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Abstract
This work combines a level-set approach and the optimal transport-based 
Wasserstein distance in a data assimilation framework. The primary motivation 
of this work is to reduce assimilation artifacts resulting from the position and 
observation error in the tracking and forecast of pollutants present on the 
surface of oceans or lakes. Both errors lead to spurious effect on the forecast 
that need to be corrected. In general, the geometric contour of such pollution 
can be retrieved from observation while more detailed characteristics such as 
concentration remain unknown. Herein, level sets are tools of choice to model 
such contours and the dynamical evolution of their topology structures. They 
are compared with contours extracted from observation using the Wasserstein 
distance. This allows to better capture position mismatches between both 
sources compared with the more classical Euclidean distance. Finally, the 
viability of this approach is demonstrated through academic test cases and its 
numerical performance is discussed.

Keywords: data assimilation, Wasserstein distance, level set, prediction of 
geophysical fluids, optimal transport approach, geophysical inverse problem

(Some figures may appear in colour only in the online journal)

1.  Introduction

Numerical prediction of geophysical fluids requires a good knowledge of initial and boundary 
conditions, external forces, and internal physical parameters. Such information is indirectly 
accessible from observation and previous or external numerical simulations; however, they are 
partial and uncertain. Data assimilation (DA) is an efficient method for calibrating the state 
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of dynamical equations by combining all the available heterogeneous information (i.e. math-
ematical models based on physical laws, observation, and a priori knowledge). Variational 
data assimilation (VDA) [1, 2] and filtering DA [3–5] are the two most common methods. 
Their applications include numerical weather prediction (NWP), marine and pollution moni-
toring [6], hydrologic forecasting, soil moisture monitoring, land surface flux and wave speed 
estimation [7]. The problem of determining the unknown variables called control variables is 
considered as a nonlinear least-squares problem in the framework of VDA and is solved using 
the adjoint method [2]. This is the preferred approach in numerical weather prediction, in its 
incremental formulation [8].

For the pollution problem, reliable prediction from the concentration transport model is 
not possible when the initial concentration information is limited, observations are scarce, 
and velocity fields from the ocean and wind are inaccurate (e.g. oil spill). In this scenario, the 
level-set method can be considered. It was pioneered by Osher and Sethian, aiming at comput-
ing and analyzing the motion of an interface in two or three dimensions [9–13]. Topological 
merging and breaking are well defined and easily performed by the method of implicit rep-
resentation of a time-evolving contour. At present, the level-set method has been success-
fully applied to tumor growth [14, 15], flame propagation [13], and wildland fire propagation 
[16]. However, owing to the uncertainty in the model such as the parameters of the indirect 
measurement and inaccurate initial contour position, several data-driven methods have gained 
increased attention. The interface evolution can be corrected and become reliable by combin-
ing the model variables with observation and statistical methods. Among these, the level-
set methods based on VDA [2] have been used for motion estimation and structure tracking 
[17–20].

In [17], the theoretical framework for assimilating the contour information in ocean image 
observation was illustrated and a shape-fitting functional used in image processing was con-
sidered. The continuous cost function and adjoint-based gradient were given, and the results 
showed its potential for oil spill and pollutant transport. In addition, there have been attempts 
to use the level-set structure to indirectly retrieve the flow fields in fluids [19, 20]. Moreover, 
filtering-based methods have been proposed for front tracking the wildfire spread by assimilat-
ing observation [21, 22].

However in DA, because of the displacement and obstacle in the remote-sensing observer, 
position and shape errors usually arise in observation data (e.g. image-type sequence) com-
pared with true state and background simulation. To avoid this effect, in traditional approaches, 
a step of data alignment is usually included before using DA for correcting the position error 
[23–25]. A shape similarity measure based on the Chan–Vese contour fitting functional was 
studied for DA [26]. This novel method could more efficiently compare the position informa-
tion of the level-set structure from observation and model variables for the front-tracking 
problem. However, the background information could not be made full use in these DA meth-
ods. One possible solution would be to use optimal transport-based metrics.

The optimal transport theory has been significantly developed and applied to wide fields 
since it was introduced by Monge [27]. In [28], the transportation problem between two prob-
ability measures was described as the minimization of the kinetic energy. The optimal ‘geodes-
ics’ maintained the mass conservation over time, driven by the flow in a continuity equation. 
A series of numerical methods have been proposed for obtaining the optimal transportation 
such as the primal-dual method [29], Fisher information regularization method [30] and paral-
lel method [31]. Recently, multi-physics optimal transportation, in which a constraint term is 
added to the cost function based on the physical criterion [32], has been introduced. In addi-
tion, a generalized metric interpolating the optimal transport and Fisher–Rao was proposed 
and found to be beneficial for different mass transportations [33]. Recent techniques have 
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demonstrated impressive performance in geophysical inverse problems such as full waveform 
inversion (FWI) [34] and in the field of image processing: image registration [35], video 
reconstruction [36], color transfer [37], image segmentation [38].

Motivated by the advantages of the Wasserstein metric in the optimal transport theory, in 
[39], it was used to compare the air pollutant dispersion from observation and model simula-
tion. This non-local metric can avoid the ‘double penalty’ effect in classical point-wise indi-
cators when there is a misplacement. At present, a learning-type Wasserstein metric [40] has 
been introduced for noise reduction [41]. The model error in DA based on the Wasserstein 
measure was investigated in [42]. Viewing the 2-Wasserstein metric as a displacement interpo-
lation [43–45], recently, an optimal transport-based DA [46, 47] considering the position error 
in the observation and background was proposed. The information from the observation and 
background was sufficiently used and promising results for shape preservation and position 
correction were obtained.

