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Let Mn be a closed manifold of almost nonnegative sectional 
curvature and nonzero first de Rham cohomology group. 
Using a topological argument, we show that the Morse-
Novikov cohomology group Hp(Mn, θ) vanishes for any p and 
[θ] ∈ H1

dR(Mn), [θ] �= 0. Based on a new integral formula, 
we also show that a similar result holds for a closed manifold 
of almost nonnegative Ricci curvature under the additional 
assumption that its curvature operator is uniformly bounded 
from below.
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1. Introduction

Let Mn be a smooth manifold and θ a real valued closed one form on Mn. Set Ωp(Mn)
the space of real smooth p-forms and define dθ : Ωp(Mn) → Ωp+1(Mn) as dθα = dα+θ∧α
for α ∈ Ωp(Mn). Then we have a complex

· · · → Ωp−1(Mn) dθ−→ Ωp(Mn) dθ−→ Ωp+1(Mn) → · · ·
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whose cohomology Hp(M, θ) = Hp(Ω∗(Mn), dθ) is called the p-th Morse-Novikov coho-
mology group of Mn with respect to θ. If θ1, θ2 are two representatives in the cohomology 
class [θ], then Hp(M, θ1) � Hp(M, θ2). Hence Hp(M, θ) only depends on the de Rham 
cohomology class of θ. This cohomology shares many properties with the ordinary de 
Rham cohomology. See [11,18,19] and section 2 for details.

If [θ] = 0, the Novikov cohomology group Hp(M, θ) is isomorphic to the de Rham 
cohomology group Hp

dR(Mn). There are lots of work relating de Rham cohomology to 
curvature properties of Riemannian manifolds. See for example [20]. In particular, a 
celebrated theorem of Gromov says that the Betti number of a closed manifold with 
almost nonnegative sectional curvature is bounded above by a constant depending only 
the dimension of the manifold [10]. Here we say that a Riemannian manifold Mn has 
almost nonnegative sectional curvature if it admits a sequence of Riemannian metrics gi
such that

sec(gi) ≥ −1
i

D(gi) ≤ 1,

where sec(gi) is the sectional curvature of gi and D(gi) is the diameter of gi.
However, there are quite few work discussing the relationship between Morse-Novikov 

cohomology Hp(M, θ) and curvature when [θ] �= 0. This paper is trying to make an 
attempt towards this direction. Our first result is the following theorem.

Theorem 1.1. Let Mn be a closed Riemannian manifold of almost nonnegative sectional 
curvature and nonzero first de Rham cohomology group, then the Morse-Novikov coho-
mology Hp(M, θ) = 0 for any p (including p = 0) and any [θ] ∈ H1

dR(Mn), [θ] �= 0.

From the work in [8,15], we know that a closed Riemannian manifold Mn of almost 
nonnegative sectional curvature is an almost nilpotent space. Namely, there is a finite 
cover of Mn, denoted by M̂n, such that π1(M̂n) is a nilpotent group that operates 
nilpotently on πk(M̂n) for every k ≥ 2. Recall that an action by automorphisms of 
a group G on an abelian group V is called nilpotent if V admits a finite sequence of 
G-invariant subgroups

V = V0 ⊃ V1 ⊃ V2 ⊃ · · · ⊃ Vk = 0

such that the induced action of G on Vj/Vj+1 is trivial for any j. Now Theorem 1.1 is a 
consequence of the following topological result.

Theorem 1.2. Let Mn be a smooth manifold with nonzero first de Rham cohomol-
ogy group. If Mn is an almost nilpotent space, then the Morse-Novikov cohomology 
Hp(M, θ) = 0 for any p and any [θ] ∈ H1

dR(Mn), [θ] �= 0.
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By Theorem 2.1 in section 2, we see that 
∑n

p=0(−1)pdimHp(Mn, θ) is equal to the 
Euler characteristic number of Mn. Hence we get the following

Corollary 1.3. Let Mn be a smooth manifold with nonzero first de Rham cohomology 
group. If Mn is an almost nilpotent space, then its Euler characteristic number vanishes.

