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Robust Surface Reconstruction via Dictionary Learning
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Figure 1: Reconstruction of the Merlion model by our proposed method and state-of-the-art: SP [Kazhdan and Hoppe 2013], APSS [Guen-
nebaud and Gross 2007], RIMLS [Öztireli et al. 2009], and SC [Dey and Wang 2013]. It can be seen that our reconstruction can recover
different levels of details better.

Abstract

Surface reconstruction from point cloud is of great practical impor-
tance in computer graphics. Existing methods often realize recon-
struction via a few phases with respective goals, whose integration
may not give an optimal solution. In this paper, to avoid the inherent
limitations of multi-phase processing in the prior art, we propose a
unified framework that treats geometry and connectivity construc-
tion as one joint optimization problem. The framework is based on
dictionary learning in which the dictionary consists of the vertices
of the reconstructed triangular mesh and the sparse coding matrix
encodes the connectivity of the mesh. The dictionary learning is
formulated as a constrained `2,q-optimization (0 < q < 1), aiming
to find the vertex position and triangulation that minimize an energy
function composed of point-to-mesh metric and regularization. Our
formulation takes many factors into account within the same frame-
work, including distance metric, noise/outlier resilience, sharp fea-
ture preservation, no need to estimate normal, etc., thus providing
a global and robust algorithm that is able to efficiently recover a
piecewise smooth surface from dense data points with imperfec-
tions. Extensive experiments using synthetic models, real world
models, and publicly available benchmark show that our method
outperforms the state-of-the-art in terms of accuracy, robustness to
noise and outliers, geometric feature and detail preservation, and
mesh connectivity.
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1 Introduction

This paper considers the problem of surface reconstruction that
takes as input a set of dense, unorganized points sampled from a
subjacent, piecewise smooth surface and outputs a triangular mesh
to approximate the surface. It is by nature an inverse problem,
which is often ill-posed without prior assumptions. The input points
usually have artifacts such as noise, outliers or missing data, which
are inherent in acquisition process. The normal at points may be
absent and the point sampling may not be uniform. This type of
input and output is common in practice [Berger et al. 2013]. The
co-existence of sharp features such as crease edges and corners and
data artifacts makes the problem very challenging.
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Over the past two decades extensive work has been done on sur-
face reconstruction [Berger et al. 2014]. Existing methods can
roughly be classified into combinatorial approaches and implicit
approaches. Both involve a few separate phases. For example,
while combinatorial approaches may require denoising, vertex sub-
set determination, feature detection, and triangulation, implicit ap-
proaches require normal estimation, level set function construction
and iso-surfacing. However, some of these phases such as normal
estimation are themselves challenging tasks. They are designed for
their respective goals. As a result, the integration of them may not
achieve the best performance, especially when the input data have
imperfections.

Observing the inherent limitation of such multi-phase processing in
the prior art, in this paper we advocate a totally different path that
is to work directly on the ultimate goal of surface reconstruction,
which is to find the geometry and connectivity of the reconstructed
mesh best fitting the input point cloud. We propose a unified frame-
work to jointly optimize geometry and connectivity for surface re-
construction. Specifically, the framework is based on sparse dictio-
nary learning in which the vertices of the reconstructed triangular
mesh are treated as the dictionary elements and the connectivity of
the mesh is encoded in the sparse coding matrix. A key observation
here is that the point cloud contains redundancy in terms of shape
and each point in it can be sparsely encoded as a convex combina-
tion of triangle vertices. This sparse representation conveys connec-
tivity information of the mesh if we impose constraints on the cod-
ing. Dictionary learning has been successfully used in sparse signal
representation and reconstruction [Aharon et al. 2006; Wright et al.
2010], where signals are represented as a linear combination of only
a few elements that form a dictionary.

Our dictionary learning is formulated as a constrained optimization
problem that minimizes an energy function composed of point-to-
mesh metric and regularization. The constraints are introduced to
induce the dictionary sparsity and the mesh manifoldness. While
many combinatorial methods use the distance between the recon-
structed mesh vertices and the sampling points, we propose to use
the distance of the sampling points to the reconstructed mesh, which
is more accurate to describe the deviation of the mesh from the
point cloud model. Moreover, note that the data obtained by laser
range scanners or structured light depth camera typically contain
spatially varying noise or uncertainty [Tošić et al. 2010], for which
the Gaussian noise assumption in conventional dictionary learning
is not appropriate. Therefore, we define our distance metric based
on sparse norm `2,q, q ∈ (0, 1). Our experiment shows that this
sparse norm can properly handle noise and outliers and encourage
non-smooth features in the solution. Since the `2,q-norm is not dif-
ferentiable, we present a tailored augmented Lagrangian method to
efficiently solve the optimization problem.

It is also worth pointing out that the normal information is not
necessary to our method, which enables our method to avoid the
pitfall of normal estimation that is required in many existing sur-
face reconstruction algorithms. Normal estimation is known to be
very sensitive to noisy data and sharp features [Huang et al. 2009;
Huang et al. 2013], and the unreliable normals often cause large re-
construction errors. In addition, our method can handle watertight
models and open mesh models in the same way while some existing
methods can only deal with watertight models.

This work offers two main contributions. First, we present a dic-
tionary learning based framework for surface reconstruction. This
framework takes all considerations into account, including distance
metric, noise/outlier resilience, sharp feature preservation, no need
to compute normal explicitly, etc. It thus provides a global solu-
tion with all the data and processes being jointly considered in one
phase. Second, an effective algorithm for the proposed constrained

`2,q-optimization, q ∈ (0, 1), is designed to iteratively optimize the
dictionary and sparse coding matrix, which progressively update
the mesh towards the solution. Particularly, it should be stressed
that in our approach topology optimization is performed as part of
the reconstruction process in order to align triangle edges to fea-
tures, which was not seen in the prior art. Extensive experiments
demonstrate that our method is able to produce highly accurate
reconstruction, preserves well different levels of geometric details
and sharp features, and is robust to noise even with different scales
and outliers. Fig. 1 shows such an example where our reconstruc-
tion can recover different levels of details and geometric features
well while the other methods either over-smooth or lose the details.

