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Abstract

This paper presents a variational algorithm for feature-preserved mesh denoising. At the heart of the algorithm is
a novel variational model composed of three components: fidelity, regularization and fairness, which are specif-
ically designed to have their intuitive roles. In particular, the fidelity is formulated as an L1 data term, which
makes the regularization process be less dependent on the exact value of outliers and noise. The regularization
is formulated as the total absolute edge-lengthed supplementary angle of the dihedral angle, making the model
capable of reconstructing meshes with sharp features. In addition, an augmented Lagrange method is provided to
efficiently solve the proposed variational model. Compared to the prior art, the new algorithm has crucial advan-
tages in handling large scale noise, noise along random directions, and different kinds of noise, including random
impulsive noise, even in the presence of sharp features. Both visual and quantitative evaluation demonstrates the
superiority of the new algorithm.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

This paper considers the problem of removing noise and out-
liers from triangular meshes while preserving their under-
lying surfaces, in particular the fine features. Such a mesh
denoising process is necessary and important because mesh
models obtained from various acquisition devices such as 3D
scanners or reconstructed from data of other formats such as
volume data or multi-view images often contain noise and
outliers [BAK∗10]. Robust and intelligent mesh denoising
benefits many digital geometric processing applications.

However, mesh denoising is not trivial in several aspects:

(1) Since both noise and geometric features are of high fre-
quency, it is difficult to distinguish features from noise.
Thus, the co-presence of noise/outliers and geometric
features such as shape edges and corners requires some
intelligent strategies in order to preserve the features in
the denoising process.

(2) Many mesh denoising algorithms are directly adapted
from their counterparts in image processing. Unlike im-
ages, meshes often have irregular connectivity and non-

uniform sampling. This implies that special care should
be taken in developing the mesh denoising algorithms.

(3) In practice, different types of noise such as Gaussian
noise and random impulsive noise may co-exist in a
mesh model. Moreover, the noise may corrupt the sur-
faces along random directions.

(4) Large scale noise could make the situation even worse.

Over the past two decades, extensive research has been
done on mesh denoising [Tau95,DMSB99,JDD03,FDCO03,
SRML07,ZFAT11,WYL∗14,ZWZD15,WYP∗15]. Great ef-
fort has been devoted to overcoming the first two issues
listed above and a wide variety of mesh denoising algorithms
have been developed. These algorithms perform well for fea-
ture preservation in the presence of small scale noise. How-
ever, issues (3) and (4) still challenge the state-of-the-art. For
instance, many mesh denoising algorithms implicitly assume
that the noise is Gaussian and corrupts the surface along its
normal direction. When a mesh has large scale noise or con-
tains random impulsive noise, they usually do not work well.

This paper explores the possibility of overcoming these
challenges using a global variational approach. We propose
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a new variational model for mesh denoising with three terms:
(1) a non-smooth data-fidelity term for constraining the solu-
tion to approximate the input mesh, (2) a regularization term
for disfavoring (geometric) oscillations but allowing for the
reconstruction of meshes with sharp features, and (3) a fair-
ness term for smoothing the solution and avoiding foldovers.
It is a natural extension, in the context of digital geometry
processing, of the ROF (Rudin, Osher and Fatemi [ROF92])
model with L1 fidelity [Nik04, Cg05], which is a variational
model composed of a fidelity term and a total variation reg-
ularization term, and has achieved great success in image
denoising and reconstruction. Our work is motivated by two
key observations behind the ROF model with L1 fidelity: (1)
reducing the total variation of the signal subject to a close
fit to the original one will remove unwanted (geometric) os-
cillations while preserving important non-smooth features;
and (2) the L1 data-fidelity term encourages exact fitting of
the uncorrupted data while replacing the outliers with less
dependence on their exact value. As an ROF model with L1
fidelity, our model has the following properties:

• The L1 data-fidelity term makes the regularization be less
dependent on the exact value of outliers and noise. Thus,
our model can properly handle outliers, large scale noise,
impulsive noise and uncorrupted data simultaneously.
• The specifically-designed regularization term has no bias

against corners and creases. It also avoids the “over-
flatten” and “over-sharpen” effects for small scale geo-
metric features, especially in the presence of large scale
noise, by L0 minimization [HS13]. Thus our model is able
to preserve geometric features.

These nice properties have been confirmed by extensive ex-
periments.

The contribution of this paper is twofold: (1) we present
an extended ROF model with L1 fidelity for mesh denoising,
where the regularization term is formulated as the total abso-
lute edge-lengthed supplementary angle of the dihedral an-
gle. It yields more robust and accurate results than the prior
art, especially in the presence of large scale noise, outliers
and random impulsive noise; and (2) we provide an aug-
mented Lagrangian method for solving the proposed vari-
ational model, which is shown to be efficient and effective.