Corollary 1.3 implies that a closed Riemannian manifold of almost nonnegative sec-
tional curvature and nonzero first de Rham cohomology group has vanishing Euler 
characteristic number. This result has previously been proved by Yamaguchi in [23]
using collapsing theory.

Theorem 1.1 fails for closed manifolds of almost nonnegative Ricci curvature. Re-
call that a Riemannian manifold has almost nonnegative Ricci curvature if it admits a 
sequence of Riemannian metrics gi such that

Ric(gi) ≥ −n− 1
i

D(gi) ≤ 1,

where Ric(gi) is the Ricci curvature of gi and D(gi) is the diameter of gi. Let M4 be 
the manifold performing surgery along a meridian curve in T 4, i.e., removing a tubular 
neighborhood of the curve and attaching a copy of D2 × S2. In [1], Anderson showed 
that M4 admits a sequence of Riemannian metrics gi such that

|Ric(gi)| ≤
n− 1
i

D(gi) ≤ 1.

Moreover, its fundamental group is isomorphic to Z3 and its Euler characteristic number 
is nonzero. For any [θ] ∈ H1

dR(M4), [θ] �= 0, by Theorem 2.1 and Theorem 2.3 in section 2, 
we get Hp(M4, θ) = 0 for p �= 2 and H2(M4, θ) �= 0. However, the sectional curvature 
of gi constructed by Anderson can not have a uniform lower bound. Otherwise, there 
will be also an upper bound of the sectional curvature and by Theorem 1 in [22], M4

will fiber over S1 which is impossible by the construction. In particular, the curvature 
operator of gi can not have a uniform lower bound. By the following Theorem 1.4 and its 
Corollary 1.5, M4 in fact can not admit a sequence of Riemannian metrics gi of almost 
nonnegative Ricci curvature with curvature operator uniformly bounded from below.

Theorem 1.4. Let Mn be a closed Riemannian manifold with nonzero first de Rham 
cohomology group and admits a sequence of Riemannian metrics gi such that

Ric(gi) ≥ −n− 1
i

D(gi) ≤ 1.
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If the curvature operator of gi is uniformly bounded from below by −Id, then for any 
[θ] ∈ H1

dR(Mn), [θ] �= 0, there exists some t ∈ R, t �= 0 such that Hp(M, tθ) = 0 for any 
p, where Hp(M, tθ) is the Morse-Novikov cohomology group with respect to tθ.

Corollary 1.5. Let Mn be a closed Riemannian manifold with nonzero first de Rham 
cohomology group. If Mn admits a sequence of Riemannian metrics of almost nonnegative 
Ricci curvature with curvature operator uniformly bounded from below, then the Euler 
characteristic number of Mn vanishes.

For a closed Riemannian manifold (Mn, gi) with almost nonnegative Ricci curvature 
and nonzero first de Rham cohomology group, Theorem 1 in [22] also implies that Mn

has vanishing Euler number if the sectional curvature of gi has a uniform upper bound. 
Theorem 1 in [22] was proved by collapsing theory and is quite different from our method 
in this paper.

It has been known that the fundamental group of a closed manifold M of almost 
nonnegative Ricci curvature is almost nilpotent [3,16]. By Theorem 2.3, H1(M, θ) = 0 for 
any [θ] �= 0 without any additional assumption. See [14] for related work on noncollapsed 
almost Ricci flat manifolds.

Finally, we point out that for a closed Riemannian manifold M of nonnegative Ricci 
curvature and nonzero first de Rham cohomology group, then the Morse-Novikov coho-
mology Hp(M, θ) = 0 for any p and [θ] ∈ H1

dR(M), [θ] �= 0. In fact, by Cheeger-Gromoll 
splitting theorem [5], a finite cover of M is diffeomorphic to a product of a torus and 
a simply connected manifold. By Theorem 2.1 and Example 1, we see that the Morse-
Novikov cohomology Hp(M, θ) = 0 for any p and [θ] ∈ H1

dR(M), [θ] �= 0.
The proof of Theorem 1.2 is based on Cartan-Leray spectral sequence on equivalent 

homology [4]. By passing to a finite cover, we can assume that Mn is a nilpotent space. 
The closed one form θ on Mn defines a linear representation of the fundamental group 
of Mn:

ρ : π1(Mn) → GL(1,C) = C∗, [γ] 
→ e
∫
γ
θ.

