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POSITIVITY-PRESERVING ANALYSIS OF NUMERICAL SCHEMES
FOR IDEAL MAGNETOHYDRODYNAMICS\ast 

KAILIANG WU\dagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . Numerical schemes provably preserving the positivity of density and pressure are
highly desirable for ideal magnetohydrodynamics (MHD), but the rigorous positivity-preserving (PP)
analysis remains challenging. The difficulties mainly arise from the intrinsic complexity of the MHD
equations as well as the indeterminate relation between the PP property and the divergence-free
condition on the magnetic field. This paper presents the first rigorous PP analysis of conservative
schemes with the Lax--Friedrichs (LF) flux for 1D and multidimensional ideal MHD. The significant
innovation is the discovery of the theoretical connection between the PP property and a discrete
divergence-free (DDF) condition. This connection is established through the generalized LF splitting
properties, which are alternatives to the usually expected LF splitting property that does not hold for
ideal MHD. The generalized LF splitting properties involve a number of admissible states strongly
coupled by the DDF condition, making their derivation very difficult. We derive these properties via
a novel equivalent form of the admissible state set and an important inequality, which is skillfully
constructed by technical estimates. Rigorous PP analysis is then presented for finite volume and
discontinuous Galerkin schemes with the LF flux on uniform Cartesian meshes. In the 1D case,
the PP property is proved for the first-order scheme with proper numerical viscosity, and also for
arbitrarily high-order schemes under conditions accessible by a PP limiter. In the 2D case, we show
that the DDF condition is necessary and crucial for achieving the PP property. It is observed that
even slightly violating the proposed DDF condition may cause failure to preserve the positivity of
pressure. We prove that the 2D LF type scheme with proper numerical viscosity preserves both the
positivity and the DDF condition. Sufficient conditions are derived for 2D PP high-order schemes,
and extension to 3D is discussed. Numerical examples provided in the supplementary material further
confirm the theoretical findings.
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1. Introduction. Magnetohydrodynamics (MHD) play an important role in
many fields including astrophysics, space physics, and plasma physics. The d-dimensional
ideal compressible MHD equations can be written as

(1)
\partial U

\partial t
+

d\sum 
i=1

\partial Fi(U)

\partial xi
= 0,

together with the divergence-free condition on the magnetic field B = (B1, B2, B3),

(2)

d\sum 
i=1

\partial Bi

\partial xi
= 0,

where d = 1, 2, or 3. In (1), the conservative vector U = (\rho , \rho v,B, E)\top , and Fi(U)
denotes the flux in the xi-direction, i = 1, . . . , d, defined by

Fi(U) =
\Bigl( 
\rho vi, \rho viv  - BiB+ ptotei, viB - Biv, vi(E + ptot) - Bi(v \cdot B)

\Bigr) \top 
.
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Here \rho is the density, the vector v = (v1, v2, v3) denotes the fluid velocity, ptot is the to-

tal pressure consisting of the gas pressure p and magnetic pressure pm = | \bfB | 2
2 , the vec-

tor ei represents the ith row of the unit matrix of size 3, and E = \rho e+ 1
2

\bigl( 
\rho | v| 2 + | B| 2

\bigr) 
is the total energy consisting of thermal, kinetic, and magnetic energies with e denot-
ing the specific internal energy. The equation of state (EOS) is needed to close the
system (1)--(2). For ideal gases it is given by

(3) p = (\gamma  - 1)\rho e,

where the adiabatic index \gamma > 1. Although (3) is widely used, there are situations
where it is more appropriate to use other EOSs. A general EOS can be expressed as

(4) p = p(\rho , e),

which is assumed to satisfy the following condition:

(5) if \rho > 0, then e > 0 \leftrightarrow p(\rho , e) > 0.

Such a condition is reasonable, holds for the ideal EOS (3), and was also used in [52].
Since (1) involves strong nonlinearity, its analytic treatment is very difficult. Nu-

merical simulation is a primary approach to explore the physical mechanisms in MHD.
In the past few decades, the numerical study of MHD has attracted much attention,
and various numerical schemes have been developed for (1). Besides the standard dif-
ficulty in solving nonlinear hyperbolic conservation laws, an additional numerical chal-
lenge for the MHD system comes from the divergence-free condition (2). Although (2)
holds for the exact solution as long as it does initially, it cannot be easily preserved by a
numerical scheme (for d \geq 2). Numerical evidence and some analysis in the literature
indicate that negligence in dealing with condition (2) can lead to numerical instabili-
ties or nonphysical features in the computed solutions; see, e.g., [9, 16, 6, 36, 15, 23].
Up to now, many numerical techniques have been proposed to control the divergence
error of numerical magnetic field. They include but are not limited to the eight-wave
methods [31, 10], the projection method [9], the hyperbolic divergence cleaning meth-
ods [15], the locally divergence-free methods [23, 47], and the constrained transport
method [16] and its many variants [33, 6, 28, 2, 29, 35, 34, 32, 1, 26, 3, 25, 24, 14].
The readers are also referred to an early survey in [36].

Another numerical challenge in the simulation of MHD is preserving the posi-
tivity of density \rho and pressure p. In physics, these two quantities are nonnegative.
Numerically their positivity is very critical, but not always satisfied by numerical so-
lutions. In fact, once the negative density or pressure is obtained in the simulations,
the discrete problem will become ill-posed due to the loss of hyperbolicity, causing
the breakdown of the simulation codes. However, most of the existing MHD schemes
are generally not positivity-preserving (PP) and thus may suffer from a large risk of
failure when simulating MHD problems with strong discontinuity, low density, low
pressure, or low plasma-beta. Several efforts have been made to reduce this risk.
Balsara and Spicer [5] proposed a strategy to maintain positive pressure by switch-
ing the Riemann solvers for different wave situations. Janhunen [22] designed a new
1D Riemann solver for the modified MHD system and claimed its PP property by
numerical experiments. Waagan [37] designed a positive linear reconstruction for the
second-order MUSCL-Hancock scheme and conducted some 1D analysis based on the
presumed PP property of the first-order scheme. From a relaxation system, Bouchut,
Klingenberg, and Waagan [7, 8] derived a multiwave approximate Riemann solver for
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1D ideal MHD and deduced sufficient conditions for the solver to satisfy discrete en-
tropy inequalities and the PP property. Recent years have witnessed some significant
advances in developing bound-preserving high-order schemes for hyperbolic systems
(e.g., [49, 50, 51, 21, 45, 27, 40, 30, 42, 46, 48]). High-order limiting techniques were
well developed in [4, 11] for the finite volume or discontinuous Galerkin (DG) methods
of MHD to enforce the admissibility1 of the reconstructed or DG polynomial solutions
at certain nodal points. These techniques are based on a presumed proposition that
the cell-averaged solutions computed by those schemes are always admissible. Such a
proposition has not yet been rigorously proved for those methods, although it could
be deduced for the 1D schemes in [11] under some assumptions (see Remark 2.12
of the present paper). With the presumed PP property of the Lax--Friedrichs (LF)
scheme, Christlieb et al. [13, 12] developed PP high-order finite difference methods
for (1) by extending the parametrized flux limiters [45, 44].

It was demonstrated numerically that the above PP treatments could enhance
the robustness of MHD codes. However, as mentioned in [13], there was no rigorous
proof to genuinely and completely show the PP property of those or any other schemes
for (1) in the multidimensional cases. Even for the simplest first-order schemes, such
as the LF scheme, the PP property is still unclear in theory. Moreover, it is also
unanswered theoretically whether the divergence-free condition (2) is connected with
the PP property of schemes for (1). Therefore, it is significant to explore provably PP
schemes for (1) and develop related theories for rigorous PP analysis.

The aim of this paper is to carry out a rigorous PP analysis of conservative
finite volume and DG schemes with the LF flux for the 1D and multidimensional
ideal MHD system (1). Such an analysis is extremely nontrivial and technical. The
challenges mainly come from the intrinsic complexity of the system (1)--(2), as well
as the unclear relation between the PP property and the divergence-free condition
on the magnetic field. Fortunately, we find an important novel starting point of the
analysis based on an equivalent form of the admissible state set. This form helps us
to successfully derive the generalized LF splitting properties, which couple a discrete
divergence-free (DDF) condition for the magnetic field with the convex combination
of some LF splitting terms. These properties imply a theoretical connection between
the PP property and the proposed DDF condition. As the generalized LF splitting
properties involve a number of strongly coupled states, their discovery and proofs are
extremely technical. With the aid of these properties, we present the rigorous PP
analysis for finite volume and DG schemes on uniform Cartesian meshes. Meanwhile,
our analysis also reveals that the DDF condition is necessary and crucial for achieving
the PP property. This finding is consistent with some existing numerical evidence
(violating the divergence-free condition may more easily cause negative pressure; see,
e.g., [9, 2, 32, 4]) as well as our previous work on the relativistic MHD [41]. Without
considering the relativistic effect, the system (1) yields unboundedness of velocities
and poses difficulties essentially different from the relativistic case. It is also worth
mentioning that, as will be shown, the 1D LF scheme is not always PP for piecewise
constant B1, making some existing techniques [49] for PP analysis inapplicable in the
multidimensional ideal MHD case. Contrary to the usual expectation, we also find
that the 1D LF scheme with a standard numerical viscosity parameter is not always
PP, no matter how small the CFL number is. A proper viscosity parameter should
be estimated, introducing additional difficulties into the analysis. Note that, for the

1Throughout this paper, the admissibility of a solution or state \bfU means that the density and
pressure corresponding to the conservative vector \bfU are both positive; see Definition 2.1.
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incompressible flow system in the vorticity-stream function formulation, there is also a
divergence-free condition (but) on fluid velocity, i.e., the incompressibility condition,
which is crucial in designing schemes that satisfy the maximum principle of vorticity;
see, e.g., [49]. An important difference in our MHD case is that our divergence-free
quantity (the magnetic field) is also nonlinearly related to defining the concerned
positive quantity---the internal energy or pressure; see (6).

The paper is organized as follows. Section 2 gives several important properties
of the admissible states for the PP analysis. Sections 3 and 4 respectively study 1D
and 2D PP schemes. Numerical verifications and the 3D extension are given in the
supplementary material. Section 5 concludes the paper with several remarks.

2. Admissible states. Under the condition (5), it is natural to define the set
of admissible states U of the ideal MHD as follows.

Definition 2.1. The set of admissible states of the ideal MHD is defined by

(6) \scrG =

\biggl\{ 
U = (\rho ,m,B, E)\top 

\bigm| \bigm| \bigm| \rho > 0, \scrE (U) := E  - 1

2

\biggl( 
| m| 2

\rho 
+ | B| 2

\biggr) 
> 0

\biggr\} 
,

where \scrE (U) = \rho e denotes the internal energy.

