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Abstract
By applying displacement maps to slightly perturb two free–form surfaces,
one can ensure exact agreement between the images in

� 3 of parameter–
domain approximations to their curve of intersection. Thus, at the expense
of slightly altering the surfaces in the vicinity of their intersection, a perfect
matching of the surface trimming curves is guaranteed. This exact agree-
ment of contiguous trimmed surfaces is essential to achieving topologically
consistent solid model constructions through Boolean operations, and has
a profound impact on the efficiency and reliability of applications such as
meshing, rendering, and computing volumetric properties. Moreover, the
control point perturbations require only the solution of a linear system for
their determination. The basic principles of this approach to topologically
consistent surface trimming curves are described, and example results from
the implementation of a simple instance of the method are presented.
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1 Introduction and motivation

At the workshop on Mathematical Foundations of Computer Aided Design, held at
the Mathematical Sciences Research Institute, Berkeley in June 1999, the problem
of formulating algorithms for topologically consistent representations of trimmed
surfaces emerged as a critical challenge confronting the computer aided geometric
design research community. Although this problem is not new, enhancements in
the efficiency of both hardware and downstream applications software have caused
the lack of robustness and stagnation of trimmed surface algorithms to become a
serious concern. Motivated by such considerations, this paper presents methods
to achieve exact topological consistency of trimmed Bézier/B–spline surfaces.

Current computer–aided geometric design systems rely primarily on the use of
(piecewise) polynomial and rational parametric surfaces to describe “free–form”
shapes, such as automobile bodies, turbine or propellor blades, aircraft fuselages
and wings, and ship hulls. Each “patch” of such a surface is the image of a simple
(i.e., triangular or rectangular) parameter domain under a vector map to � 3 .

In certain applications, however, it may not be possible to precisely specify the
desired portion of a surface as the image of a triangular or rectangular parameter
domain under a polynomial or rational map. When solid models are constructed
by Boolean operations, for example, it is necessary to trim surface patches along
their curves of intersection. Such “trimmed surfaces” also arise in constructing
offset surfaces, blend surfaces, swept volumes of moving objects, and many other
contexts. It is, in general, impossible to describe the exact intersections of free–
form surfaces by rational parameterizations, and algorithms for approximating
trimmed surfaces [19] often incur “gaps” or “overlaps” between trimmed patches
(see Figure 1). A common approach is to simply replace the given smooth analytic
surfaces by polyhedral approximations: surface trimming can then be performed
without the need for fundamentally new algorithms or representations. It is widely
recognized, however, that such polyhedral models are unsatisfactory for precision
engineering applications involving aerodynamic performance, contact kinematics
or dynamics, detailed stress analyses, etc.

The absence of truly “robust” trimmed surface algorithms and representations
poses a critical impasse for the efficient and systematic usage of CAD models in
downstream applications. Computational fluid dynamics is a typical example [10]
— while surface and volume meshing algorithms typically run in just a few hours,
given topologically consistent input geometry, and the flow computations are also
very fast, they must be preceded by a laborious “geometry preparation and repair”
phase. This involves manual intervention to identify and remedy the topological
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Figure 1: The “Utah teapot” cut with a bicubic patch. The intersection is approx-
imated by surface trimming curves, creating a gap between the trimmed surfaces.

defects (i.e., unintended gaps or overlaps between adjacent trimmed surfaces) of
the model, and may consume weeks or even months to render the CAD model in
a sufficiently “water–tight” state for the meshing algorithm.

This imbalance of effort is especially intolerable in design optimization, where
frequent alterations to the model geometry are invoked. Advances in computer
hardware, meshing algorithms, and finite–element codes, in the face of a stagnant
state–of–the–art for robust trimmed surfaces, have exacerbated this problem. The
economic impact of a solution to this impasse, in terms of improved efficiency and
accelerated product development cycles, has been estimated to run to hundreds of
millions or even billions of dollars annually.

Tensor–product bicubic patches are perhaps the most commonly used surfaces
in CAD systems. Unfortunately, the possibility of an exact trimming for such
surfaces is precluded [21] by the remarkably high degree of their intersections —
namely, 324 when regarded as algebraic space curves, and 54 in each variable
when expressed in the surface parameter domains. Whereas an algebraic space
curve must be of genus 0 to admit rational parameterization, the intersection curve
of two bicubic surface patches is generically of genus 433 — see [15].

