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Abstract

This paper presents a solution to the problem of reparameterizing a rational curve by a Mébius transformation
such that the maximal ratio of weights in the reparameterized representation is minimized. The problem is reduced
to solving a linear programming problem, which can be solved directly and simply. The result can be used to
reparameterize rational curves so as to yield tight bounds on derivatives.
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1. Introduction

In geometric modeling, bounds on derivatives are used in many curve and surface algorithms (Filip et
al., 1986). For rational Bézier curves or surfaces, the estimates of such bounds are often related to the
ratios of weights (Floater, 1992; Saito et al., 1995). For example, consider a rational Bézier curve
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where the weightsy; are assumed to be positive. Floater (1992) derived two bounds on the first order
derivative:

r() = t €[0,1], (1)
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Fig. 1. Different parametric flows.
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The uneven distribution of the weights leads to loose bounds. If these bounds on the derivative are used to
determine a global step size for tessellating or rendering rational curves/surfaces such as in (Abi-Ezzi and
Shirman, 1991; Rockwood, 1987), it will result in excessive segments and defect further computations.
We are thus motivated to find a rational Bézier representation with a small ratio of the largest weight over
the smallest weight.

It is noted that the representation of a rational Bézier curve is not unique. It is well known that a
rational Bézier curve can be reparameterized by a Mobius transformation such that the parameter domain
and the control points remain unchanged (Lucian, 1991). What changes is the way of tracing the curve.
For example, a cubic rational Bézier cumwg), ¢ < [0, 1] with control points(0, 0), (0.5,2.2), (2, 3),

(3,1) and weights 8, 4, 1 and 1 is transformed by the Mobius transformatioBs /(1 + s) into another

cubic rational Bézier curve(z(s)), s € [0, 1], with the same control points and new weights 8, 8, 4

and 8. The sequences of discrete points on the curves corresponding to a fixed parametric increment are
shown in Fig. 1. This naturally raises a question: what is the good Mobius transformation for a given
rational curve? Of course, it relies on given measure of “goodness”. Farin and Worsey (1991) suggested
reparameterizing a rational curve so as to make the first and last weights be 1. This representation is called
the standard form. The standard form is likely to give a more symmetric parametric flow for a rational
curve. Optimal reparameterization was also studied by Farouki (1997) who introduced an optimality
criterion describing the deviation of the curve from the unit speed parameterization. The identification of
optimal parameterizations for a polynomial curve was analytically reducible to determining the unique
real root on (0, 1) of a quadratic equation. In this paper, we seek a rational reparameterization that leads to
minimizing the maximal ratio of weights. We first show that finding such a parameter transformation can
be reduced to a linear programming problem. Then we show that no “programming” is in fact required
and a direct solution is presented.
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2. Theoptimization problem

The general form of the M6bius transformatioe: ¢ (s) that maps the intervdD, 1] into itself with
t(O)=0andr (1) =1is
Vs
_ 2)
ys+ (A —ys)
wherey > 0 is a free parameter. Substituting (2) into (1), we obtain a rational Bézier curve of degree

Yoy wi P Bl (s) -
> i—ov wiB(s)
with the same control points;, but the weights becoming w; .
The goal of this paper is to find the “best” parameter transformation among the family of Mdbius
transformation (2). That is to determine a value foso that the curve(z(s)) has such a property that
max {y w;}/ min;{y‘w;} is minimized for all possibler > 0.
Note that makl<n{y.wz}/ min0<l<n{y.wl} = ma)©<l ]<n{y‘7jwl/wj} So if we let p =
maX<; j<n{y' /wi/w;}, thenp > y'~/w;/w; for all i and;. Based on this observation, we can convert
our problem to finding the smallegtand the corresponding satisfying

W,
y' T —<p (4)
W;j
for all i andj. Due to the exchangeability of indicesand j, it is obvious thaip > 1
Taking logarithm of both sides of inequality (4) and lettifig=logy, G = log p, gives

t=t(s)=

r(t(s)) =

(i—j)H+logw; —logw; <G, 0<i,j<n,

and we arrive at the following linear programming (LP) problem:
minimize G
subjectto —G < (i —j)H +logw; —logw; <G, 0<j<i<n.