2 Related Work

Combinatorial surface reconstruction methods. The methods
in this class typically generate a triangular mesh by interpolating
a subset of the input points as vertices. Classic combinatorial al-
gorithms such as Delaunay triangulation [Kolluri et al. 2004] and
alpha shapes [Edelsbrunner and Mücke 1994] are often employed
for this purpose. The well-known algorithms are Cocone [Dey and
Giesen 2001; Amenta et al. 2002], which takes the point cloud in
3D as input and outputs a piecewise linear approximation using De-
launay triangles, and its various extensions such as [Dey and Wang
2013]. A good survey can be found in [Cazals and Giesen 2006;
Dey 2007]. The scale-space meshing method in [Digne et al. 2011]
proposes to filter the sample point cloud first via mean curvature
motion and then interpolate the filtered subset of the original points.
Due to interpolation, these methods likely produce jaggy surfaces
in the presence of noise. Post-processes are needed to improve the
smoothness. If the input points are non-uniformly distributed or in-
complete, they do not work well either. While our method can be
considered as a combinatorial method, it optimizes the location of
the mesh vertices and thus is resilient to noise and outliers.

Implicit surface reconstruction methods. Implicit methods
construct implicit functions or indicator functions for the under-
lying surface the point cloud is sampled from, and perform iso-
surfacing to generate a mesh. They are more suitable for data that
are noisy, incomplete or non-uniformly distributed. [Hoppe et al.
1992] proposes to estimate the tangent plane at each point using
some local methods and then computes signed distance field that
defines the implicit function. The implicit function can also be de-
fined globally, as the sum of radial basis functions centered at the
points [Carr et al. 2001] or piecewise polynomial functions [Ohtake
et al. 2005; Nagai et al. 2009]. Voronoi-based variational recon-
struction first estimates a tensor field whose principal axes repre-
sent the normal vector and then computes an implicit function by
solving a generalized eigenvalue problem such that its gradient is
aligned with the normal [Alliez et al. 2007]. The Poisson surface
reconstruction [Kazhdan et al. 2006] takes as input a set of oriented
points and constructs an indicator function as the implicit function,
which is solved using a Laplacian system discretized over a mul-
tiresolution B-spline basis. In general, implicit methods require the
points to be equipped with oriented normals. However, normal esti-
mation itself is not a trivial task in geometry processing and is very
sensitive to noise [Mitra et al. 2004]. Moreover, computing a con-
sistent normal orientation requires additional work [Mullen et al.
2010], which turns out to be surprisingly difficult [Hoppe et al.
1992; Mello et al. 2003]. By contrast, the normal information is
not compulsory in our reconstruction.

Point cloud consolidation. When the input data contain a con-
siderable level of imperfection, in general the point cloud should be
consolidated before reconstruction. Various point cloud denoising
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or filtering methods have been proposed [Adams et al. 2009; Ros-
man et al. 2013; Schall et al. 2007]. Deriving a new point set from a
given point cloud has also been considered in the context of defining
point set surfaces. Well-known approaches include moving least
squares (MLS) [Alexa et al. 2003] and extremal surfaces [Amenta
and Kil 2004]. To improve the stability and performance of MLS
especially in handling sparse sampling and sharp features, algebraic
point set surfaces [Guennebaud and Gross 2007], implicit MLS
(IMLS) combined with local kernel regression [Öztireli et al. 2009],
and non-local point set surfaces [Guillemot et al. 2012] were pro-
posed. To better deal with outliers and delicate surface structures,
Lipman et al. [2007] develop an effective, parameterization-free
projection operator (LOP). Huang et al. [2009] improve the LOP
method with a more reliable one called weighted locally optimal
projection operator (WLOP). More recent work includes l1-sparse
reconstruction of sharp point set surfaces which can recover ori-
entation and positions of highly noisy point sets with sharp fea-
tures [Avron et al. 2010], edge-aware point set resampling which
can reliably resample point data that contain noise and outliers, and
are incomplete and unevenly sampled [Huang et al. 2013], and con-
tinuous WLOP which can achieve interactive frame rates for mod-
erately sized point clouds [Guillemot et al. 2012]. In our proposed
mesh reconstruction, the imperfect input data points are automati-
cally handled in the dictionary learning based l2,q-optimization and
there is no need to introduce a preprocess to consolidate them.

Sparse dictionary learning. A dictionary is a collection of ele-
ments that capture the signal structure and span the signal space. A
signal can be represented by a linear combination of the dictionary
elements. A sparse representation is the one that is dependent of
only a few dictionary elements. Sparse representation has proven
to be a very powerful tool in computer vision and signal process-
ing, and recently it also achieves success in geometric processing,
for example, in [Avron et al. 2010; He and Schaefer 2013; Wang
et al. 2014]. Dictionary learning for sparse representation, which
uses a dictionary of primitive elements learned from the signal and
decomposes the signal into these primitive elements, has become
an extremely active area of research in recent years [Wright et al.
2010; Aharon et al. 2006; Elad and Aharon 2006]. The process ba-
sically involves two steps: learning the dictionary and computing
(sparse) coefficients for representing the signal using the dictionary
elements. Dictionary learning has been applied in many contexts,
for example, in signal classification and image de-noising. How-
ever, there has been no work on learning dictionaries for surface
reconstruction except for [Gal et al. 2007; Sharf et al. 2004] that
uses dictionary based learning for surface completion.

