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Abstract

The mu-basis of a planar rational curve is a polynomial ideal basis comprised of two polynomials
that greatly facilitates computing the implicit equation of the curve. This paper defines a mu-basis
for a rational ruled surface, and presents a simple algorithm for computing the mu-basis. The
mu-basis consists of two polynomialsp(x, y, z, s) and q(x, y, z, s) that are linear inx, y, z and
degreeµ andm− µ in s respectively, wherem is the degree of the implicit equation. The implicit
equation of the surface is then obtained by merely taking the resultant ofp andq with respect tos.
This implicitization algorithm is faster and/or more robust than previous methods. 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

A rational ruled surface is a bi-degree(n,1) tensor product rational surface which is
defined in homogeneous form:

P (s, t) := P 0(s)+ tP 1(s) :=
(
a(s, t), b(s, t), c(s, t), d(s, t)

)
, (1)

where

P i (s) :=
(
ai(s), bi(s), ci(s), di(s)

)
, i = 0,1, (2)
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and the maximum degree ofai(s), bi(s), ci(s) anddi(s) is n. To avoid the degenerate case
whereP (s, t) parameterizes a curve,P 0(s) andP 1(s) are always assumed to be linearly
independent. In Cartesian coordinates, the rational ruled surfaceP (s, t) can be expressed

P̃ (s, t)= (a0(s), b0(s), c0(s))+ t (a1(s), b1(s), c1(s))

d0(s)+ td1(s)
. (3)

Ruled surfaces have a long theoretical history (Edge, 1931) along with many applications in
the design and manufacturing industries (Aumann, 1991; Lang and Roschel, 1992; Ravani
and Chen, 1986). In this paper, we are interested in the problem of finding theimplicit
equationof a ruled surface. It has been known that there exists a homogeneous irreducible
polynomialf (x, y, z,w) such thatf (P (s, t))≡ 0. This polynomial equation represents an
algebraic surface of the ruled surface. By Bezout’s theorem (van der Waerden, 1950), the
degree of polynomialf—say,h—is equal to the number of intersections of the algebraic
surface with agenericline. We now consider the intersection of the rational ruled surface
with a generic line and denote the number of the intersection points bym. If the ruled
surface is properly parameterized, thenm= h. Otherwise, there is an integerk > 1, called
the number of correspondence, such that in general each point on the surface corresponds
to k parameter values. Thusm= kh (Chionh and Goldman, 1992). From the point of view
of the parameterization,m reflects the multiplicity of the correspondence. So in the rest of
the paper when we say the implicit degree of the rational ruled surface, it meansm, rather
thanh.

The authors previously developed a technique calledmoving planesandmoving surfaces
to compute implicit representations of rational surfaces (Sederberg and Chen, 1995).
This approach is much more efficient than traditional implicitizing techniques such as
resultants and Groebner bases. Furthermore, base points cause resultant based methods to
fail, whereas the method of moving surfaces actually simplifies if base points are present.
However, the method of moving surfaces has two drawbacks. First, it involves solving a
very large system of linear equations, and when there are more solutions than required, it
is difficult to determine which of the solutions to select. Second, there is no rigorous proof
that the method always succeeds in computing an implicit equation of any surface, such as
in the case of complicated base points—though the method has never failed in practice.

A line of research that we hope will permit us to rigorously prove the method of moving
surfaces and to make it much faster is themu-basismethod. The mu-basis method was
devised for implicitizing planar curves (Cox et al., 1998). Zheng and Sederberg (2000) give
an efficient algorithm to compute the mu-basis of a planar rational curve. In this paper, we
extend the mu-basis method to ruled surfaces, thereby making the implicitization of ruled
surfaces much faster than the fastest previous methods (Sederberg and Saito, 1995) and
completely rigorous. Work is ongoing to extend the mu-basis method to surfaces in general.