For many applications, exactitude of the surface trimming curve is not critical
provided we can guarantee that an approximation is (i) “sufficiently close” to the
true intersection, and (ii) topologically consistent. Property (ii) refers to the fact
that, for surface trimming, we require three representations of the intersection —
one in each of the two surface parameter domains, and one in � 3 . To avoid gaps
and overlaps between the trimmed surfaces, these distinct representations of the
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intersection must define exactly the same curve.
We propose a surface trimming procedure that incorporates both the features

(i) and (ii) above. Whereas the accuracy of intersection curve approximations has
been addressed by previous authors (see [18] for a review) we believe that the
scheme proposed herein offers the first explicit embodiment of the “consistency
property” (ii) for the Bézier/B–spline surfaces1 commonly used in computer aided
design and geometric modeling. The key idea is that, given sufficiently accurate
approximations of the intersection curve in the surface parameter domains, we
take the liberty of perturbing the surfaces in the vicinity of their intersection, so
that the mappings of the curves to � 3 agree exactly — in terms of both geometry
and parameterization. Prior work [2, 9, 13, 14] has failed to achieve this elusive
“holy grail” of topologically consistent trimming for Bézier/B–spline surfaces.

This idea was first suggested at the Workshop on Mathematical Foundations
of Computer–Aided Design — a follow–up to the SIAM Workshop on Integration
of CAD and CFD, held at UC Davis [10] in April 1999, at which the impact of
inconsistent trimmed surfaces on meshing and computational fluid dynamics was
recognized. We show here that the perturbations required to achieve consistency
can be obtained by solving a system of linear constraints on the surface control
points in the vicinity of any smooth, monotone intersection segment. Moreover,
we can use subdivision or degree elevation to ensure the availability of sufficient
degrees of freedom to simultaneously satisfy the constraint equations and achieve
an adequately accurate approximation of the true intersection.

Our plan for this paper is as follows. To apply the perturbation scheme, it is
necessary to first perform a topological analysis of the intersection curve in the
surface parameter domains, and to dissect it into “simple” smooth segments: this
process is briefly summarized in � 2. The basic principles governing the selection
of control point perturbations, in order to achieve consistency of the trimming
curves, are described in � 3, and the approximation of intersection curve segments
is discussed in � 4. For brevity, we present results from only a simple illustrative
implementation of the method in � 5, in the context of linear intersection approx-
imations in the parameter domains of bicubic surface patches. In this case, only
five control points need to be perturbed, and the perturbations can be found in
an uncoupled manner. Finally, � 6 concludes with an assessment of the potential
for practical use of this perturbation scheme and a brief discussion of topics for
further study. The appendix summarizes some key algorithms for Bernstein–form
polynomials, that are extensively used in the perturbation procedure.

1See [1, 17] for related methods on the trimming of free–form subdivision surfaces.
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2 Pre–preprocessing the intersection

Before invoking the surface perturbation scheme, we subject the true intersection
curve to certain pre–processing steps in order to resolve its topology and to split
it into “simple” smooth monotone segments, amenable to approximation.

Suppose the given surfaces are tensor–product Bézier patches defined in terms
of the Bernstein basis bn

i � t ����� ni � � 1 � t � n � it i in the form

p � s 	 t �
�
n

∑
j � 0

n

∑
k � 0

p jkbn
j � s � bn

k � t ��	 � s 	 t ��
�� 0 	 1 ����� 0 	 1 ��	

q � u 	 v ���
n

∑
j � 0

n

∑
k � 0

q jkbn
j � u � bn

k � v ��	 � u 	 v ��
�� 0 	 1 ����� 0 	 1 ���
For brevity, we focus2 on tensor–product surface patches, although the method
can be readily adapted to B–spline surfaces, triangular patches, etc. To identify
segments that are monotone with respect to both the parameters on each surface,
we dissect the intersection at all turning points, which may be identified as real
solutions to the systems of four equations in the four unknowns � s 	 t 	 u 	 v ��
�� 0 	 1 � 4
defined by the vector condition

p � s 	 t �
� q � u 	 v �
and each in turn of the four scalar conditions

� � ps � pt ��� � qu � qv ����� ps � 0 	 � � ps � pt ��� � qu � qv ����� pt � 0 	
� � ps � pt ��� � qu � qv ����� qu � 0 	 � � ps � pt ��� � qu � qv ����� qv � 0 �

These may be solved by root–finding methods for Bernstein–form polynomials —
e.g., [23]. Figure 2 gives a schematic illustration of the pre–processing procedure.

A topological analysis must also be performed, to establish how the monotone
segments identified in this manner are connected — see, for example, [8, 11, 12].
It suffices, in the present context, to note that the output of the topology analysis
is a set of paired rectangular sub–patches of the original surface patches, each pair
being characterized by the property that their common intersection component is

2We shall also confine our attention to “generic” intersections: degenerate cases, such as the
presence of singular points or coincidence with a surface isoparameter curve, can be handled by
suitable special–case procedures.
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Figure 2: Left: two intersecting bicubic patches. Right: the pre–processing of
their intersection in the two surface parameter domains. Point B is a vertical
tangency in the parameter domain of the yellow surface, and C is a horizontal
tangency in the parameter domain of the blue surface. A and D lie on patch
boundaries. The subdivision into sub–patches, within which the intersection curve
is monotone with respect to each surface parameter, is illustrated.

a smooth, monotone segment traversing these sub–patches between diametrically
opposite corners.