Given that the initial data are admissible, a scheme is defined to be PP if the
numerical solutions always stay in the set \scrG . One can see from (6) that it is difficult
to numerically preserve the positivity of \scrE , whose computation nonlinearly involves
all the conservative variables. In most numerical methods, the conservative quantities
are themselves evolved according to their own conservation laws, which are seemingly
unrelated to, and numerically do not necessarily guarantee, the positivity of the com-
puted \scrE . In theory, it is indeed a challenge to make an a priori judgment on whether
a scheme is always PP under all circumstances or not.

2.1. Basic properties. To overcome the difficulties arising from the nonlinear-
ity of the function \scrE (U), we propose the following equivalent definition of \scrG .

Lemma 2.2 (equivalent definition). The admissible state set \scrG is equivalent to

(7) \scrG \ast =

\biggl\{ 
U = (\rho ,m,B, E)\top 

\bigm| \bigm| \bigm| \rho > 0, U \cdot n\ast +
| B\ast | 2

2
> 0 \forall v\ast ,B\ast \in \BbbR 3

\biggr\} 
,

where

n\ast =

\biggl( 
| v\ast | 2

2
,  - v\ast ,  - B\ast , 1

\biggr) \top 

.

Proof. If U \in \scrG , then \rho > 0, and for any v\ast ,B\ast \in \BbbR 3,

U \cdot n\ast +
| B\ast | 2

2
=

\rho 

2

\bigm| \bigm| \rho  - 1m - v\ast \bigm| \bigm| 2 + | B - B\ast | 2

2
+ \scrE (U) \geq \scrE (U) > 0,

that is, U \in \scrG \ast . Hence \scrG \subset \scrG \ast . On the other hand, if U \in \scrG \ast , then \rho > 0, and taking
v\ast = \rho  - 1m and B\ast = B gives 0 < U \cdot n\ast + | B\ast | 2/2 = \scrE (U). This means U \in \scrG .
Therefore, \scrG \ast \subset \scrG . In conclusion, \scrG = \scrG \ast .

The two constraints in (7) are both linear with respect to U, making it more
effective to analytically verify the PP property of numerical schemes for ideal MHD.

The convexity of admissible state set is very useful in bound-preserving analysis,
because it can help reduce the complexity of the analysis if the schemes can be rewrit-
ten into certain convex combinations; see, e.g., [50, 52, 38]. For the ideal MHD, the
convexity of \scrG \ast or \scrG can be easily shown by definition, and the proof is omitted here.
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Lemma 2.3 (convexity). The set \scrG \ast is convex. Moreover, \lambda U1+(1 - \lambda )U0 \in \scrG \ast 
for any U1 \in \scrG \ast ,U0 \in \scrG \ast , and \lambda \in (0, 1], where \scrG \ast is the closure of \scrG \ast .

We also have the following orthogonal invariance, which can be verified directly.

Lemma 2.4 (orthogonal invariance). Let T := diag\{ 1,T3,T3, 1\} , where T3 is
any orthogonal matrix of size 3. If U \in \scrG , then TU \in \scrG .

We refer to the following property (8) as the LF splitting property :

(8) U\pm Fi(U)

\alpha 
\in \scrG \forall U \in \scrG , \forall \alpha \geq \chi Ri(U),

where \chi \geq 1 is some constant, and Ri(U) is the spectral radius of the Jacobian matrix
in the xi-direction, i = 1, 2, 3. For the ideal MHD system with the EOS (4), one has
[31]

Ri(U) = | vi| + \scrC i,

with

\scrC i :=
1\surd 
2

\left[  \scrC 2
s +

| B| 2

\rho 
+

\sqrt{} \biggl( 
\scrC 2
s +

| B| 2
\rho 

\biggr) 2

 - 4
\scrC 2
sB

2
i

\rho 

\right]  1
2

,

where \scrC s =
\sqrt{} 

\gamma p/\rho is the sound speed.
If true, the LF splitting property would be very useful in analyzing the PP prop-

erty of the schemes with the LF flux; see its roles in [50, 40, 38] for the equations
of hydrodynamics. Unfortunately, for the ideal MHD, (8) is untrue in general, as
evidenced numerically in [11] for ideal gases. In fact, one can disprove (8); see the
proof of the following proposition in section SM1.1 of the supplementary material.

Proposition 2.5. The LF splitting property (8) does not hold in general.

2.2. Generalized LF splitting properties. Since (8) does not hold, we would
like to seek some alternative properties which are weaker than (8). By considering
the convex combination of some LF splitting terms, we discover the generalized LF
splitting properties under some DDF condition for the magnetic field. As one of the
most highlighted points of this paper, the discovery and proofs of such properties are
very nontrivial and extremely technical.

2.2.1. A constructive inequality. We first construct an inequality which will
play a pivotal role in establishing the generalized LF splitting properties.

Lemma 2.6. If U, \~U \in \scrG , then the inequality

(9)

\biggl( 
U - Fi(U)

\alpha 
+ \~U+

Fi( \~U)

\alpha 

\biggr) 
\cdot n\ast + | B\ast | 2 + Bi  - \~Bi

\alpha 
(v\ast \cdot B\ast ) > 0

holds for any v\ast ,B\ast \in \BbbR 3 and | \alpha | > \alpha i(U, \~U), where i \in \{ 1, 2, 3\} , and

\alpha i(U, \~U) = min
\sigma \in \BbbR 

\alpha i(U, \~U;\sigma ),(10)

\alpha i(U, \~U;\sigma ) = max
\bigl\{ 
| vi| + Ci, | \~vi| + \~Ci, | \sigma vi + (1 - \sigma )\~vi| +max\{ Ci, \~Ci\} 

\bigr\} 
+ f(U, \~U;\sigma ),
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with

f(U, \~U;\sigma ) =
| \~B - B| \surd 

2

\sqrt{} 
\sigma 2

\rho 
+

(1 - \sigma )2

\~\rho 
,

Ci =
1\surd 
2

\left[  C 2
s +

| B| 2

\rho 
+

\sqrt{} \biggl( 
C 2
s +

| B| 2
\rho 

\biggr) 2

 - 4
C 2
s B

2
i

\rho 

\right]  1
2

,

and Cs =
p

\rho 
\surd 
2e
.

Proof. (i) We first prove (9) for i = 1. Let us define

\Pi u =
\bigl( 
U+ \~U

\bigr) 
\cdot n\ast + | B\ast | 2, \Pi f =

\bigl( 
F1(U) - F1( \~U)

\bigr) 
\cdot n\ast  - 

\bigl( 
B1  - \~B1

\bigr) 
(v\ast \cdot B\ast ).

Then we only need to show

(11)
| \Pi f | 
\Pi u

\leq \alpha 1(U, \~U),

by noting that

(12) \Pi u = | \bfittheta | 2 > 0,

where the nonzero vector \bfittheta \in \BbbR 14 is defined as

\bfittheta =
1\surd 
2

\Bigl( \surd 
\rho (v  - v\ast ), B - B\ast ,

\sqrt{} 
2\rho e,

\sqrt{} 
\~\rho (\~v  - v\ast ), \~B - B\ast ,

\sqrt{} 
2\~\rho \~e
\Bigr) \top 

.

The proof of (11) is divided into the following two steps.
Step 1. Reformulate \Pi f into a quadratic form in the variables \theta j , 1 \leq j \leq 14. We

require that the coefficients of the quadratic form do not depend on v\ast and B\ast . This
is very nontrivial and becomes the key step of the proof. We first arrange \Pi f by a
technical decomposition,

(13) \Pi f = \Pi 1 +\Pi 2 +\Pi 3 + (\Pi 4  - \~\Pi 4),

where

\Pi j =
1

2
v\ast 1
\bigl( 
B2

j  - \~B2
j

\bigr) 
 - v\ast 1B

\ast 
j (Bj  - \~Bj), j = 1, 2, 3,

\Pi 4 =
\rho v1
2

| v  - v\ast | 2 + v1\rho e+ p(v1  - v\ast 1) +

3\sum 
j=2

(Bj(v1  - v\ast 1) - B1(vj  - v\ast j ))(Bj  - B\ast 
j ),

\~\Pi 4 =
\~\rho \~v1
2

| \~v  - v\ast | 2 + \~v1\~\rho \~e+ \~p(\~v1  - v\ast 1) +

3\sum 
j=2

( \~Bj(\~v1  - v\ast 1) - \~B1(\~vj  - v\ast j ))( \~Bj  - B\ast 
j ).

One can immediately rewrite \Pi 4 and \~\Pi 4 as

\Pi 4 = v1

\Bigl( 3\sum 
j=1

\theta 2j + \theta 27

\Bigr) 
+ 2Cs\theta 1\theta 7 +

2B2\surd 
\rho 
\theta 1\theta 5 +

2B3\surd 
\rho 
\theta 1\theta 6  - 

2B1\surd 
\rho 
(\theta 2\theta 5 + \theta 3\theta 6),

\~\Pi 4 = \~v1

\Bigl( 10\sum 
j=8

\theta 2j + \theta 214

\Bigr) 
+ 2 \~Cs\theta 8\theta 14 +

2 \~B2\surd 
\~\rho 
\theta 8\theta 12 +

2 \~B3\surd 
\~\rho 
\theta 8\theta 13  - 

2 \~B1\surd 
\~\rho 
(\theta 9\theta 12 + \theta 10\theta 13).
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After a careful investigation, we find that \Pi j , j = 1, 2, 3, can be reformulated as

\Pi j = \sigma j

\~Bj  - Bj\surd 
\rho 

(\theta 1\theta j+3 + \theta 1\theta j+10) + (1 - \sigma j)
\~Bj  - Bj\surd 

\~\rho 
(\theta 8\theta j+3 + \theta 8\theta j+10)

+
\bigl( 
\sigma jv1 + (1 - \sigma j)\~v1

\bigr) 
\theta 2j+3  - 

\bigl( 
\sigma jv1 + (1 - \sigma j)\~v1

\bigr) 
\theta 2j+10,

where \sigma 1, \sigma 2, and \sigma 3 can be taken as any real numbers. In summary, we have
reformulated \Pi f into a quadratic form in the variables \theta j , 1 \leq j \leq 14.

Step 2. Estimate the upper bound of
| \Pi f | 
\Pi u

. There are several approaches to
estimating the bound, resulting in different formulas. One sharp upper bound is the
spectral radius of the symmetric matrix associated with the above quadratic form but
cannot be formulated explicitly and computed easily in practice. An explicit sharp
upper bound is \alpha 1(U, \~U) in (10). It is estimated as follows. We first notice that

\Pi 4 = v1

\Bigl( 3\sum 
j=1

\theta 2j + \theta 27

\Bigr) 
+ \bfitvargamma \top 

6 A6\bfitvargamma 6,

where \bfitvargamma 6 = (\theta 1, \theta 2, \theta 3, \theta 5, \theta 6, \theta 7)
\top , and

A6 =

\left(         

0 0 0 B2\rho 
 - 1

2 B3\rho 
 - 1

2 Cs

0 0 0  - B1\rho 
 - 1

2 0 0

0 0 0 0  - B1\rho 
 - 1

2 0

B2\rho 
 - 1

2  - B1\rho 
 - 1

2 0 0 0 0

B3\rho 
 - 1

2 0  - B1\rho 
 - 1

2 0 0 0
Cs 0 0 0 0 0

\right)         
.