The representation ρ defines a complex rank one local system Cρ over Mn [6]. We denote 
by Hp(Mn, Cρ) the p-th cohomology group of Mn with coefficients in this local system. 
By Theorem 2.2 in section 2, for any p, we have

Hp(Mn, θ) � Hp(Mn,Cρ).

By duality, it suffices to show that Hp(Mn, Cρ) = 0, where Hp(Mn, Cρ) is the p-th 
homology group of Mn with coefficients in this local system. Let π : M̃n → Mn be the 
universal cover of Mn. By the Cartan-Leray spectral sequence [4], we have

E2
kl = Hk(π1(Mn), Hl(M̃n,C)) ⇒ Hk+l(Mn,Cρ), (1.1)
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where Hk(π1(Mn), Hl(M̃n, C)) is the k-th homology group of π1(Mn) with coefficients 
in the π1(Mn)-module Hl(M̃n, C). Then we prove by induction to get the vanishing of 
Hp(Mn, Cρ).

The proof of Theorem 1.4 is based on Hodge theory of Morse-Novikov cohomology. 
Let d∗ be the formal L2 adjoint of d with respect to the Riemannian metric gi. We 
can also define an operator d∗θ as the formal L2 adjoint of dθ with respect to gi. Fur-
ther, Δθ = dθd

∗
θ + d∗θdθ is the corresponding Laplacian. These operators are lower-order 

perturbations of the corresponding operators in the usual Hodge-de Rham theory and 
therefore have much the same analytic properties. For example, the usual proof of the 
Hodge decomposition theorem goes through, and one obtains an orthogonal decomposi-
tion

Ωp(Mn) = Hp(Mn) ⊕ dθ(Ωp−1(Mn)) ⊕ d∗θ(Ωp+1(Mn)),

where Hp(Mn) is the space of Δθ harmonic forms, which is isomorphic to Hp(Mn, θ).
By Hodge theory, for each i we can choose a harmonic form θi in the cohomology 

class [θ]. Let V (gi) be the volume of (Mn, gi), dVi the volume form of gi and Xi the dual 
vector field of θi defined by gi(Xi, Y ) = θ(Y ). Set ti = ( V (gi)∫

Mn |Xi|2dVi
)1/2 > 0. Choose a 

Δtiθi harmonic form αi in Hp(Mn, tiθi). The idea is to show that αi ≡ 0 for sufficiently 
large i, which relies on the following crucial integral inequality proved in Corollary 4.3.∫

Mn

t2i |Xi|2|αi|2dVi ≤ Cn

∫
Mn

(ti|∇Xi| + ti|div(Xi)|)|αi|2dVi (1.2)

for some constant Cn depending only on n.
As Ric(gi) ≥ −n−1

i , applying Bochner formula to Xi, we get∫
Mn

|∇Xi|2dVi ≤
n− 1
i

∫
Mn

|Xi|2dVi. (1.3)

Combining (1.2) and (1.3), for sufficiently large i we will show∫
Mn

|αi|2dVi ≤
1
2

∫
Mn

|αi|2dVi.

Hence αi ≡ 0. See section 5 for details.
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2. Basic properties of Morse-Novikov cohomology

In this section we collect some basic properties of Morse-Novikov cohomology.

Theorem 2.1. Let Mn be a compact n-dimensional manifold and θ a closed one form on 
Mn. Then:
(1) If θ′ = θ + df, f ∈ C∞(Mn, R), then for any p, we have Hp(Mn, θ′) � Hp(Mn, θ)
and the isomorphism is given by the map [α] 
→ [efα];
(2) If [θ] �= 0 and Mn is connected and orientable, then H0(Mn, θ) and Hn(Mn, θ)
vanish. Moreover, the integration 

∫
: Hp(Mn, θ) × Hn−p(Mn, −θ), (α, β) 
→

∫
Mn α ∧ β

induces an isomorphism Hp(Mn, θ) � (Hn−p(Mn, −θ))∗.
(3) 

∑n
p=0(−1)pdimHp(Mn, θ) is equal to the Euler characteristic number of Mn;

(4) If Nd be a d-dimensional manifold and γ be a closed one form on Nd, then we have 
Hk(Mn ×Nd, π∗

1θ + π∗
2γ) �

⊕
p+q=k H

p(Mn, θ) 
⊗

Hq(Nd, γ), where π1 : Mn ×Nd →
Mn, π2 : Mn ×Nd → Nd are the projection maps.
(5) If π : M̂n → Mn is a covering space with finite sheet, then π∗ : Hp(Mn, θ) →
Hp(M̂n, π∗θ) is injective for any p.