For convenience we also assume that, if p � s 	 t � and q � u 	 v � are two sub–patches
satisfying these criteria, they are parameterized on the domain � 0 	 1 ����� 0 	 1 � with
the intersection segment connecting the opposite corners � 0 	 0 � and � 1 	 1 � . Each
sub–patch is represented by its own Bézier control net. Moreover, we assume that
the portion of the sub–patch p � s 	 t � that is to be trimmed away is bounded by the
intersection curve and the sides s � 0 and t � 1. Likewise, the portion of q � u 	 v �
to be trimmed away is bounded by the intersection curve and the sides u � 0 and
v � 1. These stipulations are easily satisfied by suitable re–parameterizations of
the sub–patches.

3 Outline of perturbation scheme

Perturbation schemes have previously been invoked [22] to enforce topological
consistency of geometric models, though primarily in the piecewise–linear realm.
Recently, these methods have also been extended to subdivision surfaces. Our
present intent is to describe their application to the ubiquitous Bézier/B–spline
representations of computer aided geometric design.

Given two tensor–product Bézier patches, suppose we postulate polynomial
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parameterizations (with common parameter ξ) of their intersection segment in the
surface parameter domains, of the form

s � ξ � �
m

∑
i � 0

sib
m
i � ξ ��	 t � ξ � �

m

∑
i � 0

tib
m
i � ξ ��	 (1)

and

u � ξ � �
m

∑
i � 0

uib
m
i � ξ ��	 v � ξ ���

m

∑
i � 0

vib
m
i � ξ ��	 (2)

for ξ 
�� 0 	 1 � , with s � 0 � � t � 0 � � u � 0 � � v � 0 � � 0 and s � 1 � � t � 1 � � u � 1 � � v � 1 � �
1. The exact intersection does not ordinarily admit such a parameterization (since
it is not, in general, a rational curve). However, by taking the liberty of perturbing
the surfaces slightly, we can force such a parameterization to be exact for the
intersection of the perturbed surfaces. To determine the required perturbations,
we define an “error curve” by taking the vector difference of the images of the
curves (1) and (2), defined in the surface parameter domains, under the mappings
p � s 	 t � and q � u 	 v � — namely,

e � ξ � �
n

∑
j � 0

n

∑
k � 0

p jkbn
j � s � ξ � � bn

k � t � ξ � � � q jkbn
j � u � ξ � � bn

k � v � ξ � ���
Using the arithmetic and composition algorithms for Bernstein–form polynomials
(see the appendix), this can be expressed as a univariate vector polynomial

e � ξ � �
2mn

∑
i � 0

eib
2mn
i � ξ �

of degree 2mn in ξ. Our goal is to make e � ξ � � 0, for which we must have

ei � 0 	 i � 0 	 � � � 	 2mn � (3)

Now the coefficients e0 	 � � � 	 e2mn depend linearly upon the 2 � n �
1 � 2 vector control

points p jk and q jk of the two surfaces, and non–linearly on the 4 � m �
1 � scalar

coefficients of s � ξ � , t � ξ � , u � ξ � , v � ξ � . Our strategy is to compute the latter a priori
to satisfy geometrical interpolation or smoothness criteria, and perturb only (a
subset of) the surface control points to achieve the compatibility conditions (3)
for the intersection curve in the spaces � s 	 t � , � u 	 v � , and � 3 .

The required perturbations are found by solving a linear system of constraint
equations. Furthermore, we can maintain a prescribed order of continuity (C1 or

6



nearly–C1) of the perturbed (trimmed) patch with contiguous patches of the parent
surface. The feasibility of this scheme is predicated on ensuring a “sufficiently
accurate” initial approximation of the intersection segment — as a measure of
this, we may use the quantity

∆ � max
ξ ��� 0 � 1 �

�
p � s � ξ � 	 t � ξ � ��� q � u � ξ � 	 v � ξ � � � �

This can be computed with standard methods [16] by expressing the quantity on
the right in Bernstein–Bézier form. Although formal solutions exist even for large
∆ values, the surface perturbations they incur may be unreasonable for practical
purposes. The need to subdue the error ∆ below some prescribed tolerance is not
an unduly onerous requirement — it can generally be achieved by subdividing
the patch into smaller elements, over which the intersection is amenable to more
accurate approximation.