The spectral radius of A6 is C1. This gives the following estimate:

(14)

| \Pi 4| \leq | v1| 
\biggl( 3\sum 

j=1

\theta 2j + \theta 27

\biggr) 
+ | \bfitvargamma \top 

6 A6\bfitvargamma 6| \leq | v1| 
\biggl( 3\sum 

j=1

\theta 2j + \theta 27

\biggr) 
+ C1| \bfitvargamma 6| 2

= (| v1| + C1)

\biggl( 3\sum 
j=1

\theta 2j + \theta 27

\biggr) 
+ C1

\bigl( 
\theta 25 + \theta 26

\bigr) 
.

Similarly, we have

| \~\Pi 4| \leq (| \~v1| + \~C1)

\biggl( 10\sum 
j=8

\theta 2j + \theta 214

\biggr) 
+ \~C1

\bigl( 
\theta 212 + \theta 213

\bigr) 
.(15)

Let us then focus on the first three terms on the right-hand side of (13) and rewrite
their summation as

\Pi 1 +\Pi 2 +\Pi 3 = \bfitvargamma \top 
8 A8\bfitvargamma 8 +

3\sum 
j=1

\bigl( 
\sigma jv1 + (1 - \sigma j)\~v1

\bigr) \bigl( 
\theta 2j+3  - \theta 2j+10

\bigr) 
,(16)

where \bfitvargamma 8 = (\theta 1, \theta 4, \theta 5, \theta 6, \theta 8, \theta 11, \theta 12, \theta 13)
\top , and

A8 =
1

2

\left(    
0 \bfitpsi 0 \bfitpsi 

\bfitpsi \top O \~\bfitpsi \top O

0 \~\bfitpsi 0 \~\bfitpsi 

\bfitpsi \top O \~\bfitpsi \top O

\right)    ,
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with O denoting the 3\times 3 null matrix, and

\bfitpsi = \rho  - 
1
2

\Bigl( 
\sigma 1( \~B1  - B1), \sigma 2( \~B2  - B2), \sigma 3( \~B3  - B3)

\Bigr) 
,

\~\bfitpsi = \~\rho  - 
1
2

\Bigl( 
(1 - \sigma 1)( \~B1  - B1), (1 - \sigma 2)( \~B2  - B2), (1 - \sigma 3)( \~B3  - B3)

\Bigr) 
.

Some algebraic manipulations show that the spectral radius of A8 is

\varrho (A8) =
1

2

\biggl[ 
| \bfitpsi | 2 + | \~\bfitpsi | 2 +

\sqrt{} 
(| \bfitpsi | 2  - | \~\bfitpsi | 2)2 + 4(\bfitpsi \cdot \~\bfitpsi )2

\biggr] 1
2

.

It then follows from (16) that, for all \sigma 1, \sigma 2, \sigma 3 \in \BbbR ,

| \Pi 1 +\Pi 2 +\Pi 3| \leq \varrho (A8)| \bfitvargamma 8| 2 +
3\sum 

j=1

\bigm| \bigm| \sigma jv1 + (1 - \sigma j)\~v1
\bigm| \bigm| \bigm| \bigm| \theta 2j+3  - \theta 2j+10

\bigm| \bigm| .
For simplicity, we set \sigma 1 = \sigma 2 = \sigma 3 = \sigma ; then \varrho (A8) = f(U, \~U;\sigma ), and

| \Pi 1 +\Pi 2 +\Pi 3| \leq f(U, \~U;\sigma )| \bfitvargamma 8| 2 + | \sigma v1 + (1 - \sigma )\~v1| 
3\sum 

j=1

\bigm| \bigm| \theta 2j+3  - \theta 2j+10

\bigm| \bigm| 
\leq f(U, \~U;\sigma )| \bfittheta | 2 + | \sigma v1 + (1 - \sigma )\~v1| 

3\sum 
j=1

\bigl( 
\theta 2j+3 + \theta 2j+10

\bigr) 
.(17)

Combining (13)--(15) and (17), we have

| \Pi f | \leq (| v1| + C1)

\biggl( 3\sum 
j=1

\theta 2j + \theta 27

\biggr) 
+ (| \~v1| + \~C1)

\biggl( 10\sum 
j=8

\theta 2j + \theta 214

\biggr) 
+ f(U, \~U;\sigma )| \bfittheta | 2

+ C1

\bigl( 
\theta 25 + \theta 26

\bigr) 
+ \~C1

\bigl( 
\theta 212 + \theta 213

\bigr) 
+ | \sigma v1 + (1 - \sigma )\~v1| 

3\sum 
j=1

\bigl( 
\theta 2j+3 + \theta 2j+10

\bigr) 
\leq (| v1| + C1)

\biggl( 3\sum 
j=1

\theta 2j + \theta 27

\biggr) 
+ (| \~v1| + \~C1)

\biggl( 10\sum 
j=8

\theta 2j + \theta 214

\biggr) 
+ f(U, \~U;\sigma )| \bfittheta | 2

+
\Bigl( 
| \sigma v1 + (1 - \sigma )\~v1| + C1

\Bigr) 6\sum 
j=4

\theta 2j +
\Bigl( 
| \sigma v1 + (1 - \sigma )\~v1| + \~C1

\Bigr) 13\sum 
j=11

\theta 2j

\leq \alpha 1(U, \~U;\sigma ) | \bfittheta | 2 = \alpha 1(U, \~U;\sigma ) \Pi u

for all \sigma \in \BbbR . Hence

| \Pi f | \leq \Pi u min
\sigma \in \BbbR 

\alpha 1(U, \~U;\sigma ) = \Pi u\alpha 1(U, \~U);

that is, the inequality (11) holds. The proof for the case of i = 1 is completed.
(ii) We then verify the inequality (9) for the cases i = 2 and 3 by using the

inequality (9) for the case i = 1 as well as the orthogonal invariance in Lemma 2.4.
For the case of i = 2, we introduce an orthogonal matrix T = diag\{ 1,T3,T3, 1\} with
T3 := (e\top 2 , e

\top 
1 , e

\top 
3 ), where e\ell is the \ell th row of the unit matrix of size 3. We then have
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TU,T \~U \in \scrG by Lemma 2.4. Let \scrH i(U, \~U,v\ast ,B\ast , \alpha ) denote the left-hand side term
of (9). Using (9) with i = 1 for TU,T \~U,v\ast T3,B

\ast T3, we have

(18) \scrH 1(TU,T \~U,v\ast T3,B
\ast T3, \alpha ) > 0

for any \alpha > \alpha 1(TU,T \~U) = \alpha 2(U, \~U). Utilizing F1(TU) = TF2(U) and the orthog-
onality of T and T3, we find that

\scrH 1(TU,T \~U,v\ast T3,B
\ast T3, \alpha ) = \scrH 2(U, \~U,v\ast ,B\ast , \alpha ).

Thus (18) implies (9) for i = 2. Similar arguments hold for i = 3. The proof is
completed.

Remark 2.7. In practice, it is not easy to determine the minimum value in (10).
Since \alpha i(U, \~U) only plays the role of a lower bound, one can replace it with \alpha i(U, \~U;\sigma )
for a special \sigma . For example, taking \sigma = \rho 

\rho +\~\rho minimizes f(U, \~U;\sigma ) and gives

\alpha i

\biggl( 
U, \~U;

\rho 

\rho + \~\rho 

\biggr) 
= max

\biggl\{ 
| vi| +Ci, | \~vi| + \~Ci,

| \rho vi + \~\rho \~vi| 
\rho + \~\rho 

+max\{ Ci, \~Ci\} 
\biggr\} 
+

| B - \~B| \sqrt{} 
2(\rho + \~\rho )

.

Taking \sigma =
\surd 
\rho 

\surd 
\rho +

\surd 
\~\rho 
gives

\alpha i

\biggl( 
\bfU , \~\bfU ;

\surd 
\rho 

\surd 
\rho +

\surd 
\~\rho 

\biggr) 
= max

\biggl\{ 
| vi| +Ci, | \~vi| + \~Ci,

| \surd \rho vi +
\surd 
\~\rho \~vi| 

\surd 
\rho +

\surd 
\~\rho 

+max\{ Ci, \~Ci\} 
\biggr\} 
+

| \bfB  - \~\bfB | 
\surd 
\rho +

\surd 
\~\rho 
.

Let ai := max\{ Ri(U),Ri( \~U)\} . For the gamma-law EOS, the following proposi-
tion shows that \alpha i(U, \~U) < 2ai and \alpha i(U, \~U) < ai +\scrO (| U  - \~U| ), i = 1, 2, 3. When
U = \~U with zero magnetic field, \alpha i(U, \~U) = | vi| + p

\rho 
\surd 
2e
, which is consistent with the

bound in the LF splitting property for the Euler equations with a general EOS [52].

Proposition 2.8. For any admissible states U, \~U of an ideal gas, it holds that

\alpha i(U, \~U) < 2ai,(19)

\alpha i(U, \~U) < ai +min
\bigl\{ \bigm| \bigm| | vi|  - | \~vi| 

\bigm| \bigm| , \bigm| \bigm| Ci  - \~Ci

\bigm| \bigm| \bigr\} + | B - \~B| \sqrt{} 
2(\rho + \~\rho )

.(20)

Proof. The inequality (19) can be shown as follows:

\alpha i(U, \~U) \leq \alpha i

\biggl( 
U, \~U;