Owing to its tremendous effect on real weather and pollution forecasting (e.g. the scope), 
generally, the position and observation error are considered for DA. Moreover, the concentra-
tion observation is limited or even impossible to obtain (e.g. oil spill). To deal with these two 
key problems, in this work, our main contribution is the utilization of the Wasserstein measure 
to misfit the discrepancy and a combination with level-set method in the DA framework. First, 
a distance regularization-based method is established. Then, based on the Wasserstein metric 
instead of the Euclidean measure, two novel methods called original and splitting topologi-
cal data assimilation (OTDA and STDA) are proposed. The proposed methods are suitable 
for an event lacking concentration information and different from previous approaches of 
dealing with the position error such as performing a concentration information alignment 
step before DA [23–25]. In new methods, contours in observations can be assimilated for dis-
persion prediction and simultaneously, the shape and position information between contours 
from observations and background can be integrated when there are position and shape errors 
(e.g. partially missing observation because of cloud cover and a displaced remote-sensing 
observer). The proposed method reduces the non-Gaussian type of error, position error, to 
some extent and optimizes the shape.

The remainder of the article is organized as follows. Section 2 presents a brief introduc-
tion on the classical and distance regularized level-set-based DA, including the contour data-
fitting cost function and gradient. Section 3 details the optimal transport theory, Wasserstein 
distance, and topological data assimilation (OTDA and STDA) using the Wasserstein distance. 
The numerical experiment framework and results of the application of the novel level-set-
based DA approach to a model test problem are discussed in section  4. Finally, the main 
results are summarized and future work is outlined in section 5.

2.  Level-set-based assimilation using Euclidean distance

2.1.  Level-set function and model

A given shape (e.g. pollutant spot C) can be represented by sub-domain Ωc ⊂ R2, whose 
boundary ∂Ωc  can be defined by the zero level set of a mapping called level-set function 
φ : R2 → R

∀x ∈ R2,



φ(x) < 0, x ∈ Ωc

φ(x) = 0, x ∈ ∂Ωc

φ(x) > 0, x /∈ Ω̄c

� (2.1)
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where function φ(x) is generally the signed distance from x to ∂Ωc = {x ∈ Ω|φ(x) = 0}. The 
motion of interface ∂Ωc(t) over time is considered as the evolution of level-set function φ, 
which is modeled by a two-dimensional (2D) nonlinear partial differential equation called the 
level-set model expressed as

{∂φ
∂t + V · ∇φ+ a‖∇φ‖ − σκ‖∇φ‖ = 0, on Ω× [0, T]

φ(0) = φ0,
� (2.2)

κ = div(
∇φ

‖∇φ‖
) =

(∂φ∂x )
2 ∂2φ
∂y2 − 2∂φ

∂x
∂φ
∂y

∂2φ
∂x∂y + (∂φ∂y )

2 ∂2φ
∂x2

‖∇φ‖3
� (2.3)

where φ0 is the initial value, a signed distance function (SDF) of contour ∂Ωc(0). ∂Ωc  
denotes the boundary of the polluted domain, ∇ is the gradient operator in the spatial domain, 
V = (u, v) represents the external velocity field from the flow, constant values a and σ denote 
the diffusion coefficients, and κ is the mean curvature. The modeling domain is Ω and simula-
tion time is equal to T.

In the level-set model, level-set function φ(t) is driven by external velocity field V, and 
over time, the diffusion is along the normal direction by constant value a and in proportion to 
mean curvature κ.

Regarding the physics in the level-set model, in the presence of term σκ‖∇φ‖, the closed 
curves of an arbitrary shape will collapse into a circle and then disappear, whereas under term 
a‖∇φ‖, a relatively closed smooth curve will contain the sharp edges, and the topological 
structures of the curve may change. Both diffusion coefficients σ and a depend on the physical 
characteristics of the pollutant. The numerical periodic or homogenous Neumann boundary 
condition can be used for this model. To maintain the stability of the level-set function in the 
numerical simulation, the re-initialization approach [11] can be adopted. Figure 1 gives an 
example of the level-set method applied to two spots of pollutant.

2.2.  Contour-fitting observation operators

To assimilate the active contours from the observation, two observation operators suitable to 
both metrics, namely the Euclidean metric and Wasserstein distance, are introduced. These 
types of operators can combine level-set function φ with the corresponding contours so that 
the Euclidean or Wasserstein distance can be used to efficiently measure the discrepancy 
between them. Let us define the ‘observation to structure’ operator as

t ∈ [0, T], CS(x, t) = HO→S(Cobs(x, t)) =
{

1, x ∈ Ω̄c(t)
0, x ∈ Ω\Ω̄c(t)

� (2.4)

where CS(t) belongs to the new observation space.
Another observation operator called the ‘model to structure’ operator is defined as

Hφ→S(φ) =

{
1, φ � 0
0, φ > 0� (2.5)

where φ denotes the level set function. Hφ→S(φ) is a Heaviside-like function, which approxi-
mates to the following differentiable form:

Hφ→S(φ) =
1
2
(1 − sgn(φ)) ≈ 1

2
(1 − φ√

φ2 + ε
)� (2.6)
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where ε is a small constant. This operator maps level-set function φ to the new observation 
space.