To obtain the linear dependence of the compatibility conditions (3) on the
surface control points explicitly, the composition of the polynomials s � ξ � , t � ξ �
and u � ξ � , v � ξ � with each of the Bernstein basis functions is written as follows

bn
j � s � ξ � � �

mn

∑
α � 0

s jαbmn
α � ξ ��	 bn

k � t � ξ � �
�
mn

∑
β � 0

tkβbmn
β � ξ ��	

and

bn
j � u � ξ � �
�

mn

∑
α � 0

u jαbmn
α � ξ ��	 bn

k � v � ξ � � �
mn

∑
β � 0

vkβbmn
β � ξ ���

Then, by the product rule [7] for polynomials in Bernstein form, we have

ei �
n

∑
j � 0

n

∑
k � 0

λi jkp jk � µi jkq jk 	 i � 0 	 � � � 	 2mn 	 (4)

where

λi jk �
min � i �mn �

∑
γ � max � 0 � i � mn �

� mn
γ � � mn

i � γ �
� 2mn

i � s jγ tk � i � γ 	
and

µi jk �
min � i �mn �

∑
γ � max � 0 � i � mn �

� mn
γ � � mn

i � γ �
� 2mn

i � u jγ vk � i � γ �
After trimming, p � s 	 t � is bounded by the trimming curve and the original patch

boundaries s � 1, t � 0. Since, in general, we wish to retain at least a C0 or C1
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connection of the trimmed patch with the parent surface along these boundaries,
we cannot perturb all the control points p jk of p � s 	 t � . For example, C0 continuity
will require that the 2n

�
1 distinct control points pnk for k � 0 	 � � � 	 n and p j0 for

j � 0 	 � � � 	 n are fixed by the neighboring patch, and if we desire C1 continuity, the
control points pn � 1 � k for k � 0 	 � � � 	 n and p j1 for j � 0 	 � � � 	 n are also fixed.

Thus, for C0 continuity, only n2 of the control points of p � s 	 t � are available
for perturbation, while for C1 continuity only � n � 1 � 2 of the control points can be
perturbed. Since the same is true for q � u 	 v � , we have 2n2 or 2 � n � 1 � 2 perturbable
control points altogether, consistent with C0 or C1 continuity, respectively. To
satisfy the compatibility conditions (3), the number of free control points must
equal or exceed the number of these conditions, namely

m � 2n2 � 1
2n

and m � 2n2 � 4n
�

1
2n

for C0 and C1 continuity, respectively. Table 1 indicates the largest feasible degree
mmax for various values of n, and the number of left–over (vector) degrees of
freedom ρ for this largest m.

n mmax ρ
1 � �
2 1 3
3 2 5
4 3 7
5 4 9

n mmax ρ
1 � �
2 � �
3 1 1
4 2 1
5 3 1

Table 1: Maximum approximant degree and the number of residual freedoms,
ρ � 2 � n � 1 � 2 � � 2mmaxn

�
1 � , for C0 (left) and C1 (right) continuity.

Thus, for example, bicubic patches (n � 3) allow quadratic approximations to
the intersection curve in the parameter domains with 5 residual vector freedoms
if we want C0 continuity with adjacent patches, and linear approximations with 1
residual vector freedom if we want C1 continuity. If we want intersection approx-
imations of higher order, it is not necessary that the original patches be greater
than bicubic in degree, since we can use degree elevation to increase n (and thus
the number of control points), and perturb the degree–elevated control points.

When p � s 	 t � is represented as a degree– � n �
1 	 n �

1 � rather than a degree–
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� n 	 n � patch, the control points for this degree–elevated representation are

p � 1 �jk � j
n

�
1

k
n

�
1

p j � 1 � k � 1
� j

n
�

1

�
1 � k

n
�

1 � p j � 1 � k

�

�
1 � j

n
�

1 � k
n

�
1

p j � k � 1
�

�
1 � j

n
�

1 � �
1 � k

n
�

1 � p j � k

for 0 � j 	 k � n
�

1, where p jk � 0 if j or k is less than 0 or greater than n [4].
This process can be iterated, to elevate the degree of p � s 	 t � to � n �

r	 n �
r � for any

r � 1 — the resulting control points may be expressed [7] as

p � r �αβ �
min � α � n �

∑
j � max � 0 � α � r �

min � β � n �
∑

k � max � 0 � β � r �

� nj � � r
α � j �

� n � r
α �

� nk � � r
β � k �

� n � r
β � p jk (5)

for 0 � α 	 β � n
�

r. The control points

p � r �n � r� k 	 p � r �n � r � 1 � k for k � 0 	 � � � 	 n �
r (6)

and
p � r �j0 	 p � r �j1 for j � 0 	 � � � 	 n �

r (7)

are then fixed if we require C1 continuity with adjacent patches along the bound-
aries s � 1 and t � 0 — the remaining � n �

r � 1 � 2 control points may be perturbed.
It is necessary, however, to first express the coefficients (4) in terms of the

degree–elevated control points, in order to enforce the constraints (3). For this
purpose, we need to revert the relation (5). Since the control points of a degree–
elevated representation are not linearly independent, this reversion is not unique
— the original control points can be recovered from just � n �

1 � 2 of the � n �
r

�
1 � 2

degree–elevated control points. The form appropriate to the present context is
defined3 for 0 � j 	 k � n by

p jk �
n � r

∑
α � j � r

k

∑
β � 0

� � 1 � j � k � α � β � α � j � 1
r � 1 � � n � r

α �
� nj �

� k � β � r � 1
r � 1 � � n � r

β �
� nk � p � r �αβ �

Note that this makes no reference to the control points (6) and (7), which are fixed

by the C1 continuity requirment, and are not subject to perturbation. Thus, if Γ � r �jkαβ

3This holds only when p � r �
αβ for 0 � α � β � n � r are in fact the degree–elevated control points

for a tensor–product surface of true degree 	 n � n 
 .
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denotes the coefficient4 of p � r �αβ above, the constraints (3) can be written as

ei �
n � r

∑
α � r

n

∑
β � 0

λ � r �iαβp � r �αβ � µ � r �iαβq � r �αβ � 0 	 i � 0 	 � � � 	 2mn (8)

where

λ � r �iαβ �
α � r

∑
j � 0

n

∑
k � β

λi jkΓ � r �jkαβ 	 µ � r �iαβ �
α � r

∑
j � 0

n

∑
k � β

µi jkΓ � r �jkαβ

(we invoke the same approach to degree–elevate q � u 	 v � and assume C1 continuity
is enforced along the sides u � 1 and v � 0). Thus, if we write the perturbed
control points as

p � r �αβ
� ∆p � r �αβ and q � r �αβ

� ∆q � r �αβ

for r � α � n
�

r and 0 � β � n, the perturbations must satisfy the linear system

n � r

∑
α � r

n

∑
β � 0

λ � r �iαβ∆p � r �αβ � µ � r �iαβ∆q � r �αβ � n � r

∑
α � r

n

∑
β � 0

µ � r �iαβq � r �αβ � λ � r �iαβp � r �αβ

for i � 0 	 � � � 	 2mn. In the case n � 3, m � 3, r � 2, for example, the above amounts
to 31 linear equations in 32 (vector) unknowns, and one more condition is needed
to close the system — we may take

n � r

∑
α � r

n

∑
β � 0

∆p � r �αβ �
n � r

∑
α � r

n

∑
β � 0

∆q � r �αβ 	

i.e., the mean perturbation is the same for both surfaces.
The above method first approximates the intersection curve in the parameter

domains of the two surfaces, and then seeks surface perturbations that will cause
the images of these approximations in � 3 to agree exactly. Another approach is
to first approximate the intersection in � 3 , and then find surface perturbations that
will cause curves of appropriate degree in the surface parameter domains to be
mapped to this curve in � 3 . The latter method offers fewer degrees of freedom,
but is easier to implement in simple cases — an example is described in � 5.

4Note that, for given n and r, these quantitites are “universal constants” that may be pre–
computed in rational arithmetic and stored for future use.
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4 Approximating the intersection segment

As noted above, the coefficients that define the parameter–domain approximations
(1) and (2) of the intersection segment should be determined prior to applying the
surface perturbation scheme. The most basic requirement, which can be satisfied
by linear � m � 1 � approximations in the surface parameter domains, is that of
end–point interpolation:

s0 � t0 � u0 � v0 � 0 and sm � tm � um � vm � 1 �
To obtain a G1 piecewise approximation of the intersection, we may interpolate
end tangents. If s � ξ � , t � ξ � and u � ξ � , v � ξ � define the exact intersection, it has the
spatial parameterization

r � ξ � � p � s � ξ � 	 t � ξ � � � q � u � ξ � 	 v � ξ � ��	 ξ 
�� 0 	 1 ���
Denoting derivatives with respect to ξ by primes, we have

r � � pss � �
ptt � � quu � �

qvv � 	 (9)

and taking the dot products of the above expressions with ps � pt and qu � qv,
respectively, we obtain the ratios

s � : t � � � � qu � qv � � pt : � qu � qv � � ps 	
u � : v � � � � ps � pt � � qv : � ps � pt � � qu �

Substituting these expressions into (9) and using standard vector identities, we
have

r ��� c � ps � pt ��� � qu � qv � (10)

for c
�� 0, i.e., the direction of the curve tangent is the cross product of the surface

normals. The parameter c may be used to fix the magnitudes of � s � 	 t � � and � u � 	 v � �
as follows. Let

L � �
r � 1 � � r � 0 � � � �

p � 1 	 1 � � p � 0 	 0 � � � �
q � 1 	 1 � � q � 0 	 0 � �

be the chord length of the intersection curve segment. The actual values of � s � 	 t � �
and � u � 	 v � � at ξ � 0 and ξ � 1 are determined by requiring that