2. Related Work

There are a large number of mesh denoising algorithms in
literature. They can be classified into isotropic approaches,
anisotropic diffusion, bilateral filtering, face-normal-based
approaches, variational approaches, etc. A good reference is
referred to [BAK∗10]. Here we just briefly review some of
the previous methods that are relevant to our work.

Most early mesh denoising methods are isotropic. A well-
known one is Taubin’s signal processing method [Tau95],
which integrates the diffusion equation and is a linear
mesh smoothing method. Since isotropic methods do not

preserve geometric features, anisotropic approaches are
preferred when the surfaces contain sharp features. Vari-
ous anisotropic diffusion methods are developed [CDR00,
DMSB00,BX03,HP04]. Another way to develop anisotropic
methods is to use bilateral filtering, which has some con-
nection to diffusion [Bar02]. For example, Fleishman et al.
[FDCO03] and Jones et al. [JDD03] adapt image bilateral
filtering for mesh denoising. The basic idea is to anisotrop-
ically average the nearby vertices weighted by both spatial
difference and vertex difference. Some improvements are
presented in [SRML07, ZFAT11]. These methods are sim-
ple in both concepts and implementation. They work well
when the noise is small in scale and along the normal direc-
tion of the surfaces. Recently bilateral filtering is general-
ized to perform feature-preserving smoothing of signals on
images, meshes and other domains within a unified frame-
work, which also forms the basis for constructing mean
shift schemes to handle a variety of extremely noisy sig-
nals [SCBW14].

Observing that face normal variations can better describe
the surface variations than vertex variations, some algo-
rithms are developed to first smooth the face normal field
and then update the vertex positions to match the smoothed
normal field. Since the vertex position update is simple, the
research focuses on smoothing the face normals. For exam-
ple, Shen et al. [SB04] develop a fuzzy vector median filter
for normal face smoothing. Sun et al. [SRML07] improve
the method by refining both the smoothing of face normals
and the update of vertices. Zheng et al. [ZFAT11] apply bilat-
eral filtering to the facet normal field, producing very good
results in general. However, face-normal-based methods are
basically two-step approach. It is relatively difficult to con-
trol the accuracy of the reconstructed surfaces, especially
when the noise is large scale and along random directions.

Recently, several variational approaches based on sparse
norm have been proposed to remove noise and outliers from
meshes. An analogue of the standard ROF model is pre-
sented in the context of geometry processing [EE09], which
consists of an L2 fidelity term and a regularization term for-
mulated as the total absolute Gaussian curvature. While in
this model the regularization is vertex-centered, our method
formulates the regularization in an edge-centered manner,
which is more suitable for preserving sharp edges. Weighted
L1 analysis is used to decouple the noise and sharp features
in [WYL∗14]. The approach mainly contains two phases.
The first phase is to estimate the base mesh by global Lapla-
cian smoothing and the second phase is to recover the sharp
features from the residual between the base mesh and the in-
put mesh by weighted L1 norm. He and Schaefer [HS13]
propose an L0 minimization method for piecewise plane
models with large scale noise. This method achieves im-
pressive results for sharp feature preservation and piece-
wise linear face recovery. However, nonlinear smooth faces
and small-scale features of the surfaces are usually over-
smoothed. It does not work well when the model contains
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large scale impulsive noise. Zhang et al. [ZWZD15] propose
a total variation method applied to the face normals to over-
come the over-flatten issue caused by an L0 minimization
method. However, their method does not work well when the
model contains different kinds of noise and may even cause
severe foldovers. Our method is similar to these methods in
spirit. Since we adopt the ROF model with L1 fidelity, our
method is more robust and outperforms previous methods in
the presence of large scale noise and impulsive noise.

3. Variational Formulation

This section first briefly describes the 1D ROF model with
L1 fidelity, which helps understand the principle of our work
before we present our extended model for mesh denoising.

3.1. 1D ROF model with L1 fidelity

Given an input function f (x),x ∈ [a,b], the ROF model with
L1 fidelity is to exhibit the reconstructed function as the min-
imizer of the following energy [Nik04]:

λ

∫ b

a
| f (x)−u(x)|dx+

∫ b

a
|u′(x)|dx. (1)

This functional is to be minimized over all u(x). The first
term is the L1 fidelity, encouraging the solution u(x) to ap-
proximate f (x). The L1 fidelity reduces the dependence on
the exact value of the variation in the regularization pro-
cess [Cg05]. The second term is the total variation regu-
larization. Reducing the total variation removes unwanted
oscillations while maintaining important discontinuities. In
fact, the functions with the least total variation are monotone
functions. That is, given the boundary conditions u(a) = A
and u(b) = B, as long as u(x) is monotone, the total variation
is always |B−A|, so the regularization sees no difference no
matter whether u(x) is smooth or discontinuous. This prop-
erty allows the model to reconstruct discontinuous signal.