3 Formulation

3.1 Surface Reconstruction

Problem. Our problem can be stated as follows: given the point
set P = {p1,p2, · · · ,pn} sampled from a piecewise smooth sur-
face S, we want to find a manifold triangular mesh M = {V,F}
with vertex set V = {v1,v2, · · · ,vm} and triangle set F =
{f(vi,vj ,vk)|vi,vj ,vk ∈ V, i �= j, i �= k, j �= k} to approx-
imate the underlying surface S so that the approximation error is as
small as possible.

Approximation error. As S is unknown, it is impossible to mea-
sure the approximation error of mesh M to surface S directly. Con-
sidering the fact that point set P is sampled from S, point set P can
be used to replace surface S to estimate the approximation error
d(S,M). We define the distance between point pi and mesh M
as d(pi,M) = min

f∈F
d(pi, f) where d(pi, f) is the distance from

point pi to triangle f formed by three vertices vr,vs and vt from
V , i.e.,

d(pi, f) = ‖pi−p′
i‖ = min

α+β+γ=1
α,β,γ≥0

‖pi−(αvr+βvs+γvt)‖ (1)

where p′
i = α∗vr + β∗vs + γ∗vt, with barycentric coordinates

(α∗, β∗, γ∗) with respect to triangle f , is the point on triangle f
that is closest to pi.

3.2 Dictionary Learning Formulation

Sparse representation. For sample point pi, if f =
f(vr,vs,vt) is the triangle closest to it over mesh M , we say pi

corresponds to f , and we can further find a point p′
i = br

ivr +
bs
ivs + bt

ivt on f , which is the closest point of f to pi. Denoting
V = [v1,v2, · · · ,vm] ∈ R3×m as the vertex position matrix of
mesh M , we can write p′

i as p′
i = Vbi, where bi is an m × 1

vector with at most three nonzero elements br
i ,b

s
i and bt

i corre-
sponding to vertices vr,vs and vt. Denote the displacement from
p′
i to pi by zi = pi − p′

i. Then zi = pi −Vbi.

Let P = [p1,p2, · · · ,pn] ∈ R3×n, B = [b1,b2, · · · ,bn] ∈
Rm×n and Z = [z1, z2, · · · , zn] ∈ R3×n. We have P = VB+Z
with a sparse coefficient matrix B whose column vector contains at
most three non-zero elements. This gives a sparse representation of
the point cloud using the vertices in V. From the dictionary learn-
ing perspective [Aharon et al. 2006], P is the given signal, V is
the dictionary, B is the sparse coding matrix and Z is the global
approximation error matrix. As shown in Fig. 2, all the points sam-
pled from the region approximated by a triangle can be represented
as a convex combination of the same three vertices.

Figure 2: (Top) An illustration of the reconstruction problem.
Given point set P (blue) sampled from surface S, we approximate S
with piecewise linear surface M with vertices V (red) and triangles
F. (Bottom) The reconstruction problem is formulated as a dictio-
nary learning problem where P is the position of sample point set,
V is the dictionary and B (green) is the sparse coding matrix that
encodes triangles F.

l2,q-optimization. Given sample point position matrix P, surface
reconstruction is to find the vertices and connectivity of the recon-
structed mesh M best fitting the sample points, which corresponds
to finding dictionary V and sparse coding matrix B. Therefore we
formulate the surface reconstruction as a dictionary learning prob-
lem, which is achieved by performing a constrained minimization
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over V and B:

min
V, B

E = Eappr + Ereg (2)

s.t. ‖bi‖0 ≤ 3, ‖bi‖1 = 1, bi ≥ 0, ∀i
B ∈ MT

where

Eappr =
1

n
‖Z‖2,q =

1

n
‖P−VB‖2,q =

1

n

n∑
i=1

‖pi−Vbi‖q2 (3)

measures the distance from the point set to the reconstructed mesh
in l2,q-norm; Ereg is a regularization term that will be described in
Section 3.3; ‖bi‖0 ≤ 3 means that the number of nonzero ele-
ments in vector bi is no greater than 3, encoding the corresponding
triangle in F; and ‖bi‖1 = 1 is the requirement of barycentric co-
ordinates; bi ≥ 0 stands for element-wise nonnegativity; and MT
is a subset of Rm×n, consisting of elements whose columns cor-
respond to triangles that can form a manifold mesh. A mesh is a
manifold if each edge of the mesh is incident to only one or two
faces and the faces incident to a vertex form a closed or an open
fan.

Figure 3: (Left) The point cloud of the fandisk model is corrupted
by noise and outliers. (Right) Reconstruction results of the model
with different q values in Eq. (3). As the q value decreases, the
Hausdorff distance ε between the reconstructed mesh M and the
ground truth surface S decreases, and the features get better re-
covered. The distribution of the reconstruction residuals in the his-
tograms further emphasizes that the residuals would congregate to-
ward zero with smaller q value.

Remark 1. The objective function in Eq. (3) is specifically de-
signed to be in l2,q-norm. To avoid the excessive influence of large
residuals caused by noise and outliers contained in the point cloud,
we choose a small q ∈ (0, 1) value. Though the sparse l2,q-norm
leads to a nonconvex problem, it is known that `q, q ∈ (0, 1) out-
performs `2 and even `1 in presence of noise, outlines and sharp
features [Avron et al. 2010; Bouaziz et al. 2013]. In addition, by us-
ing l2,q-norm, we are not solving for simple element-wise sparsity,
but instead for group sparsity [Eldar et al. 2010] where all com-
ponents of a residual vector zi vanish simultaneously. As shown
in Fig. 3, choosing q ∈ (0, 1) significantly improves the resilience
of the method to large amount of noise and outliers. With the de-
creasing q value, the reconstruction gets less affected by the noise
and outliers contained in the input point cloud and delivers better
results.

