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DECOMPOSITION METHODS FOR COMPUTING DIRECTIONAL
STATIONARY SOLUTIONS OF A CLASS OF NONSMOOTH

NONCONVEX OPTIMIZATION PROBLEMS∗
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Abstract. Motivated by block partitioned problems arising from group sparsity representation
and generalized noncooperative potential games, this paper presents a basic decomposition method
for a broad class of multiblock nonsmooth optimization problems subject to coupled linear con-
straints on the variables that may additionally be individually constrained. The objective of such an
optimization problem is given by the sum of two nonseparable functions minus a sum of separable,
pointwise maxima of finitely many convex differentiable functions. One of the former two nonsep-
arable functions is of the class LC1, i.e., differentiable with a Lipschitz gradient, while the other
summand is multiconvex. The subtraction of the separable, pointwise maxima of convex functions
induces a partial difference-of-convex (DC) structure in the overall objective; yet with all three terms
together, the objective is nonsmooth and non-DC, but is blockwise directionally differentiable. By
taking advantage of the (negative) pointwise maximum structure in the objective, the developed
algorithm and its convergence result are aimed at the computation of a blockwise directional station-
ary solution, which arguably is the sharpest kind of stationary solutions for this class of nonsmooth
problems. This aim is accomplished by combining the alternating direction method of multipliers
(ADMM) with a semilinearized Gauss–Seidel scheme, resulting in a decomposition of the overall
problem into subproblems each involving the individual blocks. To arrive at a stationary solution of
the desired kind, our algorithm solves multiple convex subprograms at each iteration, one per convex
function in each pointwise maximum. In order to lessen the potential computational burden in each
iteration, a probabilistic version of the algorithm is presented and its almost sure convergence is
established.
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1. Introduction. Originated from the family of splitting methods for solving
monotone operators in the mid-1970s [22, 33, 21], and leading to the methods of mul-
tipliers for nonlinear programming in the 1980–1990s [5, 24, 14, 15, 16], the family
of alternating direction method of multipliers (ADMM) has in recent years become
extremely popular for solving convex programs [28, 27, 13] and has applications to
many engineering domains such as image science [9, 10, 49, 54], machine learning
[7, 45, 35], matrix completion [51], factorization [55], and rank minimization [20], and
polynomial optimization [36], to name a few areas. See [17, Chapter 12] for a com-
prehensive summary of splitting methods for monotone variational inequalities up to
2002. The survey [7] and the edited volume [23] contain extensive recent references.
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DECOMPOSITION FOR NONSMOOTH NONCONVEX OPTIMIZATION 1641

In the past few years, extensions of the ADMM to nonconvex programs have been
investigated in [3, 25, 37, 29, 46, 47, 48]. This paper adds to this growing litera-
ture of the ADMM applied to nonconvex programs by considering a distinctive class
of multiblock, nonsmooth optimization problem involving difference-of-convex (DC)
functions of a certain kind.

Specifically, for given positive integers I, {Ji}Ii=1, and {ni}I+1
i=1 , and closed convex

sets Xi ⊆ Rni with X ,
∏I+1
i=1 Xi ⊂ Ω ,

∏I+1
i=1 Ω i, where each Ω i is an open set, by

letting n ,
∑I+1
i=1 ni, the problem, whose feasible set we denote X̂, is

(1)



minimize
x∈Rn

θ(x) , ϕ(x) +H(x)−
I∑
i=1

max
1≤j≤Ji

gij(x
i)

(only I separable terms in the last sum)

subject to

I+1∑
i=1

Aixi = b and x ,
(
xi
)I+1

i=1
∈ X;

here the defining terms in the overall objective function θ satisfy the following prop-
erties:

• ϕ : Ω→ R is a continuously differentiable function;
• H : X → R is multiconvex [53]; i.e., for all i = 1, . . . , I + 1, H(xi, x−i) is

convex on Xi for every fixed x−i ∈ X−i ,
∏
j 6=i X

j , for each i = 1, . . . , I
and j = 1, . . . , Ji;
• each gij : Ω i → R is convex and continuously differentiable.

Moreover, each Ai ∈ R`×ni for i = 1, . . . , I + 1, and b ∈ R` for some nonnegative inte-
ger `. The case in which ` = 0 pertains to the absence of coupling constraints of the
variable blocks. In this setting, each resulting function H(xi, x−i)−max1≤j≤Ji gij(x

i)
for i = 1, . . . , I is a nondifferentiable DC function for fixed x−i; yet the overall objec-
tive θ is neither differentiable (because of the possible lack of joint differentiability of
H in its arguments and the pointwise maxima) nor DC (because of the lack of such a
requirement on the first two summands ϕ and H). Nevertheless, θ has some partial
differentiability and a multi-DC structure. For the full set assumptions on problem
(1), see subsection 3.2. Among these, some Lipschitz conditions are imposed on the
gradient of the function ϕ and the partial gradient of H with respect to the distin-
guished block xI+1; see assumption (A0) there. Moreover, the Lipschitz constants
play an important role in ensuring the convergence of the algorithms to be devel-
oped. The concluding remarks at the end of the paper mention an extended class of
problems not covered by this framework.

Besides extending the existing literature, the special structure of problem (1)
arises from two applied sources. One is in sparsity representation [26] of data where
surrogate sparsity functions [1] are used to approximate the well-known discontinuous
univariate `0 function |t|0, which equals 1 if t 6= 0 and equals 0 otherwise. The other
source is a generalized noncooperative game with a potential function [19] that leads to
the multiconvexity property ofH. Some details of these applied problems can be found
in the appendix. Our goal is to investigate the possibility of decomposing problem (1)
into individual convex minimization subproblems over the individual subvectors, with
the aim of computing a “blockwise directional stationary solution” of this problem;
see section 2 for the definition. This goal is accomplished by the combination of
three techniques: a well-known block coordinate method (BCDM) decomposing the
objective and utilizing the partially linearized Gauss–Seidel (GS) scheme to update
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1642 JONG-SHI PANG AND MIN TAO

the subvectors sequentially; an ADMM to decouple the coupled linear constraints; and
the handling of the pointwise maxima structure using the ε-argmax idea introduced
in [40].

The contributions of our work are severalfold. One that distinguishes it from those
in the references [4, 3, 25, 37, 29, 46, 47, 48] for nonconvex programs is that our com-
bined BCDM-ADMM is shown to compute a d(irectional)-derivative based stationary
solution [40] of problem (1). (See the latter reference for discussion of various concepts
of stationary solutions of nondifferentiable DC programs.) The main convergence re-
sults are given by Theorem 4.3 for subsequential convergence and Proposition 4.4 for
boundedness and sequential convergence, with the needed assumptions summarized in
subsection 3.2 and proofs detailed in section 4. An example is provided to illustrate
that without the special technique to handle the pointwise max functions for this
class of problems, the standard ADMM as described in the cited literature computes
a point that is far from being d-stationary, and thus has no chance to be a minimizer.
Another contribution of our work is that the distinguished variable xI+1 is allowed
to be constrained by a private closed convex set XI+1 that is linked to the coupling
constraint in a certain way. This is a significant extension of the existing literature
where such a variable is typically not privately constrained.

A departure of our work from the above-cited references is that while some of
them have employed the Kurdyka–Lojasiewicz (KL) property [4, section 3.2] to es-
tablish the sequential convergence and also error bounds for the sequence of iterates
produced by the ADMM algorithm in less general settings, we leave the treatment
using the KL property for a subsequent work. Part of such a treatment would involve
verifying or extending this property for the class of problems (1). Instead, we de-
scribe a probabilistic version of our deterministic algorithm that aims to alleviate the
additional per-iteration computational effort of this algorithm for solving the class
of nonconvex programs in question. Details including a convergence proof of this
randomized algorithm are presented in section 5.

To close this introduction, we note that the framework (1) includes the case in
which the coupling constraint is not present. In this case, the algorithm reduces to
that of a convex programming based (partially linearized) block coordinate descent
method (BCDM) of Gauss–Seidel type for solving a nonsmooth, nonconvex optimiza-
tion problem with separable constraints and a particular nonsmooth structure in the
objective; the convergence of such a method to a directional stationary point of the
problem with such a pointwise max objective is a new result in the vast literature of
the family of BCDMs—see [50] for a recent survey, [42, 30, 53] for works related to
ours, and [52] for a stochastic version of the BCDM.

2. Preliminaries. In this section, we summarize some preliminary materials
needed for the rest of the paper. First is the Bregman distance [8] that is a well-studied
“pseudo metric” and has played an important role in various areas and algorithmic
design for optimization problems. Formally, given a convex differentiable function ψ
defined on an open convex domain D ⊆ Rn, the Bregman distance Dψ(x, y) between
two vectors x and y in D is defined as

Dψ(x, y) , ψ(x)− ψ(y)−∇ψ(y)T (x− y).

Clearly, Dψ(x, y) reduces to ‖x − y‖2 if ψ(x) = ‖x‖22. We refer the reader to [8] for
properties of the Bregman distance, which we will use freely in the analysis. We recall
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DECOMPOSITION FOR NONSMOOTH NONCONVEX OPTIMIZATION 1643

that a function f : D → R is α-strongly convex if, for some scalar α > 0,

f(τx+ (1− τ)y) ≤ τ f(x) + ( 1− τ ) f(y)− α

2
τ ( 1− τ ) ‖x− y ‖2

∀ τ ∈ [ 0, 1 ] and x, y ∈ D.

It is easy to show that if x∗ is a minimizer of such a function f on a closed convex
subset X of D, then f(x∗) ≤ f(x)− α

2 ‖x
∗ − x‖2 for all x ∈ X.

Given a closed convex set X ⊆ Rn, the lineality space of X [43], denoted LX , is
the linear subspace consisting of vectors v such that x+ τv ∈ X for all scalars τ ∈ R.
We denote the orthogonal complement of LX by L⊥X . The normal cone, denoted
N (x;X), of X at a vector x ∈ X consists of all vectors u such that uT (y− x) ≤ 0. It
is clear that N (x;X) ⊆ L⊥X for any x ∈ X; thus N (x;X) − N (x ′;X) ⊆ L⊥X for any
x and x ′ in X.

2.1. Directional derivative-based stationarity. In general, given a con-
strained optimization problem minimizex∈X θ(x) with X ⊆ RN being a closed and
convex set contained in the open convex set Υ and θ being directionally differentiable
with directional derivatives at a vector x ∈ Υ given by

θ ′(x; d) , lim
τ↓0

θ(x+ τd)− θ(x)

τ
, d ∈ RN ,

a feasible vector x̄ ∈ X is a d(irectional)-stationary point if θ ′(x̄;x− x̄) ≥ 0 for all x ∈
X . When θ is continuously differentiable, the latter condition becomes 0 ∈ ∇θ(x̄) +
N (x̄;X ). In the case of the objective in (1), noticing that (max1≤j≤Ji gij)

′(xi; d i) =
maxj∈M(xi) ∇gij(xi)T d i for all xi ∈ Ω i and all d i ∈ Rni , where

Mi(x
i) , argmax

1≤j≤Ii
gij(x

i) =

{
j | gij(xi) = max

1≤k≤Ji
gik(xi)

}
is the index set of maximizing functions in the pointwise maximum function

max
1≤k≤Ji

gik(xi),

we say that x̄ ∈ X̂ is a directional derivative based stationary solution or a blockwise
d-stationary solution of (1) if

(2) ∇ϕ(x̄)T (x− x̄ ) +

I+1∑
i=1

H(•, x̄−i)′(x̄ i;xi − x̄ i)

−
I∑
i=1

max
j∈Mi(x̄ i)

∇gij(x̄ i)T (xi − x̄ i ) ≥ 0 ∀x ∈ X̂.

If H is jointly directionally differentiable in all its components, and H ′(x; d) ≥∑I+1
i=1 H(•, x−i)′(xi; d i), then a block directional stationary point is indeed a direc-

tional stationary solution of (1) in its standard sense. Clearly, the condition (2) is
equivalent to the following: for every tuple j = (ji)

I
i=1 with ji ∈ Mi(x̄

i) for all
i = 1, . . . , I,

∇ϕ(x̄)T (x− x̄ ) +

I+1∑
i=1

H(•, x̄−i)′(x̄ i;xi − x̄ i) ≥
I∑
i=1

∇giji(x̄ i)T (xi − x̄ i ) ∀x ∈ X̂,
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1644 JONG-SHI PANG AND MIN TAO

because maxj∈Mi(x̄ i) ∇gij(x̄ i)T (xi − x̄ i ) ≥ ∇giji(x̄ i)T (xi − x̄ i ) for all i = 1, . . . , I
and ji ∈ Mi(x̄

i), with equality holding for at least one such ji. Based on this
observation and employing the Bregman distance, we can characterize the stationarity
condition (2) in terms of an optimality property of x̄ in multiple convex programs over

the same feasible set X̂, which has a separable objective if the Bregman function is
chosen to be separable in the subvectors.