3.2. Extended ROF model with L1 fidelity for meshes

Assume that the input triangular mesh M0 is represented by
{U0,E0,T 0}, where U0 = {v0

i } is a set of vertices possi-
bly corrupted by noise and outliers, E0 = {e0

i } is a set of
edges with each edge e0

i bounded by two vertices v0
i1 ,v

0
i2

with i1 6= i2, T 0 = {4v0
i v0

j v
0
k} with i 6= j, j 6= k, i 6= k is a

set of triangles, and the superscript ‘0’ indicates the initial
status. Our goal is to remove noise and outliers whilst pre-
serving the discontinuities in the normals of the underlying
clean surface such as sharp edges or corners. This can be
accomplished if we can find the following decomposition

v0
i = vi +δi , (2)

where vi are the denoised vertices and δi are noise or outliers
contained in v0

i . The denoised mesh M = {U,E,T} is then
formed by vi with the same connectivity as M0. To obtain a
unique solution in the decomposition, we have to add further

constraints. Similar to the 1D ROF model, we seek the de-
noised vertices vi as the minimizer of the following energy,
which we call the extended ROF model with L1 fidelity:

λE f idelity +Eregularizer +
r
2

E f airness , (3)

where E f idelity is the fidelity term, Eregularizer is the regular-
ization term, E f airness is the fairness term, and λ and r are
the fidelity and fairness parameters, respectively, that bal-
ance the effects of the three terms. The detailed formulation
of the three terms is given below.

3.2.1. Fidelity E f idelity

As shown in [Nik04, Cg05] for signal or image processing,
the L1 formulation of the fidelity enhances the ROF model
with many nice properties for feature-preserving denoising.
Therefore, we define our fidelity term as

E f idelity = ∑
vi∈U
‖v0

i − vi‖, (4)

which is different from most previous approaches that use
L2 norm: ∑

vi∈U
‖v0

i − vi‖2. While our fidelity encourages the

denoised vertices vi to be close to the input vertices, it also
avoids the excessive influence of the exact value of outliers
and large scale noise. It is especially suitable for removing
impulsive noise. Our experiments show that it is also ef-
fective for removing Gaussian noise (see Figs. 3,4,5,9,11)
though in image processing L2 norm is typically used for
handling Gaussian noise. To the best of our knowledge, this
is the first work that uses a non-smooth fidelity term in mesh
noising.

3.2.2. Regularizer Eregularizer

To remove the noise, we need to design an appropriate term
to regularize vi. We may ask what types of meshes are treated
as noise free. Note that in the 1D ROF model, the mono-
tone functions are treated as noise free. The regularization
is formulated as a total variation, which assigns all mono-
tone functions, whether smooth or discontinuous, the same
energy. In the context of mesh denoising, the analogue of
monotone functions could be seen as shapes that do not pos-
sess unnecessary (geometric) oscillations. This is because a
mesh corrupted by noise usually has irregular variation of its
normal from face to face, exhibiting (locally frequent) ge-
ometric oscillations. Hence, we have to find a quantity to
measure the occurrence of oscillations and assign the least
possible energy to noise-free shapes.

For the convenience of description, we assume that
meshes M0 and M are polyhedral meshes. Our concept and
method can be easily extended to open meshes.

Consider an edge ei of M. Let θi be the interior dihedral
angle of M at ei. If ei is a convex edge of M, θi < π. If ei
is a concave edge, θi > π. We define the supplementary an-
gle of θi to be π− θi. It is positive for a convex edge and
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negative for a concave edge, so its sign indicates the relative
orientation of two adjacent triangular faces.

Denote by li the length of edge ei. We multiply the sup-
plementary angle by li, which gives the total mean curva-
ture of the mesh for the edge [Sul06]. Based on Schläfli for-
mula [Pak10], ∑

ei∈E
li(π− θi) is a constant for a continuous

isometric deformation of a polyhedron. Due to the constraint
of the fidelity term, we assume that the lengths of the corre-
sponding edges of M and M0 are roughly the same. Thus,
M is approximately an isometric deformation of M0, and
∑

ei∈E
li(π−θi) ≈ ∑

e0
i∈E0

l0
i (π−θ

0
i ). This suggests that we de-

fine our regularization as

Eregularizer = ∑
ei∈E
|li(π−θi)| , (5)

which we call the total absolute edge-lengthed supplemen-
tary angle of the dihedral angle (shortened as “TESA”). It is
easy to verify that the TESA has the following properties:

• ∑
ei∈E
|li(π−θi)| ≥ | ∑

ei∈E
li(π−θi)|

• ∑
ei∈E
|li(π−θi)| = | ∑

ei∈E
li(π−θi)| if and only if all edges

are convex or all edges are concave.