Proof. See page 476-480 in [11] and Proposition 1.2 in [18] for the proof of parts 1-4. 
For part 5, by Theorem 2.2, we have

Hp(Mn, θ) � Hp(Mn,Cρ),

where Cρ is the complex rank one local system defined by the linear representation

ρ : π1(Mn) → GL(1,C) = C∗, [γ] 
→ e
∫
γ
θ

and Hp(Mn, Cρ) is the p-th cohomology group of Mn with coefficients in this local 
system.

As π : M̂n → Mn is a covering space with finite sheet, one can construct a transfer 
map (see e.g. [9,12]) h : Hp(M̂n, π∗Cρ) → Hp(Mn, Cρ) such that hπ∗ = kId, where k
is the degree of π. It follows that π∗ : Hp(Mn, θ) � Hp(Mn, Cρ) → Hp(M̂n, π∗Cρ) �
Hp(M̂n, π∗θ) is injective. �

As a corollary of Theorem 2.1, we get

Example 1. Let Mn be n-dimensional torus, then Hp(Mn, θ) = 0 for any p and [θ] �= 0
by Theorem 2.1.

Let θ be a closed one form on Mn. Consider the following linear representation of the 
fundamental group of Mn:

ρ : π1(Mn) → GL(1,C) = C∗, [γ] 
→ e
∫
γ
θ.
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The representation ρ defines a complex rank one local system Cρ over Mn [6]. We denote 
by Hp(Mn, Cρ) the p-th cohomology group of Mn with coefficients in this local system.

Theorem 2.2. Hp(Mn, θ) � Hp(Mn, Cρ) for any p.

Proof. The proof is contained in [19]. For the convenience of the reader, we provide 
the details here. Let π : M̃n → Mn be the universal cover of Mn. The cohomology 
groups Hp(Mn, Cρ) are isomorphic to Hp

ρ (M̃n), the cohomology groups of the complex 

Ω(M̃n, ρ), consisting of the ρ-equivariant differential forms on M̃n relative to the usual 
differential (the proof is analogous to the sheaf-theoretic proof of de Rham’s theorem). 
Let h be a function on M̃n such that dh = π∗θ. We give a mapping F : Ω∗(Mn) →
Ω∗(M̃n, ρ) by the formula F (w) = ehπ∗w. It is easy to see that F is one-to-one and 
commutes with the differentials. Hence

Hp(Mn, θ) � Hp
ρ (M̃n) � Hp(Mn,Cρ). �

Theorem 2.3. Let Mn be a n-dimensional manifold and θ a closed one form on Mn. If 
the fundamental group of Mn has a finitely generated nilpotent subgroup of finite index, 
then H1(Mn, θ) = Hn−1(Mn, θ) = 0 for any [θ] �= 0.

Proof. Let G ⊆ π1(Mn) be a finitely generated nilpotent subgroup of finite index and 
π : M̂n → Mn the covering space of Mn with π1(M̂n) � G. The closed one form π∗θ

defines a linear representation of G:

ρ : G = π1(M̂n) → GL(1,C) = C∗, [γ] 
→ e
∫
γ
π∗θ.

The representation ρ defines a complex rank one local system Cρ over M̂n. We denote by 
Hp(M̂n, Cρ) the p-th cohomology group of M̂n with coefficients in the local system Cρ. 
Let K(G, 1) be the topological space such that π1(K(G, 1)) = G, πi(K(G, 1)) = 0, i ≥ 2
and Lρ the complex rank one local system over K(G, 1) defined by ρ. Since the classifying 
map M̂n → K(G, 1) induces over Q a cohomology isomorphism in degree one, we get

H1(M̂n,Cρ) � H1(K(G, 1),Lρ).