Proposition 2.1. Let ϕ be a differentiable function on Ω, H be multiconvex on
X, and gij be convex and differentiable on Ω i for each i = 1, . . . , I and j = 1, . . . , Ji.
Let β > 0 be an arbitrary scalar and ψ be a convex differentiable function defined on
Ω. Let x̄ , (x̄ i)I+1

i=1 ∈ X̂ be a feasible tuple of (1). Then (2) holds if and only if, for
every tuple j , (ji)

I
i=1 with ji ∈Mi(x̄

i) for all i = 1, . . . , I,

x̄ ∈ argmin
x∈X̂

θ̄j(x)︸ ︷︷ ︸
cvx in x

, ∇ϕ(x̄)T (x− x̄ ) +

I+1∑
i=1

Hi(x
i; x̄−i)

−
I∑
i=1

∇giji(x̄ i)T (xi − x̄ i ) +Dψ(x; x̄) +
β

2

I+1∑
i=1

‖Aixi −Aix̄ i ‖22.

Proof. This follows from the following two facts: (a) ∇xDψ(y, x̄)|y=x̄ = 0 and
(b) ∇‖Aixi −Aix̄ i ‖22 |xi=x̄ i = 0.

In the proposed method for computing a stationary point of (1) satisfying (2),
we need to make use of the ε-argmax of the family of pointwise maximum functions
for a given ε > 0; specifically, for each xi ∈ X i,

Mε,i(x
i) ,

{
j | gij(x i) ≥ max

1≤k≤Ji
gik(xi)− ε

}
.

This extended argmax set has the property that if {xν,i}∞ν=1 is a sequence converging
to xi, then for any ε > 0 we have, for all ν sufficiently large,

Mi(x
ν,i) ⊆ Mi(x

i) ⊆ Mε,i(x
ν,i).

The second inclusion is the cornerstone for the convergence of the algorithm to a
blockwise d-stationary solution of (1) to be presented in the next section. This in-
clusion suggests that in the generation of a sequence {xν,i} converging to a limit x̄ i,
in order to capture all the maximizing functions {gij(x̄ i)}j∈Mi(x̄ i), it is essential to
include functions gij that are ε away from the maximizing ones at each xν,i. As is
apparent from the stationarity condition (2), the inclusion of all maximizing func-
tions {gij(x̄ i)}j∈Mi(x̄ i) at x̄ is part of the requirement for this point to be blockwise
directionally stationary.

We define the augmented Lagrangian function as follows: for a given scalar β > 0,
with z denoting the Lagrange multiplier of the coupling constraint b =

∑I+1
i=1 A ixi,

Lβ(x, z) , θ(x) + zT

[
b−

I+1∑
i=1

A ixi

]
+
β

2

∥∥∥∥∥ b−
I+1∑
i=1

Aixi

∥∥∥∥∥
2

2

= θ(x) +
β

2

∥∥∥∥∥ b−
I+1∑
i=1

Aixi − z

β

∥∥∥∥∥
2

2

− ‖ z ‖
2
2

2β
.
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2.2. Subgradient-based stationarity. Based on variational calculus for non-
smooth functions, stationarity can be defined in terms the concept of subgradients as
follows. Consider the optimization problem

(3) minimize
x∈X

f(x),

where, avoiding an extended-valued objective, we explicitly express the constraints by
the closed convex set X in RN . A vector v ∈ RN is a subgradient of f at a point x if
there exist a sequence {xk} of vectors converging to x and a sequence {vk} of vectors
converging to v such that for every k,

lim inf
y→xk and y 6=xk

f(y)− f(xk)− ( y − xk )T vk

‖ y − xk‖
≥ 0.

We denote the set of subgradients of f at x by the standard notation ∂f(x). We
say that a vector x̄ ∈ X is a subgradient-based stationary point of (3) if 0 ∈ ∂f(x̄) +
N (x̄;X ).

To clarify the difference between a subgradient-based stationary point and a direc-
tional stationary solution for the class of objectives in (1), we consider for simplicity
the case where f(x) = ϕ(x) − max1≤i≤I gi(x) with ϕ and gi all continuously dif-
ferentiable. By [38, Proposition 1.113], we have ∂f(x) ⊆ ∇ϕ(x) − {∇gi(x) | i ∈
M(x)}. It follows from this inclusion that for any v ∈ ∂f(x) and all d ∈ RN ,
v T d ≥ ∇ϕ(x)T d−maxi∈M(x) ∇gi(x)T d = f ′(x; d). Thus if x̄ is a directional station-
ary solution of (3), i.e., if f ′(x̄;x− x̄) ≥ 0 for all x ∈ X , then x̄ is subgradient-based
stationary. Nevertheless, the example below shows that the converse is false.

Example 1. Consider the univariate function f(x) = 3
2 x

2−max(−x, 0) = 3
2 x

2 +
min(x, 0) and let X be the interval [−1, 1]. The function f has a unique directional
stationary point on X , namely x = −1/3, which is the (unique) global minimum of f
on X . Nevertheless, since 0 ∈ ∂min(x, 0) |x=0, it follows that x = 0 is a subgradient
based stationary point of f on the same interval.

In summary, while the subgradient-based stationarity concept is supported by
the rich theory of nonsmooth calculus [38, 44], such a stationary point can be quite
unrelated to a minimizer of any kind. Therefore, while it may be possible to compute
a subgradient-based stationary point as in the recent literature on the ADMM for
nonsmooth nonconvex optimization problems, a question arises as to whether a de-
composition algorithm can be designed to compute a point with a sharper stationarity
property. The next section presents such an algorithm that utilities three ideas: the
Gauss–Seidel sequential update scheme, an ADMM scheme to decouple the coupled
linear constraint, and the ε-argmax idea to cover all potential binding functions in
the pointwise maximum terms. Subsequently, a probabilistic version of the latter
idea is also presented as a promising way to reduce the computational burden of the
individual ε-argmax decomposition.

3. The combined BCDM and ADMM. Besides the use of a Bregman func-
tion for regularization, a distinguishing feature of our algorithm from existing ADMMs
and BCDMs is the explicit treatment of the pointwise max term in the objective func-
tion. Previously appearing in [40], the use of a positive ε is essential to ensure the
convergence to a desired directional stationary solution.

The algorithm below employs the sequential Gauss–Seidel idea. At iteration ν+1
the most recently updated components xν+1

<i , (xν+1,k)k<i along with those xν≥i ,
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1646 JONG-SHI PANG AND MIN TAO

(xν,k)k≥i from the immediate past iteration ν are employed to update the component
xν+1,i in the current iteration. This is accomplished by solving |Mε,i(x

ν,i) | convex
subproblems, each defined, for i ≤ I and j ∈Mε,i(x

ν,i), by the function

θν+1
ij (xi;xν+1

<i , x
ν
≥i; z

ν)︸ ︷︷ ︸
convex in xi

, ∇xiϕ
(
xν+1
<i , x

ν
≥i
)T

(xi − xν,i )−∇gij(xν,i)T (xi − xν,i )︸ ︷︷ ︸
varies with j

−( zν )TA ixi

︸ ︷︷ ︸
linear in xi

+ H
(
xν+1
<i , x

i, xν>i
)

+Dψi(x
i, xν,i)︸ ︷︷ ︸

convex in xi

+
β

2

∥∥∥∥∥ b−∑
k<i

A kxν+1,k −A ixi −
∑
k>i

A kxν,k

∥∥∥∥∥
2

2︸ ︷︷ ︸
augmented Lagrangian term

followed by a selection based on the test function

θν+1,test
ij (xi;xν+1

<i , x
ν
≥i; z

ν) , ∇xiϕ
(
xν+1
<i , x

ν
≥i
)T

(xi − xν,i ) +H
(
xν+1
<i , x

i, xν>i
)

−gij(xi)+Dψi(x
i, xν,i)−( zν )TA ixi+

β

2

∥∥∥∥∥b−∑
k<i

A kxν+1,k −A ixi −
∑
k>i

A kxν,k

∥∥∥∥∥
2

2

.

Also define

θν+1
I+1(xI+1;xν+1

≤I ; zν)︸ ︷︷ ︸
convex in xI+1

, ∇xI+1ϕ
(
xν+1
≤I , x

ν,I+1
)T

(xI+1 − xν,I+1 )

+ H
(
xν+1
≤I , x

I+1
)

+ DψI+1
(xI+1, xν,I+1)− ( zν )TA I+1xI+1

+
β

2

∥∥∥∥∥∥ b−
∑
k≤I

A kxν+1,k −A I+1xI+1

∥∥∥∥∥∥
2

2

.

The combined BCDM-ADMM is presented in Algorithm 1. The special case of the
algorithm where the coupling constraint is absent results in the BCDM for partitioned
constrained problems. In this case, the multiplier z is absent and Step 2 is not needed.

Each of the subproblems in Step 1a corresponds to a function gij for j ∈Mε,i(x
ν,i)

that is linearized at the current iterate xν,i along with a similar linearization of the
function ϕ(xν+1

<i , •, xν>i) at the same iterate. There are two noteworthy features of
these subproblems: the blockwise handling of the variables of the function H to
exploit its multiconvexity and the use of separable Bregman functions Dψi(•, xν,i)
associated with given convex functions ψi(x

i) for i = 1, . . . , I for regularization.
Once the components xν+1,i are computed for all i = 1, . . . , I, they are included
in the vector xν+1

≤I , (xν+1,k)k≤I to update the last component xν+1,I+1 in a similar
way. The algorithm also employs a positive threshold β that will be specified sub-
sequently. Overall, the number of convex subprograms to compute the entire tuple
xν+1 is

∏I
i=1 |Mε,i(x

ν,i) | for xν+1
≤I and one more for the last component xν+1,I+1.

This amount of computation is significant if the latter Cartesian product contains
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Algorithm 1 The deterministic combined BCDM-ADMM.

Let x0 , (x0,i)I+1
i=1 ∈ X and z0 be given. Also let scalars ε > 0 and β > β be given.

Let {ψi}I+1
i=1 be a family of convex differentiable functions.

while a prescribed termination criterion is not satisfied do
Step 1a. Solve |Mε,i(x

ν,i)| convex subprograms{
x̂ ν+1,i,j ∈ argmin

xi∈Xi
θν+1
ij (xi;xν+1

<i , x
ν
≥i; z

ν)

}
j∈Mε,i(xν,i)

.(4)

Define xν+1,i , x̂ ν+1,i,̂j νi , where ĵ νi ∈ argmin
j∈Mε,i(xν,i)

θν+1,test
ij (x̂ ν,i,j ;xν+1

<i , x
ν
≥i; z

ν).

Step 1b. Let
xν+1,I+1 ∈ argmin

xI+1∈XI+1

θν+1
I+1(xI+1;xν+1

≤I ; zν).

Step 2. Update the Lagrange multiplier:

zν+1 , zν + β

(
b−

I+1∑
i=1

Aixν+1,i

)
.

end while
return (x, z)

Algorithm 2 The deterministic BCDM.

The convex programs (4) in Step 1a (and similarly in Step 1b) of Algorithm 1
simplify to
(5)

minimize
xi∈Xi

[
∇xiϕ

(
xν+1
<i , x

ν
≥i
)T

(xi − xν,i ) +H
(
xν+1
<i , x

i, xν>i
)

−∇gij(xν,i)T (xi − xν,i ) +Dψi(x
i, xν,i)

]

j∈Mε,i(xν,i)

.

Step 2 is not needed.

a large number of elements. Subsequently, we will introduce a probabilistic version
of the algorithm wherein we randomly select only one element from each Mε,i(x

ν,i),
thus simplifying the computational effort per iteration in the implementation of the
algorithm.