2.3.  Contour-fitting cost function with Euclidean distance

Generally, the optimal control theory is involved in the framework of traditional four-dimen-
sional variational data assimilation (4D-Var). The cost function estimates the residual between 
the control variable from the governing model and observation over time. For the level-set 
model, the control variable is initial condition φ0. In [17], the optimal control problem aimed 
at obtaining the minimizer of the following cost function:

J(φ0) = Jo + Jb =
δo

2

N∑
i=1

‖sgn[Gi(φ0)]− C̃S(ti)‖2
L2(Ω) +

δb

2
‖φ0 − φb

0‖2
L2(Ω)

�

(2.7)

where Gi(·) denotes the forward operator of the level-set model from time 0 to ti and sgn is a 
smoothing sign operator. C̃S is the corresponding structural image from the observation, and 

Figure 1.  Level-set method. (a): Concentration distribution of the pollutant spots at 
one moment; (b): Boundary of pollutant spots ∂Ωc; (c): Level-set function φ (signed 
distance function based on ∂Ωc  where ∂Ωc = {x ∈ Ω|φ(x) = 0}).
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φb
0 represents the background, which is an SDF. The zero level set of φb

0 is the contour of the 
first guess. When weight δb is small, the initial value is corrected by the observation. Due to 
the inconsistent way of comparison, information contained in both the observation and back-
ground cannot be used efficiently. In this case, the cost function can be modified by a mass 
conservation-type functional,

J(φ0, a,σ) = Jo + Jb + Ja
reg

= δo
2

∑N
i=1 ‖N (Hφ→S [Gi(φ0, a,σ)])−N (CS(ti))‖2

L2(Ω)

+ δb
2 ‖N (Hφ→S [φ0])−N (BS)‖2

L2(Ω) + Jinit(φ0)

�

(2.8)

where

BS = Hφ→S(φ
b
0)� (2.9)

and Jinit(φ0) = λ
∫
Ω
R(φ0),

R(φ0) =

{
1
2 (|∇φ0| − 1)2, |∇φ0| � 1

1
(2π)2 (1 − cos(2π|∇φ0|)), |∇φ0| < 1� (2.10)

Hφ→S [·] is defined as (2.6), and BS  is the structure from the background. N (·) is the normal-

ization operator defined as N ( f ) = f∫
Ω

f . The minimum problem is ill-posed when only the 

contour information from the observation and background is assimilated. Therefore, a stable 
function called distance-based regularization term Ja

reg used in image segmentation [48] is 
added. This term contains an SDF-fitting function making φ0 an SDF. λ denotes the weight.

In the following, we will focus on the computation of the gradient of the above optimization 
problem. The gradient of cost function Jo with respect to the initial value can be obtained by 
solving an adjoint equation backward. For the term related to the background and distance-
based regularization, the gradient is, respectively, expressed as

gradJb(φ0) = δb(Hφ→S)
∗(Hφ→S(φ0)− BS)� (2.11)

and

gradJa
reg(φ0) =

{
−λdiv((1 − 1

|∇φ0| )∇φ0), |∇φ0| � 1
−λdiv(sinc(2|∇φ0|)∇φ0), |∇φ0| < 1

� (2.12)

where * denotes the adjoint of a linear operator and sinc(x) = sin(2πx)
2πx .

3. Topological data assimilation

3.1.  Optimal transport theory and Wasserstein distance

In [28], a fluid mechanics formulation of the optimal transport was introduced with the objec-
tive of obtaining optimal geodesic ρ(t, x) that changed over time between two densities. The 
mechanics formulation was described as determining the minimizer of the following kinetic 
energy:

∫ ∫

[0,1]×Ω

ρ(t, x)|ν(t, x)|2dtdx� (3.13)
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where densities ρ(t, x) should belong to mass function space P(Ω) defined as

P(Ω) := {ρ � 0 :
∫

Ω

ρ(x)dx = 1}� (3.14)

and the density and velocity (ρ, ν) satisfy a continuity equation,

C(ρ0, ρ1) := {
∂tρ+ div(ρν) = 0,

(ρ, ν) s.t. ρ(t = 0) = ρ0, ρ(t = 1) = ρ1,
ρν · n = 0 on ∂Ω

}�
(3.15)

ρ0 and ρ1 are given as the densities at the initial and final moment, respectively. This type of 
optimal transport satisfies mass conservation. At present, there are numerous numerical meth-
ods for solving the optimal transport problem [29, 30].

Wasserstein distance W  between mass functions ρ0 and ρ1 is defined as

W(ρ0, ρ1) =

√
min

(ρ,ν)∈C(ρ0,ρ1)

∫ ∫

[0,1]×Ω

ρ(t, x)|ν(t, x)|2dtdx.� (3.16)

Wasserstein metric W  can be considered as a displacement interpolation between two densi-
ties functions. Hence, in the next section, we will mainly focus on the level- set-based DA with 
the Wasserstein metric-type contour-fitting functional to tackle the effect of the position and 
shape errors in the data.

3.2. Topological data assimilation using Wasserstein distance (TDA)

Both position and shape errors in the observation and background affect the quality of the 
assimilation. Motivated by the optimal transport theory, the Wasserstein distance could be 
used to simulate the residual instead of the l2-norm to make full use of their information and 
optimize the shape. Thus, the contour-fitting functional can be modified by

JW(φ0) = Jo
W + Jb

W + Ja
reg

= δo
2

∑N
i=1 W(N (Hφ→S [Gi(φ0)]),N (CS(ti)))2

+ δb
2 W(N (Hφ→S [φ0]),N (BS))2 + Jinit(φ0)

�

(3.17)

where W(·, ·) represents the Wasserstein distance. The normalization operator makes the 
mass of transport equal to 1, i.e. their masses are the same. N (Hφ→S [Gi(φ0)]), N (CS(ti)), 
N (Hφ→S [φ0]) , and N (BS) belong to mass function space P(Ω), which satisfies the optimal 
transport theory. Alternatively, the Fisher–Rao metric-based approach [33] could be used to 
solve the problem of different masses in optimal transport. δo and δb are the weights and N is 
the number of observations. Jinit(φ0) is the SDF-fitting term.