As π : M̂n → Mn is a finite cover, [θ] �= 0 implies that [π∗θ] �= 0. Then Lρ is a nontrivial 
local system over K(G, 1). As G is a finitely generated nilpotent group, by Theorem 2.2 
in [17], for any p, we have

Hp(K(G, 1),Lρ) = 0.

In particular,

H1(M̂n,Cρ) � H1(K(G, 1),Lρ) = 0.
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By Theorem 2.1 and Theorem 2.2, we have

H1(M̂n, π∗θ) = 0

H1(Mn, θ) = 0

Hn−1(Mn, θ) � H1(Mn,−θ) = 0. �
For a smooth manifold which is not an almost nilpotent space, its Morse-Novikov 

cohomology does not necessarily vanish as the following example shows.

Example 2. [15] Let h : S3 × S3 → S3 × S3 be defined by

h : (x, y) → (xy, yxy).

This map is a diffeomorphism with inverse given by

h−1 : (u, v) → (u2v−1, vu−1).

Let M be the mapping torus of h. Then M has the structure of a fiber bundle:

S3 × S3 → M → S1.

The induced map h∗,3 on H3
dR(S3 × S3) is given by the matrix

Ah =
(

1 1
1 2

)
(2.1)

Notice that the eigenvalues of Ah are different from 1 in absolute value. Hence Mn is 
not an almost nilpotent space. Let λ be a eigenvalue of Ah with λ = e−t, t �= 0, t ∈ R

and θ a generator of H1
dR(M). We claim that H3(M, tθ) �= 0. To see this, observe that 

tθ defines a linear representation of the fundamental group of M :

ρt : π1(M) → GL(1,C) = C∗, [γ] 
→ et
∫
γ
θ.

The representation ρt defines a complex rank one local system Cρt
over Mn [6]. We 

denote by Hp(Mn, Cρt
) the p-th cohomology group of Mn with coefficients in this local 

system. By Theorem 2.2 in section 2, for any p, we have

Hp(M, tθ) � Hp(Mn,Cρt
).

On the other hand, by Wang’s exact sequence in Proposition 6.4.8 in [6] page 212, we 
have

dimC Hp(Mn,Cρt
) = dimC ker(h∗,p − e−tId) + dimC coker(h∗,p−1 − e−tId),
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where h∗,p : Hp(S3 × S3, C) → Hp(S3 × S3, C) is the linear map induced by h. As e−t

is an eigenvalue of h∗,3, we see that dimC ker(h∗,3 − e−tId) > 0 and H3(M, tθ) �= 0.

3. Cartan-Leray spectral sequence

In this section we apply Cartan-Leray spectral sequence to prove Theorem 1.2. By 
passing to a finite cover, we can assume that Mn is a nilpotent space. The closed one 
form θ induces a linear representation of G = π1(Mn):

ρ : π1(Mn) → GL(1,C) = C∗, [γ] 
→ e
∫
γ
θ.

By Theorem 2.2, for any p, we have

Hp(Mn, θ) � Hp(Mn,Cρ),

where Cρ is the complex rank one local system over Mn defined by ρ. By duality, it 
suffices to prove the vanishing of Hp(Mn, Cρ), which is the homology group of Mn

with coefficients in the local system Cρ. Let M̃n be the universal cover of Mn. The 
representation ρ together with the G action on M̃n by deck transformation induces the 
diagonal action on Hl(M̃n, C) � Hl(M̃n, Z) ⊗C. By the Cartan-Leray spectral sequence 
(Theorem 7.9, page 173 in [4]), we have

E2
kl = Hk(G,Hl(M̃n,C)) ⇒ Hk+l(Mn,Cρ),

where Hk(G, Hl(M̃n, C)) is the k-th homology group of G with coefficients in the G-
module Hl(M̃n, C). See [4] for more details of homology of groups. For us, we only need 
the following long exact sequence (Proposition 6.1, page 71 in [4]).

Lemma 3.1. For any short exact sequence 0 → M ′ → M → M ′′ → 0 of G-modules, there 
is the following long exact sequence:

· · · → Hi(G,M ′) → Hi(G,M) → Hi(G,M ′′) → Hi−1(G,M ′) → Hi−1(G,M) → · · ·

→ H1(G,M ′) → H1(G,M) → H1(G,M ′′) → H0(G,M ′) → H0(G,M)

→ H0(G,M ′′) → 0.