The test function θν+1,test
ij (xi;xν+1

<i , x
ν
≥i; z

ν) differs from θν+1
ij (•;xν+1

<i , x
ν
≥i; z

ν) and

Lβ(xν+1
<i , •, xν>i, zν) as follows: gij is not linearized in θν+1,test

ij (•;xν+1
<i , x

ν
≥i; z

ν), it is

in θν+1
ij (•;xν+1

<i , x
ν
≥i; z

ν); a linearization of ϕ(xν+1
<i , •, xν>i) at xν,i and a single function

gij are used in θν+1,test
ij (•;xν+1

<i , x
ν
≥i; z

ν); in Lβ(xν+1
<i , •, xν>i, zν), ϕ(xν+1

<i , •, xν>i) is not

linearized at xν,i and all the functions gij for j ∈ Ji are used. Incidentally, if the
function ϕ is convex (which is the case in [40] without the coupling constraint), then
we could use ϕ(xν+1

<i , ·, xν>i) without linearization in both θν+1
ij (•;xν+1

<i , x
ν
≥i; z

ν) and

θν+1,test
ij (•;xν+1

<i , x
ν
≥i; z

ν).
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1648 JONG-SHI PANG AND MIN TAO

There is a variation of the above two algorithms that is worth mentioning, namely,
instead of linearizing the first summand ϕ, we may replace Step 1a by the problem

x̂ ν+1,i,j ∈ argmin
xi∈Xi

[
ϕ
(
xν+1
<i , x

i, xν>i
)
−∇gij(xν,i)T (xi − xν,i )− ( zν )TA ixi

+H
(
xν+1
<i , x

i, xν>i
)

+Dψi(x
i, xν,i) +

β

2

∥∥∥∥∥b−∑
k<i

A kxν+1,k −A ixi −
∑
k>i

A kxν,k

∥∥∥∥∥
2

2

]

in which the function ϕ is not linearized. With the function ψi appropriately chosen so
that the resulting function ϕ(xν+1

<i , •, xν>i)+Dψi(•, xν,i) is strongly convex on Xi, the
method can handle the case where the coupled function ϕ is not differentiable in the
subvector xi and for which the resulting subproblem can be efficiently solved. We omit
further discussion of variations such as this one and instead focus on the algorithms
as stated above; for a particular problem in which this strategy is employed fruitfully,
see [34]. Needless to say, by using the function ϕ(xν+1

<i , •, xν>i) itself, it is expected
that the solution of the subproblem is not difficult; moreover, if a global minimizing
property of the solution is needed in the convergence proof, such a minimizing solution
can be practically computed.

3.1. A numerical example. We use a modification of Example 1 to illustrate
that variations of the algorithm could fail to converge to a directional stationary
solution; one such variation does not employ a positive ε in the setsMε,i(x

ν,i) to set
up the iterations.

Example 2. Consider the following variation of Example 1 formulated to fit the
framework of (1):

minimize
x1,x2

2x2
1 − 1

2 x
2
2 −max(−x1, 0) + 1

2 x1x2 subject to

x1 − x2 = 0 (coupling constraint) and − 1 ≤ x1 ≤ 1 (private constraint).

Similar to the previous example, it can be shown that this problem has two sub-
gradient-based stationary solutions, (0, 0) and (−1/4,−1/4), among which only the
latter is directional stationary. Under the identifications

ϕ(x1, x2) = 1
2x1x2, H(x1, x2) = 2x2

1 − 1
2x

2
2, I = 1,

J1 = 2, g11(x1) = 0, and g12(x1) = −x1,

we apply the combined BCDM-ADMM with ε = 0 to this problem using the quadratic
Bregman functions ψ1(x1) = c

2 x
2
1 and ψ2(x2) = c

2 x
2
2 for a constant c > 1. For any

β > 0, we have,

xν+1
1 = argmin

−1≤x1≤1

[
xν2
2

(x1 − xν1) + 2x2
1 +

c

2
(x1 − xν1 )2 − zν x1 +

β

2
(x1 − xν2 )2

]
(when g11 is picked)

= Π[−1,1]

(
−x

ν
2

2 + c xν1 + zν + β xν2
4 + c+ β

)
(where Π denotes the Euclidean projection)
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xν+1
2 = argmin

x2

[
−1

2
x2

2 +
xν+1

1

2
(x2 − xν2 ) +

c

2
(x2 − xν2 )2 + zν x2 +

β

2
(x2 − xν+1

1 )2

]

=
−x

ν+1
1

2 + c xν2 − zν + β xν+1
1

β + c− 1
, and

zν+1 = zν − β (xν+1
1 − xν+1

2 ).

A similar formula for xν+1
1 when g12 is picked can be similarly derived. We compared

our algorithm with the standard ADMM [47] where (i) no linearization was applied to
the nonlinear terms in the objective function, including the max term, (ii) there was
no Bregman regularization, and (iii) the β-parameter was chosen sufficiently large so
that the subproblems are convex. We ran the iterations with three different starting
points of (x0

1, x
0
2, z

0). The results of the iterations are plotted in Figure 1, which
clearly shows (a) the convergence of our algorithm (with ε = 0.01) to the d-stationary
point of (−1/4,−1/4) when started at all three points, and (b) the convergence to the
origin with the standard ADMM. In addition, we also ran our algorithm as described
above with ε = 0 and linearization of ϕ. While convergence to the d-stationary point
of (−1/4,−1/4) was obtained with the second and third starting point, convergence
to the origin was obtained when the algorithm was initiated at the first starting point.
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Fig. 1. Algorithm 1 vs ADMM for Example 2 with different initial points: (1, 1,−1) (top left);
(−1, 1, 1) (top right); (−10,−0.1, 10) (bottom).

In conclusion, this example shows the persistent convergence to a d-stationary
solution of our algorithm with all three starting points; such convergence is not guar-
anteed with variations of the algorithm.
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1650 JONG-SHI PANG AND MIN TAO

3.2. Assumptions. We begin by summarizing the assumptions needed for the
convergence proof of the combined BCDM-ADMM. These are fairly standard in the
literature of this kind of problems. However, there are two novel features: (a) the
presence of the pointwise max terms that complicates the convergence analysis, and
(b) the private constraint set XI+1 that is not required to be polyhedral.

(A0) In addition to the basic setting in the definition of (1), the function ϕ is
multi-LC1 on X with modulus {Lipi∇ϕ }I+1

i=1 , i.e., for all i = 1, . . . , I + 1,

(6) ‖∇xiϕ(x)−∇xiϕ(y) ‖2 ≤ Lipi∇ϕ ‖x− y ‖2 ∀x, y ∈ X;

also, the partial gradient function ∇xI+1H is Lipschitz continuous on X with
modulus LipI+1

∇H .

Note that (6) implies, by the mean-value theorem for vector functions [39, 3.2.12],
that for every i = 1, . . . , I + 1, and any x−i ∈ X−i and any xi and yi in Xi,

(7) ϕ(xi, x−i)− ϕ(yi, x−i) ≤ ∇xiϕ(yi, x−i)T (xi − yi ) +
Lipi∇ϕ

2
‖xi − yi ‖22.

The next assumption pertains to the choice of the Bregman functions and ensures
in particular that each of the convex subprograms in Steps 1 and 2 has an optimal
solution.

(A1) The functions ψi for i = 1, . . . , I + 1 are σi-strongly convex on Xi; moreover
ψI+1 is LC1 with Lip∇ψI+1

being the Lipschitz modulus of the gradient∇ψI+1

on XI+1.

This assumption implies that each function θν+1
ij (•, xν+1

<i , x
ν
≥i; z

ν) for i = 1, . . . , I

is strongly convex; thus each iterate x̂ ν+1;i,j is uniquely defined. So is xν+1;I+1. The
last assumption concerns the distinguished variable xI+1. It is the reason why the
formulation (1) requires separability in each of the functions gij . Specifically, for a
nonseparable gij(x), the duplication of variables via ξi = x for all i = 1, . . . , I will
violate the assumption, thus jeopardizing the convergence proof. This assumption
is not needed for the BCDM when the coupling constraint is absent. There are
several equivalent ways to state the assumption. We first give a lemma asserting such
equivalence.

Lemma 3.1. Let X ⊆ Rm be a closed convex set and A ∈ R`×m. The following
statements are equivalent:

(a) [ATλ+ µ = 0 and µ ∈ L⊥X ] implies λ = 0;
(b) there exists a positive constant, denoted γmin, such that

‖ATλ+ µ ‖2 ≥
√
γmin ‖λ ‖2 ∀µ ∈ L⊥X and all λ;

(c) A has full row rank and L⊥X ∩ Range(AT ) = {0}.
Proof. (a) ⇒ (b). Consider the following optimization problem:

(8) minimize
λ, µ

‖ATλ+ µ ‖22 subject to µ ∈ L⊥X and λ satisfying ‖λ ‖1 = 1.

The feasible set is the union of finitely many polyhedra in the (λ, µ)-space. Since the
objective is always nonnegative, it follows from the Frank–Wolfe theorem of quadratic
programming [12, Theorem 2.8.1] that the program (8) attains a finite optimum ob-
jective value which must be nonnegative. If this value is zero, then there exists (λ, µ)
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with λ 6= 0 and µ ∈ L⊥X such that ATλ + µ = 0. But this contradicts (a). Thus (8)
attains a positive minimum objective value. This is sufficient to yield the existence of
the desired scalar γmin.

(b) ⇒ (c) ⇒ (a). These implications are easy.

Based on the above lemma, we introduce (recalling that XI+1 is closed and con-
vex) the following assumption.

(A2) The pair (AI+1, XI+1) satisfies any one of the three conditions in
Lemma 3.1.

Two special cases of assumption (A2) are worth mentioning. One is the case in
which XI+1 = RnI+1 so that the distinguished variable xI+1 is not privately con-
strained. In this case, L⊥XI+1 = {0} and (A2) reduces to the (standard) assumption
that AI+1 has full row rank. The other special case is when XI+1 is a polyhedron
given by, say,

XI+1 , {xI+1 ∈ RnI+1 | C I+1xI+1 ≥ d I+1}

for some matrix C I+1 and vector d I+1 of appropriate order. In this case, (A2) holds
if the matrix

Ξ I+1 ,

[
AI+1

C I+1

] [
(AI+1)T (C I+1)T

]
is positive definite and the constant γmin can be taken to be the smallest eigenvalue
of Ξ I+1. Since the positive definiteness of ΞI+1 is equivalent to the implication that
(AI+1)Tλ + (CI+1)T ξ = 0 implies both λ = 0 and ξ = 0, it follows that (A2) is a
significant weakening of this positive definiteness assumption, allowing in particular
the multipliers of the constraints in XI+1 to be unbounded.

Associated with the Lipschitz constants and the constant γmin, we define, for a
given vector yI+1 ∈ XI+1, the modified augmented Lagrangian function:

(9) L̂β(x, z; yI+1)

, Lβ(x, z) +
4

β γmin

[(
LipI+1
∇ϕ

)2

+
(

Lip∇ψI+1

)2
]
‖xI+1 − yI+1 ‖22.

The convergence of the algorithm relies on a nonincreasing and bounded-below prop-
erty of the sequence of such modified augmented Lagrangian values {L̂β(xν+1, zν+1;
xν,I+1)} when the sequence of iterates {(xν+1, zν+1)} generated by the algorithm has
an accumulation point. In turn, these crucial properties are derived under the choice
of β > β; see (11) for the definition of the lower bound β. The boundedness of the

sequence {(xν+1, zν+1)} is established under one of two growth assumptions on the
objective function θ on the feasible set X. See the discussion preceding Proposition 4.4
for details.

4. Convergence proof. The proof of convergence of the combined BCDM-
ADMM is divided into several steps. First is a lemma that bounds the consecutive
difference ‖ zν+1 − zν ‖22 of the multipliers in terms of the differences of the primary
variables. The lemma also bounds ‖zν+1‖22 in terms of the latter variables. This
lemma is where the special block xI+1 is needed.
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1652 JONG-SHI PANG AND MIN TAO

Lemma 4.1. It holds that
(10)

γmin

∥∥ zν+1 − zν
∥∥2

2
≤ 4

{ [(
LipI+1
∇ϕ

)2

+
(

Lip∇ψI+1

)2
]
‖xν,I+1 − xν−1,I+1 ‖22

+

[
max

((
LipI+1
∇ϕ

)2

,
(

Lip∇ψI+1

)2
)

+
(

LipI+1
∇H

)2 ] I+1∑
i=1

‖xν+1,i − xν,i ‖22

}

and γmin

∥∥ zν+1
∥∥2

2
≤ 2

{(
LipI+1
∇ϕ + Lip∇ψI+1

)2 ∥∥xν+1,I+1 − xν,I+1
∥∥2

+
[ (

LipI+1
∇ϕ + LipI+1

∇H

)
‖xν+1 ‖+ ‖∇xI+1ϕ(0) ‖2 + ‖∇xI+1H(0) ‖2

]2}
.