\surd 
\rho 

\surd 
\rho +

\surd 
\~\rho 

\biggr) 
\leq max

\Bigl\{ 
| vi| + Ci, | \~vi| + \~Ci

\Bigr\} 
+

| \surd \rho vi +
\surd 
\~\rho \~vi| \surd 

\rho +
\surd 
\~\rho 

+
| B - \~B| 
\surd 
\rho +

\surd 
\~\rho 

< ai +

\surd 
\rho 

\surd 
\rho +

\surd 
\~\rho 

\biggl( 
| vi| +

| B| 
\surd 
\rho 

\biggr) 
+

\surd 
\~\rho 

\surd 
\rho +

\surd 
\~\rho 

\biggl( 
| \~vi| +

| \~B| \surd 
\~\rho 

\biggr) 
\leq ai +max

\biggl\{ 
| vi| +

| B| 
\surd 
\rho 
, | \~vi| +

| \~B| \surd 
\~\rho 

\biggr\} 
\leq ai +max\{ | vi| + \scrC i, | \~vi| + \~\scrC i\} = 2ai,

where we have used Ci < \scrC i because of Cs =
\sqrt{} 

(\gamma  - 1)p
2\rho < \scrC s. We now turn to prove

(20). Using the triangle inequality, one can easily show that

| vi| + \~Ci \leq min
\bigl\{ \bigm| \bigm| | vi|  - | \~vi| 

\bigm| \bigm| , \bigm| \bigm| Ci  - \~Ci

\bigm| \bigm| \bigr\} +max
\bigl\{ 
| vi| + Ci, | \~vi| + \~Ci

\bigr\} 
,

| \~vi| + Ci \leq min
\bigl\{ \bigm| \bigm| | vi|  - | \~vi| 

\bigm| \bigm| , \bigm| \bigm| Ci  - \~Ci

\bigm| \bigm| \bigr\} +max
\bigl\{ 
| vi| + Ci, | \~vi| + \~Ci

\bigr\} 
.
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Therefore,

max

\biggl\{ 
| vi| + Ci, | \~vi| + \~Ci,

| \rho vi + \~\rho \~vi| 
\rho + \~\rho 

+max\{ Ci, \~Ci\} 
\biggr\} 

\leq max
\bigl\{ 
| vi| + Ci, | \~vi| + \~Ci, | \~vi| + Ci, | vi| + \~Ci

\bigr\} 
\leq max

\bigl\{ 
| vi| + Ci, | \~vi| + \~Ci

\bigr\} 
+min

\bigl\{ \bigm| \bigm| | vi|  - | \~vi| 
\bigm| \bigm| , \bigm| \bigm| Ci  - \~Ci

\bigm| \bigm| \bigr\} 
< ai +min

\bigl\{ \bigm| \bigm| | vi|  - | \~vi| 
\bigm| \bigm| , \bigm| \bigm| Ci  - \~Ci

\bigm| \bigm| \bigr\} .
Then using \alpha i(U, \~U) \leq \alpha i

\bigl( 
U, \~U; \rho 

\rho +\~\rho 

\bigr) 
completes the proof.

Remark 2.9. It is worth emphasizing the importance of the last term on the
left-hand side of (9). This term is extremely technical, necessary, and crucial in
deriving the generalized LF splitting properties. Including this term becomes one of
the breakthrough points in this paper. The value of this term is not always positive
or negative. However, without this term, the inequality (9) does not hold, even if
\alpha i is replaced with \chi \alpha i for any constant \chi \geq 1. More importantly, this term can
be canceled out dexterously under the DDF condition (21) or (26); see the proofs of
generalized LF splitting properties in the following theorems.

2.2.2. Derivation of generalized LF splitting properties. We first present
the 1D generalized LF splitting property.

Theorem 2.10 (1D generalized LF splitting). If \^U = (\^\rho , \^m, \^B, \^E)\top and \v U =
(\v \rho , \v m, \v B, \v E)\top both belong to \scrG and satisfy the 1D DDF condition

(21) \^B1  - \v B1 = 0,

then for any \alpha > \alpha 1( \^U, \v U) it holds that

(22) U :=
1

2

\biggl( 
\^U - F1( \^U)

\alpha 
+ \v U+

F1( \v U)

\alpha 

\biggr) 
\in \scrG .

Proof. The first component of U equals 1
2

\bigl( 
\^\rho 
\bigl( 
1  - \^v1

\alpha 

\bigr) 
+ \v \rho 
\bigl( 
1 + \v v1

\alpha 

\bigr) \bigr) 
> 0. For any

v\ast ,B\ast \in \BbbR 3, utilizing Lemma 2.6 and the condition (21) gives

U \cdot n\ast +
| B\ast | 2

2
=

1

2

\biggl( 
\^U - F1( \^U)

\alpha 
+ \v U+

F1( \v U)

\alpha 

\biggr) 
\cdot n\ast +

| B\ast | 2

2
>

\v B1  - \^B1

2\alpha 
(v\ast \cdot B\ast ) = 0.

This implies U \in \scrG \ast = \scrG .

Remark 2.11. As indicated by Proposition 2.8, the bound \alpha 1( \^U, \v U) for \alpha can be

very close to a1 = max\{ R1( \^U),R1( \v U)\} , which is the numerical viscosity coefficient in
the standard local LF scheme. Nevertheless, (22) does not hold for \alpha = a1 in general.
A counterexample can be given by considering the following admissible states of ideal
gas with \gamma = 1.4 and \^B1 = \v B1:

(23)

\Biggl\{ 
\^U = (0.2, 0, 0.2, 0, 10, 5, 0, 62.625)\top ,
\v U = (0.32, 0, - 0.32, 0, 10, 10, 0, 100.16025)\top .

For (23) and \alpha = a1, one can verify that U in (22) satisfies \scrE (U) <  - 0.05 and U /\in \scrG .
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Remark 2.12. The proof of Lemma 2.1 in [11] implies that

(24) U\lambda := \^U - \lambda 
\bigl( 
F1( \^U) + a1 \^U - F1( \v U) - a1 \v U

\bigr) 
\in \scrG \forall \lambda \in 

\bigl( 
0, 1/(2a1)

\bigr] 
holds for all admissible states \^U, \v U with \^B1 = \v B1. On the contrary, for the special
admissible states \^U, \v U in (23), Remark 2.11 yields that (24) does not always hold
when \lambda is close to 1

2a1
because lim\lambda \rightarrow 1/(2a1) \scrE (U\lambda ) = \scrE (U) < 0. This deserves further

explanation, as the derivation of (24) in [11] is not mathematically rigorous but based
on two assumptions. One assumption is very reasonable (but unproven), stating that
the exact solution U(x1, t) to the 1D Riemann problem (RP)

(25)

\left\{     
\partial \bfU 
\partial t + \partial \bfF 1(\bfU )

\partial x1
= 0,

U(x1, 0) =

\Biggl\{ 
\^U, x1 < 0,
\v U, x1 > 0,

is always admissible if \^U, \v U \in \scrG with \^B1 = \v B1. Another ``assumption"" (not men-
tioned but implicitly used in [11]) is that a1 = \| R1(U(\cdot , 0))\| \infty is an upper bound of
the maximum wave speed in the above RP. In fact, a1 may not always be such a
bound when the fast shocks exist in the RP solution, as indicated in [20] for the gas
dynamics system (with zero magnetic field). Hence, the latter assumption may affect
some 1D analysis in [11]; see our finding in Theorem 3.1. It is also worth emphasizing
that the 1D analysis in [11] could work in general if \| R1(U(\cdot , 0))\| \infty were replaced
with a rigorous upper bound of the maximum wave speed in the RP.

We now present the multidimensional generalized LF splitting properties.

Theorem 2.13 (2D generalized LF splitting). If \=Ui, \~Ui, \^Ui, \v Ui \in \scrG for i =
1, . . . , \ttQ satisfy the 2D DDF condition

(26)

\ttQ \sum 
i=1

\omega i( \=B
i
1  - \~Bi

1)

\Delta x
+

\ttQ \sum 
i=1

\omega i( \^B
i
2  - \v Bi

2)

\Delta y
= 0,

where \Delta x,\Delta y > 0, and the sum of the positive numbers \{ \omega i\} \ttQ i=1 equals one, then for

any \alpha \ttL \ttF 
1 and \alpha \ttL \ttF 

2 satisfying \alpha \ttL \ttF 
1 > max1\leq i\leq \ttQ \alpha 1( \=U

i, \~Ui), \alpha \ttL \ttF 
2 > max1\leq i\leq \ttQ \alpha 2( \^U

i, \v Ui),
it holds that

U :=
1

2
\Bigl( 

\alpha \ttL \ttF 
1

\Delta x +
\alpha \ttL \ttF 

2

\Delta y

\Bigr) \ttQ \sum 
i=1

\omega i

\biggl[ 
\alpha \ttL \ttF 
1

\Delta x

\biggl( 
\=Ui  - F1( \=U

i)

\alpha \ttL \ttF 
1

+ \~Ui +
F1( \~U

i)

\alpha \ttL \ttF 
1

\biggr) 

+
\alpha \ttL \ttF 
2

\Delta y

\biggl( 
\^Ui  - F2( \^U

i)

\alpha \ttL \ttF 
2

+ \v Ui +
F2( \v U

i)

\alpha \ttL \ttF 
2

\biggr) \biggr] 
\in \scrG .

(27)

Proof. The first component of U equals

1

2
\Bigl( 

\alpha \ttL \ttF 
1

\Delta x +
\alpha \ttL \ttF 

2

\Delta y

\Bigr) \ttQ \sum 
i=1

\omega i

\biggl( 
\=\rho i(\alpha \ttL \ttF 

1  - \=vi1) + \~\rho i(\alpha \ttL \ttF 
1 + \~vi1)

\Delta x
+

\^\rho i(\alpha \ttL \ttF 
2  - \^vi2) + \v \rho i(\alpha \ttL \ttF 

2 + \v vi2)

\Delta y

\biggr) 
,
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which is positive. For any v\ast ,B\ast \in \BbbR 3, using Lemma 2.6 and the condition (26) gives

\biggl( 
U \cdot n\ast +

| B\ast | 2

2

\biggr) 
\times 2

\biggl( 
\alpha \ttL \ttF 
1

\Delta x
+

\alpha \ttL \ttF 
2

\Delta y

\biggr) 
=

\ttQ \sum 
i=1

\omega i

\Biggl\{ 
\alpha \ttL \ttF 
1

\Delta x

\biggl[ \biggl( 
\=Ui  - F1( \=U

i)

\alpha \ttL \ttF 
1

+ \~Ui +
F1( \~U

i)

\alpha \ttL \ttF 
1

\biggr) 
\cdot n\ast + | B\ast | 2

\biggr] 

+
\alpha \ttL \ttF 
2

\Delta y

\biggl[ \biggl( 
\^Ui  - F2( \^U

i)

\alpha \ttL \ttF 
2

+ \v Ui +
F2( \v U

i)

\alpha \ttL \ttF 
2

\biggr) 
\cdot n\ast + | B\ast | 2

\biggr] \Biggr\} 

(9)
>

\ttQ \sum 
i=1

\omega i

\Biggl\{ 
\alpha \ttL \ttF 
1

\Delta x

\biggl[ 
 - 

\=Bi
1  - \~Bi

1

\alpha \ttL \ttF 
1

(v\ast \cdot B\ast )

\biggr] 
+

\alpha \ttL \ttF 
2

\Delta y

\biggl[ 
 - 

\^Bi
2  - \v Bi

2

\alpha \ttL \ttF 
2

(v\ast \cdot B\ast )

\biggr] \Biggr\} 

=  - (v\ast \cdot B\ast )

\ttQ \sum 
i=1

\omega i

\Biggl( 
\=Bi
1  - \~Bi

1

\Delta x
+

\^Bi
2  - \v Bi

2

\Delta y

\Biggr) 
(26)
= 0.

It follows that U \cdot n\ast + | \bfB \ast | 2
2 > 0. Thus U \in \scrG \ast = \scrG .