�
r � � 0 � � � �

r � � 1 � � � kL
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where k is a factor, somewhat greater than 1, allowing for the greater length of the
intersection curve segment than the chord between the end points. We obtain

c � kL� � ps � pt ��� � qu � qv � � 	 (11)

and hence the desired values of the end–derivatives are

� s � 	 t � � � kL � � � qu � qv � � pt 	 � qu � qv � � ps �� � ps � pt ��� � qu � qv � � 	
and

� u � 	 v � ��� kL � � � ps � pt � � qv 	 � ps � pt � � qu �� � ps � pt ��� � qu � qv � � 	
where the surface derivatives are evaluated at � s 	 t 	 u 	 v � � � 0 	 0 	 0 	 0 � if ξ � 0, and
at � s 	 t 	 u 	 v ��� � 1 	 1 	 1 	 1 � if ξ � 1. When m � 3, for example, the coefficients of
s � ξ � in (1) are thus given by

s0 � 0 	 s1 � 0
� s � � 0 �

3
	 s2 � 1 � s � � 1 �

3
	 s3 � 1 �

Analogous expressions hold for the coefficients of t � ξ � , u � ξ � , v � ξ � .
One may, in principle, use higher–order approximations for (1) and (2), taking

advantage of the additional degrees of freedom to interpolate further geometrical
properties of the intersection curve. Second–order differential properties may be
derived by considering the expressions

r � � � pss � � �
ptt � � �

psss � 2 �
2psts � t � �

pttt � 2

� quu � � �
qvv � � �

quuu � 2 �
2quvu � v � �

qvvv � 2 �
Itermediate point data may also be interpolated or approximated by a least–squares
method. See [20] for further details on approximating intersection segments.

5 Illustrative implementation

Implementation of the perturbation scheme, as described above, is a substantial
task that should be supported by a careful analysis of the condition of the linear
system and optimal strategies to best utilize the residual degrees of freedom. A
thorough treatment of these issues is deferred to a future study: we confine our
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attention here to implementation of a simple instance of the perturbation scheme,
using bicubic displacement maps. This example illustrates the basic principles,
and admits a simple closed–form solution for the required surface perturbations.

The context for this implementation is the intersection of two bicubic surface
patches, defined by

p � s 	 t � �
3

∑
j � 0

3

∑
k � 0

p jkb3
j � s � b3

k � t � 	 q � u 	 v ���
3

∑
l � 0

3

∑
m � 0

qlmb3
l � u � b3

m � v �

for � s 	 t ��
 � 0 	 1 � � � 0 	 1 � and � u 	 v ��
 � 0 	 1 � � � 0 	 1 � , respectively. The method can
also be generalized to rational bicubics by working in projective 4–space.

We assume the pre–processing steps of � 2 have been invoked, so that p � s 	 t �
and q � u 	 v � intersect in a single curve segment, extending from � 0 	 0 � to � 1 	 1 �
in the parameter domain of each surface. The portion of p � s 	 t � bounded by the
intersection curve and the patch sides s � 0 and t � 1 is to be trimmed away.
Similarly, the portion of q � u 	 v � bounded by the intersection and u � 0 and v � 1 is
to be trimmed away. In the surface parameter domains, we shall use the simplest
possible approximation for the intersection curve — namely, the diagonal line
segment defined by

s � ξ � � t � ξ � � ξ and u � ξ ��� v � ξ ��� ξ � (12)

Note that the images of these approximations in � 3 under the vector mappings
p � s 	 t � and q � u 	 v � are polynomial curves of degree 6.

Formally, we only require C0 continuity of the retained portion of p � s 	 t � with
adjacent patches along the sides s � 1 and t � 0, and likewise for the q � u 	 v �
along the sides u � 1 and v � 0. In practice, however, we usually obtain near–G1

continuity — discrepancies in the tangent–plane orientation are usually � 1 � , and
this error can be further reduced by increasing the number (and decreasing the
size) of the displacement maps.

To obtain a simple closed–form solution for the control–point perturbations,
we use an approach slightly different from that of � 3. Namely, we first construct
an approximation of degree 6 to the true intersection segment in � 3 , and we then
force the images of the parameter–domain approximations (12) to agree with this
curve in � 3 by perturbing the surface control points. This has the advantage of
decoupling the perturbations for the two surfaces, and allows us to ensure that the
approximation satisfies a prescribed geometrical tolerance. Suppose the approxi-
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mate intersection is given by

r � ξ ���
6

∑
i � 0

rib
6
i � ξ ��� (13)

By construction, we have r � 0 � � r0 � p00 � q00 and r � 1 � � r6 � p33 � q33 as
end points. For end tangents, we use (10) evaluated at � s 	 t � � � u 	 v ��� � 0 	 0 � and

� 1 	 1 � . Thus, for suitable choices of k in (11), the first and fifth control points of
r � ξ � are given by

r1 � r0
� r � � 0 �

6
and r5 � r6 � r � � 1 �

6
�

The intermediate control points r2 	 r3 	 r4 are typically fixed through a least–squares
fit of r � ξ � to several (typically 10) points sampled along the true intersection curve.
The method of [24] is used to assign parameter values in this fitting process.