We organize the paper as follows. In Section 2, we present an algorithmic approach
for deriving the mu-basis of a ruled surface. Section 2.1 provides some terminology and
defines a monomial order over a module. Section 2.2 presents some lemmas as background
to Section 2.3, which describes the details of the algorithm and proves its correctness. In
Section 3, the implicit equation of a rational ruled surface is formulated by taking the
resultant of the two elements of the mu-basis, and an example is provided. Finally, we
make some observations and point out further research problems.
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2. Mu-basis of a rational ruled surface

A moving planeL(s, t) := (A(s, t),B(s, t),C(s, t),D(s, t)) is a family of planes
A(s, t)x +B(s, t)y +C(s, t)z+D(s, t)w = 0 with one plane corresponding to parameter
pair (s, t). A moving planeL(s, t) is said tofollow rational ruled surfaceP (s, t) if

L(s, t) ·P (s, t) = A(s, t)a(s, t)+B(s, t)b(s, t)+C(s, t)c(s, t)

+D(s, t)d(s, t) ≡ 0. (4)

In this paper, we are interested in moving planes which only involve parameter values—
L(s) := (A(s),B(s),C(s),D(s)) for whichL(s) ·P (s, t)≡ 0. The set of all such moving
planes forms a module over polynomial ringR[s] (the set of all polynomials ins with real
coefficients) where the “R” denotes the field of real numbers (Cox et al., 1992, 1998), and
we denote the module byL[s]. A basis of the moduleL[s] is called amu-basisof rational
ruled surface (1). In the following, we will present a constructive proof that the mu-basis
of ruled surface (1) has two elements, and the sum of the degrees of the two elements is
the implicit degree of the rational ruled surface. These properties of the mu-basis lead to a
closed form representation of the implicit equation of the rational ruled surface.

Before proceeding, we introduce some terminology.

2.1. Monomial orders over a module

Let R[s]r be the set of r-dimensional row vectors with entries in the polynomial ring
R[s].R[s]r is a module overR[s] (Cox et al., 1998). A module can be thought of as a vector
space whose elements belong to some ring (in a vector space, the elements belong to a
field). Denote the standard basis vectors inR[s]r byEi = (0, . . . ,1, . . . ,0), i = 1,2, . . . , r,
where 1 is in theith position in the vector. Any elementf = (f1(s), . . . , fr (s)) ∈ R[s]r
can be written

f =
r∑

i=1

deg(fi)∑
j=0

fij s
jEi,

wherefi,j ∈ R andfi,deg(fi) �= 0. ElementsjEi is called amonomialin R[s]r . Now we
define an ordering relation>M on the monomials ofR[s]r : we saysiEj >M skEl if i > k,
or if i = k andj < l. This order sorts the monomials first by degree, and then breaks ties
using position within the vector inR[s]r . As is well known, the monomial ordering relation
>M has the following properties:

(1) >M is a total ordering relation, which means the terms appearing withinf ∈ R[s]r
can be uniquely listed in increasing or decreasing order under>M .

(2) If siEj >M skEl , thensi+α >M sk+αEl for any nonnegative integerα.
(3) >M is a well ordering, that is, every nonempty collection of monomials has a

smallest element under>M .
We can express anyf ∈R[s]r uniquely in the form:

f =
l∑

i=1

fiei
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with fi �= 0 in R and monomialsei orderede1 >M e2 >M · · · >M el . f1e1, f1 and e1

are called theleading term, leading coefficientandleading monomial(denoted byLT(f ),
LC(f ) andLM(f )) respectively. Ife1= skEl , we sayf has degreek and the leading term
contains basis vectorEl . For example, letf = (3s2+ s + 4,−2s2− 4s − 5,3s + 2), then
LT(f )= 3s2E1, LC(f )= 3, LM(f )= s2E1.

2.2. Lemmas

In this section, we set up the strategy for describing the algorithm to compute the mu-
basis of a rational ruled surface.

Lemma 1. Let g(s) = GCD([a, b], [a, c], [a, d], [b, c], [b, d], [c, d]), andλ be the max-
imum degree of[a, b], [a, c],[a, d], [b, c], [b, d] and [c, d]. Then the implicit degree of
rational ruled surfaceP (s, t) is m = λ − deg(g). Here we use the notation[a, b] =
a0(s)b1(s)− a1(s)b0(s).