Remark 2. The sparse coding matrix B encodes the connectivity
information of meshM . Each column bi has at most three nonzero
elements bri ,b

s
i and bti indicating the sparsity of the dictionary,

which also implies that point pi corresponds to the triangle formed
by vertices vr,vs and vt. In this way, each sampling point pi
introduces one triangle, and point set P introduces at most n trian-
gles as different sample points may correspond to the same triangle.

According to Euler-Poincaré formula, the number of triangles in a
triangular mesh with m vertices is about 2m, which suggests that
we choose m ≤ n/2. It is also worth pointing out that our ap-
proach is different from classic sparse coding since in our approach
sparseness itself is not an optimization objective and the number of
basis elements is fixed to be three.

3.3 Regularization

The regularization term Ereg is to regularize the reconstructed mesh
M to produce good mesh quality.

While the reconstructed mesh should cover the whole region
spanned by the sample point set, we would like the mesh vertices
to be distributed relatively evenly in space. Observing that over all
the triangles of the same area, the one with the shortest perimeter
is equilateral, we introduce the following edge length term to the
regularization term:

Eedge =
1

l

l∑
i=1

‖ei‖22, (4)

where l is the number of edges and ei represents the vector of an
edge of mesh M . If the two end vertices of the edge are vs and vt,
then ei = vt − vs. Thus the edge length term is quadratic in V.

Moreover, in case reliable normals at points are supplied with the
point set, such prior information can still be incorporated into our
optimization model to guide the reconstruction. Specifically, con-
sider point pi with normal vector npi . If pi corresponds to tri-
angle f , we align the normal of triangle f with npi by enforcing
npi · ej = 0 for three edges ej of triangle f . Thus a normal regu-
larization term is defined:

Enormal =
1

3n

n∑
i=1

∑
ej∈f

(npi · ej)
2, (5)

which is also quadratic in V.

Overall regularization term. By integrating both terms together,
we obtain the overall regularization term: Ereg = ωeEreg +
ωnEnormal, where ωe and ωn are nonnegative tradeoff weights. Here
we want to emphasize that the normal regularization is not necessar-
ily required in our formulation, and if the input data do not supply
reliable normal information, ωn is simply set to zero. In our exper-
iments, all examples except the surface reconstruction benchmark
tests are computed without the normal regularization term.

4 Numerical Optimization

We have converted the problem of constructing mesh M from P
into solving a constrained optimization problem (2), which could be
very hard (NP-hard) [Vavasis 2009]. This section describes an effi-
cient alternating direction optimization approach to solve the prob-
lem, which involves three steps: initialization, sparse coding and
dictionary update. The initialization step is to initialize the dictio-
nary V and sparse coding matrix B. While sparse coding is to fix
V and update B, dictionary update is to fix B and update V. This
type of alternating directions optimization strategy is quite common
and empirically successful in dictionary learning and matrix factor-
ization [Mairal et al. 2010; Jain et al. 2013]. When the iteration
converges, we can obtain a triangular mesh M in that dictionary V
represents the positions of vertices and sparse coding matrix B en-
codes its triangulation. The whole algorithm is outlined in Alg. 1,
followed by the detailed description of the three steps.
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Algorithm 1 Dictionary Learning Based Surface Reconstruction.

Input:
Point cloud: P = [p1, · · · ,pn] ∈ R3×n;

1: Initialize dictionary V and sparse coding matrix B from P;
2: repeat
3: Update matrix B (Sparse Coding);
4: Update V (Dictionary Update);
5: until convergence
6: return Mesh M(V,F);

4.1 Initialization

First, we sample m points from point set P by applying Poisson-
disk Sampling algorithm [Corsini et al. 2012], which gives the ini-
tial positions of the reconstructed mesh vertices.

Second, we construct the initial sparse coding matrix B which gives
the connectivity of the mesh. We start with an empty mesh and pro-
gressively update it by checking each input point. For point pi, we
select its k-nearest points in V to construct a triangle set T (pi),
which has at most

(
k
3

)
triangles. The triangle to which point pi

corresponds is chosen from triangle set T (pi) according to the fol-
lowing two criteria and it is then added into the current mesh. Our
goal is to find the triangle that helps minimize the objective func-
tion of Eq. (2) and updates the current mesh without violating the
manifold property. Once the triangle is selected, column vector bi
is then initialized by solving Eq. (1).

Projection energy. We define a projection energy E(pi, f) for
point pi and triangle f ∈ T (pi):

E(pi, f) = Eappr(pi, f) + ωeEedge(f) + ωnEnormal(pi, f) (6)

where Eappr(pi, f) = |d(pi, f)|q , Eedge(f) = 1
3

∑
ei∈f
‖ei‖22, and

Enormal(pi, f) =
1
3

∑
ei∈f

(ei · npi)2. Eq. (6) can be considered as a

special case of Eq. (2) for point pi and triangle f . We compute the
projection energy for each triangle in T (pi).

Manifold constraint. Note that in the optimization model of
Eq. (2), the manifold constraint B ∈ MT is a hard constraint. Thus
we search for the triangle in T (pi) with the smallest energy value
and check whether adding it to the current mesh still forms a mani-
fold mesh. If not, we remove the triangle. This process is repeated
until there is no triangle left or we meet a triangle that makes the
updated mesh still a manifold when it is added to the current mesh.
Then this triangle is selected.

It can be seen that this initialization process depends on the order of
processing the input points. The generated initial mesh is typically
not of in high quality in terms of both geometry and topology. How-
ever, it provides an initial manifold mesh. The vertex positions and
connectivity will be improved later by the proposed sparse coding
and dictionary update which minimize Eq. (2).

4.2 Sparse Coding

In sparse coding, the dictionary V is fixed and the challenge of
the optimization problem lies in identifying which three dictionary
elements vr,vs,vt should be chosen for each point pi such that
the Eappr + Ereg value is the smallest among all possible dictio-
nary element combinations. Once the three optimal elements are
determined, the coefficient update becomes a simple least squares

problem (Eq. (1)). A greedy strategy like matching pursuit [Mal-
lat and Zhang 1993] can be used to identify the optimal dictionary
elements. However, it requires O(m) operations per sample point,
and O(mn) operations for updating all the coefficients. Here, we
propose an edge-based sparse coding method that is found to be
very efficient in practice.