Proof. By applying the optimality conditions of the problem,

argmin
xI+1∈XI+1

θν+1
I+1(xI+1;xν+1

≤I ; zν),

we deduce

µν,I+1 , ∇xI+1ϕ
(
xν+1,i
i≤I , xν,I+1

)
− (AI+1 )T zν +∇xI+1H(xν+1) +∇ψI+1(xν+1)

−∇ψI+1(xν) + β (AI+1 )T

(
I+1∑
k=1

A kxν+1,k − b

)
∈ −N (xν,I+1;XI+1),

yielding

(AI+1 )T zν+1 + µν,I+1 = ∇xI+1ϕ
(
xν+1,i
i≤I , xν,I+1

)
+∇xI+1H(xν+1)

+∇ψI+1(xν+1,I+1)−∇ψI+1(xν,I+1).

Subtracting this equation from the one from the previous iteration, we deduce

(AI+1 )T
(
zν+1 − zν

)
+
(
µν+1,I+1 − µν,I+1

)
=
[
∇xI+1ϕ

(
xν+1,i
i≤I , xν,I+1

)
−∇xI+1ϕ

(
xν,ii≤I , x

ν−1,I+1
) ]

+
[
∇xI+1H(xν+1)−∇xI+1H(xν)

]
+
[
∇ψI+1(xν+1,I+1)−∇ψI+1(xν,I+1)

]
−
[
∇ψI+1(xν,I+1)−∇ψI+1(xν−1,I+1)

]
.

Taking squared norms on both sides, employing Lemma 3.1, and making use of the
Cauchy–Schwartz inequality and the assumed LC 1 conditions, we obtain

γmin

∥∥ zν+1 − zν
∥∥2

2

≤ 4

{ (
LipI+1
∇ϕ

)2

∑
i≤I

‖xν+1,i − xν,i ‖22 + ‖xν,I+1 − xν−1,I+1 ‖22


+
(

LipI+1
∇H

)2 ‖xν+1 − xν ‖22

+
(

Lip∇ψI+1

)2 [
‖xν+1,I+1 − xν,I+1 ‖22 + ‖xν,I+1 − xν−1,I+1 ‖22

] }D
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= 4

{ [(
LipI+1
∇ϕ

)2

+
(
LipI+1
∇H
)2]∑

i≤I

‖xν+1,i − xν,i‖22

+

[(
LipI+1
∇H
)2

+
(

Lip∇ψI+1

)2
]
‖xν+1,I+1 − xν,I+1‖22

+

[(
LipI+1
∇ϕ

)2

+
(

Lip∇ψI+1

)2
]
‖xν,I+1 − xν−1,I+1 ‖22

}
,

establishing the desired bound on ‖zν+1− zν‖22. To obtain the bound on ‖zν+1‖22, we
have

(AI+1 )T zν+1 + µν,I+1 =
[
∇xI+1ϕ

(
xν+1,i
i≤I , xν,I+1

)
−∇xI+1ϕ

(
xν+1,i
i≤I , xν+1,I+1

) ]
+
[
∇xI+1ϕ

(
xν+1

)
−∇xI+1ϕ(0)

]
+∇xI+1ϕ(0) +

[
∇xI+1H(xν+1)−∇xI+1H(0)

]
+∇xI+1H(0) +

[
∇ψI+1(xν+1,I+1)−∇ψI+1(xν,I+1)

]
.

Taking norms on both sides, we deduce the desired bound on ‖zν+1‖22.

We next upper bound the differences

diff νβ,i , Lβ
(
xν+1
≤i , x

ν
>i, z

ν
)
− Lβ

(
xν+1
<i , x

ν
≥i, z

ν
)

for i = 1, . . . , I + 1,

diff νβ,z , Lβ
(
xν+1
≤I+1, z

ν+1
)
− Lβ

(
xν+1
≤I+1, z

ν
)

by invoking the subprograms in Steps 1a and 1b and the update formula of zν+1

in Step 2. Adding the bounds for the above differences, we can in turn bound the
difference Lβ(xν+1, zν+1)− Lβ(xν , zν) of the augmented Lagrangian function at two
consecutive tuples (xν+1, zν+1) and (xν , zν).

Lemma 4.2. It holds that

Lβ
(
xν+1, zν+1

)
− Lβ (xν , zν)

≤ 4

β γmin

[(
LipI+1
∇ϕ

)2

+
(

Lip∇ψI+1

)2
]
‖xν,I+1 − xν−1,I+1 ‖22

+

I+1∑
i=1

{
4

β γmin

[
max

((
LipI+1
∇ϕ

)2

,
(

Lip∇ψI+1

)2
)

+
(

LipI+1
∇H

)2 ]

+
Lipi∇ϕ − σi

2

}
‖xν+1,i − xν,i ‖22.

Proof. By the definition of the augmented Lagrangian function, we have

diff νβ,i = θ
(
xν+1
≤i , x

ν
>i

)
− θ

(
xν+1
<i , x

ν
≥i
)
− ( zν )TA i(xν+1,i − xν,i )

+
β

2

{ ∥∥∥∥∥ b−
i∑

k=1

Akxν+1,k −
I∑

k=i+1

Akxν,k

∥∥∥∥∥
2

2

−

∥∥∥∥∥ b−
i−1∑
k=1

Akxν+1,k −
I∑
k=i

Akxν,k

∥∥∥∥∥
2

2

}
.
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In turn, since xν+1,i = x̂ ν+1,i,̂j νi , we have, for all i = 1, . . . , I,

θ
(
xν+1
≤i , x

ν
>i

)
− θ

(
xν+1
<i , x

ν
≥i
)

=
[
ϕ
(
xν+1
≤i , x

ν
>i

)
− ϕ

(
xν+1
<i x

ν
≥i
) ]

+
[
H
(
xν+1
≤i , x

ν
>i

)
−H

(
xν+1
<i , x

ν
≥i
) ]
−
[

max
1≤j≤Ji

gij(x
ν+1,i)− max

1≤j≤Ji
gij(x

ν,i)

]
≤
[
ϕ
(
xν+1
<i , x̂

ν+1,i,̂j νi , xν>i

)
− ϕ

(
xν+1
<i , x

ν
≥i
) ]

+
[
H
(
xν+1
<i , x̂

ν+1,i,̂j νi , xν>i

)
−H

(
xν+1
<i , x

ν
≥i
) ]

−
[
gi ĵ νi

(x̂ ν+1,i,̂j νi )− gij(xν,i)
]

(for any j ∈Mi(x
ν,i))

≤ ∇xiϕ
(
xν+1
<i , x

ν
≥i
)T (

x̂ ν+1,i,̂j νi − xν,i
)

+
[
H
(
xν+1
<i , x̂

ν+1,i,̂j νi , xν>i

)
−H

(
xν+1
<i , x

ν
≥i
) ]

+
Lipi∇ϕ

2
‖ x̂ ν+1,i,̂j νi − xν,i ‖22 −

[
gi ĵ νi

(x̂ ν+1,i,̂j νi )− gij(xν,i)
]
,

where the last inequality follows from (7). Thus, by the definition of ĵ νi and using
the gradient inequality gij(x̂

ν+1,i,j) − gij(xν,i) ≥ ∇gij(xν,i)T (x̂ ν+1,i,j − xν,i) of the
convex function gij , we deduce that, for any j ∈Mi(x

ν,i),

diff νβ,i ≤ ∇xiϕ
(
xν+1
<i , x

ν
≥i
)T (

x̂ ν+1,i,j − xν,i
)

+
[
H
(
xν+1
<i , x̂

ν+1,i,j , xν>i
)
−H

(
xν+1
<i , x

ν
≥i
) ]

−
[
Dψi(x̂

ν+1,i,̂j νi , xν,i)−Dψi(x̂
ν+1,i,j , xν,i)

]
+

Lipi∇ϕ
2
‖x ν+1,i − xν,i ‖22

− ∇gij(xν,i)T
(
x̂ ν+1,i,j − xν,i

)
− ( zν )

T
Ai
(
x̂ ν+1,i,j − xν,i

)
+

+
β

2

{ ∥∥∥∥∥ b−
i−1∑
k=1

Akxν+1,k −Aix̂ ν+1,i,j −
I∑

k=i+1

Akxν,k

∥∥∥∥∥
2

2

−

∥∥∥∥∥ b−
i−1∑
k=1

Akxν+1,k −
I∑
k=i

Akxν,k

∥∥∥∥∥
2

2

}
,

which yields

diff νβ,i ≤ ∇xiϕ
(
xν+1
<i , x

ν
≥i
)T

( x̂ ν+1,i,j − xν,i )

+
[
H
(
xν+1
<i , x̂

ν+1,i,j , xν>i
)
−H

(
xν+1
<i , x

ν
≥i
) ]

+
Lipi∇ϕ − σi

2
‖xν+1,i − xν,i ‖22 (by the σi-strong convexity of ψi)

+ Dψi(x̂
ν+1,i,j , xν,i)−∇gij(xν,i)T ( x̂ ν+1,i,j − xν,i )

− ( zν )
T
Ai
(
x̂ ν+1,i,j − xν,i
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+
β

2

{ ∥∥∥∥∥ b−
i−1∑
k=1

Akxν+1,k −Aix̂ ν+1,i,j −
I∑

k=i+1

Akxν,k

∥∥∥∥∥
2

2

−

∥∥∥∥∥ b−
i−1∑
k=1

Akxν+1,k −
I∑
k=i

Akxν,k

∥∥∥∥∥
2

2

}

≤
Lipi∇ϕ − σi

2
‖xν+1,i − xν,i ‖22 (by the definition of x̂ ν+1,i,j).

Similarly, we can establish the desired bound for diff νβ,I+1 by dropping the gij func-
tions. To bound diffνβ,z, we note that

diffνβ,z = ( zν+1 − zν )T

[
b−

I+1∑
i=1

A ixν+1,i

]
=

1

β
‖ zν+1 − zν ‖22

≤ 4

β γmin

{ [
max

((
LipI+1
∇ϕ

)2

,
(

Lip∇ψI+1

)2
)

+
(

LipI+1
∇H

)2 ] I+1∑
i=1

‖xν+1,i − xν,i ‖22

+

[(
LipI+1
∇ϕ

)2

+
(

Lip∇ψI+1

)2
]
‖xν,I+1 − xν−1,I+1 ‖22

}
(by Lemma 4.1).

Adding this to the bounds

diff νβ,i ≤
Lipi∇ϕ − σi

2
‖xν+1,i − xν,i ‖22,

for all i = 1, . . . , I + 1, we deduce the desired bound on Lβ(xν+1, zν+1)−Lβ(xν , zν).

Recalling the modified augmented Lagrangian function (9), from Lemma 4.2 we
deduce that

L̂β(xν+1, zν+1;xν,I+1)− L̂β(xν , zν ;xν−1,I+1)

≤
I∑
i=1

{
4

β γmin

[
max

((
LipI+1
∇ϕ

)2

,
(

Lip∇ψI+1

)2
)

+
(

LipI+1
∇H

)2 ]

+
Lipi∇ϕ − σi

2

}
‖xν+1,i − xν,i ‖22

+

{
4

β γmin

[
2

((
LipI+1
∇ϕ

)2

+
(

Lip∇ψI+1

)2
)

+
(

LipI+1
∇H

)2 ]

+
LipI+1
∇ϕ − σI+1

2

}
‖xν+1,I+1 − xν,I+1 ‖22.

To ensure that the sequence {L̂β(xν , zν ;xν−1,I+1)} is nonincreasing, we postulate the
following.