Proof. The implicit degree of a surface is the number of intersections (counted properly)
between a generic line and the surface. Let the line be defined as the intersection of two
planesA0x+B0y+C0z+D0w = 0 andA1x+B1y+C1z+D1w = 0. Then the implicit
degree of rational ruled surfaceP (s, t) is the number of intersections of the following two
generic curves in the(s, t) plane:

(A0a0+B0b0+C0c0+D0d0)+ t (A0a1+B0b1+C0c1+D0d1)= 0,
(5)

(A1a0+B1b0+C1c0+D1d0)+ t (A1a1+B1b1+C1c1+D1d1)= 0.

Eliminatingt from the above equation, we have∣∣∣∣A0a0+B0b0+C0c0+D0d0 A0a1+B0b1+C0c1+D0d1

A1a0+B1b0+C1c0+D1d0 A1a1+B1b1+C1c1+D1d1

∣∣∣∣
= [A,B][a, b] + [A,C][a, c] + [A,D][a, d] + [B,C][b, c]
+ [B,D][b, d] + [C,D][c, d] = 0. (6)

Now all the solutions of Eq. (6) can be classified into two categories. The first category
consists of the common zeros of[a, b], [a, c], [a, d], [b, c], [b, d] and [c, d], which
correspond to thes-coordinates of the base points ofP (s, t). The other category
corresponds to the actual intersection points of the two curves in (5). Thus the implicit
degree ofP (s, t) is m= λ− deg(g). ✷
Lemma 2. Let

g1(s) : = GCD
([c, d], [d, b], [b, c]), g2(s) :=GCD

([d, c], [a, d], [c, a]),
(7)

g3(s) : = GCD
([b, d], [d, a], [a, b]), g4(s) :=GCD

([c, b], [a, c], [b, a]).
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Then the moduleL(s) is generated by the rows of the following matrix:

M :=



0 [c, d]/g1 [d, b]/g1 [b, c]/g1
[d, c]/g2 0 [a, d]/g2 [c, a]/g2
[b, d]/g3 [d, a]/g3 0 [a, b]/g3
[c, b]/g4 [a, c]/g4 [b, a]/g4 0


 . (8)

Proof. Let g(s) be the GCD of polynomials[a, b], [a, c], [a, d], [b, c], [b, d] and[c, d].
In fact, we can proveL(s) is generated by the rows of matrix:

M̃ := 1

g




0 [c, d] [d, b] [b, c]
[d, c] 0 [a, d] [c, a]
[b, d] [d, a] 0 [a, b]
[c, b] [a, c] [b, a] 0


 . (9)

Let L(s) := (A(s),B(s),C(s),D(s)) be a moving plane which follows the ruled surface
(1), then{

A(s)a0(s)+B(s)b0(s)+C(s)c0(s)+D(s)d0(s)≡ 0,

A(s)a1(s)+B(s)b1(s)+C(s)c1(s)+D(s)d1(s)≡ 0.
(10)

SinceGCD([a, b], [a, c], [a, d], [b, c], [b, d], [c, d])= g, there exist polynomialskij ∈
R[s], 1� i < j � 4 such that

k12[a, b]+ k13[a, c] + k14[a, d] + k23[b, c] + k24[b, d] + k34[c, d] = g,

so

gA = A
(
k12[a, b] + k13[a, c] + k14[a, d] + k23[b, c] + k24[b, d] + k34[c, d]

)
= (k12b1+ k13c1+ k14d1)Aa0− (k12b0+ k13c0+ k14d0)Aa1

+ k23A[b, c] + k24A[b, d] + k34A[c, d]. (11)

By (10), one has

Aa0=−(Bb0+Cc0+Dd0), Aa1=−(Bb1+Cc1+Dd1).