Observe that the constraints in the above LP problem contai# 1) inequalities. However, it is possible
that the constraints can be specified by onlyirlequalities. To show this, we divide the inequalities into
n groups, each of which is labelled by an integahat ranges from 1 ta. Thekth group has the index
restrictioni — j = k and is described by

—G <kH +logw; —logw; x <G, i=k,...,n. (5)
Introducing the new variables
Wi = krglaﬁ{log w; —logw; i}, W,= kgll_lgn{log w; —logw; i}, (6)

itis easy to check that the region defined liy 2 k + 1) inequalities (5) in(H, G)-plane is the same as
defined by two inequalitie6€ —kH > W, andG +kH > —W .. Thus the total number of the inequalities
can be reduced tar2and the LP problem can be simplified to
minimize G
subjectto G —kH
G+kH

“»w k=1,....n

>W
H>-W,, k=1...n. @)
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To summarize, we have reduced the problem of finding the best Mdbius transformation to a linear
programming problem (7). Though this LP problem can be solved using the standard solver, such as the
simplex method (Murty, 1976), we provide a more straightforward method in the next section.

3. Thesolution

Since (7) is a special LP problem, we expect a conceptually or geometrically simple solution, without
resort to classical LP solvers. A trivial case is that all weights of the curve are the same and thus the curve
is a polynomial one. Then the constraints becerte < kH < G fork =1, ...,n. The optimal solution
is G = H =0. In general, we have

Theorem 1. Let integers jo, ko be such that

oW, — koW . Wi — kW
F0Mho 750 b — max {71 i } (8)
Jo+ko 1<j.k<n j+k
Then
(Ho, Go) = {— Wiat Wiy JoWso — kol }
Jo+ ko Jo+ ko

isthe unique optimal solution to LP problem (7).

Proof. We first show that in the feasible region(#, G)-plane, which is defined by the inequalities of
(7), Go given in the theorem is not greater than all possible valugs. dh fact, for eachj andk, the H
andG values of any poin¢H, G) in the feasible region must satisty—kH > W, andG + jH > -W,.
Solving these two inequalities yields
> JWi— kﬂj .

Jjt+k
Since this inequality should hold for aflandk, G > Go.

Next we show that Hy, Go) is a point in the feasible region. Note th@iy, Go) is the intersection
point of linesG — koH = Wko andG + joH = -W,, . For each lineG — kH = Wy, it intersects line
G + joH = —W, at a certain point, sayH1, G1). By definition of Go and (8), we haveGo > G;.
Since both(Hy, Go) and (Hy, G1) are on lineG + joH = -W,, Ho < Hi. Thus for lineG — kH =
Wi, kHo + Wi < kHy + W, = G1 < Go. Similarly, we can prove that for each li@+ jH = —W ,
Goz—jHo—W,;. This means pointHy, Go) is in the feasible region. Therefo(ély, Go) is an optimal
solution.

Last we prove the unigueness. Assume there exists another optimal s@Mtiar;). G; must equal
to Go. If H; > Hp, thenkgH, + Wko > koHgy + Wko = Go = G1. If H < Hy, then—joH; — Kjo >
—JjoHo — W, = Go=Ga. So in both caseg,Hy, G;) is not a feasible solution, which contradicts the
assumption. Therefore the only possibilitydls = Hp. O

The geometric meaning of Theorem 1 is that we only need to consider the intersection point of each
pair of lines: one line from groupG — kH = Wy: k=1, ...,n} with positive slopes and the other
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from group{G + jH =—W: j =1,...,n} with negative slopes. The optimal solution is one of these
intersection points, which has maxim@lcoordinate.

Now we are ready to describe the procedure for finding the required Mobius parameter transformation:
(i) computeW, and W , by (6); (ii) find jo andko by (8); (iii) the M&bius transformation is (2) with
Wjo + Eko )

jotko )
As an example, we examine a quadratic rational Bézier curve
woPoBA(t) + w1 PLBZ(t) + wa Py B3(1)

woB§ (1) + w1BE(1) + w2BS(1)

The corresponding LP problem is

ra(t) =

minimize G
subjectto G — H

whereW, = W, = logw;, —logwo andW; = max{logw; —log wo, logw, —logws }, W, = min{logw; —

logwo, logw, — logw;}. ThereforeW, = W, = W; + W,. By Theorem 1,jo = ko = 1, the optimalG

is thus equal taW; — W,)/2, andH = —(W1 + W,)/2 = log/wo/w; Or y = /wo/w>. In particular,

if the initial weightswo andw, are the same, them=1, i.e., the required Mébius transformation is the
identity mapr = s. This also concludes that for a quadratic rational Bézier curve, the standard form is
the “best” form.
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