Thus, the closer ∑
ei∈E
|li(π− θi)| is to | ∑

ei∈E
li(π− θi)|,

the closer the distribution of the sign of li(π− θi) is to
all positive or all negative, which implies that minimizing
Eregularizer has an effect of reducing the occurrence of ge-
ometric oscillations. Meanwhile, it can also be seen that
Eregularizer makes no or less distinction between convex
shapes. That is, it does not prefer one to the other, and in
particular has no bias against corners and creases. It thus al-
lows the preservation of sharp edges and corners.

v1

v1
v1v2

v2
v2v3

v3
v3v6

v6
v6

v20

v20
v20

. . .
· · ·

· · ·

θ10θ10
θ10

Figure 1: 2D illustration.

Fig. 1 shows 2D examples to illustrate our regulariza-
tion, which favors continuity in directional changes. In
Fig. 1(left), ∑i |(π−θi)| ≈ 11.32π is much greater than 2π,
which implies that when we go through edges in the poly-
gon (v1, ..., v20, v1), we frequently change our heading di-
rection between clockwise and counterclockwise. Our reg-
ularizer favors Fig. 1(mid. & right), where ∑i |(π− θi)| =
|∑i(π−θi)| = 2π reaches the minimum and the directional
change is consistently counterclockwise. Moreover, our reg-
ularizer makes no distinction between the circle and square

in Fig. 1(mid. & right), enabling the preservation of sharp
corners in square.

3.2.3. Fairness E f airness

Note that denoising and fairing are actually two different
concepts. As pointed out in [FDCO03], mesh fairing alters
meshes to increase their degree of fairness while mesh de-
noising is to remove the noise from meshes. Our fidelity and
regularization terms are mainly for the purpose of denoising.
Thus, a denoised mesh may not look very smooth. In order
to improve the fairness of the denoised mesh, we add a fair-
ness term. Another purpose of adding the fairness term is to
reduce the chance of foldover, especially when the noise is
large scale and along random directions.

Consider an edge e shared by two triangles 4v1v2v3 and
4v1v3v4. These two triangles can be viewed as an approxi-
mation to a bilinear Bézier surface S(u,v),u,v∈ [0,1], whose
four control points are vertices v1,v2,v3 and v4. One com-
mon practice to fair the surface is to minimize its thin-plate
energy:∫ 1

0

∫ 1

0

(
S2

uu +2S2
uv +S2

vv

)
dudv = 2‖v1− v2 + v3− v4‖2.

Thus, we define our fairness term as follows:

E f airness = ∑
e∈E
‖v1− v2 + v3− v4‖2 , (6)

which happens to be the same as the term introduced in
[HS13].

Remark. Our proposed variational formulation is similar to
those proposed in [HS13] and [ZWZD15] in spirit. However,
there are two major differences. First, our fidelity term is
formulated using an L1 norm while [HS13] and [ZWZD15]
use the conventional L2 norm. Second, our regularization is
formulated using TESA for disfavoring geometric oscilla-
tions but allowing for reconstruction of shapes with sharp
features. The regularization of [HS13] applies the L0 norm
to an edge-based differential operator to maximize the flat
regions of the model, and the regularization of [ZWZD15]
is a weighted vectorial total variation of the face normals,
which takes the sparsity of sharp features on a clean mesh
into consideration. Hence, our formulation may provide rel-
atively simpler and more intuitive geometric explanation of
why the sharp features can be preserved in these denoising
methods, especially in handling shapes like Fig. 1(middle)
and (right).

4. Algorithm

This section describes how to solve the variational model
proposed in the preceding section. For this purpose, we need
to compute the edge-lengthed supplementary angles. Here,
we first give another geometric interpretation of these an-
gles. Referring to Fig. 2, consider an edge v1v3 with two op-
posite vertices v2 and v4. Let T1,T2 be two vectors of length
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v1

v2

v4

v3

θ4,1,3
θ3,1,2

θ2,3,1
θ1,3,4

T1

T2θ

π − θ
T1

T2
π − θ

Tm

Figure 2: Notations for the local (3D) configuration of an
edge and its supplementary angle.

‖v1v3‖, perpendicular to edge v1v3. T1 is the inward facing
normal lying on 4v1v3v4 and T2 is the outward facing nor-
mal lying on the plane of 4v1v2v3. Then π−θ is the angle
between T1 and T2, and ‖v1v3‖|π−θ| is the length of the arc
that joins the terminal points of T1 and T2 while centering at
the common initial point of T1 and T2 (see Fig. 2(right)).

Rather than directly computing the arc length, which is
very complicated, we take an approximation approach. As
shown in [HS13], we have

T1 = cot(θ4,1,3)(v4− v3)+ cot(θ1,3,4)(v4− v1),
T2 = cot(θ2,3,1)(v1− v2)+ cot(θ3,1,2)(v3− v2).