Substituting the above equation into (11), we get

gA = −(k12b1+ k13c1+ k14d1)(Bb0+Cc0+Dd0)

+ (k12b0+ k13c0+ k14d0)(Bb1+Cc1+Dd1)+ k23A[b, c]
+ k24A[b, d] + k34A[c, d]

= h2[d, c] + h3[b, d] + h4[c, b] (12)

with h2=−k34A+ k14C − k13D, h3= k24A− k14B + k12D andh4=−k23A+ k13B −
k12C. Similarly, we have

gB = h1[c, d] + h3[d, a] + h4[a, c], (13)

gC = h1[d, b] + h2[a, d] + h4[b, a], (14)

gD = h1[b, c] + h2[c, a] + h3[a, b], (15)
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whereh1= k34B − k24C + k23D. Hence

(A,B,C,D)= h1M1+ h2M2+ h3M3+ h4M4, (16)

whereMi is theith row of matrixM̃ , i = 1,2,3,4. The lemma is thus proven.✷
It is an easy exercise to check that rank(M) = 2, that is the rows ofM are linearly

dependent overR[s]. This dependency between the rows ofM is the key property to make
the algorithm to compute the mu-basis work.

Lemma 3. Let pi = (p11, . . . , p1r ) ∈ R[s]r , i = 1,2, . . . , k � r, be linearly dependent
vectors overR[s]. Then there are at least two of them whose leading terms contain the
same basis vector.

Proof. Supposepi , i = 1,2, . . . , k, have different basis vectors. Then fori �= j , the S-
vectorS(pi,pj ) of pi andpj is 0 by definition (see §2 of Chapter 5 of (Cox et al., 1998)),
and thus the Buchberger’s Criterion for modules implies thatp1, . . . , pk form a Gröbner
basis for the module they generate. Furthermore, sinceS(pi,pj )= 0pi + · · · + 0pk, the
Syzygy Theorem (see Theorem 3.3 in p. 212 of (Cox et al., 1998)) implies the syzygy
moduleSyz(p1, . . . , pk) is 0. This meansp1, . . . , pk are linearly independent, and thus
the lemma is proved. ✷

Above we used some basic facts about Gröbner bases for modules to prove the lemma.
There is also an elementary argument along the lines of the proof in (Zheng and Sederberg,
2000).

2.3. Algorithm

Based on the main concepts developed in the last subsection, we would like to devise an
algorithm to compute the mu-basis of a rational ruled surface from generating set matrix
M. This algorithm is a direct extension of the algorithm to compute the mu-basis of a
planar rational curve (Zheng and Sederberg, 2000). First, we outline the algorithm.

Input: (a, b, c, d)—the parametric equation of a rational ruled surface.
Output: Two elements of the mu-basis.
Procedure:
Step 1 Set

v1 = (0, [c, d], [d, b], [b, c])/g1, v2= ([d, c],0, [a, d], [c, a])/g2,

v3 = ([b, d], [d, a],0, [a, b])/g3, v4= ([c, b], [a, c], [b, a],0)/g4,

andS = {v1, v2, v3, v4}.
Step 2 Choosevi , vj from S so thatLT(vi) andLT(vj ) contain the same basis vector.

Assume deg(vi) � deg(vj ).
Step 3 Replacevi by the S-vector ofvi andvj :

vi← LC(vj )vi − LC(vi)s
deg(vi)−deg(vj )vj .
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Step 4 If vi = 0, removevi from S.
Step 5 If the leading term of each element inS has different basis vector, then stop; else

go to Step 2.

Note that if all the coefficients ofvi are integers, then in forming the S-vector, we could
remove common factors to simplify the computation.

Theorem 1. The algorithm described above terminates in a finite number of steps, and the
output contains two elements.

Proof. Since each replacement ofvi in Step 3 lowers the degree of the leading term ofvi ,
the algorithm terminates in a finite number of steps.

On the other hand, after each replacement in Step 3, the elements inS still generate
the moduleL[s] and they are linearly dependent overR[s] before the final stage. Since
rank(M)= 2, at the final stage,S contains only two elements.✷

Obviously, S-vectors play an important role in the above algorithm. S-vectors have been
used in the usual Buchberger’s algorithm for finding a Gröbner basis. However, instead
of adding remainders of S-vectors as the Buchberger’s algorithm does, we here replace
elements with S-vectors. This is the key to the efficiency of the algorithm.