Consider now the error curves defined for each surface by

ep � ξ � � r � ξ � � p � ξ 	 ξ ��	 eq � ξ ��� r � ξ � � q � ξ 	 ξ � (14)

— i.e., the differences between the approximate intersection curve (13) and the
images of the parameter–domain curves (12) in � 3 . In order for the latter curves
to coincide with the former, we must have ep � ξ � � 0 and eq � ξ � � 0. Note that the
two error curves (14) are of degree 6 — we shall denote their control points by
ep0 	 � � � 	 ep6 and eq0 	 � � � 	 eq6.

Now the control points of the error curve ep � ξ � are given by

epi � ri �
min � i � 3 �

∑
j � max � 0 � i � 3 �

� 3j � � 3
i � j �
� 6i � p j � i � j 	 i � 0 	 � � � 	 6 	

and similarly for eq � ξ � , with p j � i � j replaced by q j � i � j. In particular, ep0 � ep6 � 0
by construction, and the remaining control points are

ep1 � r1 � p01
�

p10

2
	

ep2 � r2 � p02
�

3p11
�

p20

5
	

ep3 � r3 � p03
�

9 � p12
�

p21 � �
p30

20
	

ep4 � r4 � p13
�

3p22
�

p31

5
	

ep5 � r5 � p23
�

p32

2
�
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Similarly for the control points of eq � ξ � .
The image in � 3 of the parameter–domain curve � s � ξ � 	 t � ξ � � defined by (12)

will match the approximate intersection curve (13) exactly if we can ensure that

ep1 � ep2 � ep3 � ep4 � ep5 � 0 � (15)

To satisfy these consistency conditions, we use perturbed control points p̃ jk �
p jk

� ∆p jk. The same approach is also used for the surface q � u 	 v � . Under the
appropriate perturbations, the perturbed surfaces will satisfy

p̃ � s � ξ � 	 t � ξ � � � q̃ � u � ξ � 	 v � ξ � � � r � ξ ���
Now since the consistency conditions (15) amount to five (vector) constraints, we
perturb only the five boundary control points

p01 	 p02 	 p03 	 p13 	 p23 � (16)

These points have least influence on the retained portion of the trimmed surface
along the sides s � 1, t � 0 adjacent to other patches of the parent surface. Thus,
although we formally impose only C0 continuity along these sides, in practice
the departure from C1 continuity will typically be quite small. The control point
perturbations for q � u 	 v � are treated in exactly the same manner.

On replacing p jk by p jk
� ∆p jk in equations (15), and assuming that the only

non–zero perturbations are those associated with the boundary control points (16),
we obtain the required perturbations explicitly as

∆p01 � 2r1 � � p01
�

p10 ��	
∆p02 � 5r2 � � p02

�
3p11

�
p20 ��	

∆p03 � 20r3 � � p03
�

9p12
�

9p21
�

p30 ��	
∆p13 � 5r4 � � p13

�
3p22

�
p31 ��	

∆p23 � 2r5 � � p23
�

p32 ��� (17)

The required perturbations for the control points of q � u 	 v � are given by analogous
expressions. Note that, if one surface is planar and the approximate intersection
curve (13) is also planar, these perturbations will not compromise the planarity.

The strategy for determining the unknown coefficients of (13) and the control
point perturbations is as follows. The perturbations ∆p01 and ∆p23 (and also ∆q01

and ∆q23) depend on the unknown scalar k in (10). Values are chosen for this
parameter to minimize the discrepancy in surface normals along the sides s �
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1 and t � 0, where the trimmed patch is contiguous with other patches of the
parent surface (likewise along the sides u � 1 and v � 0 of the other patch). Once
appropriate k values are found in this manner, r1 and r5 are known, and we can
obtain ∆p01 and ∆p23 from (17); likewise ∆q01 and ∆q23 for the other surface.
Knowing r0, r1 and r5, r6 the intermediate coefficients r2, r3, r4 are computed by
the least–squares fit, and the remaining perturbations ∆p02, ∆p03, ∆p13 can then
be found from (17); likewise for ∆q02, ∆q03, ∆q13.

Figure 3: Results from applying the surface perturbation scheme to the patches in
Figure 2 over the domain rectangle CD. Colors indicate the Hausdorff measure of
the perturbation error.

Figure 4: Results from splitting the surface perturbation domains of Figure 3 in
half (left) and in quarters (right).

Results from an implementation of the above scheme are shown in Figures 3
and 4. This example employs the patches of Figure 2, over the domain rectangle
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CD. Figure 4 illustrates how the approximation error can be be further subdued by
splitting the perturbation domains. The solid blue regions are not perturbed at all.
By using a greater number of smaller perturbation domains, the Hausdorff error
diminishes rapidly. For computer graphics applications, the single perturbation
shown in Figure 3 will probably suffice.