We compute vector Tm = T1+T2
‖T1+T2‖ l. Refer to Fig. 2 (right).

Tm is a vector starting at the initial point of T1 and T2,

and terminating at the middle point of arc
_

T1T2 . Then

we approximate the arc-length by the sum of chord-lengths
|T1−Tm|+ |Tm−T2|= 2|Tm−T2|. After some calculations,
we obtain 2(Tm−T2) =

−αcot(θ1,3,4)− (2−α)cot(θ2,3,1)
(2−α)cot(θ2,3,1)+(2−α)cot(θ3,1,2)
−αcot(θ4,1,3)− (2−α)cot(θ3,1,2)

αcot(θ4,1,3)+αcot(θ1,3,4)


T 

v1
v2
v3
v4


(7)

with α = 2l
‖T1+T2‖ .

Now we define column vectors v = [v1,v2, ...]
T and v0 =

[v0
1,v

0
2, ...]

T . Then for all edges of mesh M, their 2(Tm−T2)
can be represented as a single expression K1v, where K1 is a
matrix whose entries are from the matrix in (7); similarly, all
of the terms v1− v2 + v3− v4 can be represented as a single
expression K2v, where K2 is a constant matrix. Hence, the
minimization of (3) can be rewritten in vector form:

min
v
{λ‖v0−v‖1 +‖K1v‖1 +

r
2
‖K2v‖2

2} , (8)

where ‖·‖1 and ‖·‖2 represent the L1 and L2 norms, respec-
tively.

4.1. Augmented Lagrangian method

Since the minimization problem (8) is non-differentiable, we
resort the augmented Lagrangian method (ALM) [WZT11]
to solve it. For this purpose, two new variables z = v0− v
and p = K1v are introduced, and the problem is converted to

min
v,z,p
{λ‖z‖1 +‖p‖1 +

r
2‖K2v‖2

2}

subject to z = v0−v, p = K1v.

We then minimize the following augmented Lagrangian
functional

L(v,z,p;λz,λp) = λ‖z‖1 +‖p‖1 +
r
2‖K2v‖2

2
+〈λz,z− (v0−v)〉+ rz

2 ‖z− (v0−v)‖2
2

+〈λp,p−K1v〉+ rp
2 ‖p−K1v‖2

2 ,

(9)

where λz and λp are the Lagrangian multipliers, 〈,〉 is the in-
ner product, and rz,rp > 0 are the penalty coefficients. The
entire procedure for solving the problem is outlined in Al-
gorithm 1, which iteratively solves three sub-problems: the
v-sub problem, p-sub problem and z-sub problem.

Algorithm 1 ALM algorithm for minimizing (9)

Initialization: v(0)=v0, z(0)=p(0)=λ
(0)
z =λ

(0)
p =ε=0, k=0.

while ε > ε0 and k < max-iteration-number do
Compute (v(k+1),z(k+1),p(k+1)) as an (approximate)
minimizer of the augmented Lagrangian functional
with the Lagrangian multiplier λ

(k)
z ,λ

(k)
p :

(v(k+1),z(k+1),p(k+1))≈ arg min
v,z,p

L(v,z,p;λ
(k)
z ,λ

(k)
p ) ,

which is done by the following iterations:
Let z(k+1) = z(k), p(k+1) = p(k).
for j = 1,2, · · · ,K do

v(k+1) = argmin
v

L(v,z(k+1),p(k+1);λ
(k)
z ,λ

(k)
p );

z(k+1) = argmin
z

L(v(k+1),z,p(k+1);λ
(k)
z ,λ

(k)
p );

p(k+1) = argmin
p

L(v(k+1),z(k+1),p;λ
(k)
z ,λ

(k)
p )

end for
and then update

λ
(k+1)
z = λ

(k)
z + rz(z− (v0−v))

λ
(k+1)
p = λ

(k)
p + rp(p−K1v)

Update K1
ε = ‖v(k+1)−v(k)‖2

2, k++.
end while

• v-sub problem: fix p,z and solve for v by minimizing
r
2‖K2v‖2

2 + 〈λz,z− (v0−v)〉+ rz
2 ‖z− (v0−v)‖2

2
+〈λp,p−K1v〉+ rp

2 ‖p−K1v‖2
2.

This problem can be converted into a sparse linear system.
• z-sub problem: fix v,p and solve for z by minimizing

λ‖z‖1 + 〈λz,z− (v0−v)〉+ rz

2
‖z− (v0−v)‖2

2 ,
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Figure 3: L1 fidelity vs L2 fidelity. From left to right: 1) ground truth, 2) noisy models, 3) denoising results using the L2 fidelity,
4) denoising results using the L1 fidelity, 5&6) close-up views of the results in 3) and 4). The model on the top row is corrupted
by 10% of impulsive noise with the scale of [0, le] and Gaussian noise with σ = 0.15le along random directions, while the model
on the bottom row is corrupted by 10% of impulsive noise with the scale of [0, le], where le is the average triangle edge length.

which has a closed-form solution z = max{0,1 −
λ

rz‖wz‖}wz with wz = v0−v− λz
rz

.
• p-sub problem: fix v,z and solve for p by minimizing

‖p‖1 + 〈λp,p−K1v〉+ rp

2
‖p−K1v‖2

2 ,

which has a closed-form solution p = max{0,1 −
1

rp‖wp‖}wp with wp = K1v− λp
rp

.