The output of the above algorithm is two vectorsp(s), q(s) ∈ R[s]4 which are generators
of the moduleL[s], and which are amu-basisof rational ruled surfaceP (s, t). A mu-basis
has the following nice property.

Theorem 2. Letp(s), q(s) be the two elements of the mu-basis generated by the algorithm
described above, anddeg(p) � deg(q). Thenp(s) has the lowest degree ins of any element
in L[s], and the sum ofdeg(p) anddeg(q) is equal to the implicit degree of rational ruled
surfaceP (s, t).

Proof. Suppose there is an elementh ∈ L[s] whose degree ins is smaller than deg(p).
Then there exists polynomialsh1(s) andh2(s) such that

h− h1p− h2q = 0.

By Theorem 1, at least two ofh, p andq have the leading terms containing the same
basis vector. Since deg(h) < deg(p) � deg(q), LT(p) andLT(q) must have the same basis
vector. This contradicts the construction ofp andq . Hencep(s) has the lowest degree.

Next we prove that the sum of deg(p) and deg(q) is equal to the implicit degree of
P (s, t). Let deg(p) =m0, deg(q)=m1 and the implicit degree ofP (s, t) bem. We first
showm � m0+m1.

Sincep := (p1,p2,p3,p4) andq := (q1, q2, q3, q4) are the generators of moduleL[s],
there exist polynomialshij (s), i = 1,2,3,4, j = 1,2, such that(

0, [c, d], [d, b], [b, c])= g1(h11p+ h12q),([d, c],0, [a, d], [c, a])= g2(h21p+ h22q),([b, d], [d, a],0, [a, b])= g3(h31p+ h32q),([c, b], [a, c], [b, a],0
)= g4(h41p+ h42q).
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Define

p× q = ([12], [13], [14], [23], [24], [34]),
and

p ∗ q = ([34], [42], [23], [14], [31], [12]),
where[ij ] = piqj − pjqi . From the first two of the above equations, we get

[c, d]P 0(s) ∗ P 1(s)= (h11h22− h21h12)g1g2p× q.

Similarly, we can get five other equations

[d, b]P 0(s) ∗P 1(s)= (h11h32− h31h12)g1g3p× q,

[b, c]P 0(s) ∗P 1(s)= (h11h42− h41h12)g1g4p× q,

[a, d]P 0(s) ∗P 1(s)= (h21h32− h31h22)g2g3p× q,

[c, a]P 0(s) ∗P 1(s)= (h21h42− h41h22)g2g4p× q,

[a, b]P0(s) ∗ P 1(s)= (h31h42− h41h32)g3g4p× q.

SinceGCD([c, d], [d, b], [b, c], [a, d], [c, a], [a, b])=GCD(g1, g2, g3, g4)= g, there ex-
ist polynomialski ∈ R[s], i = 1, . . . ,6, such that

k1[c, d] + k2[d, b] + k3[b, c] + k4[a, d] + k5[c, a] + k6[a, b] = g,

so

g
([c, d], [d, b], [b, c], [a, d], [c, a], [a, b])= hg2p× q,

whereh ∈R[s] is a nonzero polynomial. Since the leading terms ofp andq do not have the
same basis vector, deg(p×q)= deg(p)+deg(q). Thereforem � m0+m1 by considering
the degrees of the polynomials in both sides of the above equation.

Next we need to showm � m0+m1. To this end, we note the four rowsMi , i = 1,2,3,4,
of the matrix M generatep and q , so there exist polynomials̃hij ∈ R[s], i = 1,2,
j = 1,2,3,4, such that

p = h̃11M1+ h̃12M2+ h̃13M3+ h̃14M4,

q = h̃21M1+ h̃22M2+ h̃23M3+ h̃24M4.

It is easy to show

p× q = h̃
([c, d], [d, b], [b, c], [a, d], [c, a], [a, b])/g

for some polynomials̃h ∈R[s]. Thusm0+m1 � m. The theorem is proven.✷
Remark. It can be shown that the computational cost of the above algorithm is
O(n2), wheren is the maximum degree of polynomialsai, bi, ci, di , i = 1,2, while
the computational complexity by the moving planes method is O(n3). Thus the above
algorithm is not only more robust but also more efficient than previous algorithms.