(A3) For every i = 1, . . . , I + 1, σi > Lipi∇ϕ.
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It then follows that for β > β, where

(11) β ,

8

[
2

((
LipI+1
∇ϕ

)2

+
(

Lip∇ψI+1

)2
)

+
(

LipI+1
∇H

)2 ]
γmin

max
1≤i≤I+1

{
1

σi − Lipi∇ϕ

}
,

a constant cβ > 0 exists such that, for all ν,

(12) L̂β(xν+1, zν+1;xν,I+1)− L̂β(xν , zν ;xν−1,I+1) ≤ −cβ ‖xν+1 − xν‖22.

Theorem 4.3. Under assumptions (A0)–(A3) and the choice (11) of β, every
accumulation point (if it exists) of the sequence {xν} produced by the deterministic
BCDM-ADMM with a β > β satisfies the stationarity condition (2).

Proof. Let x∞ be the limit of a convergent subsequence {xν+1}ν∈κ. We first show
that {zν+1}ν∈κ is bounded. In turn, from the bound on ‖zν+1‖2 it suffices to show
that {xν+1,I+1 − xν,I+1}ν∈κ is bounded. By the definition of xν+1,I+1, we have

L̂β
(
xν+1, zν+1;xν,I+1

)
= Lβ

(
xν+1, zν+1)+ 4

β γmin

[(
LipI+1
∇ϕ

)2
+
(
Lip∇ψI+1

)2]
‖xν+1,I+1 − xν,I+1‖22

= θ(xν+1) +
(
zν+1)T [b− I+1∑

i=1

A ixν+1,i

]
+
β

2

∥∥∥∥∥b−
I+1∑
i=1

Aixν+1,i

∥∥∥∥∥
2

2

+
4

βγmin

[(
LipI+1
∇ϕ

)2
+
(
Lip∇ψI+1

)2]
‖xν+1,I+1 − xν,I+1‖22

= θ(xν+1) +
β

2

∥∥∥∥∥b−
I+1∑
i=1

Aixν+1,i +
zν+1

β

∥∥∥∥∥
2

2

− ‖z
ν+1‖22
2β

+
4

β γmin

[(
LipI+1
∇ϕ

)2
+
(
Lip∇ψI+1

)2]
‖xν+1,I+1 − xν,I+1‖22

≥ θ(xν+1) +
β

2

∥∥∥∥∥b−
I+1∑
i=1

Aixν+1,i +
zν+1

β

∥∥∥∥∥
2

2

+
4

βγmin

[(
LipI+1
∇ϕ

)2
+
(
Lip∇ψI+1

)2]
‖xν+1,I+1 − xν,I+1‖22

− 1

β γmin

{(
LipI+1
∇ϕ + Lip∇ψI+1

)2 ∥∥∥xν+1,I+1 − xν,I+1
∥∥∥2
2

+
[ (

LipI+1
∇ϕ + LipI+1

∇H

)
‖xν+1 ‖2 + ‖∇xI+1ϕ(0) ‖2 + ‖∇xI+1H(0) ‖2

]2}
≥ θ(xν+1)− 1

β γmin

[(
LipI+1
∇ϕ + LipI+1

∇H

)
‖xν+1 ‖2 + ‖∇xI+1ϕ(0) ‖2 + ‖∇xI+1H(0) ‖2

]2
.

Since the subsequence {xν+1}ν∈κ is assumed to have an accumulation point, thus

is bounded, it follows that the subsequence {L̂β(xν+1, zν+1;xν,I+1)}ν∈κ is bounded

below. Since the entire sequence {L̂β(xν+1, zν+1;xν,I+1)} is nonincreasing, it must
be bounded below, and hence converges. Consequently, the sequence of consecutive
differences {L̂β(xν+1, zν+1;xν,I+1)−L̂β(xν , zν ;xν−1,I+1)} converges to zero; thus the
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entire sequence of consecutive differences of the iterates {xν+1 − xν} also converges
to zero, by (12). Thus the subsequence {zν+1}ν∈κ is bounded by (10). By the
first inequality of Lemma 4.1, the entire sequence of consecutive differences of the
multipliers {zν+1 − zν} converges to zero. Hence the limit x∞ is feasible to (1). It
remains to show that, for every tuple j = (ji)

I
i=1 with ji ∈Mi(x

∞) for all i = 1, . . . , I,

∇ϕ(x∞)T (x− x∞ ) +

I+1∑
i=1

H(•, x∞,−i)′(x∞,i;xi − x∞,i)

≥
I∑
i=1

∇giji(x∞,i)T (xi − x∞,i ) ∀x ∈ X̂.

Let z∞ be an accumulation point of the subsequence {zν+1}ν∈κ. Without loss of
generality, by working with an infinite subset of κ if necessary, we may assume that
{zν+1}ν∈κ, and thus {zν}ν∈κ also, converges to z∞; moreover, there exists ĵ∞i = ĵ νi
for all ν ∈ κ. Let an arbitrary x ∈ X̂ and a tuple j as specified above be given. It
then follows that ji ∈ Mε,i(x

ν,i) for all ν ∈ κ sufficiently large and all i = 1, . . . , I.

By the definition of the index ĵ νi that gives xν+1,i = x̂ ν+1,i,̂j νi in particular, and by
the minimizing property of x̂ ν+1,i,ji we have

∇xiϕ
(
xν+1
<i , x

ν
≥i
)T

(xν+1,i − xν,i ) +H
(
xν+1
≤i , x

ν
>i

)
− gi ĵ νi

(xν+1,i)︸ ︷︷ ︸
= gi ĵ∞i

(xν+1,i)

− ( zν )TA ixν+1,i +Dψi(x
ν+1,i, xν,i) +

β

2

∥∥∥∥∥∥ b−
∑
k≤i

A kxν+1,k −
∑
k>i

A kxν,k

∥∥∥∥∥∥
2

2

≤ ∇xiϕ
(
xν+1
<i , x

ν
≥i
)T

( x̂ ν+1,i,ji − xν,i ) +H
(
xν+1
<i , x̂

ν+1,i,ji , xν>i
)
− giji(x̂ ν+1,i,ji)

− ( zν )TA ix̂ ν+1,i,ji +Dψi(x̂
ν+1,i,ji , xν,i)

+
β

2

∥∥∥∥∥ b−∑
k<i

A kxν+1,k −A ix̂ ν+1,i,ji −
∑
k>i

A kxν,k

∥∥∥∥∥
2

2

≤ ∇xiϕ
(
xν+1
<i , x

ν
≥i
)T

( x̂ ν+1,i,ji − xν,i ) +H
(
xν+1
<i , x̂

ν,i,ji , xν>i
)

− giji(x
ν,i)−∇giji(xν,i)T ( x̂ ν+1,i,ji − xν,i ) (by the convexity of gij)

− ( zν )TA ix̂ ν+1,i,ji +Dψi(x̂
ν+1,i,ji , xν,i)

+
β

2

∥∥∥∥∥ b−∑
k<i

A kxν+1,k −A ix̂ ν+1,i,ji −
∑
k>i

A kxν,k

∥∥∥∥∥
2

2

≤ ∇xiϕ
(
xν+1
<i , x

ν
≥i
)T

(xi − xν,i ) +H
(
xν+1
<i , x

i, xν>i
)

− giji(x
ν,i)−∇giji(xν,i)T (xi − xν,i )

− ( zν )TA ixi +Dψi(x
i, xν,i) +

β

2

∥∥∥∥∥ b−∑
k<i

A kxν+1,k −A ixi −
∑
k>i

A kxν,k

∥∥∥∥∥
2

2

.

Taking the limit ν(∈ κ)→∞, and using the proved convergence of {xν+1 − xν} → 0
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and the feasibility of x∞ (thus the satisfaction of the coupling constraint), we deduce

H(x∞)− max
1≤j≤Ji

gij(x
∞,i)− ( z∞ )TA ix∞,i

≤ H(x∞)− gi ĵ∞i (x∞,i)− ( z∞ )TA ix∞,i

≤ ∇xiϕ(x∞)T (xi − x∞,i ) +H
(
x∞<i, x

i, x∞>i
)
− max

1≤j≤Ji
gij(x

∞,i)

−∇giji(x∞,i)T (xi − x∞,i )

− ( z∞ )TA ixi +Dψi(x
i, x∞,i) +

β

2

∥∥Aix∞,i −A ixi
∥∥2

2
,

where the first inequality holds because max1≤j≤Ji gij(x
∞,i) ≥ gi ĵ νi

(x∞,i) and the

second inequality holds because ji ∈Mi(x
∞). Hence, for all i = 1, . . . , I,

(13)

H(x∞)− ( z∞ )TA ix∞,i ≤ ∇xiϕ(x∞)T (xi − x∞,i ) +H
(
x∞<i, x

i, x∞>i
)

−∇giji(x∞,i)T (xi − x∞,i )− ( z∞ )TA ixi

+Dψi(x
i, x∞,i) +

β

2

∥∥Aix∞,i −A ixi
∥∥2

2
.

By the definition of xν+1,I+1, we have

∇xI+1ϕ
(
xν+1
≤I , x

ν,I+1
)T

(xν+1,I+1 − xν,I+1 ) +H
(
xν+1
≤I , x

ν+1,I+1
)

+ DψI+1
(xν+1,I+1, xν,I+1)− ( zν )TA I+1xν+1,I+1

+
β

2

∥∥∥∥∥∥ b−
∑
k≤I

A kxν+1,k −A I+1xν+1,I+1

∥∥∥∥∥∥
2

2

≤ ∇xI+1ϕ
(
xν+1
≤I , x

ν,I+1
)T

(xI+1 − xν,I+1 ) +H
(
xν+1
≤I , x

I+1
)

+DψI+1
(xI+1, xν,I+1)− ( zν )TA I+1xI+1 +

β

2

∥∥∥∥∥∥ b−
∑
k≤I

A kxν+1,k −A I+1xI+1

∥∥∥∥∥∥
2

2

.

Passing to the limit ν(∈ κ)→∞, we deduce that

H(x∞)− ( z∞ )TA I+1x∞,I+1 ≤ ∇xI+1ϕ(x∞)T (xI+1 − x∞,I+1 ) +H(x∞≤I , x
I+1)−

( z∞ )TA I+1xI+1 +DψI+1
(xI+1, x∞,I+1) +

β

2

∥∥AI+1x∞,I+1 −A I+1xI+1
∥∥2

2
.

Summing up the last inequality and the previous I inequalities (13), using the fact

that
∑I+1
i=1 Aix∞,i = b =

∑I+1
i=1 Aixi, and by Proposition 2.1, we obtain the desired

stationarity of x∞.

The above theorem asserts neither the boundedness of the (primal) sequence
{xν} nor its sequential convergence. The result below addresses these two issues
under either one of two growth assumptions on the objective function that are easily
satisfied if X is bounded. The first condition is a growth requirement on the combined
objective θ of the order ‖x‖1+δ for some positive δ; the second condition is a weakening
of the first, requiring only a coercivity property on θ, namely, θ(x) → ∞ for x ∈ X
with ‖x‖ → ∞, but adding the requirement that H+ϕ have bounded partial gradients
with respect to the distinguished variable xI+1.
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Proposition 4.4. Under the assumptions of Theorem 4.3, if either

(a) for some δ > 0, lim inf‖x‖→∞ { θ(x)
‖ x ‖1+δ | x ∈ X } > 0; or

(b) ∇xI+1(H + ϕ) is bounded and θ is coercive, both on X,
hold, then the sequence {(xν+1, zν+1)} is bounded, and thus has an accumulation point.
If in addition {xν+1} has an isolated accumulation point, then the sequence converges.

Proof. In the proof of Theorem 4.3, we have shown that, for all ν, θ(xν+1) is
bounded above by

L̂β
(
xν+1, zν+1;xν,I+1

)
+

1

β γmin

[ (
LipI+1
∇ϕ + LipI+1

∇H

)
‖xν+1 ‖2

+ ‖∇xI+1ϕ(0) ‖2 + ‖∇xI+1H(0) ‖2
]2
,

which yields, since the sequence { L̂β(xν+1, zν+1;xν,I+1) } is nonincreasing,

θ(xν+1) ≤ L̂β
(
x1, z1;x0,I+1

)
+

1

β γmin

[ (
LipI+1
∇ϕ + LipI+1

∇H

)
‖xν+1 ‖2

+ ‖∇xI+1ϕ(0) ‖2 + ‖∇xI+1H(0) ‖2
]2
.