To obtain the minimizer of the variational model (3.17), we propose splitting method-
based topological data assimilation (STDA), which is summarized in algorithm 3.2. The 
cost function is split into two parts, with one term being associated with the observation and 

background (Jo,b
W ) and the other being SDF-fitting term Jinit(φ0). First, the gradient of Jo,b

W  is 
obtained and the solution is updated by the descent algorithm. Then, the updated solution is 
re-initialized to an SDF, taken as the optimal solution in the next iteration. To accelerate the 
convergence, in this work, the re-initialization process [11] is performed by
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{∂ψ
∂τ = sgn(φ0)(1 − ‖∇ψ‖), on Ω× [0, τ0]

ψ(0) = φ0.
� (3.18)

As time t → ∞, ψ gradually satisfies ‖∇ψ‖ = 1, which approximates an SDF. Alternatively, 
the TDA method based on the SDF-fitting function in (2.8) is called the original approach 
(OTDA), which is achieved by algorithm 3.2. Next, we concentrate on the computation of the 

gradient of new cost function Jo,b
W  with respect to initial value φ0.

In [46], the Wasserstein distance-based variational model proved to be differentiable, and 
by choosing different representations of the inner products and metric methods in the tangent 
space, the gradient of the Wasserstein-based cost function changed according to the definition 
of the Gâteaux derivative expressed as

∀η ∈ Tφ0P , lim
ε→0

Jo,b
W (φ0 + εη)− Jo,b

W (φ0)

ε
= 〈grad�Jo,b

W (φ0), η〉�� (3.19)

where 〈·, ·〉� represents a type of inner product and grad� represents the gradient of the cost 
function using such inner product. Tφ0P  is called the tangent space. The following theorem 
provides the gradient of the proposed cost function.

Theorem 3.1.  If the Euclidean scalar product and l2-norm are used in tangent space Tφ0P , 

then the gradient of Jo,b
W  contained in the objective function (3.17) with respect to initial value 

φ0 becomes

grad2Jo,b
W (φ0) = δo

N∑
i=1

(Gi)
∗(Hφ→S)

∗N∗Ψi + δb(Hφ→S)
∗N∗Ψb� (3.20)

where Ψi, i = 1, · · · , N and Ψb are the Kantorovich potentials of the transport between 
N (Hφ→S [Gi(φ0)]) and N (CS(ti)), N (Hφ→S [φ0]) and N (BS), respectively. Gi, Hφ→S and 
N are the Jacobian of operators Gi(·), Hφ→S [·], and N (·). The definitions of the Euclidean 
scalar product and l2-norm are described by

∀ξ, ζ ∈ Tφ0P , 〈ξ, ζ〉2 =

∫

Ω

ξζdx and ‖ξ‖2
L2(Ω) =

∫

Ω

|ξ|2dx� (3.21)

The brief proof is given in the appendix. The method of computing the Kantorovich poten-
tial numerically used in the gradient (3.20) is illustrated in remarks 3.2 and 3.3. Then, nonlin-
ear descent algorithms such as the gradient descent and conjugate gradient-like method can 
be used to obtain the optimal solution of the cost function. To maintain the stability of the 
optimal value, at each iteration, the re-initialization method should be adopted to make initial 
contour φ0 an SDF. The re-initialization method can accelerate the convergence during the 
shape optimization (remark 3.4). A schematic of proposed methods is presented in figure 2.

Remark 3.2.  For the optimal transport problem (3.13), the optimal velocity fields ν̃(t, x) 
have the property [28, 46, 47],

ν(t, x) = ∇Φ(t, x)

where the function Φ(t, x) follows a Hamilton–Jacobi equation

∂Φ

∂t
+

|∇Φ|2

2
= 0.
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In addition, the so-called Kantorovich potential Ψ(x) is defined by

Ψ(x) := −Φ(t = 0, x).

So the following representation can be obtained

ν̃(t = 0, x) = −∇Ψ(x)

where ν̃(0) is the initial velocity fields for the minimizer of (3.13).

Therefore, Kantorovich potentials Ψi and Ψb can be determined by solving a series of 2D 
Poisson equations

{
∆Ψi = −div(ν̃(0)i),
∂Ψi

∂n = 0 on ∂Ω

where ν̃(0)i and ν̃(0)b are the initial velocities in the optimal transport problems, in which 
the available mass functions are described by ρi

1 = N (Hφ→S [Gi(φ0)]) and ρi
2 = N (CS(ti)), 

i = 1, · · · , N , ρb
1 = N (Hφ→S [φ0]) and ρb

2 = N (BS). ν̃(0)i and ν̃(0)b can be obtained by the 
iterative algorithm in [29].

Remark 3.3.  For normalization operator N (·), the following condition is well satisfied:

N∗(Ψ + Const) = N∗Ψ

where Const belongs to the constant space. Thus, the effect of the non-unique solution of the 
above Poisson equation can be avoided. A brief illustration is given in the appendix.