Edge-based sparse coding Since we have already had a man-
ifold mesh after the initialization, the basic idea here is to update
connectivity of the current mesh rather than start from scratch. The
updating process basically involves edge swap that adjusts the con-
nectivity of four vertices to improve the triangulation (i.e., mini-
mize the objective function in our problem), edge insertion in the
boundary that will cause insertion of triangles into the mesh and
thus extend the mesh so as to probably fill in an unwanted hole or
gap, and triangle removal in the region where the surface does have
a hole. While these are local operations, we use a recursive strategy
to achieve a certain level of global effects. The first two operations
are based on edges, which are outlined in Alg. 3. The whole sparse
coding algorithm is to iterate the edge-based operations and after
the edge-based update is done, the third process of triangle removal
is performed, as illustrated in Alg. 2.

Specifically, to implement the edge-based sparse coding, a priority
queue Q (in the descending order of E(ei)) with paired elements
(ei, E(ei)) is initialized by adding all the edges from M . E(ei)
is defined as the sum of the projection energy of all sample points
corresponding to the triangles containing edge ei:

E(ei) =

s∑
j=1

nj∑
k=1

E(pk, fj), (7)

where s is the number of triangles that contain ei and nj is the
number of sample points which correspond to triangle fj .

In each iteration, the first element (ei, E(ei)) of queue Q that has
the largest projection energy and is likely to be updated is fetched
from the set. A recursive edge-update process (Alg. 3) is then ap-
plied for ei according to its edge type:

• ei is an inner edge. ei will be swapped as shown in Fig. 4
if its opposing edge initially does not exist in mesh M and its
projection energy E(ei) decreases after edge swap operation.
The opposing edge of ei is the one that would replace ei after
the edge swap. If initially the opposing edge is already in the
mesh, swapping ei would result in a non-manifold edge [Dyer
et al. 2007], which is thus not allowed.

• ei is a boundary edge. We join ei with its two adjacent
boundary edges and obtain two virtual triangles (Fig. 5). If
the sample points corresponding to the triangle containing ei
can be changed to corresponding to any of the new virtual tri-
angles with less energy, the new triangle with less projection
energy is added into mesh M , and the new generated edge is
added to set Q.

• If E(ei) decreases, the projection energy of corresponding
sample points, edges, and triangles are updated, and the neigh-
bor edges of ei (the edges except ei in triangle f1 and f2 in
Fig. 4(left) and Fig. 5(left)) are then updated similarly fol-
lowing the descending order of the newly updated projection
energy.

It can be seen that these edge-based operations will decrease the
objective energy and the local operations are propagated to other
areas via the recursive strategy.

When set Q is unempty, it means that the edges in set Q have not
been updated in this sparse coding stage. The algorithm will con-
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Figure 4: Inner edge. Left: Inner edge ei(red solid line) with large
projection energy E(ei) before edge-swap. Right: projection en-
ergy E(ei) decreases significantly after edge-swap.

Figure 5: Boundary edge. Left: triangle f2 is added to M if some
sample points initially corresponding to triangle f1 are projected
to f2 with less projection energy. Right: if no sample point corre-
sponding to triangle f1 is changed to corresponding to any of the
two virtual triangles, the virtual triangles will not be added.

tinue the edge-based process until set Q is empty. After that, we
perform triangle removal. For those triangles to which no sample
points correspond, we remove them from the mesh if the removal
does not violate the manifold property. These triangles do not affect
the objective energy.

Figure 6: Sparse coding on a cube model. Left: two-face patch
with large projection energy along the edge of cube. Middle: the
edge of the cube is recovered accurately with the decreased energy
after edge-swap. Right: energy monotonously decreases with the
increase of the iterations.

Properties of sparse coding. The proposed edge-based sparse
coding algorithm has the following properties:

• Manifoldness. The mesh updated by the sparse coding pro-
cess is still manifold. This is because edge swap and boundary
triangle insertion in the sparse coding do not affect the mani-
fold property of the input mesh.

• Energy decreasing. The total energy Eq. (2) would
monotonously decrease with iterations. This is because the
operations of sparse coding decrease the projection energy
of sample points corresponding to triangles containing ei
with the projection energy of other sample points unchanged.
As shown in the cube model in Fig. 6, the total energy
monotonously decreases with the increase of the iterations,
and the triangulation of the mesh after sparse coding gets bet-
ter.

• Computational efficiency. The proposed sparse coding al-
gorithm can efficiently optimize the coefficient weights com-

Algorithm 2 SparseCoding(M(V,F)).

1: Add (ei, E(ei)) of all edges ei from M into queue Q.
2: while Q 6= ∅ do
3: Select the element with highest E(ei) value from Q.
4: Call EdgeUpdate(ei, E(ei)).
5: end while
6: Check and Delete triangles that have no corresponding sample

points.
7: return M(V,F);

Algorithm 3 EdgeUpdate(ei, E(ei)).

pared to the matching pursuit method [Mallat and Zhang
1993]. Our algorithm is designed based on the observation
that if the projection energy of sample points corresponding
to triangle f decreases, the projection energy of these sam-
ple points may further decrease if they are projected to the
neighboring triangles of f and it is unlikely to decrease the
projection energy if they are projected to triangles that are far
away from f . As a result, the algorithm tends to have lin-
ear running time in practice. For example, we have tested six
models on the ratios of the number of EdgeUpdate operations
to the edge number under different sampling rates and found
that the change of the ratios is quite small, as shown in Fig. 7.