The liminf assumption in (a) therefore yields the boundedness of {xν+1}.
Suppose condition (b) holds. From the proof of Lemma 4.1, we may deduce

γmin ‖ zν+1 ‖22 ≤ 4

{ [(
LipI+1
∇ϕ

)2

+
(

Lip∇ψI+1

)2
]
‖xν+1,I+1 − xν,I+1 ‖22

+ ‖∇xI+1(ϕ+H)(xν+1) ‖22
}
,

which shows in particular that the sequence of multipliers {zν+1} is bounded if the
sequence of primal variables {xν+1} is. We have

L̂β
(
x1, z1;x0,I+1

)
≥ L̂β

(
xν+1, zν+1;xν,I+1

)
= Lβ(xν+1, zν+1) +

4

β γmin

[(
LipI+1
∇ϕ

)2

+
(

Lip∇ψI+1

)2
]
‖xν+1,I+1 − xν,I+1 ‖22

= θ(xν+1) +
β

2

∥∥∥∥∥ b−
I+1∑
i=1

Aixν+1,i +
zν+1

β

∥∥∥∥∥
2

2

− ‖ z
ν+1 ‖22
2β

+

4

β γmin

[(
LipI+1
∇ϕ

)2

+
(

Lip∇ψI+1

)2
]
‖xν+1,I+1 − xν,I+1 ‖22

≥ θ(xν+1) +
β

2

∥∥∥∥∥ b−
I+1∑
i=1

Aixν+1,i − zν+1

β

∥∥∥∥∥
2

2

− 2

β γmin
‖∇xI+1(ϕ+H)(xν+1) ‖22+

2

β γmin

[(
LipI+1
∇ϕ

)2

+
(

Lip∇ψI+1

)2
]
‖xν+1,I+1 − xν,I+1 ‖22.

Hence,

θ(xν+1) ≤ L̂β
(
x1, z1;x0,I+1

)
+

2

β γmin
sup

{
‖∇xI+1(ϕ+H)(x) ‖22 | x ∈ X

}
,
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1660 JONG-SHI PANG AND MIN TAO

establishing the boundedness of {xν+1} under the assumed coercivity condition of θ.
The last statement of the proposition follows from [17, Proposition 8.3.10] since

{xν+1 − xν} → 0.

Specializing Theorem 4.3 and Proposition 4.4 to the case without the coupling
constraint, we obtain the following convergence result of the BCDM. In applying the
proposition, it suffices to realize that the boundedness condition of ∇xI+1(H + ϕ) on
X is needed to deal with the coupling constraint and its multiplier z; without them,
there is no need for this condition. No further proof of the result is needed.

Theorem 4.5. Under assumptions (A0), (A1), and (A3), if θ is coercive on X,
then the sequence {xν+1} produced by the (deterministic) BCDM is bounded. Every
one of its accumulation points is blockwise directional stationary solution of (1) with-
out the coupling constraint. Moreover, if one such accumulation point is isolated, then
the entire sequence converges to it.

5. Randomized choice of subproblems. One way to reduce the number of
convex subprograms solved at each iteration is by means of a randomized choice;
this idea was first proposed in [40] for a nonsmooth DC program without regard to
decomposition. The following randomized version of the combined BCDM-ADMM
is the same as the deterministic version except that Step 1a is modified such that
only one convex subprogram is solved (versus as many as |Mε,i(x

ν,i)|) for each i =

1, . . . , I. The choice of the minimizing index ĵ νi employs an augmented Lagrangian
based acceptance/rejection rule of the computed iterate.

To describe the randomized algorithm, it is useful to introduce some notation. For
a given tuple w , ((xi)I+1

i=1 , z) of primal blocks xi ∈ Xi and constraint multiplier z
and for a tuple s , (si)

I
i=1 of indices with si ∈ {1, . . . , Ji} for each i = 1, . . . , I, define

the tuple x̂ s(w) , ( {x̂ i,si(w)}Ii=1, x̂
I+1,s(w) ) as the (unique) global minimizers of

the respective semilinearized Gauss–Seidel subproblems

x̂ i,si(w) ∈ argmin
x̂ i∈Xi

∇xiϕ
(
x̂ 1,s1(w), . . . , x̂ i−1,si−1(w), x̂ i, xi+1, . . . , xI+1

)T
× ( x̂ i − xi )

+H
(
x̂ 1,s1(w), . . . , x̂ i−1,si−1(w), x̂ i, xi+1, . . . , xI+1

)
+Dψi(x̂

i, xi)

− zTA ix̂ i +
β

2

∥∥∥∥∥ b−∑
k<i

A kx̂ k,sk(w)−Aix̂ i −
∑
k>i

A kxk

∥∥∥∥∥
2

2

−∇gisi(xi)T ( x̂ i − xi )



I

i=1

plus the minimization over the last block

x̂ I+1,s(w) ∈ argmin
x̂ I+1∈XI+1

{
∇xI+1ϕ

(
x̂ 1,s1(w), . . . , x̂ I,sI (w), x̂ I+1

)T
( x̂ I+1 − xI+1 )

+H
(
x̂ 1,s1(w), . . . , x̂ I,sI (w), x̂ I+1

)
+DψI+1

(x̂ I+1, xI+1)− zTA I+1x̂ I+1

+
β

2

∥∥∥∥∥∥ b−
∑
k≤I

A kx̂ k,sk(w)−AI+1x̂ I+1

∥∥∥∥∥∥
2

2

}
.
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Let ẑ s(w) , z+β ( b−
∑I
i=1 A

ix̂ i,si(w)−AI+1x̂ I+1,s ). We can establish the following
result for the above defined tuple xs(w).

Lemma 5.1. For any given tuples w , ((xi)I+1
i=1 , z) and s , (si)

I
i=1 ∈ M(w) it

holds that

Lβ
({

x̂ i,si(w)
}
i≤I , x

I+1, z
)
−

I∑
i=1

Lipi∇ϕ − σi
2

‖ x̂ i,si(w)− xi ‖22 ≤ Lβ(w).

Proof. We omit the proof since it is similar to the bound for diff νβ,i, i = 1, . . . , I,
employed in the proof of Lemma 4.2.

Algorithm 3 The randomized combined BCDM-ADMM: fixed ε.

Let x0 , (x0,i)I+1
i=1 ∈

∏I+1
i=1 Xi and z0 be given. Also let scalars ε > 0, β > β, and

pmin ∈ (0, 1) be given. Let ν = 0. Compute the next iterate xν+1 , (xν+1,i)I+1
i=1 ∈∏I+1

i=1 Xi by performing the following steps.
while a prescribed termination criterion is not satisfied do
Step 1aran1 Choose a random tuple sν+1 , (sν+1

i )i≤I ∈
∏I
i=1 Mε,i(x

ν,i) and,
for all i = 1, . . . , I,

(14) Prob
{

index sν+1
i is chosen | given (xν , zν)

}
, pν+1,i,sν+1

i ≥ pmin > 0.

Let x̂ ν+1,sν+1

≤I , {x̂ i,s
ν+1
i (wν)}i≤I , where wν , (xν , zν). Let

xν+1
≤I ,



xν≤I if Lβ
(
x̂ ν+1,sν+1

≤I , xν,I+1; zν
)

+

I∑
i=1

σi − Lipi∇ϕ
2

‖xν,i − x̂ i,s
ν+1
i (wν)‖22 > Lβ (xν , zν) ,

x̂ ν+1,sν+1

≤I otherwise.

Steps 1b and 2. Same as Algorithm 1.
end while
return (x, z)

Several remarks are worthy of note. One, x̂ ν+1,sν+1

is a random vector as its
components depend on the randomly chosen tuple sν+1. Two, even though Steps 1b
and 2 are the same as before, the last block xν+1,I+1 and the multiplier zν+1 depend
on xν+1

≤I , thus these two variables are not deterministic either. Three, through the test

that defines the new iterate xν+1
≤I , we accept or reject the I blocks {x̂ i,s

ν+1
i (wν)}i≤I all

at once after I convex subprograms are solved. Different frequencies and variations of
the latter test can be introduced but are omitted. Lastly, xν+1,I+1 is equal to either

x̂ I+1;s(wν) if x̂ ν+1,sν+1

≤I is accepted as xν+1
≤I or the minimizer of θν+1

I+1(·;xν≤I , zν) on

XI+1 if the test rejects x̂ ν+1,sν+1

≤I .

Example 2 (continued). We applied the randomized choice of the subproblems to
the example with fixed ε = 0.1, c = 1.1, and the initial iterate (x0

1, x
0
2, z

0) = (1, 1,−1)
for which the deterministic version of the algorithm converges (see Figure 1) while
the existing ADMM does not. In iterations 10 through 22, two subproblems were
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candidates that triggered the randomization. After 60 iterations, the optimal triple
of (−1/4,−1/4,−1/8) was obtained. In summary, for this example, we may draw the
following two conclusions with the initial iterate (x0

1, x
0
2, z

0) = (1, 1,−1).
(a) Both the deterministic and randomized versions of the combined BCDM-

ADMM with a fixed ε = 0.1 converge to the unique d-stationary point
(−1/4,−1/4).

(b) The standard ADMM with both linearization of ϕ and no such linearization
converge to (0,0); so does the deterministic BCDM-ADMM with ε = 0.

5.1. Convergence proof of randomization. We state and prove the almost
sure subsequential convergence result for the randomized combined BCDM-ADMM.
We omit the BCDM as it is a simplification of the combined BCDM-ADMM. The
modified augmented Lagrangian function (9) continues to play an important role in
the proof.

Theorem 5.2. Under assumptions (A0)–(A3) and the choice (11) of β, suppose

that for each ν the tuple {sν+1
1 , . . . , sν+1

I } consists of independent random indices
satisfying the condition (14). It holds that every accumulation point of the sequence
{xν} produced by the randomized BCDM-ADMM with a fixed ε > 0 and with a β > β
satisfies the stationarity condition (2) with probability one.

Proof. The proof below combines that of the deterministic case and that of Propo-
sition 7 in [40] for the case with no decomposition. Nevertheless, the details are more
complicated than either one of the previous proofs. Throughout the proof, we write
wν , (xν , zν) and let F ν be the filtration generated by the iterates {w0, . . . ,wν}
produced by the randomization up to iteration ν. Let Mε(w

ν) consist of the tuples
s , (si)

I
i=1 with si ∈Mε,i(x

ν) for all i = 1, . . . , I such that

Lβ
({

x̂ i,si(wν)
}
i≤I , x

ν,I+1; zν
)

+

I∑
i=1

σi − Lipi∇ϕ
2

‖xν,i − x̂ i,si(wν) ‖22

≤ Lβ (xν , zν) .

Thus, if a tuple sν+1 belongs to Mε(w
ν), then the next iterate xν+1 = x̂ sν+1

(wν).
Moreover, in this case we may follow the analysis of the deterministic case and deduce
(see the derivation of the expression (12)),

L̂β
(
xν+1, zν+1;xν,I+1

)
− L̂β

(
xν , zν ;xν−1,I+1

)
= L̂β

(
x̂ sν+1

(wν), zν ;xν,I+1
)
− L̂β

(
xν , zν ;xν−1,I+1

)
≤

I∑
i=1

{
4

β γmin

[
max

((
LipI+1
∇ϕ

)2

,
(

Lip∇ψI+1

)2
)

+
(

LipI+1
∇H

)2 ]

+
Lipi∇ϕ − σi

2

}
‖ x̂ i,s

ν+1
i (wν)− xν,i ‖22

+

{
4

β γmin

[
2

((
LipI+1
∇ϕ

)2

+
(

Lip∇ψI+1

)2
)

+
(

LipI+1
∇H

)2 ]
+

LipI+1
∇ϕ − σI+1

2

}
‖ x̂ I+1,sν+1

(wν)− xν,I+1 ‖22.
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If the tuple sν+1 6∈Mε(w
ν), then x ν+1,i = xν,i for all i = 1, . . . , I. Thus,

L̂β
(
xν+1, zν+1;xν,I+1

)
− L̂β

(
xν , zν ;xν−1,I+1

)
= L̂β

(
xν≤I , x

ν+1,I+1, zν+1;xν,I+1
)
− L̂β

(
xν , zν ;xν−1,I+1

)
.

We claim that the above difference is nonpositive, or, equivalently,
(15)
Lβ
(
xν≤I , x

ν+1,I+1, zν+1
)

+
4

β γmin

[(
LipI+1
∇ϕ

)2

+
(

Lip∇ψI+1

)2
]
‖xν+1,I+1 − xν,I+1 ‖22

≤ Lβ(xν , zν) +
4

β γmin

[(
LipI+1
∇ϕ

)2

+
(

Lip∇ψI+1

)2
]
‖xν,I+1 − xν−1,I+1 ‖22.

