n
i

� �
wi

Bn
i ðtÞ

��������

��������
Xn
j¼0

ð
����� � 1Þj n

j

� �
pj

�����
Xn�l

j¼k

n
j

� �2

wj

,
:

In practical applications, the continuity orders at the two endpoints are often the

same, i.e., k ¼ l. In the following we estimate the maximal approximation error for

the L2-degree reduction with such Ck endpoint constraints. Since the weights wi for

the L2-degree reduction are given by (24), thus in this case
n
j

� �2
,

wj ¼
n

jþ k

� �
n

j� k

� �
:

Using the binomial identity [4]:
Xn�k

j¼k

n
jþ k

� �
n

j� k

� �
¼ 2n

n� 2k

� �
;
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we have � �� � � �� �� �

jf ðtÞ � f�ðtÞj ¼

Pn
j¼0

ð�1Þj n
j

pj
��� ���

2n
n� 2k

� � Xn�k

i¼k

ð�1Þi
n

i� k
n

iþ k

n
i

� � Bn
i ðtÞ

�������
�������
: ð25Þ
Thus, the maximal error depends on the estimation of
Mn;k ¼ max
t2½0;1�

Xn�k

i¼k

ð

��������
� 1Þi

n
i� k

� �
n

iþ k

� �
n
i

� � Bn
i ðtÞ

��������
:

Eck [4] used numerical methods to obtain several tight upper bounds for Mn;1, Mn;2,

and Mn;3 with n6 30. If a precise bound is not required, the convex-hull property of

B�eezier form can provide a simple upper bound:
max
t2½0;1�

jf ðtÞ � f�ðtÞj6

Pn
j¼0

ð�1Þj
n

j

� �
pj

����
����

2n

n� 2k

� � max
k6 i6 n�k

n

i� k

� �
n

iþ k

� �
n

i

� �

¼

n

½n
2
� � k

� �
n

½n
2
� þ k

� �
n

½n
2
�

� �
2n

n� 2k

� � Xn
j¼0

ð�1Þj
n

j

� �
pj

�����
�����:
In the case of the stepwise degree reduction, i.e., the degree of a polynomial is re-

duced more than one, the bound on the approximation error can be estimated by add-

ing up all themaximal errors appearing in each step. But this bound is usually excessive.

5.3. Degree reduction with subdivision

When the approximation error between f ðtÞ and f�ðtÞ is larger than the prescribed

tolerance, we can subdivide the interval ½0; 1� and perform constrained degree reduc-
tion on each subinterval. Since Ck continuity is preserved at the two endpoints, we

finally get a continuous, piecewise approximation to f ðtÞ. Observe that in (25) the

maximal error consists of two parts:
Mn;k

�
2n

n� 2k

� �
depends only on degree n and integer k; and
Xn
j¼0

ð
����� � 1Þj n

j

� �
pj

�����

depends on the polynomial. So the process of subdivision only changes the value of

the second part. For example, if we subdivide f ðtÞ at h� 1 equidistant parameter



Fig. 5. C1 degree reduction with subdivision.
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values ti ¼ i=h (i ¼ 1; . . . ; h� 1), then the second part corresponding to each segment

is decreased by a factor of 1=hn. This can be used to determine h—the number of
segments such that the approximation error between each segment and the original

polynomial is within the given tolerance.

It is worth mentioning that the techniques developed in the paper are also valid

for degree reduction of parametric B�eezier curves if the Euclidean distance function

between curves is considered. Refer to Fig. 5, for example. Fig. 5(a) shows a degree

5 B�eezier curve and its degree 4 approximation They are C1 continuous at both end-

points. The maximal approximation error is 0.33829. If we split the degree 5 curve

at t ¼ 1=2 and perform the C1-degree reduction on each segment, we obtain two
degree 4 B�eezier curves. The maximal approximation error between these degree 4

curves and the original degree 5 curve is 0.01057. The result is illustrated in Fig.

5(b).

So far we have shown two different methods for approximating a polynomial by a

lower degree one. These different approaches yield the same L2-approximation and

thus provide more insights to the constrained L2-degree reduction problem. More-

over, the perturbation method proposed in Section 3 not only produces the con-

strained L2-approximation, but also presents a family of degree reduction methods
that depend on the choice of the weights. Therefore how to choose appropriate

weights so as to achieve various approximation efforts is an interesting problem that

warrants further study.
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