Figure 2.  Flowchart of topological data assimilation (OTDA: original TDA; STDA: 
splitting method-based TDA).
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Remark 3.4.  In [46], two types of gradients with respect to the initial value were defined 
by using different inner products in tangent space Tφ0P , called as the L2 gradient and W  
gradient. W  gradient shows a better performance than L2 gradient for convergence but under 
the assumption of a non-flux at the boundary of the L2 gradient. Our proposed method also 
has a rapid convergence, mainly owing to the re-initialization process when the L2 gradient 
is utilized.

Algorithm 3.2  : Splitting method-based TDA algorithm (STDA).

Input: �Observations Cobs(ti), i = 1, · · · , N , background φ0
0 = φb

0, weight parameters δo and δb, stop-
ping criterion τ.

Output: Analysis φa
0.

1: while |J(φk
0)− J(φk−1

0 )| > τ  do

2:   Compute the gradient of Jo,b
W  with respect to φk

0:

       grad2Jo,b
W (φk

0) = δo
∑N

i=1(Gi)
∗(Hφ→S)

∗N∗Ψik + δb(Hφ→S)
∗N∗Ψbk

.

3:   Iterate φk
0 by the descent algorithm (e.g. steepest descent or conjugate gradient

   method) φk+1
0 = φk

0 − µkΘ(grad2Jo,b
W (φk

0)) where µk  is the optimal step size in the

   k iteration and Θ(grad2Jo,b
W (φk

0)) represents a kind of combination of grad2Jo,b
W (φk

0).

4:   Re-initialize φk+1
0  to a signed distance function φinitk

0  and set φinitk+1

0  as φk+1
0 .

5:   k  =  k  +  1.
6: end while

Algorithm 3.2 : Original TDA algorithm (OTDA).

Input: �Observations Cobs(ti), i = 1, · · · , N , background φ0
0 = φb

0 (a signed distance function), weight 
parameters δo and δb, stopping criterion τ.

Output: Analysis φa
0.

1: while |J(φk
0)− J(φk−1

0 )| > τ  do

2:   Compute the gradient of JW with respect to φk
0:

       grad2JW(φk
0) = δo

∑N
i=1(Gi)

∗(Hφ→S)
∗N∗Ψik + δb(Hφ→S)

∗N∗Ψbk
+ gradJinit(φ

k
0),

   where gradJinit(·) is given in (2.12).

3:   Iterate φk
0 by the descent algorithm (e.g. steepest descent or conjugate gradient

      method) φk+1
0 = φk

0 − µkΘ(grad2JW(φk
0)) where µk  is the optimal step size in the

       k iteration and Θ(grad2JW(φk
0)) represents a kind of combination of grad2JW(φk

0).
4:   k  =  k  +  1.
5: end while

4.  Numerical examples

4.1.  Numerical setting

To perform the numerical simulation, the finite difference scheme is adopted for the forward 
level-set model (2.2). The upwind scheme is used for discretizing the convection term, and the 
central difference method is employed for the diffusion terms. For the sake of simplicity, time 
integration is performed using the Euler scheme. The model parameters used in the numer
ical test are set as follows: Modeling domain Ω is defined by Ω = [0, Lx]× [0, Ly], where 
Lx = Ly = 31 m. The spatial discretization mesh is (M, M) = (32, 32). The time step is set 
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to ∆t = 0.5 s. The homogeneous Neumann boundary condition is utilized in this test. In this 
section, two groups of tests are provided, whose parameters are described as follows:

4.1.1.  Parameters in the first group of DA test.  The total simulation time is equal to 6 s. The 
assimilation window is [0, T] with T = 3 s, and the moment of prediction is 6 s. Heaviside-
like parameters ε used in (2.8) and (3.17) are defined as (∆x)2 and (2∆x)2, respectively. The 
model (2.2) has the following parameters: a  =  0.05 and σ = 1 × 10−5. The velocities are 
known in the test with u = v = 1 ms−1.

The control variable is initial value φ0 only. The observations are generated by the forward 
level-set model using a given initial value φobs

0 , whose zero level set is shown as a pink solid 
line and named as Observation in figures 4(a), (d) and (g). In the Euclidean distance-based 
(ED) method and original topology data assimilation (OTDA), the number of observations is 
N  =  5 and weight is λ = 0.3. The zero level sets of the corresponding backgrounds with posi-
tion or shape errors are shown as black dashed lines and named as Background in figures 4(a), 
(d) and (g). Time τ0 in the re-initialization (3.18) is set to 9.5 s. The nonlinear conjugate gradi-
ent algorithm is iterated to search for the optimal solution.

4.1.2.  Parameters in the second group of DA test.  A simple 2D concentration transport model 
is used to test the efficiency of the proposed method. The model is described by




∂C
∂t + V · ∇C = µ∆C, on Ω× [0, T]

C(0) = C0,
∂C
∂n = 0 on ∂Ω

� (4.22)

where C0 denotes the concentration of the initial pollutant spots. V = (u, v) represents the 
velocity, which is the same as that in the model (2.2), and μ is the diffusion coefficient. The 
homogenous Neumann boundary condition is used. In the test, µ = 0.01 and V = (u, v) is 
obtained by a 2D Euler-type fluid dynamics model. The general form currents of the 2D turbu-
lence are displayed in figure 5(a) in which the vortex can be seen clearly. Numerical solutions 
C(t) after thresholding are taken as the observation images of the pollutants (shown partly in 
figure 5(a)), which can be expressed as

Ωc(t, x) = {x(t) ∈ Ω|C(t, x) > δ},� (4.23)

Cobs(t) =
{

C(t), C(t, x) > δ

0, C(t, x) � δ
� (4.24)

here, δ represents the threshold above which the spots of the pollutants are visible. In this test, 
δ is set to 0.2. The contour can be extracted from the observation by the wavelet-based method 
[49].