5. Experimental Results

This section reports our experimental results on a variety of
models. Our implementation uses Intel’s MKL sparse solver
to solve the sparse linear system and the experiments are
conducted on Intel(R) Xeon(R) CPU E5-1650. Most of com-
putational cost is taken for solving the linear system. Our
current implementation is optimized. The computation time
is within 2 minutes for models with fewer than 35k vertices.

Like most previous methods, we need to set the parame-
ters properly to produce the best results. Our extended ROF
model contains two parameters: λ for controlling the fidelity
of the denoised mesh and r for controlling the fairness of
the final triangulation. The augmented Lagrangian method
also introduces parameters rz and rp, which have some de-
noising effects: the smaller rz is, the smoother the surface is,
whereas the larger rp is, the more staircase-like the result is.
Totally we need to specify four parameter values (λ,rp,rz,r)
for our method. The parameter sets for other methods are:
[FDCO03] (σs, vertex iterations), [SRML07] (normal updat-
ing iterations, feature detection threshold, vertex updating
iterations and neighborhood size), [ZFAT11](local) (normal
updating iterations, σs, vertex updating iterations, neighbor-
hood size), [ZFAT11](global) (tuning parameter, σs, ver-
tex updating iterations, neighborhood size), and [HS13]
(smoothness, regularization).

The parameter values we used in our experiments for
Figs. 8,9,11 are shown in Table 1. For other examples, the
values are given directly in the text. The results generated
by [ZWZD15] are kindly provided by the authors.

5.1. L1 fidelity vs L2 fidelity

Fig. 3 compares the denoising results by using the L1 fidelity
‖v−v0‖1 and the L2 fidelity ‖v−v0‖2

2. It can be clearly seen
that the L1 fidelity yields better denoising results in remov-
ing large scale noise and multiple types of noise. Using L2,
we do not have parameter λz. The other three parameter val-
ues used here are (0.1, 1000, 100) and (0.01, 1000, 1) for the
bunny and star models, respectively. The parameter values
for the L1 fidelity approach are (3,300, 500, 100) and (0.1,
80, 20, 1) for the two models.

5.2. Effects of the fairness term

Fig. 4 shows the effect of the fairness term: it improves the
overall surface smoothness and prevents triangle foldover.
Without it, some triangles fold over, as indicated in red.
Here, the parameter values used are (0.85, 250, 50, 200) and
0 was used to replace 200 for removing the fairness term.

5.3. Visual comparison with other methods

In this subsection, we compare our method with other meth-
ods in three different aspects.

1) L0 minimization. First, we compare our method with L0
minimization (L0). In general, both work well for sharp fea-
ture preservation, but L0 over-penalizes the small scale ge-
ometry features. Figs. 5 and 6 show the comparison results
for two models with small geometry features: the hair area
in the Venus head model and the teeth in the Skull model.
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Figure 4: The effect of the fairness term. From left to right: 1) ground truth, 2) noisy mesh with Gaussian noise (σ = 0.15le)
and 10% of impulsive noise with the scale of [0, le], 3) denoising result without using the fairness term, 4) denoising result with
the fairness term, 5&6) wireframe renderings of the results in 3) and 4). The bottom row shows the close-up views. The red
edges in the wireframe renderings (typically shown in the result of the 5th column above) indicate foldovers.

Figure 5: From left to right, top to bottom: 1) the original
Venus head model, 2) the noisy input mesh corrupted by im-
pulsive noise with the scale of [0, le] and Gaussian noise with
σ = 0.2le along random directions , 3) the smoothed model
by L0 and 4) the smoothed model by our method.

In Fig. 5, two types of noise: impulsive noise with the
scale of [0, le] and Gaussian noise with σ = 0.2le are added,
where le is the average triangle edge length. Not only the
noise but also the geometry feature like the hair is removed
by the L0 norm. The parameter values are (2, 10) for L0 and
(3, 300, 500, 120) for our method.