F. Chen et al. / Computer Aided Geometric Design 18 (2001) 61–72 69

3. Implicitization of rational ruled surfaces

The mu-basis of a rational ruled surface leads to a closed form representation of the
implicit equation of the rational ruled surface.

Theorem 3. Let p,q be the mu-basis of the rational ruled surface(1). Then the implicit
equation ofP (s, t) is given byRes(p ·X,q ·X,s)= 0, whereX = (x, y, z,w).

Proof. We prove the assertion in the following four steps.
(1) For any pointX0 on the ruled surfaceP (s, t), the resultant Res(p ·X0, q ·X0, s)= 0.

In fact, sincep andq are moving planes which followP (s, t), there exists parameter
σ such that

p(σ) ·X0= q(σ) ·X0= 0,

sop ·X0 andq ·X0 have a common zeroσ . Hence Res(p ·X0, q ·X0, s)= 0.
(2) p ·X is irreducible inR[x, y, z,w, s].

Supposep ·X is reducible, then there exist polynomialsF,G ∈ R[x, y, z,w, s] such
thatp ·X = FG, whereF is linear inx, y, z,w andG is a polynomial ins. Since
p · X follows P (s, t), F is also a moving plane which followsP (s, t). But this
contradicts the fact thatp has the lowest degree.

(3) Res(p ·X,q ·X,s) is not identically zero.
If Res(p ·X,q ·X,s)≡ 0, thenp ·X andq ·X must have a common factor. Since
p ·X is irreducible inR[x, y, z,w, s], p ·X is a factor ofq ·X, which contradicts
the construction of the mu-basis.

(4) If Res(p ·X0, q ·X0, s)= 0, thenX0 is on the ruled surfaceP (s, t).
We represent Res(p · X,q · X,s) as the Sylvester resultant. For any pointX0

satisfying Res(p ·X0, q ·X0, s) = 0, from standard properties of resultants, either
p(s) · X0 = 0 andq(s) · X0 = 0 have a common solutions = σ , or the leading
coefficients ofp(s) · X0 andq(s) · X0 vanish, which corresponds to the common
solutionσ =∞. From (10), we know that lineP (σ, t) lies on the planesp(σ) ·X =
0 andq(σ) · X = 0. Therefore, ifX0 is not on the lineP (σ, t), p(σ) · X = 0
defines a plane determined by pointX0 and lineP (σ, t), so doesq(σ) · X = 0.
This contradicts the construction ofp andq .

In summary, we have shown that any point on the ruled surface makes the resultant to be
zero, and the resultant vanishes only on the ruled surface. Thus the proof is completed.✷

We should mention that if the rational ruled surface is improperly parameterized,
Res(p · X,q · X,s) is actually a power of the irreducible polynomial which gives the
implicit equation of the surface. But in terms of the parameterization, one can argue that
Res(p ·X,q ·X,s)= 0 is also the correct implicit equation because it reflects the fact that
the rational ruled surfaceP (s, t) is multiply traced.

Based on the above theorem, we can construct two different determinant representations
of the implicit equation of rational ruled surfaceP (s, t).
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Let

p =
m0∑
i=0

pi(x, y, z,w)si, q =
m1∑
i=0

qi(x, y, z,w)si

be the mu-basis ofP (s, t), wherepi and qi are linear functions inx, y, z,w. Let the
implicit degree of the rational ruled surfaceP (s, t) bem. Multiply p by 1, s, . . . , sm−m0−1

respectively, and multiplyq by 1, s, . . . , sm−m1−1 respectively, we arrive atm moving
planes whose degree ins is m− 1. Thesem moving planes result in the Sylvester style
resultant ofp andq :

Res(p ·X,q ·X,s)= det




p0 p1 · · · pm0

. . .
. . .

p0 · · · pm0

q0 q1 · · · qm0

. . .
. . .

q0 · · · qm0




. (17)

We can also write the resultant Res(p ·X,q ·X,s) as a variant of the Bezout’s resultant
(Cox et al., 1998).