The total simulation time is equal to 20 s. The assimilation window is [0, T], with T = 8.5 s. 
Heaviside-like parameters ε used in (2.8) and (3.17) are defined as (1.3∆x)2. Parameters σ 
and a are unknown depending on the pollutants and need to be retrieved in the model (2.2), 
which may occur in a real event. In our examples, σ is known (σ = 0) for simplicity.

The control variables are parameter a and initial value φ0. First, parameter a should be 
identified with the weight couple (δo = 30, δb = λ = 0) by using the variational model (2.8) 
under the assumption that a reliable background is provided. Number of concentration obser-
vations N  =  9. For the initial value inversion, background with position or shape errors is 
given, whose zero level sets are shown as black dashed lines and named as Background in 
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figures 6(a) and 8(b). Here, in the ED method, number of concentration observations N  =  5 
and weight λ = 0.3.

Remark 4.1.  In a real event, first, unknown diffusion parameters a and σ in the level-set 
model have to be identified using available observation data, which highly depend on the 
characteristics of the corresponding pollutants. Then using the identified parameter couples, 
the first guess or background, and observed contours, the initial value can be optimized via 
our proposed method.

4.2.  Numerical test and results

In this section, the results of the comparison between the ED method and Wasserstein distance-

based method (WD method) are presented. By using normalization operator N ( f ) = f∫
Ω

f , the 

mass of the observation in one moment and background will remain unchanged, satisfying the 
theory of optimal transport. Motivated by this, the proposed WD method can deal with the 

Figure 3.  The results of the proposed WD method (STDA) compared with ED method, 
with observations and background containing position and shape errors. (a): Boundary 
of the initial observation and zero level set of the background (shown as a pink solid line 
and black dashed line); (b): Zero level sets of the corresponding analyses (ED method 
shown as a blue dashed line and named as Analysis-E; WD method shown as a red solid 
line and named as Analysis-W); (c): Cost function JW; (d): l2-norm of the gradient.
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problem that the observation and background not only have position errors but also include 
different shapes. First, we show the results of test cases where the observation sequence is 
acquired from the level-set method and the parameters in the first group of DA test described 
in section 4.1 are used. Let us consider the optimal solution of the following cost function 
(time-independent):

JW(φ) = δx
2 W(N (Hφ→S [φ]),N (Hφ→S [φx]))

2

+
δy

2 W(N (Hφ→S [φ]),N (Hφ→S [φy]))
2 + Jinit(φ)

� (4.25)

where φx  and φy are the given level-set functions that have the same shape but different posi-
tions (shown in figure 3(a)). δx = δy = 1 × 103. Zero level sets {x ∈ Ω|φ(x, t) = 0} of optimal 

Figure 4.  The results of the proposed WD method (OTDA) compared with ED method, 
with observations and background of multiple structures containing position and shape 
errors. (a), (d) and (g): Boundary of the initial observation and zero level set of the 
background (shown as a pink solid line and black dashed line); (b), (c), (e), (f), (h) 
and (i): Zero level sets of the corresponding analyses with weights δo = δb

N , δo = 25δb
N , 

δo = 2δb
N , δo = 25δb

N , δo = 2δb
N  and δo = 25δb

N  (ED method shown as a blue dashed line and 
named as Analysis-E; WD method shown as a red solid line and named as Analysis-W).
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value φ obtained by using the two methods are displayed in figure 3(b). It can be seen that the 
WD method can maintain the shape, which is different from the results obtained by the ED 
method. The changes in the cost function and l2-norm of the gradient with increasing number 
of iterations are presented in figures 3(c) and (d). The fast convergence shows the efficiency 
of the proposed method.

For the time-dependent data assimilation problem (3.17), two groups of DA test cases are 
formed.

4.2.1. The first group of DA test.  These are three tests (Test 1–3) in the first group of DA 
test. In test 1, observation with one simple spot and background with multiple interests are 
provided. The boundaries of the initial observation and zero level sets of the background are 
shown in figure 4(a) (shown as pink solid lines and black dashed lines). Here, we assume that 
the background is in the right position and observation provides the right shape information. 
The zero level set of the optimal value called analysis φa

0 with weights couples a and b (table 
1) are shown in figures 4(b) and (c) respectively (ED method shown as blue dashed lines 
and named as Analysis-E; WD method shown as red solid lines and named as Analysis-W). 
The WD method makes full use of the information between the observation and background, 
which can be illustrated as the optimal interpolation by using Wasserstein distance W(·, ·) 
when the background and observation contain position errors. However, compared with the 
WD method, the ED method, only the linear interpolation is used in by the l2-norm. Once 
position errors occur, a larger shape will be obtained, the so-called ‘double penalty’ effect, 
where one effect is from the observation and the other from the background. Therefore, com-
pared with the ED method, the proposed WD method provides position and shape correc-
tion for the results only from observation and the relatively accurate shape information when 
weights δo and δb are uncertain. In this regard, the ED method will be ineffective. In addition, 
with weight δo � δb, the results obtained by both the methods are similar and are closer to 
those obtained only from the observation (presented in figure 4(c)).