Figure 5: A “watertight” plane section of the Utah teapot.

Figure 6: Results from splitting in half the perturbation domains in Figure 5.

The example in Figure 5 shows the teapot sliced by a plane, with the log of
the Hausdorff error again painted on the patches. The error regions indicate the
boundaries of the teapot patches that are intersected by the plane. Figure 6 shows
what happens to the error when the perturbation domains are cut in half. Observe
that there is no Hausdorff error on the plane: it is perturbed in plane. The example
in Figure 7 shows the teapot sliced by a bicubic patch with the initial perturbation
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domains. The error can be reduced below any prescribed tolerance by refining the
perturbation domains.

Figure 7: A “watertight” intersection between the Utah teapot and a bicubic patch.

The perturbation method can also be adapted to accommodate rational bicubic
surface patches, with the intersection approximated by a rational curve of degree
6. Interpreting the control points and their perturbations as vectors in � 4 , one
can avoid the degree–doubling that usually occurs in the subtraction of rational
functions with different denominators. It is also necessary to match the weights
of the common sub–patch corner control points; this can be accomplished by a
suitable re–parameterization of the surfaces.

6 Closure

A general scheme for the topologically consistent representation of trimmed free–
form surfaces has been presented, based on finding suitable perturbations of the
surfaces that ensure exact matching in � 3 of the images of the parameter–domain
trim curves. These perturbations can be found by solving a linear system.

An implementation of a simple instance of the scheme, described in � 5, offers
very promising results. In this case, the displacement maps are bicubic, and can be
derived in closed form. Furthermore, planes remain planes under this perturbation,
and if one surface is ruled and the other surface is a plane, the intersection is exact
and the Hausdorff error is zero. As can be seen in Figure 4, convergence under
subdivision is relatively fast. Also, the algorithm runs quickly. The examples
shown take less than a second of compute time.
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Higher–order versions of the procedure have the potential to offer accurate
approximations of the intersection curve with fewer patches. Perturbations that
are C1 and C2 are also possible, using suitably high degrees. However, initial
investigations suggest that careful pre–conditioning strategies may be needed to
solve the linear system. We hope to report on these methods in due course.

Appendix: Bernstein basis algorithms

All our algorithms are formulated in terms of the Bernstein basis

bn
k � t ���

�
n
k � � 1 � t � n � ktk 	 k � 0 	 � � � 	 n �

The Bernstein form is numerically very stable [6, 5] and offers geometrical insight
into the graph of the function or locus defined in terms of it [4]. We review here a
few basic algorithms for polynomials in Bernstein form that are used extensively
in the surface trimming procedure — more complete details (and software) may
be found in [7, 25].

Products of polynomials

The product of two Bernstein–form polynomials

p � t � �
m

∑
i � 0

pib
m
i � t � and q � t �
�

n

∑
j � 0

q jb
n
j � t �

can be written as a polynomial of degree m
�

n,

p � t � q � t � �
m � n

∑
k � 0

ckbm � n
k � t �

with Bernstein coefficients given by

ck �
min � m � k �

∑
r � max � 0 � k � n �

� mr � � n
k � r �

� m � n
k � prqk � r 	 k � 0 	 � � � 	 m �

n �

19



Composition of polynomials

We are concerned with computing the Bernstein coefficients of the polynomial
w � t ��� q � p � t � � defined by substituting a polynomial u � p � t � into a polynomial
q � u � . If p � t � and q � u � are of degree m and n, respectively

p � t � �
m

∑
j � 0

p j bm
j � t � and q � u � �

n

∑
k � 0

qk bn
k � u ��	

then w � t � is evidently of degree mn,

w � t � � q � p � t � �
�
mn

∑
i � 0

wi bmn
i � t ���

The product algorithm [3] offers an elegant means of computing the Bernstein
coefficients w0 	 � � � 	 wmn. This algorithm populates a tetrahedral array of numbers

h � s �i � j as follows. In the first level, s � 0, we set

h � 0 �i � 0 � qi for i � 0 	 � � � 	 n �
The entries for successive levels, s � 1 	 � � � 	 n, are then computed recursively using
the formula

h � s �i � j �
min � j �ms � m �

∑
k � max � 0 � j � m �

� ms � m
k � � m

j � k �
� ms

j � � � 1 � p j � k � h � s � 1 �
i � k

�
p j � kh � s � 1 �

i � 1 � k �
for i � 0 	 � � � 	 n � s and j � 0 	 � � � 	 ms. Once the array is populated, the last level
s � n contains the desired coefficients of w � t � :

w j � h � n �0 � j for j � 0 	 � � � 	 mn �
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