0 5 10 15 20 25 30 35 40 45 503

4

5

6

sampling rate

ra
tio

 

 

Face Anchor Dancing Daratech Gargoyle Quasimodo

Figure 7: The ratios of the number of EdgeUpdate opera-
tions to the edge number under various sampling rates of m/n
(5%, 10%, · · · , 45%) tested on six models.

201:6        •        S. Xiong et al.

ACM Transactions on Graphics, Vol. 33, No. 6, Article 201, Publication Date: November 2014



4.3 Dictionary Update

Dictionary update is to optimize the vertex positions V with the
connectivity fixed, which is equivalent to solving

min
V

Eappr + Ereg. (8)

However, it is hard to optimize Eq. (8) directly as the Eappr term
contains an �2,q norm that is non-convex and non-differentiable.
Based on variable splitting [Eckstein 1989], we use matrix Z to
replace P−VB in term Eappr. The dictionary update becomes

min
V, Z

F (V,Z)

s.t. h(V,Z) = 0,
(9)

where F (V,Z) = Eappr +Ereg and h(V,Z) = Z−P+VB. The
augmented Langrangian function of Eq. (9) is

L(V,Z,D) = F (V,Z) +
γ

2
(‖h(V,Z) +

D

γ
‖2F − ‖D

γ
‖2F ),

with the Lagrangian multiplier D. The above problem can
be solved by Alternating Direction Method of Multipliers
(ADMM) [Boyd et al. 2011], which is efficient for sparse opti-
mization problems with a separable objective function and linear
constraints. The algorithm is given in Alg. 4 and the Z-subproblem
and V-subproblem are explained in detail below.

Algorithm 4 Dictionary update.

Primal update Dual update

Z-subproblem. The subproblem for Z is

min
zi

n∑
i=1

(‖zi‖q2 +
nγ

2
‖zi − xi‖22), (10)

where zi is the ith column of Z and xi is the ith column of (P −
VB− D

γ
). As Eq. (10) can be decomposed into n small problems

and the optimal z∗i is in the form of z∗i = α∗
ixi (see [Wu et al.

2011]), each sub-problem of Eq. (10) can be simplified into a scalar
problem:

min
αi

‖αixi‖q2 +
nγ

2
‖αixi − xi‖22.

The optimal α∗
i can be solved by a few iterations [Marjanovic and

Solo 2012].

V-subproblem. The subproblem for V is

min
V

ωe

l

l∑
i=1

‖ei‖22+
ωn

3n

n∑
i=1

∑
ej∈f

(npi ·ej)
2+

γ

2
‖Z−P+VB+

D

γ
‖2F ,

which is a quadratic problem in V whose solution can be obtained
by solving a linear system. The preconditioned conjugate gradient

method with incomplete Cholesky factorization is used in our work
to solve the linear system.

In summary, the proposed alternating direction optimization ap-
proach iteratively optimizes the triangulation and vertex positions
of the reconstructed mesh. Fig. 8 shows an example where the tri-
angulation in the region of the “eye” gets better and better as itera-
tions increase and small holes are filled in the final iterations due to
the sparse coding algorithm.

Figure 8: Both the vertex positions and connectivity are improved
(from left to right) as iterations increase.

5 Experimental Results

In this section, we demonstrate the superior performance of the pro-
posed reconstruction method by comparing it with state-of-the-art
methods, including Screened Poisson reconstruction (SP) [Kazh-
dan and Hoppe 2013], Algebraic Point Set Surfaces (APSS) [Guen-
nebaud and Gross 2007], RIMLS [Öztireli et al. 2009], and Singular
Cocone reconstruction(SC) [Dey and Wang 2013]. Note that unless
specified, state-of-the-art resampling method called EAR [Huang
et al. 2013] is used as a pre-processing to re-sample the input point
cloud of size n into a set of points with size m and estimate their
corresponding normal information, which are needed for SP, APSS
and RIMLS methods. Although the SC method does not require
normal information, it stills needs EAR for preprocessing since SC
cannot deal with noisy input. By contrast, our method does not
need normal information and is robust to noise, and thus we only
use the simple Poisson-disk sampling, instead of the advanced and
complex EAR algorithm, as the preprocessing for our method to
generate an initial dictionary.

For our reconstruction method, we fix the neighborhood size for
each point pi to be 10 for KNN search. Typically, larger m leads
to smaller approximation error between the reconstructed mesh M
and the ground truth surface S, as shown in Fig. 9. Considering
that the input point cloud P is often over-dense with noise and
large m will also increase computational cost, we empirically set
m = 0.4 × n, i.e. 40% of the input point cloud set size, for all
the tested examples. For parameter q in the l2,q norm in (3), Fig. 3
shows the reconstructed results and the Hausdorff distance ε be-
tween the reconstructed mesh M and the ground truth surface S.
We can see that when q decreases, the reconstructed mesh gets bet-
ter and the Hausdorff distance ε gets smaller. As smaller q will need
more iterations and computation time in Dictioary update and make
the problem become more non-convex and prone to local minima,
we set q = 0.3 in our model to have a good trade-off between
performance and computation time. The input point cloud is nor-
malized before processing, and the trade-off parameters ωe and ωn
are chosen in the range of [1, 3], and we empirically set ωe = 2.5
and ωn = 1.6 for all the experiments. All the tests are run on a
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Figure 9: The visual illustration of our reconstruction with different sampling rates m/n (20%,30%,40%) of the Vase-lion model.

desktop with a quad-core Intel CPU i5 and 2GB RAM.

5.1 Visual Comparisons

Here, we give visual comparisons of the reconstruction results be-
tween our proposed method and state-of-the-art approaches in the
following aspects. Note that, similar to other implicit methods, the
SP, APSS and RIMLS methods require sufficient grid resolution in
order to well preserve surface details. We experimentally find that a
resolution of 3503 provides sufficient resolution for the APSS and
RIMLS methods. For the SP method, we empirically set its octree
depth to 10, which achieves good reconstruction performance.