In order to further verify the validity of the proposed approach, another two tests (Test 2 
and 3) have been done in which both the observation and background simulation contain com-
plex multiple structures of interest (two and three spots, respectively). Figures 4(d) and (g) 
display the boundaries of the initial observation and zero level sets of the background (shown 
as pink solid lines and black dashed lines). Similarly, some reasonable results of the test cases 
are presented in figures 4(e) and (f) with weights couples c and d (table 1), and figures 4(h) 
and (i) with weights couples e and f (table 1). As shown, the WD method preserves the shape 

of the contours compared with the ED method. Because the weights δo = 2δb
N  used in the test 

Table 1.  Weights in the first group of DA test.

DA test case: 
group 1

No. of 
weight 
couples

Background 
weight δb 
(ED)

Background weight 
δb (WD-OTDA)

Observation 
weight δo

Test 1 a 1 × 104 3 × 102 δb
N

b 1 × 103 30 25δb
N

Test 2 c 1 × 104 3 × 102 2δb
N

d 1 × 103 30 25δb
N

Test 3 e 1 × 104 3 × 102 2δb
N

f 1 × 103 30 25δb
N
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is a little larger than that in test 1 (δo = δb
N ), the position of the contours could be closer to the 

true state rather than in the middle (shown in figures 4(e) and (h)). But from the results it can 
be seen that the proposed method will smooth the edge of the contours and if two contours are 
too close to each other, they will merge together easily (shown in figures 4(h) and (i)). It may 
lie in the regularization method, SDF-fitting method and the inaccurate computation for the 
minimizer of the cost function. Nevertheless, it can still indicate that the novel method applies 
equally to multiple structures of interest problems. In addition, for the multiple structures of 
interest problem, numerical tests show that SDF-fitting function Jinit(·) in (2.8) is used for the 
stable convergence although it is slower.

Figure 5.  Identification of parameter a in the level-set model using the contour 
information in concentration observations. (a): Partial observation sequences Cobs(t) 
from the 2D concentration model, currents and boundary of the pollutant (Pollutant 
spots transportation over time); (b): Retrieved parameter a in the level-set model using 
such data; (c): l2-norm of the gradient.

L Li et alInverse Problems 35 (2019) 015006



16

Table 2.  Weights in the second group of DA test

DA test case: 
group 2

No. of 
weight 
couples

Background 
weight δb (ED)

Background 
weight δb 
(WD-STDA)

Observation 
weight δo

Test 4 g 1 × 104 1 × 103 2δb
N

h 2 × 103 2 × 102 15δb
N

i 2.5 × 104 2.5 × 103 0.05δb
N

Test 5 j 1 × 104 1 × 103 3δb
N

Figure 6.  The results of the proposed WD method (STDA) compared with ED method, 
with observations from the 2D concentration model containing position errors, under 
the assumption that the background is in the right position but has inaccurate shape and 
the observations are with accurate shape but in the wrong position. (a): Boundary of the 
initial observation and zero level set of the background (shown as a pink solid line and 
black dashed line); (b)–(d): Zero level sets of the corresponding analyses with weights 
δo = 2δb

N , δo = 15δb
N  and δo = 0.05δb

N  (ED method shown as a blue dashed line and named 
as Analysis-E; WD method shown as a red solid line and named as Analysis-W).
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4.2.2. The second group of DA test.  For a more realistic experiment, the full and partially 
missing concentration observation from the 2D transport model and currents from the Euler 
equation are provided to test the efficiency of the proposed method. Here the parameters in 
the second group of DA test described in section 4.1 are used. The concentration images and 
currents at four times are presented in figure 5(a). Before the correction of the initial contours, 
constant diffusion parameter a in the level-set model is retrieved by using N  =  9 concentra-
tion observation images Cobs, with σ set to 0 for simplicity. In reality, the diffusion parameters 
depend on the pollutant. The change in a with the iteration number is shown in figure 5(b), 
with first guess a  =  0. It converges to a  =  0.1507 after 10 iterations in this test.

By using identified parameter a and a given background, the tests for assimilating the con-
tours of the pollutants from the full concentration observation images and background with 
position and shape errors and three weights couples g–i (table 2) are implemented, the results 
of which are presented in figures 6(b)–(d). For comparison, figure 6(a) displays the contours 
of the pollutants in the first observation image (shown as a pink solid line), which can be miss-
ing in reality. Similar to the test above, under the assumption that the background is in the right 

Figure 7.  The results of prediction. (a): The results of prediction using the boundary 
of the initial observation and background (shown as a pink solid line and black dashed 
line); (b)–(d): The results of prediction using the corresponding analyses with weights 
δo = 2δb

N , δo = 15δb
N  and δo = 0.05δb

N  (ED method shown as a blue dashed line and named 
as Analysis-E; WD method shown as a red solid line and named as Analysis-W).
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Figure 8.  The results of the proposed WD method (STDA) compared with ED method, 
with partially missing observations (in spatial domain) and background containing 
position errors, under the assumption that the background is in the wrong position 
but has accurate shape. (a): Observation sequence covered by cloud; (b): Boundary of 
the true state (reference), boundary of the initial observation and zero level set of the 
background (shown as a pink solid line, black dashed line, and orange solid line); (c): 
Zero level sets of the corresponding analyses with weights δo = 3δb

N  (ED method shown 
as a blue dashed line and named as Analysis-E; WD method shown as a red solid line 
and named as Analysis-W); (d): The results of prediction using the boundary of the true 
state, boundary of the initial observation and background; (e): The results of prediction 
using the corresponding analyses.
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position and observation provides the right shape information, an obvious modification in the 
position and optimal shape can be found in the results of the analyses with weights couples g 
(table 2) as well as in the results of prediction at moment t = 10 s (shown in figure 7).