Theorem 2.14 (3D generalized LF splitting). If \=Ui, \~Ui, \^Ui, \v Ui, \'Ui, \`Ui \in \scrG 
for i = 1, . . . , \ttQ , and they satisfy the 3D DDF condition

\ttQ \sum 
i=1

\omega i( \=B
i
1  - \~Bi

1)

\Delta x
+

\ttQ \sum 
i=1

\omega i( \^B
i
2  - \v Bi

2)

\Delta y
+

\ttQ \sum 
i=1

\omega i( \'B
i
3  - \`Bi

3)

\Delta z
= 0,

with \Delta x,\Delta y,\Delta z > 0, and the sum of the positive numbers \{ \omega i\} \ttQ i=1 equals one, then
for any \alpha \ttL \ttF 

1 , \alpha \ttL \ttF 
2 , and \alpha \ttL \ttF 

3 satisfying

\alpha \ttL \ttF 
1 > max

1\leq i\leq \ttQ 
\alpha 1( \=U

i, \~Ui), \alpha \ttL \ttF 
2 > max

1\leq i\leq \ttQ 
\alpha 2( \^U

i, \v Ui), \alpha \ttL \ttF 
3 > max

1\leq i\leq \ttQ 
\alpha 3( \'U

i, \`Ui),

it holds that U \in \scrG , where

U :=
1

2
\Bigl( 

\alpha \ttL \ttF 
1

\Delta x +
\alpha \ttL \ttF 

2

\Delta y +
\alpha \ttL \ttF 

3

\Delta z

\Bigr) \ttQ \sum 
i=1

\omega i

\biggl[ 
\alpha \ttL \ttF 
1

\Delta x

\biggl( 
\=Ui  - F1( \=U

i)

\alpha \ttL \ttF 
1

+ \~Ui +
F1( \~U

i)

\alpha \ttL \ttF 
1

\biggr) 

+
\alpha \ttL \ttF 
2

\Delta y

\biggl( 
\^Ui  - F2( \^U

i)

\alpha \ttL \ttF 
2

+ \v Ui +
F2( \v U

i)

\alpha \ttL \ttF 
2

\biggr) 
+

\alpha \ttL \ttF 
3

\Delta z

\biggl( 
\'Ui  - F3( \'U

i)

\alpha \ttL \ttF 
3

+ \`Ui +
F3( \`U

i)

\alpha \ttL \ttF 
3

\biggr) \biggr] 
.

Proof. The proof is similar to that of Theorem 2.13 and is omitted here.

Remark 2.15. In the above generalized LF splitting properties, the convex com-
bination U depends on a number of strongly coupled states, making it extremely
difficult to check the admissibility of U. This difficulty is subtly overcome by using
the inequality (9) under the DDF condition, which is an approximation to (2). For
example, the 2D DDF condition (26) can be derived by using some quadrature rule
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for the integrals at the left side of

1

\Delta x

\Biggl( 
1

\Delta y

\int \tty 0+\Delta y

\tty 0

\bigl( 
B1(\ttx 0 +\Delta x, \tty ) - B1(\ttx 0, \tty )

\bigr) 
d\tty 

\Biggr) 

+
1

\Delta y

\Biggl( 
1

\Delta x

\int \ttx 0+\Delta x

\ttx 0

\bigl( 
B2(\ttx , \tty 0 +\Delta y) - B2(\ttx , \tty 0)

\bigr) 
d\ttx 

\Biggr) 

=
1

\Delta x\Delta y

\int 
I

\biggl( 
\partial B1

\partial \ttx 
+

\partial B2

\partial \tty 

\biggr) 
d\ttx d\tty = 0,

(28)

where (\ttx , \tty ) = (x1, x2) and I = [\ttx 0, \ttx 0 +\Delta x]\times [\tty 0, \tty 0 +\Delta y]. It is worth emphasizing
that, like the necessity of the last term on the left-hand side of (9), the proposed
DDF condition is necessary and crucial for the generalized LF splitting properties.
Without this condition, those properties do not hold in general, even if \alpha i is replaced
with \chi \alpha i or \chi ai for any constant \chi \geq 1; see the proof of Theorem 4.1.

The above generalized LF splitting properties are important tools in analyzing
PP schemes on uniform Cartesian meshes if the numerical flux is taken as the LF flux

(29) \^F\ell (U
 - ,U+) =

1

2

\Bigl( 
F\ell (U

 - ) + F\ell (U
+) - \alpha \ttL \ttF 

\ell ,n(U
+  - U - )

\Bigr) 
, \ell = 1, . . . , d.

Here \{ \alpha \ttL \ttF 
\ell ,n\} denote the numerical viscosity parameters specified at the nth discretized

time level. The extension of the above results on nonuniform or unstructured meshes
will be presented in a separate paper.

3. 1D positivity-preserving schemes. This section applies the above theories
to study the provably PP schemes with the LF flux (29) for the system (1) in 1D. In 1D,
the divergence-free condition (2) and the fifth equation in (1) yield that B1(x1, t) \equiv 
constant (denoted by \ttB \ttc \tto \ttn \tts \ttt ) for all x1 and t \geq 0.

To avoid confusing subscripts, we will use the symbol \ttx to represent the vari-
able x1 in (1). Assume that the spatial domain is divided into uniform cells \{ Ij =
(\ttx j - 1

2
, \ttx j+ 1

2
)\} , with a constant spatial step-size \Delta x. And the time interval is divided

into the mesh \{ t0 = 0, tn+1 = tn+\Delta tn, n \geq 0\} with the time step-size \Delta tn determined
by some CFL condition. Let \=Un

j denote the numerical cell-averaged approximation of

the exact solution U(\ttx , t) over Ij at t = tn. Assume the discrete initial data \=U0
j \in \scrG .

A scheme is defined to be PP if its numerical solution \=Un
j always stays at \scrG .

3.1. First-order scheme. The 1D first-order LF scheme reads

(30) \=Un+1
j = \=Un

j  - \Delta tn
\Delta x

\Bigl( 
\^F1( \=U

n
j ,

\=Un
j+1) - \^F1( \=U

n
j - 1,

\=Un
j )
\Bigr) 
,

where the numerical flux \^F1(\cdot , \cdot ) is defined by (29).
A surprising discovery is that the LF scheme (30) with a standard parameter

\alpha \ttL \ttF 
1,n = maxj R1( \=U

n
j ) (although it works well in most cases) is not always PP regardless

of how small the CFL number is. However, if the parameter \alpha \ttL \ttF 
1,n in (29) satisfies

(31) \alpha \ttL \ttF 
1,n > max

j
\alpha 1( \=U

n
j+1,

\=Un
j - 1),

then we can rigorously prove that the scheme (30) is PP when the CFL number is less
than one. These results are shown in the following two theorems. We remark that the
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lower bound given in (31) is acceptable in comparison with the standard parameter
maxj R1(U

n
j ), because one can derive from Proposition 2.8 that

max
j

\alpha 1( \=U
n
j+1,

\=Un
j - 1) < 2max

j
R1(U

n
j ),

and for smooth problems, maxj \alpha 1( \=U
n
j+1,

\=Un
j - 1) < maxj R1(U

n
j ) +\scrO (\Delta x).

Theorem 3.1. Assume that \=U0
j \in \scrG and \=B0

1,j = \ttB \ttc \tto \ttn \tts \ttt for all j. Let the parameter

\alpha \ttL \ttF 
1,n = maxj R1( \=U

n
j ), and

\Delta tn = \ttC 
\Delta x

\alpha \ttL \ttF 
1,n

,

where \ttC is the CFL number. For any constant \ttC > 0, the scheme (30) is not PP.

The proof can be found in section SM1.2 of the supplementary material.

Theorem 3.2. Assume that \=U0
j \in \scrG and \=B0

1,j = \ttB \ttc \tto \ttn \tts \ttt for all j, and the param-

eter \alpha \ttL \ttF 
1,n satisfies (31). Then the state \=Un

j , computed by the scheme (30) under the
CFL condition

(32) 0 < \alpha \ttL \ttF 
1,n\Delta tn/\Delta x \leq 1,

belongs to \scrG and satisfies \=Bn
1,j = \ttB \ttc \tto \ttn \tts \ttt for all j and n \in \BbbN .

Proof. Here the induction argument is used for the time level number n. It is
obvious that the conclusion holds for n = 0 under the hypothesis on the initial data.
We now assume that \=Un

j \in \scrG with \=Bn
1,j = \ttB \ttc \tto \ttn \tts \ttt for all j, and we check whether the

conclusion holds for n + 1. For the numerical flux in (29), the fifth equation in (30)
gives

\=Bn+1
1,j = \=Bn

1,j  - 
\lambda 

2

\bigl( 
2 \=Bn

1,j  - \=Bn
1,j+1  - \=Bn

1,j - 1

\bigr) 
= \ttB \ttc \tto \ttn \tts \ttt 

for all j, where \lambda = \alpha \ttL \ttF 
1,n\Delta tn/\Delta x \in (0, 1] due to (32). We rewrite the scheme (30) as

\=Un+1
j = (1 - \lambda ) \=Un

j + \lambda \Xi ,

with

\Xi :=
1

2

\biggl( 
\=Un
j+1  - 

F1( \=U
n
j+1)

\alpha \ttL \ttF 
1,n

+ \=Un
j - 1 +

F1( \=U
n
j - 1)

\alpha \ttL \ttF 
1,n

\biggr) 
.

Under the induction hypothesis \=Un
j - 1,

\=Un
j+1 \in \scrG and \=Bn

1,j - 1 = \=Bn
1,j+1, we conclude

that \Xi \in \scrG by the generalized LF splitting property in Theorem 2.10. The convexity
of \scrG further yields \=Un+1

j \in \scrG . The proof is completed.

Remark 3.3. If the condition (32) is enhanced to 0 < \alpha \ttL \ttF 
1,n\Delta tn/\Delta x < 1, then

Theorem 3.2 holds for all \alpha \ttL \ttF 
1,n \geq maxj \alpha 1( \=U

n
j+1,

\=Un
j - 1), by Lemma 2.3. It is similar

for Theorems 3.4, 4.3, 4.6, and 4.7 and will not be repeated.