Surface detail recovering and sharp feature preserving. As
described in Section 3.1, our method is to minimize the distance
metric between the input points P and the reconstructed mesh M ,
which is better than the conventional explicit approaches that use
the distance between P and the reconstructed mesh vertices V. Be-
sides, in many existing methods, sparsity regularization is applied
to the normal difference of adjacent points from the reconstructed
mesh or resampled points, which may cause the staircase effects.
The `2,q-norm is applied to the position residues, and thus help
avoid the staircase effects. Our unified framework together with
the point-to-mesh distance metric and sparse `2,q norm usually de-
livers higher reconstruction accuracy and better preserves surface
details and geometric features. As shown in Fig. 1 where the model
contains various geometric features such as sharp and semi-sharp
features and different levels of surface details, our method can suc-
cessfully recover them. In Fig. 10, the over-sharpened effect can
be observed for SP, which is caused by the normal estimation with
the EAR method. In Fig. 11, the use of least square for normal
difference in SP smoothes out the sharp features.

Robust to noise & outliers. Fig. 10 shows the reconstruction re-
sults with different levels of noise and outliers applied to different
regions of the input point cloud. Our method performs well for
such a heavily corrupted input, while the SP method over EAR pro-
duces over-sharpened edges. Fig. 11 gives another example, where
the comparative methods generate over-smoothed geometric details
and sharp features, while our method preserves them well. One
major reason for the limited performance of the implicit methods
is that the preprocessing of the EAR algorithm cannot generate ac-
curate normals at the sharp edges in the presence of severe noise
(see the 2nd column of Fig. 11). By contrast, our proposed joint
optimization framework does not need a step of normal estimation
at all and the `2,q, q ∈ (0, 1) norm used in our objective function
defined in (3) also makes our method robust to noise and outliers.

Figure 10: Left: input point cloud of the double torus
model corrupted by four different levels of noise (σ =
0.002, 0.004, 0.006, 0.012) and outliers at top-left, top-right,
bottom-right and bottom-left regions, respectively. Middle: The
reconstructed result by the SP method over EAR. Right: The re-
constructed result by our proposed method.

High triangle quality. In our optimization model (2), we intro-
duce theEedge term to encourage vertices on the reconstructed mesh
to be uniformly distributed, which leads to better triangle quality. A
reconstructed mesh with high triangle quality means more equilat-
eral triangles or more 60o angles. Fig. 12 gives the angle distribu-
tions of the reconstructed Merlion meshes by SC and our methods
displayed in Fig. 1. It can be seen that the angle distribution of our
reconstructed mesh concentrates around 60o, better than that of the
SC method.

Figure 12: The angle distributions of the reconstructed Merlion
meshes by SC and our methods displayed in Fig. 1.

Real-world scanned data. We also test the proposed method on
real-world data scanned by Kinect and laser scanner, as shown in
Fig. 13 and Fig. 14. Even for such challenging data, our method can
still reconstruct the surface well. For this type of noisy data, our re-
construction method iteratively improves the reconstruction quality
with the increase of the iterations (see the supplementary video for
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Figure 11: Zoom-in results of the cube model with 4% noise using different reconstruction methods. The EAR algorithm is used to resample
the input point cloud for the four comparative methods. The second column visualizes the normal produced by EAR.

Figure 13: Various reconstruction results of the chair model. The point cloud is scanned by Kinect. The EAR algorithm is used to resample
the noisy input into a clean point set with reliable normals.

Figure 14: Various reconstruction results of the FIFA model. The point cloud is scanned by a laser scanner. Note that here we use locally
weighted PCA instead of EAR to estimate normals for the comparative methods. This is to demonstrate that the inferior performance of the
comparative methods is not due to the inaccurate normal estimation of a particular preprocessing method.

Figure 15: Surface reconstruction accuracy measured through the benchmark tests. For each of the 5 data sets, the two plots in each column
show the mean position distance (top) and the mean normal angle distance (bottom) normalized by the corresponding results of the Poisson
reconstruction algorithm. The horizontal axis indicates the number of point samples in the reconstructed surfaces for quality measurement.
“Ours” and “Ours(n)” refer to our methods without and with using the normal information provided by the benchmark.
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illustration). Note that in Fig. 13 and Fig. 14, we use different meth-
ods for normal estimation to show the inferior performance of the
comparative methods is not due to the inaccurate normal estimation
of a particular preprocessing method.

5.2 Validation on Benchmark

For quantitative evaluation, we use the surface reconstruction
benchmark [Berger et al. 2013], which contains multiple virtual
scans of five implicit surface models: Anchor, Dancing Children,
Daratech, Gargoyle, and Quasimodo. Different virtual scans sim-
ulate different scanner artifacts including nonuniform sampling,
noise, and misalignment. The surface reconstruction accuracy is
measured via computing the mean position distance and the mean
normal angle distance between the ground truth surface and the re-
constructed surface. For their mathematical definitions, please re-
fer to the paper [Berger et al. 2013]. The mean position distance
reflects the overall closeness between the reconstructed surface and
the ground truth while the mean normal angle distance describes
the quality of the surface details.

Since the benchmark data sets provide points and the normal in-
formation, we do not employ the preprocess of EAR here for the
comparative methods, which directly use the provided points and
normal information as the input. Fig. 15 shows the reconstruc-
tion accuracy results of the benchmark evaluation under different
number of point samples in the reconstructed surfaces for quality
measurement. Note that all the results are normalized by the cor-
responding results of the original Poisson reconstruction [Kazhdan
et al. 2006]. Thus, values less than one in the figure indicate im-
proved accuracy over Poisson reconstruction, and smaller values
represent better performance.