Another test is performed with a missing observation in the spatial domain (shown in fig-
ure 8(a)). Differing from previous assumptions, in this test, we assume that the missing obser-
vation is in the right position, and shape of the first guess is correctly simulated but has the 
wrong position. The analyses obtained by both methods with weights couples j (table 2) are 
compared in figure 8(c). It can be concluded that using the proposed method optimally inte-
grates the shape and position information and makes full use of them when the missing obser-
vation is available. The forecast at moment t = 20 s (shown as a red solid line in figure 8(e)) 
is closer to that by using the true state, which can assist in optimizing rescue operations for 
real accidents to some extent.

5.  Conclusion

In this paper, we proposed a novel data assimilation strategy, namely topological data assimi-
lation, which integrates the level-set method with the Wasserstein metric in an optimal 
way. Moreover, several numerical tests are presented. First, a distance regularization-based 
approach is introduced. Then based on it, the Wasserstein distance is used to measure the 
discrepancy between the model variables, observation, and background, rather than using 
the Euclidean distance. Combined with the level-set method, the contour information can be 
assimilated, which is suitable for the observation provided with only the edges of the pollut-
ants, such as an oil spill. Once the misplaced missing observation and background are avail-
able and there is uncertainty in the errors, the proposed approach considered as a type of shape 
optimization can overcome the ‘double penalty’ effect in the local Euclidean metric method. 
An analysis after the optimal shape integration and modification in the position between the 
observation and background is obtained. The new method is particularly capable of dealing 
with obstacles (e.g. cloud cover) in a remote-sensing observer, which occur in a real pollut-
ant forecast. However, the results show that the proposed method will smooth the analysis. In 
future, we will consider some edge-preserving regularization methods, SDF-fitting methods 
and extend the proposed method to possible real applications such as oil spill, wildfire propa-
gation, tumor growth, and/or typhoons.
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Appendix

In this section, we provide a brief proof of theorem 3.1 and mathematical illustration of remark 
3.3.
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Proof.  Here, we only give the short proof for the case that is not included in [46].

Owing to the use of normalization operator N (·) and observation operators Hφ→S(·), the 
following condition can be satisfied simultaneously

∀ small ε ∈ R, η ∈ Tφ0P , Mi(φ0) ∈ P(Ω) and Mi(φ0 + εη) ∈ P(Ω)

where Mi(·) = N (Hφ→S [Gi(·)]). We have

J o,b
W (φ0 + εη) = δo

2

∑N
i=1 W(Mi(φ0 + εη),N (CS(ti)))

2 + δb
2 W(T (φ0 + εη),N (BS))2

= δo
2

∑N
i=1 W(Mi(φ0) + εMi[φ0]η + o(ε),N (CS(ti)))

2

+ δb
2 W(T (φ0) + εT[φ0]η + o(ε),N (BS))2

where Mi and T are the Jacobian of the operators Mi(·) and T (·), which are NHφ→SGi and 
NHφ→S. Based on the theory (theorem 8.13 in [44]), we can obtain

1
2
W(Mi(φ0) + εMi[φ0]η + o(ε),N (CS(ti)))2 =

1
2
W(M(φ0),N (CS(ti)))2 + ε〈η,Ψi〉+ o(ε)

as well as the term regarding the background, where Ψi denotes the Kantorovich potential of 
the transport between N (Hφ→S [Gi(φ0)]) and N (CS(ti)). Hence,

J o,b
W (φ0 + εη) = δo

2

∑N
i=1 W(Mi(φ0),N (CS(ti)))

2 + εδo
∑N

i=1〈Ψ
i, Mi[φ0]η〉

+ δb
2 W(T (φ0),N (BS))2 + εδb〈Ψb, T[φ0]η〉+ o(ε).

Finally, according to the definition of the Gâteaux derivative, the gradient is obtained as 
follows

grad2Jo,b
W (φ0) = δo

N∑
i=1

(Gi)
∗(Hφ→S)

∗N∗Ψi + δb(Hφ→S)
∗N∗Ψb

where * denotes the adjoint of the linear operator.� □ 

For remark 3.3, first, we give the derivative of the normalization operator.

Suppose f ∈ L2(Ω), then according to definition N ( f ) = f∫
Ω

f , we have

∀ε > 0, η ∈ L2(Ω), N ( f + εη) =
f + εη∫
Ω

f + εη
=

εη∫
Ω

f
+

f∫
Ω

f
− ε

f
∫
Ω
η

(
∫
Ω

f )2 + o(ε).

Based on the definition of the derivative of operator G(·) described by

〈G( f ), η〉 = lim
ε→0

G( f + εη)− G( f )
ε

the following can be obtained

〈N( f ), η〉 =
η
∫
Ω

f − f
∫
Ω
η

(
∫
Ω

f )2 .
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Next, we compute the continuous adjoint operator of N. Because

〈Nη,ϕ〉 =
∫
Ω

Nηϕ =
∫
Ω

ηm−f
∫
Ω
η

m2 ϕ = 1
m

∫
Ω
ηϕ−

∫
Ω

fϕ(
∫
Ω
η)

m2 = 1
m

∫
Ω
ηϕ−

∫
Ω
η(
∫
Ω

fϕ
m2 )

= 〈η, ϕ
m −

∫
Ω

fϕ
m2 〉

where m =
∫
Ω

f , we have,

N∗ϕ =
ϕ∫
Ω

f
− 1

(
∫
Ω

f )2

∫

Ω

fϕ.

Thus, if Const belongs to constant space,

N∗Const = 0.
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