Res(p ·X,q ·X,s)= det


Rm1−1,0 · · · Rm1−1,m1−1

... · · · ...

R0,0 · · · R0,m1−1


 , (18)

where

Rij =




∑
k1�min(i,j)

k1+k2=i+j+1

[k1k2], 0 � i � m0− 1, 0� j � m1− 1,

pi+j+1−m1, m0 � i � m1− 1, 0� j � m1− 1,

and[ij ] = piqj − pjqi .
Note that, in the Bezout resultant, there arem1−m0 linear rows andm0 quadratic rows.

Thus the Bezout representations of implicit equations are more compact than the Sylvester
forms.

We conclude with an example. Let

P 0(s)=
(
s3+ 2s2− s + 3,−3s + 3,−2s2− 2s + 3,2s2+ s + 2

)
and

P 1(s)=
(
2s3+ 2s2− 3s + 7,2s2− 5s + 5,−6s2− 8s + 4,5s2+ 4s + 5

)
.

It is easy to compute the matrixM = (C1,C2,C3,C4) with the columns

C1 =



0
−2s3− 2s2− 7s − 7
−4s3− 3s2− 3s + 5
−4s3− 8s2+ 8s + 3


 , C2=




2s3+ 2s2+ 7s + 7
0

−s4− 7s3− s2− 5s − 1
−2s4− 10s3− 4s2+ 4s − 9


 ,
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C3 =



4s3+ 3s2+ 3s − 5
s4+ 7s3+ s2+ 5s + 1

0
−2s4− 3s3+ 10s2− 16s + 6


 ,

C4 =



4s3+ 8s2− 8s − 3
2s4+ 10s3+ 4s2− 4s + 9
2s4+ 3s3− 10s2+ 16s − 6

0


 .

The algorithm described in Section 2.3 computes the following mu-basis ofP (s, t):

p = −5310xs+ (−4797s+ 2947− 2434s2)y + (−2213s2+ 7553s − 2105
)
z

+ (−1263+ 6778s+ 442s2)w,

q = (−842s+ 2434)x + (4017+ 741s)y + (−3217+ 421s2+ 2791s
)
z

+ (
842s2+ 2416s− 4851

)
w,

so we know the implicit degree of rational ruled surfaceP (s, t) is 4 (in fact,P (s, t) has
three base points(s, t) = (−1,−1/2), t = ∞ and s = ∞ with multiplicities 1, 9 and
2 respectively). The implicit equation can be obtained by taking the determinant of the
Sylvester matrix or Bezout matrix:

Res= 1006268875426076xz2w− 490774658180520x2zw

+ 768112098422340zyw2− 127376438447320xy2w

− 310601970486032y2zw+ 8380357023360x2yw

+ 5367419141152xy2z− 262113124982716xyz2

+ 712552326680564z2yw+ 1068420695862120xzw2

+ 36993290288832x2yz− 163057803797376xyw2

+ 74345738735808x2y2+ 104761945253628xy3

− 230018352906348x2z2− 593566221872108xyzw

+ 56904120680940y4− 137213381334264w4

− 108283690526540z4+ 304521223336344xz3

− 227646412570272x2w2+ 311040941568208xw3

− 22080744264228y3z− 169642370030016y3w

+ 5813872684956y2w2− 134387504992756y2z2

+ 210913134216188z3y + 136425228709448yw3

− 910982220747372z2w2− 653800037977508zw3

− 525760154599172z3w+ 26487914163120x3y

+ 52975828326240x3z+ 52975828326240x3w.
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4. Conclusion

This paper presents an algorithmic approach to derive the mu-basis of a rational ruled
surface. The algorithm has two main advantages over previous implicitization methods.
First, it is not necessary to eliminate the base points before computing the mu-basis,
which is usually a cumbersome task. Second, the algorithm is rigorous in that it is totally
automatic, and no trial and error is needed. The mu-basis leads directly to the closed form
representation of the implicit equation of a rational ruled surface.

While ruled surfaces are important in their own right, we hope that ultimately our new
approach may help with the more challenging problem of developing the mu-basis and
closed form representation of the implicit equation of a general rational surface.
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