Similar to the proof of the bound for diff ν+1
β,I+1 in Lemma 4.2, we may deduce

Lβ
(
xν≤I , x

ν+1,I+1, zν
)
≤ Lβ (xν , zν) +

LipI+1
∇ϕ − σI+1

2
‖xν+1,I+1 − xν,I+1 ‖22.

Moreover,

Lβ
(
xν≤I , x

ν+1,I+1, zν+1
)
− Lβ

(
xν≤I , x

ν+1,I+1, zν
)

= ( zν+1 − zν )T

[
b−

I∑
i=1

Aixν,i −AI+1xν+1,I+1

]

≤ 4

β γmin

{[
max

((
LipI+1
∇ϕ

)2

,
(

Lip∇ψI+1

)2
)

+
(

LipI+1
∇H

)2 ] I+1∑
i=1

‖xν+1,i − xν,i ‖22

+

[(
LipI+1
∇ϕ

)2

+
(

Lip∇ψI+1

)2
]
‖xν,I+1 − xν−1,I+1 ‖22

}
(by a proof similar to that of Lemma 4.1)

=
4

β γmin

{[
max

((
LipI+1
∇ϕ

)2

,
(

Lip∇ψI+1

)2
)

+
(
LipI+1
∇H
)2] ‖xν+1,I+1 − xν,I+1 ‖22

+

[(
LipI+1
∇ϕ

)2

+
(

Lip∇ψI+1

)2
]
‖xν,I+1 − xν−1,I+1 ‖22

}
.

Consequently,

Lβ
(
xν≤I , x

ν+1,I+1, zν+1
)
− Lβ(xν , zν)

≤

{
4

β γmin

[
2

((
LipI+1
∇ϕ

)2

+
(

Lip∇ψI+1

)2
)

+
(

LipI+1
∇H

)2 ]

+
LipI+1
∇ϕ − σI+1

2

}
‖xν+1,I+1 − xν,I+1 ‖22

+
4

β γmin

[(
LipI+1
∇ϕ

)2

+
(

Lip∇ψI+1

)2
]

×
[
−‖xν+1,I+1 − xν,I+1 ‖22 + ‖xν,I+1 − xν−1,I+1 ‖22

]
,

which yields the desired inequality (15) by the choice of β.
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We note that at iteration ν + 1, every tuple s has probability equal to p̄ ν+1,s ,∏I
i=1 p

ν+1,i,si ≥ (pmin)I of being picked. With this observation, taking conditional
expectation E with respect to the filtration F ν , we deduce, for some constant cβ > 0,

E
[
L̂β
(
xν+1, zν+1;xν,I+1

)
| F ν

]
=

∑
sν+1 ∈Mε(wν)

p̄ ν+1,sν+1

L̂β
(
x̂ sν+1

(wν), zν+1;xν,I+1
)

+
∑

sν+1 6∈Mε(wν)

p̄ ν+1,sν+1

L̂β
(
xν≤I , x

ν+1,I+1, zν+1;xν,I+1
)

≤ L̂β
(
xν , zν ;xν,I

)
− cβ ( pmin )

I
∑

sν+1 ∈Mε(wν)

[
I∑
i=1

∥∥∥ x̂ i,sν+1
i (wν)− xν,i

∥∥∥2

2

+ ‖ x̂ I+1,sν+1

(wν)− xν,I+1 ‖22

]
.

Consequently, if the sequence {(xν , zν)} possesses a convergent subsequence {wν ,
(xν , zν)}ν∈κ with limit w∞,(x∞, z∞), then the random sequence {L̂β(xν , zν ;xν,I+1)}
is bounded from below. By the supermartingale convergence theorem [6, Proposition
4.2], we may conclude that the latter sequence converges almost surely. Without loss
of generality, we may assume, by working with a further subsequence of {wν}ν∈κ, that

Mε(w
ν) is equal to the same M̂ε for all ν ∈ κ. It follows that, for all i = 1, . . . , I,

lim
ν(∈κ)→∞

∥∥ x̂ i,si(wν)− xν,i
∥∥ = lim

ν(∈κ)→∞

∥∥ x̂ I+1,s(wν)− xν,I+1
∥∥ = 0 ∀ s ∈ M̂ε.

In what follows, we show that
∏I
i=1 Mi(x

∞,i) ⊆ M̂ε. Let s be an arbitrary tuple in∏I
i=1 Mi(x

∞,i). By Lemma 5.1, we have

Lβ
({
x̂ i,si(w∞)

}
i≤I , x

∞,I+1, z∞
)
−

I∑
i=1

Lipi∇ϕ − σi
2

‖ x̂ i,si(w∞)− x∞,i ‖22

≤ Lβ(w∞).

We claim that equality must hold. Assume not. It follows that, for all ν ∈ κ sufficiently
large,

Lβ
({
x̂ i,si(wν)

}
i≤I , x

ν,I+1, zν
)
−

I∑
i=1

Lipi∇ϕ − σi
2

‖ x̂ i,si(wν)− xν,i ‖22 ≤ Lβ(wν).

This proves that s ∈Mε(w
ν) = M̂ε. Hence the inclusion

∏I
i=1 Mi(x

∞,i) ⊆ M̂ε.
Therefore, with probability one, it holds that limν(∈κ)→∞ ‖xν+1 − xν‖2 = 0 and the
subsequence {xν+1}ν∈κ also converges to x∞. At this point, the remaining part of
the proof of Theorem 4.3 can be applied.

6. Conclusions. This paper has presented and analyzed the convergence of a
combined BCDM-ADMM method for computing a directional stationary solution of
a class of multiblock, nonsmooth, nonconvex optimization problems with private and
coupled constraints. A randomized version of the algorithm is also introduced to lessen
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the computational effort per iteration of the basic algorithm if needed. Motivated by
interesting applications, a future research direction is to develop decomposition meth-
ods for an extended class of problems where the functions gij in (1) are not separable
in their respective blocks of variables and a coupled constraint is still present. The
bottleneck to this extension is assumption (A2), which is key to the bound of the mul-
tiplier of the coupled constraint in a single-loop algorithm such as those presented in
this paper. A resolution to this technical challenge may call for a two-loop algorithm
wherein an inner loop would solve a Lagrangian relaxation of the problem with the
coupled constraint lifted to the objective and an outer loop would update the multi-
plier accordingly. More research is needed to investigate this extension. Another topic
omitted in this paper is the investigation of the KL inequality theory [4] to study the
sequential convergence of the iterates produced by the combined BCDM-ADMM for
computing directional stationary solutions of problem (1).

Appendix. Two applied problems. We briefly discuss two classes of applied
problems that provide the source for the framework (1). The first class of problems
is topical, involving problems arising from (group) sparsity representation [26]; the
other class involves a noncooperative generalized game with a multiconvex potential
function and coupling constraints [18, 19].

Group sparsity representation. Let Gi ⊆ {1, . . . ,m} for i = 1, . . . , I be I nonover-
lapping groups of parameters βGi , {βj }j∈Gi partitioning the set of unknown coef-
ficients {β1, . . . , βm} in the linear regression model: y ≈ βTx with the vector input
x ∈ Rm and scalar output y ∈ R. Given are data {(xi, yi)}Ni=1, a loss function `(β)

(e.g., the mean least-squares loss `(β) = 1
N

∑N
i=1 ( yi − βTxi )2), constant γ1 > 0

and sparsity function P ele(β) for the parameters, and γ2 > 0 and sparsity functions
P grp
i (βGi) for each group. The regression problem is

(16) minimize
β∈Rm

`(β) + γ1 P
ele(β) + γ2

I∑
i=1

P grp
i (βGi).

The sparsity functions P ele and each P grp
i can be either exact or surrogate; all are of

the DC type (see [1]). A simple example illustrating how (16) is of the form (1) is
when the truncated ‖•‖1 function is used, resulting in P ele(β) ,

∑m
j=1 min( 1

τj
|βj |, 1)

for some positive scalars τj > 0. Since

min

(
1

τj
|βj |, 1

)
=

1

τj
|βj | −max

(
0,

1

τj
|βj | − 1

)
,

the negative max term leads to the pointwise maximum terms in (1). Other univariate
sparsity functions such as SCAD and MCP are (differentiable) DC functions; they
also lead to an objective of the form (1). As an example of a coupled sparsity function,
consider an exact K-sparsity function for some positive integer K ≥ 2 that is used
for a group G with s elements. Such a function has the property that its zeros are
vectors with no more than K nonzero elements and is given by the following: for an
s-dimensional vector w with s ≥ K,

PK(w) ,
s∑
i=1

|wi | −
K∑
k=1

|w[k] | =

s∑
k=K+1

|w[k] |,
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where max1≤i≤s |wi| , |w[1]| ≥ |w[2]| ≥ · · · ≥ |w[s]| , min1≤i≤s |wi| is a nonincreas-
ing ordering of { |wi | }si=1. The expression

K∑
k=1

|w[k] | = maximum
v∈E(∆K,s)

s∑
i=1

vi |wi |,

where E(∆K,s) is the finite set of extreme points of the polytope ∆K,s , { v ∈
[ 0, 1 ]s |

∑s
i=1 vi = K }, shows that such a sum leads to the last pointwise max sum

in the objective function of (1).
A multiagent noncooperative game. Consider a noncooperative game with I + 1

selfish players each with private strategy set Xi ⊆ Rni for i = 1, . . . , I + 1. Antic-
ipating rivals’ strategies x−i ∈ X−i, each player i = 1, . . . , I solves a (nonsmooth)
problem

(17)

minimize
xi∈Xi

θi(x
i, x−i) , ϕ(x) + ζi(x

i, x−i)− max
1≤j≤Ji

gij(x
i)

subject to

I+1∑
k=1

Akxk = b,

while player I+1, anticipating (xi)Ii=1, solves a problem without the max term in the
objective:

(18)

minimize
xI+1∈XI+1

θI+1

(
xI+1, (xi)Ii=1

)
, ϕ(x) + ζI+1

(
xI+1, (xi)Ii=1

)
subject to

I+1∑
k=1

Akxk = b.

Assuming that the family of functions {ζi(x)}I+1
i=1 admits an inexact potential function

H(x) with the property that, for all x ∈ X and yi ∈ Xi,

(19) ζi(x
i, x−i)− ζi(yi, x−i) ≥ H(xi, x−i)−H(yi, x−i) ∀ i = 1, . . . , I + 1,

one can show that the potential function H must be multiconvex, but not necessarily
convex nor differentiable jointly in its arguments. The aggregate optimization problem

(20)

minimize
x∈X

θ(x) ,

[
ϕ(x) +H(x)−

I∑
i=1

max
1≤j≤Ji

gij(x
i)

]

subject to

I+1∑
i=1

Aixi = b

bears a close connection to the game in terms of their respective directional derivative
based stationary solutions. Specifically, assuming that the common function ϕ(x)
is differentiable, if a tuple (x̄ i)I+1

i=1 is a blockwise directional stationary solution of
(20) satisfying the condition (2), then each x̄ i is a directional stationary solution of
the optimization problem (17) for i ≤ I and (18) for i = I + 1. Consequently, via
the potential optimization formulation, the combined ADMM-BCD algorithm leads
to a provably convergent one-loop best-response iterative algorithm for computing a
tuple of strategies satisfying the first-order directional stationarity conditions for each
player of the game. This is a significant advance towards solving a generalized Nash
game in the presence of nonconvexity and nondifferentiability.

D
ow

nl
oa

de
d 

05
/2

2/
18

 to
 5

8.
19

2.
52

.3
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DECOMPOSITION FOR NONSMOOTH NONCONVEX OPTIMIZATION 1667

Acknowledgments. This work was completed during the second author’s visit
to the first author. The authors are grateful to Professor Defeng Sun of the National
University of Singapore and two referees for providing some constructive comments
on this paper. In particular, one referee’s comment about the previous assumption
(A2) has motivated us to obtain the present improved assumption by not requiring
XI+1 to be polyhedral in particular.

REFERENCES

[1] M. Ahn, J.S. Pang, and J. Xin, Difference-of-convex learning I: Directional stationarity,
optimality, and sparsity, SIAM J. Optim., 27 (2017), pp. 1637–1665.