3.2. High-order schemes. We now study the provably PP high-order schemes
for 1D MHD equations (1). With the provenly PP LF scheme (30) as a building
block, any high-order finite difference schemes can be modified to be PP by a limiter
[13]. The following PP analysis is focused on finite volume and DG schemes. The
considered 1D DG schemes are similar to those in [11] but with a different viscosity
parameter in the LF flux so that the PP property can be rigorously proved in our
case.
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For the moment, we use the forward Euler method for time discretization, while
high-order time discretization will be discussed later. We consider the high-order
finite volume schemes as well as the scheme satisfied by the cell averages of a DG
method, which have the following form:

(33) \=Un+1
j = \=Un

j  - \Delta tn
\Delta x

\Bigl( 
\^F1(U

 - 
j+ 1

2

,U+
j+ 1

2

) - \^F1(U
 - 
j - 1

2

,U+
j - 1

2

)
\Bigr) 
,

where \^F1(\cdot , \cdot ) is taken as the LF flux defined in (29). The quantities U - 
j+ 1

2

and U+
j+ 1

2

are the high-order approximations of the point values U
\bigl( 
\ttx j+ 1

2
, tn
\bigr) 
within the cells Ij

and Ij+1, respectively, computed by

(34) U - 
j+ 1

2

= Un
j

\bigl( 
\ttx j+ 1

2
 - 0
\bigr) 
, U+

j+ 1
2

= Un
j+1

\bigl( 
\ttx j+ 1

2
+ 0
\bigr) 
,

where the polynomial function Un
j (\ttx ) is with the cell-averaged value of \=Un

j , approx-
imates U(\ttx , tn) within the cell Ij , and is either reconstructed in the finite volume
methods from \{ \=Un

j \} or directly evolved in the DG methods with degree \ttK \geq 1. The
evolution equations for the high-order ``moments"" of Un

j (\ttx ) in the DG methods are
omitted because we are only concerned with the PP property of the schemes here.

Generally the high-order scheme (33) is not PP. As proved in the following
theorem, the scheme (33) becomes PP if U\pm 

j+ 1
2

are computed by (34) with Un
j (\ttx )

satisfying

B\pm 
1,j+ 1

2

= \ttB \ttc \tto \ttn \tts \ttt \forall j,(35)

Un
j (\^\ttx 

(\mu )
j ) \in \scrG \forall \mu \in \{ 1, 2, . . . , \ttL \} , \forall j,(36)

and \alpha \ttL \ttF 
1,n satisfies (37). Here \{ \^\ttx (\mu )j \} \ttL \mu =1 are the \ttL -point Gauss--Lobatto quadrature

nodes in the interval Ij , whose associated quadrature weights are denoted by \{ \^\omega \mu \} \ttL \mu =1

with
\sum \ttL 

\mu =1 \^\omega \mu = 1. We require 2\ttL  - 3 \geq \ttK such that the algebraic precision of

corresponding quadrature is at least \ttK , e.g., taking \ttL as the ceiling part of \ttK +3
2 .

Theorem 3.4. If the polynomial vectors \{ Un
j (\ttx )\} satisfy (35)--(36), and the pa-

rameter \alpha \ttL \ttF 
1,n in (29) satisfies

(37) \alpha \ttL \ttF 
1,n > max

j
\alpha 1(U

\pm 
j+ 1

2

,U\pm 
j - 1

2

),

then the high-order scheme (33) is PP under the CFL condition

(38) 0 < \alpha \ttL \ttF 
1,n\Delta tn/\Delta x \leq \^\omega 1.

Proof. The exactness of the \ttL -point Gauss--Lobatto quadrature rule for the poly-
nomials of degree \ttK yields

\=Un
j =

1

\Delta x

\int 
Ij

Un
j (\ttx )d\ttx =

\ttL \sum 
\mu =1

\^\omega \mu U
n
j (\^\ttx 

(\mu )
j ).

Noting \^\omega 1 = \^\omega \ttL and \^\ttx 1,\ttL j = \ttx j\mp 1
2
, we can then rewrite the scheme (33) into the convex

combination form

\=Un+1
j =

\ttL  - 1\sum 
\mu =2

\^\omega \mu U
n
j (\^\ttx 

(\mu )
j ) + (\^\omega 1  - \lambda )

\Bigl( 
U+

j - 1
2

+U - 
j+ 1

2

\Bigr) 
+ \lambda \Xi  - + \lambda \Xi +,(39)
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where \lambda = \alpha \ttL \ttF 
1,n\Delta tn/\Delta x \in (0, \^\omega 1], and

\Xi \pm =
1

2

\Biggl( 
U\pm 

j+ 1
2

 - 
F1(U

\pm 
j+ 1

2

)

\alpha \ttL \ttF 
1,n

+U\pm 
j - 1

2

+
F1(U

\pm 
j - 1

2

)

\alpha \ttL \ttF 
1,n

\Biggr) 
.

The condition (35) and (37) yield \Xi \pm \in \scrG by the generalized LF splitting property in
Theorem 2.10. We therefore have \=Un+1

j \in \scrG from (39) by the convexity of \scrG .
Remark 3.5. The condition (35) is easily ensured in practice, since the exact

solution B1(x1, t) \equiv \ttB \ttc \tto \ttn \tts \ttt and the flux for B1 is zero, while the condition (36) can be
enforced by a simple scaling limiting procedure, which was well designed in [11] by
extending the techniques in [49, 50]. The details of the procedure are omitted here.

The above analysis is focused on first-order time discretization. Actually it is also
valid for the high-order explicit time discretization using strong stability-preserving
(SSP) methods [19, 17, 18]. This is because of the convexity of \scrG , as well as the fact
that an SSP method is a certain convex combination of the forward Euler method.

4. 2D positivity-preserving schemes. This section discusses positivity-
preserving (PP) schemes for the MHD system (1) in 2D (d = 2). The extension
of our analysis to the 3D case (d = 3) is straightforward and is displayed in the sup-
plementary material. Our analysis will reveal for the first time that the PP property
of a multidimensional MHD scheme is strongly connected with a DDF condition on
the numerical magnetic field.

For convenience, the symbols (\ttx , \tty ) are used to denote the variables (x1, x2) in (1).
Assume that the 2D spatial domain is divided into a uniform rectangular mesh with
cells

\bigl\{ 
Iij = (\ttx i - 1

2
, \ttx i+ 1

2
)\times (\tty j - 1

2
, \tty j+ 1

2
)
\bigr\} 
. The spatial step-sizes in the \ttx , \tty directions

are denoted by \Delta x,\Delta y, respectively. The time interval is also divided into the mesh
\{ t0 = 0, tn+1 = tn +\Delta tn, n \geq 0\} with the time step-size \Delta tn determined by the CFL
condition. We use \=Un

ij to denote the numerical approximation to the cell-averaged
value of the exact solution over Iij at time tn. We aim at seeking numerical schemes
whose solution \=Un

ij is preserved in \scrG .

4.1. First-order scheme. The 2D first-order LF scheme reads

\=Un+1
ij = \=Un

ij  - 
\Delta tn
\Delta x

\Bigl( 
\^F1,i+ 1

2 ,j
 - \^F1,i - 1

2 ,j

\Bigr) 
 - \Delta tn

\Delta y

\Bigl( 
\^F2,i,j+ 1

2
 - \^F2,i,j - 1

2

\Bigr) 
,(40)

where \^F1,i+ 1
2 ,j

= \^F1( \=U
n
ij ,

\=Un
i+1,j),

\^F2,i,j+ 1
2
= \^F2( \=U

n
ij ,

\=Un
i,j+1), and

\^F\ell (\cdot , \cdot ), \ell = 1, 2,

are the LF fluxes in (29).
As mentioned in [13], there is still no rigorous proof that the LF scheme (40) or

any other first-order scheme is PP in the multidimensional cases. For the ideal MHD
with the EOS (3), it seems natural to conjecture [11] that

(41) given \=Un
ij \in \scrG \forall i, j, then \=Un+1

ij computed from (40) always belongs to \scrG ,

under a certain CFL condition (e.g., the CFL number is less than 0.5). If (41) holds
true, it would be important and very useful for developing PP high-order schemes [11,
12, 13] for (1). Unfortunately, the following theorem shows that (41) does not always
hold, no matter how small the specified CFL number is, and even if the parameter
\alpha \ttL \ttF 
\ell ,n is taken as \chi maxij R\ell ( \=U

n
ij) with any given constant \chi \geq 1. (Note that increasing

numerical viscosity can usually enhance the robustness of an LF scheme and increase
the possibility of achieving the PP property, and \alpha \ttL \ttF 

\ell ,n = \chi maxij R\ell ( \=U
n
ij) corresponds

to the \chi times larger numerical viscosity in comparison with the standard one.)
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Theorem 4.1. Let \alpha \ttL \ttF 
\ell ,n = \chi maxij R\ell ( \=U

n
ij) with the constant \chi \geq 1, and

\Delta tn =
\ttC 

\alpha \ttL \ttF 
1,n/\Delta x+ \alpha \ttL \ttF 

2,n/\Delta y
,

where \ttC > 0 is the CFL number. For any given constants \chi and \ttC , there always exists
a set of admissible states \{ \=Un

ij \forall i, j\} such that the solution \=Un+1
ij of (40) does not

belong to \scrG . In other words, for any given \chi and \ttC , the admissibility of \{ \=Un
ij \forall i, j\} 

does not always guarantee that \=Un+1
ij \in \scrG \forall i, j.

The proof can be found in section SM1.3 of the supplementary material.

Remark 4.2. The proof of Theorem 4.1 also implies that, for any specified CFL
number, the 1D LF scheme (30) is not always PP when B1 is piecewise constant.

Inspired by Theorem 4.1, we conjecture that, to fully ensure the admissibility of
\=Un+1
ij , an additional condition is required for the states \{ \=Un

i,j ,
\=Un
i\pm 1,j ,

\=Un
i,j\pm 1\} except

for their admissibility. Such an additional necessary condition should be a divergence-
free condition in the discrete sense for \{ \=Bn

ij\} , whose importance for robust simulations
has been widely realized. The following analysis confirms that a discrete divergence-
free (DDF) condition does play an important role in achieving the PP property.

If the states \{ \=Un
i,j\} are all admissible and satisfy the DDF condition

(42) divij \=B
n :=

\bigl( 
\=B1

\bigr) n
i+1,j

 - 
\bigl( 
\=B1

\bigr) n
i - 1,j

2\Delta x
+

\bigl( 
\=B2

\bigr) n
i,j+1

 - 
\bigl( 
\=B2

\bigr) n
i,j - 1

2\Delta y
= 0,

then we can rigorously prove that the scheme (40) preserves \=Un+1
ij \in \scrG by using the

generalized LF splitting property in Theorem 2.13.

Theorem 4.3. If, for all i and j, \=Un
ij \in \scrG and satisfies the DDF condition (42),

then the solution \=Un+1
ij of (40) always belongs to \scrG under the CFL condition

(43) 0 <
\alpha \ttL \ttF 
1,n\Delta tn

\Delta x
+

\alpha \ttL \ttF 
2,n\Delta tn

\Delta y
\leq 1,

where the parameters \{ \alpha \ttL \ttF 
\ell ,n\} satisfy

(44) \alpha \ttL \ttF 
1,n > max

i,j
\alpha 1( \=U

n
i+1,j ,

\=Un
i - 1,j), \alpha \ttL \ttF 

2,n > max
i,j

\alpha 2( \=U
n
i,j+1,

\=Un
i,j - 1).