We can see from Fig. 15 that our method, “Ours” - the one without
using the normal information provided by the benchmark, achieves
overall best mean position distance results and competitive results
for mean normal angle distance. If we incorporate the normal infor-
mation by activating the Enormal term in (2), the proposed method,
i.e., “Ours(n)”, is able to further improve the mean normal angle
distance results at the cost of slightly reducing the position dis-
tance performance, as shown in Fig. 15. Fig. 16 illustrates the av-
erage reconstruction errors over the 16 noisy registered scans of
the benchmark Gargoyle model, where the comparisons among the
reconstruction errors by color-coding clearly demonstrate the su-
perior performance of our method. Note that for the benchmark
dataset, we have also compared our method with the four compar-
ative methods using EAR for preprocessing and the corresponding
quantitative results are provided in the supplementary document,
from which similar conclusion can be made.

To evaluate the topology performance, we run the benchmark topol-
ogy tests on the reconstructed surfaces of different algorithms. Ta-
ble 1 summarizes the benchmark topology test results in terms of
the number of connected components, the total length of bound-
ary components, manifold, and the deviation from the true genus,
averaged over all the benchmark point clouds. It can be seen that
for the benchmark models SP achieves the best topology test per-
formance and our method is in the second place. However, the SP
method is designed for watertight models and it is not suitable for
open mesh models. As shown in Table 1, for the non-benchmark
Face model with genus three (displayed in Fig. 8), our method sig-
nificantly outperforms the SP method in the topology tests. Note
that for the non-benchmark Face model, since there is no normal
information, the EAR algorithm is applied as preprocessing for the
four comparative methods. Table 2 gives the running time perfor-
mance, for which our method is comparable with the other meth-
ods. Here the time for normal computation (and denoising) is not

Table 1: Results of benchmark topology tests on benchmark mod-
els and the non-benchmark Face model (displayed in Fig. 8). Here,
comps refers to the absolute error of the number of connected com-
ponents, bndry is the absolute error of the length of boundary com-
ponents, manifold is whether or not a mesh is manifold, 1 being
manifold and 0 otherwise, and genus refers to the amount that de-
viates from the actual genus. Note that the errors of benchmark
models are averaged over the five test models.

Alg Benchmark models / Face model
comps bndry manifold genus

SP 0.61/0.03 0.32/11.52 1.00/1.00 0.31/3.00
APSS 35.43/14.21 141.62/10.63 0.52/0.00 1.82/1.00
RIMLS 32.16/12.86 153.81/8.92 0.73/0.00 1.68/1.00
SC 1.81/0.57 196.73/24.63 1.00/1.00 5.34/3.00
Ours 0.78/0.00 0.89/1.46 1.00/1.00 0.63/0.00

Table 2: Running time statistics and the resolution information of
the reconstructed results on benchmark models. Here, |P | refers to
the number of vertices of the input model an |V | is the number of
vertices of the output.

Model |P | |V | Time(seconds)
SP APSS RIMLS SC Ours SP APSS RIMLS SC Ours

Anchor 263 k 174 k 360 k 352 k 246 k 105 k 28.54 31.42 30.61 39.84 32.65
Dancing 468 k 358 k 509 k 511 k 410 k 187 k 38.17 45.28 41.24 56.18 53.14
Daratech 246 k 181 k 314 k 321 k 219 k 98 k 24.62 30.14 29.58 36.75 31.08
Gargoyle 481 k 384 k 531 k 529 k 422 k 193 k 42.14 47.08 46.68 58.49 55.27
Quasimodo 350 k 310 k 365 k 385 k 330 k 140 k 32.56 39.27 38.19 45.62 44.32

included in the running time for other methods. In addition, Table 2
also shows that the number of vertices of the reconstructed meshes
by our method is the smallest compared to other methods, which
implies that our method produces better reconstruction quality with
the same or even lower resolution.

5.3 Limitations

First, our optimization model is nonconvex, which makes it difficult
for the solver to theoretically guarantee convergence, and the lo-
cal minimum is not guaranteed even the algorithm converges. Sec-
ond, if the point cloud has large holes caused by missing data, our
method may fail to fill them since we do not have corresponding
sampling points in the hole regions. Fig. 17 gives examples of such
failure cases. For these cases, additional hole filling process such
as [Sharf et al. 2004] is needed.

Figure 17: Examples of the failure cases with holes existing in the
reconstruction. Left: input point set of the ball model with zoom-in
of the missing data regions. Right: our reconstruction.

6 Conclusion

We have presented a unified framework using dictionary learning
for reconstructing a triangular surface mesh from a dense point
cloud. The core of the framework is a constrained l2,q-optimization.
The algorithm jointly optimizes both geometry and connectivity of
the reconstructed mesh in one phase, which overcomes the inherent
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Figure 16: Reconstruction errors on the noisy scan of the Gargoyle model. The reconstruction errors are measured by the Hausdorff distance
between the reconstructed mesh and the ground truth and visualized by the color-coding, where the errors are normalized by the diagonal
of the bounding box of the ground truth model. The histograms of the errors are also displayed on the top row, which show that our method
results in an error distribution closest to the zero.

limitations of multi-phase process in the prior art. The presented
algorithm has several nice properties: (i) it does not require normal
information from point cloud and works for both watertight mod-
els and open models in the same way; (ii) it produces high quality
reconstruction in terms of both geometric accuracy and mesh con-
nectivity and is thus able to recover various levels of surface details
and preserve sharp features; and (iii) it is consistently robust to out-
liers and noise with different scales.
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EDELSBRUNNER, H., AND MÜCKE, E. P. 1994. Three-
dimensional alpha shapes. ACM Trans. Graph. 13, 1, 43–72.

ELAD, M., AND AHARON, M. 2006. Image denoising via sparse
and redundant representations over learned dictionaries. IEEE
Trans. Img. Proc. 15, 12, 3736–3745.

ELDAR, Y. C., KUPPINGER, P., AND BÖLCSKEI, H. 2010. Block-
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