[2] A. Alvarado, G. Scutari, and J.S. Pang, A new decomposition method for multiuser DC-
programming and its applications, IEEE Trans. Signal Process., 62 (2014), pp. 2984–2998.

[3] B. Ames and M.Y. Hong, Alternating direction method of multipliers for penalized zero-
variance discriminant analysis, Comput. Optim. Appl., 64 (2016), pp. 725–754.

[4] H. Attouch, J. Bolte, P. Redont, and A. Soubeyran, Proximal alternating minimization
and projection methods for nonconvex problems: An approach based on the Kurdyka–
Lojasiewicz inequality, Math. Oper. Res, 35 (2010), pp. 438–457.

[5] D. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, Academic Press,
New York, 1982.

[6] D.P. Bertsekas and J.N. Tsitsiklis, Neuro-Dynamic Programming, Athena Scientific, Bel-
mont, MA, 1996.

[7] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and
statistical learning via the alternating direction method of multipliers, Found. Trends
Mach. Learn., 3 (2010), http://dx.doi.org/10.1561/2200000016.

[8] L.M. Bregman, The relaxation method of finding the common points of convex sets and its
application to the solution of problems in convex programming, USSR Comput. Math.
Math. Phys., 7 (1967), pp. 200–217.

[9] R.H. Chan, M. Tao, and X.M. Yuan, Constrained total variation deblurring models and
fast algorithms based on alternating direction method of multipliers, SIAM J. Imag. Sci.,
6 (2013), pp. 680–697.

[10] R.H. Chan, M. Tao and X.M. Yuan, Linearized alternating direction method of multipliers
for constrained linear least-squares problem, East Asian J. Appl. Math., 2 (2012), pp. 326–
341.

[11] F.H. Clarke, Optimization and Nonsmooth Analysis, Classics Appl. Math. 5, SIAM,
Philadelphia, PA, 1987.

[12] R.W. Cottle, J.S. Pang, and R.S. Stone, The Linear Complementarity Problem, Classics
Appl. Math. 60, SIAM, Philadelphia, PA, 2009.

[13] Y. Cui, X.D. Li, D.F. Sun, and K.C. Toh, On the convergence properties of a majorized
ADMM for linearly constrained convex optimization problems with coupled objective func-
tions, J. Optim. Theory Appl., 169 (2016), pp. 1013–1041.

[14] J. Eckstein, Splitting Methods for Monotone Operators with Applications to Parallel Op-
timization, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, 1989;
available at http://hdl.handle.net/1721.1/14356.

[15] J. Eckstein, Nonlinear proximal point algorithms using Bregman functions, with applications
to convex programming, Math. Oper. Res, 18 (1993), pp. 202–226.

[16] J. Eckstein and D.P. Bertsekas, On the Douglas–Rachford splitting method and the prox-
imal point algorithm for maximal monotone operators, Math. Program., 55 (1992),
pp. 293–318.

[17] F. Facchinei and J.S. Pang Finite-Dimensional Variational Inequalities and Complemen-
tarity Problems, Springer, New York, 2003.

[18] F. Facchinei and J.S. Pang, Nash equilibria: The variational approach, in Convex Optimiza-
tion in Signal Processing and Communications, Y. Eldar and D. Palomar, eds., Cambridge
University Press, Cambridge, 2009, pp. 443–493.

[19] F. Facchinei, V. Piccialli, and M. Sciandrone, Decomposition algorithms for generalized
potential games, Comput. Optim. Appl., 50 (2011), pp. 237–262.

[20] M. Fazel, P.T. Kei, D. Sun, and P. Tseng, Hankel matrix rank minimization with appli-
cations to system identification and realization, SIAM J. Matrix Anal. Appl., 34 (2013),
pp. 946–977.

D
ow

nl
oa

de
d 

05
/2

2/
18

 to
 5

8.
19

2.
52

.3
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://dx.doi.org/10.1561/2200000016
http://hdl.handle.net/1721.1/14356


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1668 JONG-SHI PANG AND MIN TAO

[21] D. Gabay, Applications of the method of multipliers to variational inequalities, in Augmented
Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Prob-
lems, M. Fortin and R. Glowinski, eds., North-Holland, Amsterdam, 1983, pp. 299–340.

[22] D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problem
via finite-element approximations, Comput. Math. Appl., 2 (1976), pp. 17–40.

[23] R. Glowinski, S. Osher, and W.T. Yin, Splitting Methods in Communication and Imaging,
Science, and Engineering, Springer International Publishing, Switzerland, 2016.

[24] R. Glowinski and P. Le Tallec, Augmented Lagrangian and Operator-Splitting Methods in
Nonlinear Mechanics, Stud. Appl. Numer. Math., SIAM, Philadelphia, PA, 1989.

[25] K. Guo, D.R. Han and T.T. Wu, Convergence of alternating direction method for minimiz-
ing sum of two nonconvex functions with linear constraints, Int. J. Comput. Math., 94
(2016), pp. 1653–1669, www.tandfonline.com/doi/abs/10.1080/00207160.2016.1227432?
journalCode=gcom20.

[26] T. Hastie, R. Tibshirani, and M. Wainwright. Statistical Learning with Sparsity: The
Lasso and Generalizations, Monogr. Statist. Appl. Probab. 143, Chapman and Hall/CRC
Press, Boca Raton, FL, 2015.

[27] B.S. He, M. Tao, and X.M. Yuan, A splitting method for separable convex programming,
IMA J. Numer. Anal., 35 (2015), pp. 394–426.

[28] B.S. He, M. Tao, and X.M. Yuan, Alternating direction method with Gaussian back substi-
tution for separable convex programming, SIAM J. Optim., 22 (2012), pp. 313–340.

[29] M. Hong, Z.Q. Luo, M. Razaviyayn, Convergence analysis of alternating direction method of
multipliers for a family of nonconvex problems, SIAM J. Optim., 26 (2016), pp. 337–364.

[30] M. Hong, M. Razaviyayn, Z.Q. Luo, and J.S. Pang, A unified algorithmic frame-
work for block-structured optimization involving big data: With applications in ma-
chine learning and signal processing, IEEE Signal Process. Mag., 33 (2015), pp. 57–77,
doi:10.1109/MSP.2015.2481563.

[31] H.A. Le Thi and D.T. Pham, Recent advances in DC programming and DCA, in Transac-
tions on Computational Collective Intelligence XIII, N.T. Nguyen and H.A. Le-Thi, eds.,
Lecture Notes in Comput. Sci. 8342, Springer, Berlin, Heidelberg, 2014, pp. 1–37.

[32] H.A. Le Thi and D.T. Pham, The DC programming and DCA revised with DC models of
real world nonconvex optimization problems, Ann. Oper. Res., 133 (2005), pp. 25–46.

[33] P.L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators,
SIAM J. Numer. Anal., 16 (1979), pp. 964–979.

[34] Y.F. Lou and M. Yan, Fast L1-L2 Minimization via a Proximal Operator, preprint,
arXiv:1609.09530.v2, 2016.

[35] Y.F. Lou, P.H. Yin, Q. He, and J. Xin, Computing sparse representation in a highly coherent
dictionary based on difference of L1 and L2, J. Sci. Comput., 64 (2015), pp. 178–196.

[36] B. Jiang, S. Ma, and S. Zhang, Alternating direction method of multipliers for real and
complex polynomial optimization models, Technical report, 2013; available at http://
www.menet.umn.edu/∼zhangs/Reports/2013 JMZ.pdf.

[37] G.Y. Li and T.K. Pong, Global convergence of splitting methods for nonconvex composite
optimization, SIAM J. Optim., 25 (2015), pp. 2434–2460.

[38] B. Mordukhovich, Variational Analysis and Generalized Differentiation, Springer, Berlin,
2006.

[39] J.M. Orgeta and W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several
Variables, Classics Appl. Math. 30, SIAM, Philadelphia, PA, 2000.

[40] J.S. Pang, M. Razaviyayn, and A. Alvarado, Computing B-stationary points of nonsmooth
DC programs, Math. Oper. Res., 42 (2017), pp. 95–118.

[41] D.T. Pham and H.A. Le Thi, Convex analysis approach to DC programming: Theory, algo-
rithm and applications, Acta Math. Vietnam., 22 (1997), pp. 289–355.

[42] M. Razaviyayn, M. Hong, and Z.Q. Luo, A unified convergence analysis of block successive
minimization methods for nonsmooth optimization, SIAM J. Optim., 23 (2013), pp. 1126–
1153.

[43] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
[44] R.T. Rockafellar and R.J.B. Wets, Variational Analysis, 3rd ed., Grundlehren Math.

Wiss. 317, Springer, Berlin, Heidelberg, 2009.
[45] M. Tao and X.M. Yuan, Recovering low-rank and sparse components of matrices from in-

complete and noisy observations, SIAM J. Optim., 21 (2011), pp. 57–81.
[46] F.H. Wang, Z.B. Xu, and H.K. Xu, Convergence of Bregman Alternating Direction Method

with Multipliers for Nonconvex Composite Problems, preprint, https://arxiv.org/pdf/
1410.8625v3.pdf, 2014.

D
ow

nl
oa

de
d 

05
/2

2/
18

 to
 5

8.
19

2.
52

.3
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

www.tandfonline.com/doi/abs/10.1080/00207160.2016.1227432?journalCode=gcom20
www.tandfonline.com/doi/abs/10.1080/00207160.2016.1227432?journalCode=gcom20
http://www.menet.umn.edu/~zhangs/Reports/2013_JMZ.pdf
http://www.menet.umn.edu/~zhangs/Reports/2013_JMZ.pdf
https://arxiv.org/pdf/1410.8625v3.pdf
https://arxiv.org/pdf/1410.8625v3.pdf


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DECOMPOSITION FOR NONSMOOTH NONCONVEX OPTIMIZATION 1669

[47] Y. Wang, W.T. Yin and J.S. Zeng, Global Convergence of ADMM in Nonconvex Nonsmooth
Optimization, preprint, http://arxiv.org/pdf/1511.06324v3.pdf, 2016.

[48] F.H. Wang, W.F. Cao, and Z.B. Xu, Convergence of Multi-Block Bregman ADMM for
Nonconvex Composite Problems, preprint, https://arxiv.org/pdf/1505.03063v1.pdf, 2015.

[49] Z. Wen, C. Yang, X. Liu, and S. Marchesini, Alternating direction methods for classical
and ptychographic phase retrieval, Inverse Problems, 28 (2012), pp. 1–18.

[50] S.J. Wright, Coordinate descent algorithms, Math. Program., 151 (2015), pp. 3–34.
[51] Y.Y. Xu, W.T. Yin, Z.W. Wen, and Y. Zhang, An alternating direction algorithm for

matrix completion with nonnegative factors, Front. Math. China, 7 (2012), pp. 365–384.
[52] Y. Xu and W.T. Yin, Block stochastic gradient iteration for convex and nonconvex optimiza-

tion, SIAM J. Optim., 25 (2015), pp. 1686–1716.
[53] Y. Xu and W.T. Yin, A block coordinate descent method for regularized multiconvex opti-

mization with applications to nonnegative tensor factorization and completion, SIAM J.
Imag. Sci., 6 (2013), pp. 1758–1789.

[54] P.H. Yin, Y.F. Lou, Q. He, and J. Xin, Minimization of `1−2 for compressed sensing, SIAM
J. Sci. Comput., 37 (2015), A536–A563.

[55] Y. Zhang, An Alternating Direction Algorithm for Nonnegative Matrix Factorization, Tech-
nical report, Rice University, Houston, TX, 2010; available at http://www.caam.rice.edu/
∼zhang/reports/tr1003.pdf.

D
ow

nl
oa

de
d 

05
/2

2/
18

 to
 5

8.
19

2.
52

.3
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://arxiv.org/pdf/1511.06324v3.pdf
https://arxiv.org/pdf/1505.03063v1.pdf
http://www.caam.rice.edu/~zhang/reports/tr1003.pdf
http://www.caam.rice.edu/~zhang/reports/tr1003.pdf

	Introduction
	Preliminaries
	Directional derivative-based stationarity
	Subgradient-based stationarity

	The combined BCDM and ADMM
	A numerical example
	Assumptions

	Convergence proof
	Randomized choice of subproblems
	Convergence proof of randomization

	Conclusions
	References