Proof. Substituting (29) into (40) gives

\=Un+1
ij = \lambda \Xi + (1 - \lambda ) \=Un

ij ,

where \lambda := \Delta tn(
\alpha \ttL \ttF 

1,n

\Delta x +
\alpha \ttL \ttF 

2,n

\Delta y ) \in (0, 1] by (43), and

\Xi :=
1

2
\Bigl( 

\alpha \ttL \ttF 
1,n

\Delta x +
\alpha \ttL \ttF 

2,n

\Delta y

\Bigr) \Biggl[ \alpha \ttL \ttF 
1,n

\Delta x

\Biggl( 
\=Un
i+1,j  - 

F1( \=U
n
i+1,j)

\alpha \ttL \ttF 
1,n

+ \=Un
i - 1,j +

F1( \=U
n
i - 1,j)

\alpha \ttL \ttF 
1,n

\Biggr) 

+
\alpha \ttL \ttF 
2,n

\Delta y

\Biggl( 
\=Un
i,j+1  - 

F2( \=U
n
i,j+1)

\alpha \ttL \ttF 
2,n

+ \=Un
i,j - 1 +

F2( \=U
n
i,j - 1)

\alpha \ttL \ttF 
2,n

\Biggr) \Biggr] 
.

Using the condition (42) and Theorem 2.13 gives \Xi \in \scrG . The convexity of \scrG further
yields \=Un+1

ij \in \scrG . The proof is completed.
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Remark 4.4. The data in (SM2) satisfies divij \=B
n = \epsilon 

2\Delta x > 0, which can be very
small when 0 < \epsilon \ll 1. Therefore, from the proof of Theorem 4.1, we conclude that
violating the condition (42) slightly could lead to inadmissible solution of the scheme
(40) if the pressure is sufficiently low. This demonstrates the importance of (42).

We now discuss whether the LF scheme (40) preserves the DDF condition (42).

Theorem 4.5. For the LF scheme (40), the divergence error

\varepsilon n\infty := max
ij

\bigm| \bigm| divij \=Bn
\bigm| \bigm| 

does not grow with n under the condition (43). Moreover, \{ \=Un
ij\} satisfy (42) for all

i, j and n \in \BbbN if (42) holds for the discrete initial data \{ \=U0
ij\} .

Proof. Using the linearity of the operator divij , one can deduce from (40) that

divij \=B
n+1 =(1 - \lambda )divij \=B

n +
\lambda 1

2
(divi+1,j

\=Bn + divi - 1,j
\=Bn)

+
\lambda 2

2
(divi,j+1

\=Bn + divi,j - 1
\=Bn),

where \lambda 1 =
\alpha \ttL \ttF 

1,n\Delta tn
\Delta x , \lambda 2 =

\alpha \ttL \ttF 
2,n\Delta tn
\Delta y , \lambda = \lambda 1 + \lambda 2 \in (0, 1]. It follows that

(45) \varepsilon n+1
\infty \leq (1 - \lambda )\varepsilon n\infty + \lambda 1\varepsilon 

n
\infty + \lambda 2\varepsilon 

n
\infty = \varepsilon n\infty .

This means \varepsilon n\infty does not grow with n. If \varepsilon 0\infty = 0 for the discrete initial data \{ \=U0
ij\} ,

then \varepsilon n\infty = 0 by (45), i.e., the condition (42) is satisfied for all i, j and n \in \BbbN .
Finally, we obtain the first provably PP scheme for the 2D MHD system (1), as

stated in the following theorem.

Theorem 4.6. Assume that the discrete initial data \{ \=U0
ij\} are admissible and

satisfy (42), which can be met by, e.g., the following second-order approximation:\Bigl( 
\=\rho 0ij , \=m

0
ij ,
\bigl( 
\=B3

\bigr) 0
ij
, (\rho e)

0

ij

\Bigr) 
=

1

\Delta x\Delta y

\int \int 
Iij

\bigl( 
\rho ,m, B3, \rho e

\bigr) 
(\ttx , \tty , 0)d\ttx d\tty ,

\bigl( 
\=B1

\bigr) 0
ij
=

1

2\Delta y

\int \tty j+1

\tty j - 1

B1(\ttx i, \tty , 0)d\tty ,
\bigl( 
\=B2

\bigr) 0
ij
=

1

2\Delta x

\int \ttx i+1

\ttx i - 1

B2(\ttx , \tty j , 0)d\ttx ,

\=E0
ij = (\rho e)

0

ij +
1

2

\Biggl( 
| \=m0

ij | 2

\=\rho 0ij
+ | \=B0

ij | 2
\Biggr) 
.

If the parameters \{ \alpha \ttL \ttF 
\ell ,n\} satisfy (44), then under the CFL condition (43), the LF

scheme (40) always preserves both \=Un+1
ij \in \scrG and (42) for all i, j and n \in \BbbN .

Proof. This is a direct consequence of Theorems 4.3 and 4.5.

4.2. High-order schemes. This subsection discusses the provably PP high-
order finite volume or DG schemes for the 2D MHD equations (1). We will focus
on the first-order forward Euler method for time discretization, and our analysis also
works for high-order explicit time discretization using the SSP methods [19, 17, 18].

Towards achieving high-order [(\ttK +1)th order] spatial accuracy, the approximate
solution polynomials Un

ij(\ttx , \tty ) of degree \ttK are also built usually, as approximation to
the exact solution U(\ttx , \tty , tn) within Iij . Such a polynomial vector Un

ij(\ttx , \tty ) is either
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reconstructed in the finite volume methods from the cell averages \{ \=Un
ij\} or evolved in

the DG methods. Moreover, the cell average of Un
ij(\ttx , \tty ) over Iij is \=Un

ij .

Let \{ \ttx (\mu )i \} \ttQ \mu =1 and \{ \tty (\mu )j \} \ttQ \mu =1 denote the \ttQ -point Gauss quadrature nodes in the

intervals [\ttx i - 1
2
, \ttx i+ 1

2
] and [\tty j - 1

2
, \tty j+ 1

2
], respectively, and \{ \omega \mu \} \ttQ \mu =1 be the associated

weights satisfying
\sum \ttQ 

\mu =1 \omega \mu = 1. With this quadrature rule for approximating the
integrals of numerical fluxes on cell interfaces, a finite volume scheme or discrete
equation for the cell average in the DG method (see, e.g., [50]) can be written as

\=Un+1
ij = \=Un

ij  - 
\Delta tn
\Delta x

\ttQ \sum 
\mu =1

\omega \mu 

\Bigl( 
\^F1(U

 - ,\mu 

i+ 1
2 ,j

,U+,\mu 

i+ 1
2 ,j

) - \^F1(U
 - ,\mu 

i - 1
2 ,j

,U+,\mu 

i - 1
2 ,j

)
\Bigr) 

 - \Delta tn
\Delta y

\ttQ \sum 
\mu =1

\omega \mu 

\Bigl( 
\^F2(U

\mu , - 
i,j+ 1

2

,U\mu ,+

i,j+ 1
2

) - \^F2(U
\mu , - 
i,j - 1

2

,U\mu ,+

i,j - 1
2

)
\Bigr) 
,

(46)

where \^F1 and \^F2 are the LF fluxes in (29), and the limiting values are given by

U - ,\mu 

i+ 1
2 ,j

= Un
ij(\ttx i+ 1

2
, \tty 

(\mu )
j ), U+,\mu 

i - 1
2 ,j

= Un
ij(\ttx i - 1

2
, \tty 

(\mu )
j ),

U\mu , - 
i,j+ 1

2

= Un
ij(\ttx 

(\mu )
i , \tty j+ 1

2
), U\mu ,+

i,j - 1
2

= Un
ij(\ttx 

(\mu )
i , \tty j - 1

2
).

For the accuracy requirement, \ttQ should satisfy \ttQ \geq \ttK + 1 for a \BbbP \ttK -based DG method,
or \ttQ \geq (\ttK + 1)/2 for a (\ttK + 1)th order finite volume scheme.

We denote

(B1)
\mu 

i+ 1
2 ,j

:=
1

2

\Bigl( 
(B1)

 - ,\mu 

i+ 1
2 ,j

+ (B1)
+,\mu 

i+ 1
2 ,j

\Bigr) 
, (B2)

\mu 

i,j+ 1
2
:=

1

2

\Bigl( 
(B2)

\mu , - 
i,j+ 1

2

+ (B2)
\mu ,+

i,j+ 1
2

\Bigr) 
and define the discrete divergences of the numerical magnetic field Bn(\ttx , \tty ) as

divijB
n :=

\ttQ \sum 
\mu =1

\omega \mu 

\Bigl( 
(B1)

\mu 

i+ 1
2 ,j

 - (B1)
\mu 

i - 1
2 ,j

\Bigr) 
\Delta x

+

\ttQ \sum 
\mu =1

\omega \mu 

\Bigl( 
(B2)

\mu 

i,j+ 1
2
 - (B2)

\mu 

i,j - 1
2

\Bigr) 
\Delta y

,

which is an approximation to the left side of (28) with (\ttx 0, \tty 0) taken as (\ttx i - 1
2
, \tty j - 1

2
).

Let \{ \^\ttx (\nu )i \} \ttL \nu =1 and \{ \^\tty (\nu )j \} \ttL \nu =1 be the \ttL -point Gauss--Lobatto quadrature nodes in

the intervals [\ttx i - 1
2
, \ttx i+ 1

2
] and [\tty j - 1

2
, \tty j+ 1

2
], respectively, and \{ \^\omega \nu \} \ttL \nu =1 be associated

weights satisfying
\sum \ttL 

\nu =1 \^\omega \nu = 1, where \ttL \geq \ttK +3
2 such that the associated quadrature

has algebraic precision of at least degree \ttK . Then we have the following sufficient
conditions for the high-order scheme (46) to be PP.