Fig. 6 shows the denoising processing of L0 minimiza-
tion and our method produced by gradually either increasing
the effect of the smoothness term or decreasing the effect of
the fidelity term. Specifically, for the L0 minimization, the
regularization parameter value is 1, and the smoothness pa-

Figure 6: Skull model. From left to right: the second row
shows the noisy input and then L0 norm results by decreasing
the fidelity parameter. The third row shows the original mesh
and then our results by decreasing the fidelity parameter. The
first and fourth rows show the local close-up views.

rameter increases from 1 to 3 and 5 from left to right. For
our method, the fidelity parameter λ decreases from 2 to 1
and 0.5 from left to right, and the other three parameters
are (500,500,30). To remove the large scale noise near the
teeth area, L0 flattens the small geometry features as shown
in the close-up views near the teeth area, while our method
not only removes the noise but also preserves the small ge-
ometry features well.
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Figure 8: Comparison with other methods in handling impulsive noise. From left to right: 1) surfaces corrupted by impul-
sive noise with the scale of [0, le], denoising results produced by 2) bilateral filtering [FDCO03], 3) face-normal-based de-
noising [SRML07], 4) bilateral normal denoising (local) [ZFAT11], 5) bilateral normal filtering (global) [ZFAT11], 6) L0
norm [HS13], 7) total variation [ZWZD15], and 8) our method. The top and bottom rows show the local close-up views.

Figure 7: Ground-truth models: bunny and fandisk.

2) Impulsive noise. Fig. 8 presents comparison results of
handling impulsive noise added to bunny and fandisk, whose
ground-truth models are given in Fig. 7. As shown in Fig. 8,
our method can effectively remove large scale impulsive
noise without over-smoothing the small surface features
while the other six methods smooth out the high curva-
ture features in bunny (top) and the shadow edge in Fan-
disk (bottom). Since most existing methods focus on the de-
sign of appropriate smooth filters, they ignore the properties
of the fidelity part and thus are not able to filter the large
scale noise without removing the model’s features. Hence,
the over-penalized fidelity on noise will smooth out the sur-
face features, especially for large scale noise. In contrast,
our method well preserves the surface features for both the
CAD-like and non-CAD models while removing the noise
with the new fidelity and regularization terms.

3) Noises along random directions. Fig. 9 (top row) shows
that when a model is corrupted by small scale Gaussian noise
(with standard deviation σ = 0.1le) along the normal direc-
tion, most previous methods work well, although the first
four methods already fail to keep the shadow edge.

If we increase σ to 0.3le with noises along random di-
rections, most previous methods fail to remove the noise
cleanly, or preserve the surface features well (see the sec-
ond row of Fig. 9). Meanwhile, severe foldovers are pro-
duced. Though [ZWZD15] preserves the surface features
well, it cannot avoid the fold-over problem either, as shown
in Fig. 10. This may be due to its two-step approach that it
first uses variational normal filtering and then updates the
vertex position from the modified face normal. When the
noise is along random directions, the method may not ob-
tain the correct orientation. Our method works well for small
scale noise along normal direction, as well as large scale
noise even along random directions.

The bottom row of Fig. 9 presents another comparison,
where the fandisk model is simultaneously corrupted by two
different types of noise: impulsive noise and Gaussian noise.
It can be seen that while other methods have difficulty in
removing the noise cleanly, our method can produce high
quality results. Fig. 11 performs the same comparison but
on a different model.
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Figure 9: Comparison with other methods. From left to right: 1) input noisy meshes, results produced by 2) bilateral filtering
[FDCO03], 3) face normal denoising [SRML07], 4) bilateral normal denoising (local) [ZFAT11], 5) bilateral normal filtering
(global) [ZFAT11], 6) L0 norm [HS13], 7) total variation [ZWZD15] and 8) our method. From top to bottom: corrupted by
Gaussian noise with σ = 0.1le along normal directions, corrupted by Gaussian noise with σ = 0.3le along random directions,
and corrupted by two types of noise: Gaussian noise with σ = 0.15le and impulsive noise with the scale of [0, le].

Figure 11: Comparison with other methods in handling two types of noise simultaneously. From left to right: 1) surface cor-
rupted by Gaussian noise (σ = 0.15le) along random directions and 10% impulsive noise with the scale of [0, le], 2) bilateral
filtering [FDCO03], 3) face normal denoising [SRML07], 4) bilateral normal denoising (global) [ZFAT11], 5) bilateral normal
filtering (local) [ZFAT11], 6) L0 norm [HS13], 7) total variation [ZWZD15], and 8) our method.

5.4. Quantitative evaluation

We also conducted quantitative evaluation on our method
and previous methods. Three metrics are used to measure
the deviation of the denoising results from the ground truth:
1) mean square angular error (MSAE) [SRML07], 2) L2-
vertex-based error (ev,2), and 3) vertex-based Hausdorff dis-
tance (eH ) [ZWZD15]. They measure the angular error,
mean error, and maximal error, respectively.

Table 1 lists the results. It can be seen that the denoising
results by our method have the least errors in most cases,
especially for models containing different types of noise. For

Fandisk in Row 1 and Row 2 of Fig. 9, where the noise is
small scale Gaussian noise, our method gives the ev,2 and eH
values that are not the least, but close to the least.

5.5. Denoising Real Scanned Models

Fig. 12 presents denoising results produced by our method
on three different scanned models. In particular, the model
on the right is an open mesh. This demonstrates that our
method can also work with real data and open meshes.
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Table 1: Quantitative evaluation results: statistics of Fig. 8, 9 and 11, where MSAE, ev,2 and eH are in the scale of ×10−3.

Methods Parameters MSAE ev,2 eH Parameters MSAE ev,2 eH

Fig. 8 Row 2, Bunny ( Nv = 34817, Ne = 104445) Fig. 8 Row 3, Fandisk (Nv = 25894, Ne = 77677)

[FDCO03] (0.3, 10) 129.5 7.3 23.02 (0.5, 10) 105.83 4.7 24.88
[SRML07] (10, 0.25, 20, NII) 41.62 3.17 25.32 (15, 0.25, 20, NII) 12.69 1.24 9.51

[ZFAT11] (Local) (10, 0.6, 20, NII) 32.45 2.69 13.12 (20, 0.45, 20, NII) 34.91 2.22 16.6
[ZFAT11] (Global) (0.05, 0.9, NII) 32.43 2.5 12.05 (0.07, 0.55, 20 NII) 13.04 1.62 13.1

[HS13] (10, 1) 124.5 5.01 39.47 (200, 1 ) 38.81 3.02 48.67
[ZWZD15] N.A. 36.97 2.98 13.12 N.A. 22.08 1.05 5.16

Ours (2, 500, 500, 100 ) 6.64 0.6 11.03 (0.1, 180, 20, 1) 5.4 0.77 4.93

Fig. 9 Row 1, Fandisk (Nv = 25894, Ne = 77677) Fig. 9 Row 3, Fandisk (Nv = 25894, Ne = 77677)

[FDCO03] (0.5, 10) 111.5 5.34 19.73 (0.9, 10) 167.24 4.08 24.05
[SRML07] (5, 0.5, 20, NII) 1.01 0.52 5.42 (15, 0.25, 20, NII) 37.81 1.4 30.17

[ZFAT11] (Local) (5, 0.3, 20, NII) 0.93 0.47 4.58 (15, 0.4, 20, NII) 40.1 1.42 24.1
[ZFAT11] (Global) (0.07, 0.3, 20, NII) 0.82 0.4 3.14 (0.01, 0.5, 20, NII) 60.86 2.66 14.02

[HS13] (3, 1 ) 0.52 0.36 4.48 (100,1) 55.65 3.5 37.17
[ZWZD15] N.A. 0.32 0.35 4.53 N.A. 50.3 3.01 15.89

Ours (0.1, 150, 200, 1) 0.31 0.39 4.01 (0.1, 200, 200, 1) 9.39 1.21 13.97

Fig. 9 Row 2, Fandisk (Nv = 25894, Ne = 77677) Fig. 11, Bunny ( Nv = 34817, Ne = 104445)

[FDCO03] (0.9, 10) 367.9 3.58 15.3 (0.6, 10) 129.56 7.3 23.03
[SRML07] (30, 0.15,20, NII) 468.8 3.63 21.51 (10, 0.2, 20, NII) 39.48 3.18 16.53

[ZFAT11] (Local) (35, 0.3, 20, NII) 492.6 1.69 11.04 (15,0.4, 20, NII) 44 2.46 28.61
[ZFAT11] (Global) (0.05, 0.6, 20, NII) 525.5 1.56 8.71 (0.04, 0.5, 20, NII) 31.96 2.5 13.24

[HS13] (5, 1) 37.48 2.86 11.19 (30, 1) 80.93 4.38 41.44
[ZWZD15] N.A. 538.5 3.56 9.87 N.A. 50.3 3.15 15.53

Ours (0.1, 150, 130, 1) 19.9 1.63 9.93 (2, 500, 500, 100) 8.82 0.87 12.99

6. Conclusion

We presented an extended ROF model with L1 fidelity for
feature-preserved mesh denoising. The L1 data-fidelity term
and the regularization term formulated as the total abso-
lute edge-lengthed supplementary angle of dihedral angle
make our model be able to remove outliers and different
kind of noise (even large scale), while preserving small ge-
ometric details and sharp features. The fairness term in our

Figure 10: Denoising results (in wireframe rendering) pro-
duced by [ZWZD15] (left) and ours (right). See also Fig. 9
(2nd row). The folded triangles are indicated by red edges.

Figure 12: Denoising real scanned models: input models
with noise (top) and denoised models (bottom).

model has the smoothing effect and reduces the occurrence
of foldovers. Extensive experiments also showed that our
proposed method always outperforms the state-of-the-art.
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