Theorem 4.7. If the polynomial vectors \{ Un
ij(\ttx , \tty )\} satisfy

divijB
n = 0 \forall i, j,(47)

Un
ij(\^\ttx 

(\nu )
i , \tty 

(\mu )
j ), Un

ij(\ttx 
(\mu )
i , \^\tty 

(\nu )
j ) \in \scrG \forall i, j, \mu , \nu ,(48)

then the scheme (46) always preserves \=Un+1
ij \in \scrG under the CFL condition

(49) 0 <
\alpha \ttL \ttF 
1,n\Delta tn

\Delta x
+

\alpha \ttL \ttF 
2,n\Delta tn

\Delta y
\leq \^\omega 1,

where the parameters \{ \alpha \ttL \ttF 
\ell ,n\} satisfy

(50) \alpha \ttL \ttF 
1,n > max

i,j,\mu 
\alpha 1

\bigl( 
U\pm ,\mu 

i+ 1
2 ,j

,U\pm ,\mu 

i - 1
2 ,j

\bigr) 
, \alpha \ttL \ttF 

2,n > max
i,j,\mu 

\alpha 2

\bigl( 
U\mu ,\pm 

i,j+ 1
2

,U\mu ,\pm 
i,j - 1

2

\bigr) 
.
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Proof. Using the exactness of the Gauss--Lobatto quadrature rule with \ttL nodes
and the Gauss quadrature rule with \ttQ nodes for the polynomials of degree \ttK , one can
derive (cf. [50] for more details) that

\=Un
ij =

\lambda 1

\lambda 

\ttL  - 1\sum 
\nu =2

\ttQ \sum 
\mu =1

\^\omega \nu \omega \mu U
n
ij

\bigl( 
\^\ttx 
(\nu )
i , \tty 

(\mu )
j

\bigr) 
+

\lambda 2

\lambda 

\ttL  - 1\sum 
\nu =2

\ttQ \sum 
\mu =1

\^\omega \nu \omega \mu U
n
ij

\bigl( 
\ttx 
(\mu )
i , \^\tty 

(\nu )
j

\bigr) 
+

\lambda 1\^\omega 1

\lambda 

\ttQ \sum 
\mu =1

\omega \mu 

\Bigl( 
U+,\mu 

i - 1
2 ,j

+U - ,\mu 

i+ 1
2 ,j

\Bigr) 
+

\lambda 2\^\omega 1

\lambda 

\ttQ \sum 
\mu =1

\omega \mu 

\Bigl( 
U\mu ,+

i,j - 1
2

+U\mu , - 
i,j+ 1

2

\Bigr) 
,

(51)

where \^\omega 1 = \^\omega \ttL is used, and \lambda 1 =
\alpha \ttL \ttF 

1,n\Delta tn
\Delta x , \lambda 2 =

\alpha \ttL \ttF 
2,n\Delta tn
\Delta y , \lambda = \lambda 1 + \lambda 2 \in (0, \^\omega 1] by (49).

After substituting (29) and (51) into (46), we rewrite the scheme (46) by technical
arrangement into the following convex combination form:

\=Un+1
ij =

\ttL  - 1\sum 
\nu =2

\^\omega \nu \Xi \nu + 2(\^\omega 1  - \lambda )\Xi \ttL + 2\lambda \Xi 1,(52)

where \Xi 1 = 1
2 (\Xi  - +\Xi +), and

\Xi \nu =
\lambda 1

\lambda 

\ttQ \sum 
\mu =1

\omega \mu U
n
ij

\bigl( 
\^\ttx 
(\nu )
i , \tty \mu j

\bigr) 
+

\lambda 2

\lambda 

\ttQ \sum 
\mu =1

\omega \mu U
n
ij

\bigl( 
\ttx 
(\mu )
i , \^\tty 

(\nu )
j

\bigr) 
, 2 \leq \nu \leq \ttL  - 1,

\Xi \ttL =
1

2\lambda 

\ttQ \sum 
\mu =1

\omega \mu 

\biggl( 
\lambda 1

\Bigl( 
U - ,\mu 

i+ 1
2 ,j

+U+,\mu 

i - 1
2 ,j

\Bigr) 
+ \lambda 2

\Bigl( 
U\mu , - 

i,j+ 1
2

+U\mu ,+

i,j - 1
2

\Bigr) \biggr) 
,

\Xi \pm =
1

2
\Bigl( 

\alpha \ttL \ttF 
1,n

\Delta x +
\alpha \ttL \ttF 

2,n

\Delta y

\Bigr) \ttQ \sum 
\mu =1

\omega \mu 

\left[  \alpha \ttL \ttF 
1,n

\Delta x

\left(  U\pm ,\mu 

i+ 1
2 ,j

 - 
F1(U

\pm ,\mu 

i+ 1
2 ,j

)

\alpha \ttL \ttF 
1,n

+U\pm ,\mu 

i - 1
2 ,j

+
F1(U

\pm ,\mu 

i - 1
2 ,j

)

\alpha \ttL \ttF 
1,n

\right)  
+

\alpha \ttL \ttF 
2,n

\Delta y

\left(  U\mu ,\pm 
i,j+ 1

2

 - 
F2(U

\mu ,\pm 
i,j+ 1

2

)

\alpha \ttL \ttF 
2,n

+U\mu ,\pm 
i,j - 1

2

+
F2(U

\mu ,\pm 
i,j - 1

2

)

\alpha \ttL \ttF 
2,n

\right)  \right]  .

The condition (48) implies \Xi \nu \in \scrG , 2 \leq \nu \leq \ttL , because \scrG is convex. In order to show
the admissibility of \Xi 1 by using Theorem 2.13, one has to verify the corresponding
DDF condition, which is found to be (47). Hence \Xi 1 \in \scrG . This means the form (52)
is a convex combination of the admissible states \{ \Xi k, 1 \leq k \leq \ttL \} . It follows from the
convexity of \scrG that \=Un+1

ij \in \scrG . The proof is completed.

Remark 4.8. For some other hyperbolic systems such as the Euler [50] and shallow
water [43] equations, the condition (48) is sufficient to ensure the positivity of 2D high-
order schemes. However, contrary to the usual expectation (e.g., [11]), the condition
(48) is not sufficient in the ideal MHD case, even if Bn

ij(\ttx , \tty ) is locally divergence-free.
This is indicated by Theorem 4.1, is confirmed by the numerical experiments in the
supplementary material, and demonstrates the necessity of (47) to some extent.

Remark 4.9. In practice, the condition (48) can be easily met via a simple scal-
ing limiting procedure [11]. It is not easy to meet (47) because it depends on the
limiting values of the magnetic field calculated from the four neighboring cells of Iij .
If Bn(\ttx , \tty ) is globally divergence-free, i.e., locally divergence-free in each cell with
normal magnetic component continuous across the cell interfaces, then by Green's
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theorem, (47) is naturally satisfied. However, the PP limiting technique with local
scaling may destroy the globally divergence-free property ofBn(\ttx , \tty ). Hence, it is non-
trivial and still open to design a limiting procedure for the polynomials \{ Un

ij(\ttx , \tty )\} 
which can enforce the conditions (48) and (47) at the same time. As a continuation
of this work, [39] reports our achievement in developing multidimensional probably
PP high-order schemes via the discretization of symmetrizable ideal MHD equations.

We now derive a lower bound of the internal energy when the proposed DDF
condition (47) is not satisfied, to show that negative internal energy may be more
easily computed in the cases with large | v \cdot B| and large discrete divergence error.

Theorem 4.10. Assume that the polynomial vectors \{ Un
ij(\ttx , \tty )\} satisfy (48), and

the parameters \{ \alpha \ttL \ttF 
\ell ,n\} satisfy (50). Then under the CFL condition (49), the solution

\=Un+1
ij of the scheme (46) satisfies that \=\rho n+1

ij > 0, and

(53) \scrE ( \=Un+1
ij ) >  - \Delta tn

\bigl( 
\=vn+1
ij \cdot \=Bn+1

ij

\bigr) 
divijB

n,

where the lower bound dominates the negativity of \scrE ( \=Un+1
ij ), and \=vn+1

ij := \=mn+1
ij /\=\rho n+1

ij .

Proof. It is seen from (52) that \=\rho n+1
ij is a convex combination of the first compo-

nents of \Xi \nu , 1 \leq \nu \leq \ttL , which are all positive. Thus \=\rho n+1
ij > 0. For any v\ast ,B\ast \in \BbbR 3,\biggl( 

\Xi 1 \cdot n\ast +
| B\ast | 2

2

\biggr) 
\times 2

\biggl( 
\alpha \ttL \ttF 
1,n

\Delta x
+

\alpha \ttL \ttF 
2,n

\Delta y

\biggr) 
>  - (v\ast \cdot B\ast )divijB

n,

whose derivation is similar to that of Theorem 2.13. Because \Xi \nu \in \scrG , 2 \leq \nu \leq \ttL , we
deduce from (52) that

\=Un+1
ij \cdot n\ast +

| B\ast | 2

2
=

\ttL  - 1\sum 
\nu =2

\^\omega \nu 

\biggl( 
\Xi \nu \cdot n\ast +

| B\ast | 2

2

\biggr) 
+ 2(\^\omega 1  - \lambda )

\biggl( 
\Xi \ttL \cdot n\ast +

| B\ast | 2

2

\biggr) 
+ 2\lambda 

\biggl( 
\Xi 1 \cdot n\ast +

| B\ast | 2

2

\biggr) 
> 2\lambda 

\biggl( 
\Xi 1 \cdot n\ast +

| B\ast | 2

2

\biggr) 
>  - \Delta tn(v

\ast \cdot B\ast )divijB
n.

Taking v\ast = \=vn+1
ij and B\ast = \=Bn+1

ij gives (53).

Several numerical examples are provided in the supplementary material to confirm
the above PP analysis. The extension of our analysis to 3D is straightforward and for
completeness is also given in the supplementary material.

5. Conclusions. We presented the rigorous PP analysis of conservative schemes
with the LF flux for 1D and multidimensional ideal MHD equations. It was based on
several important properties of admissible state set, including a novel equivalent form,
convexity, orthogonal invariance, and the generalized LF splitting properties. The
analysis focused on the finite volume or discontinuous Galerkin schemes on uniform
Cartesian meshes. In the 1D case, we proved that the LF scheme with proper numer-
ical viscosity is PP, and the high-order schemes are PP under accessible conditions.
In the 2D case, our analysis revealed for the first time that a discrete divergence-free
(DDF) condition is crucial for achieving the PP property of schemes for ideal MHD.
We proved that the 2D LF scheme with proper numerical viscosity preserves the pos-
itivity and the DDF condition. We derived sufficient conditions for achieving 2D PP
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high-order schemes. The lower bound of the internal energy was derived when the
proposed DDF condition was not satisfied, yielding that negative internal energy may
be more easily computed in cases with large | v \cdot B| and large discrete divergence error.
Our analyses were further confirmed by the numerical examples in the supplementary
material, where the 3D extension was also presented.

In addition, several usually expected properties were disproved in this paper.
Specifically, we rigorously showed that (i) the LF splitting property does not always
hold; (ii) the 1D LF scheme with standard numerical viscosity or piecewise constant
B1 is not PP in general, no matter how small the CFL number is; (iii) the 2D LF
scheme is not always PP under any CFL condition, unless an additional condition like
the DDF condition is satisfied. As a result, some existing techniques for PP analysis
become inapplicable in the MHD case. These, together with the technical challenges
arising from the solenoidal magnetic field and the intrinsic complexity of the MHD
system, make the proposed analysis very nontrivial.

From the viewpoint of preserving positivity, our analyses provided a new under-
standing of the importance of the divergence-free condition in robust MHD simula-
tions. Our analyses and novel techniques as well as the provenly PP schemes can
also be useful for investigating or designing other PP schemes for ideal MHD. In [39],
we applied the proposed analysis approach to develop multidimensional probably PP
high-order methods for the symmetrizable version of the ideal MHD equations. The
extension of the PP analysis to general meshes will be studied in a coming paper.
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