As Mn is a nilpotent space, then G = π1(Mn) is a nilpotent group that operates 
nilpotently on πm(Mn) for every m ≥ 2. By Lemma 2.18 in [13], G operates nilpotently 
on Hl(M̃n, Z) for every l, that is V = Hl(M̃n, Z) admits a finite sequence of G-invariant 
subgroups

V = V0 ⊇ V1 ⊇ . . . Vk = 0
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such that the induced action of G on Vj/Vj+1 is trivial for any j. The representation ρ
of G induces a diagonal action on Vj ⊗C and we have the following short exact sequence 
of G modules:

0 → Vj+1 ⊗C → Vj ⊗C → Vj/Vj+1 ⊗C → 0.

We now prove Hk(G, Vj ⊗C) = 0 for any j by induction. It is clear that Hk(G, Vk ⊗
C) = Hk(G, 0) = 0. As [θ] �= 0, we see that ρ is a nontrivial representation of G. By 
assumption, the induced action of G on Vj/Vj+1 is trivial for any j. Then the diagonal 
action of G on Vj/Vj+1 ⊗ C is nontrivial. As G is a finitely generated nilpotent group, 
by Theorem 2.2 in [17], we get

Hk(G,Vj/Vj+1 ⊗C) = 0.

By Lemma 3.1 and induction, for any j, we get

Hk(G,Vj ⊗C) = 0.

In particular,

Hk(G,Hl(M̃n,C)) = Hk(G,V0 ⊗C) = 0.

By the Cartan-Leray spectral sequence [4], we have

E2
kl = Hk(G,Hl(M̃n,C)) ⇒ Hk+l(Mn,Cρ).

Hence for any k, l ≥ 0, we have

Hk+l(Mn,Cρ) = 0.

Then we get Hp(Mn, θ) = 0 for any p and [θ] �= 0.

4. An integral formula of Δθ harmonic forms

In section we derive an integral formula of Δθ harmonic forms which will be crucial 
in the proof of Theorem 1.4.

Let (Mn, g) be a closed Riemannian manifold and θ a closed real one form on Mn. 
Define dθ : Ωp(Mn) → Ωp+1(Mn) as dθα = dα + θ ∧ α for α ∈ Ωp(Mn). Let d∗ be the 
formal L2 adjoint of d with respect to g. We can also define an operator d∗θ as the formal 
L2 adjoint of dθ with respect to g. Further, Δθ = dθd

∗
θ +d∗θdθ is the corresponding Lapla-

cian. These operators are lower-order perturbations of the corresponding operators in 
the usual Hodge-de Rham theory and therefore have much the same analytic properties. 
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For example, the usual proof of the Hodge decomposition theorem goes through, and 
one obtains an orthogonal decomposition

Ωp(Mn) = Hp(Mn) ⊕ dθ(Ωp−1(Mn)) ⊕ d∗θ(Ωp+1(Mn)),

where Hp(Mn) is the space of Δθ harmonic forms, which is isomorphic to Hp(Mn, θ).
Let dV be the volume form of g and X the dual vector field of θ defined by g(X, Y ) =

θ(Y ). Choose a Δθ harmonic form α in Hp(Mn, θ). Then

dθα = dα + θ ∧ α = 0

d∗θα = d∗α + iXα = 0.

The following integral formula and its Corollary 4.3 will be crucial in the proof of 
Theorem 1.4.

Theorem 4.1. ∫
Mn

|X|2|α|2dV = 1
2

∫
Mn

α ∧ [LX , ∗]α,

where [LX , ∗]α = LX ∗α−∗LXα and LXα is the Lie derivative of α in the direction X.

Remark 4.2. When θ is exact and X = ∇f for some smooth function f on Mn, we 
believe that the integral formula in Theorem 4.1 is the same as [7]. It is also possible 
to adapt the method in [7] to prove Theorem 4.1. However, we present a different proof 
here.

Corollary 4.3. ∫
Mn

|X|2|α|2dV ≤ Cn

∫
Mn

(|∇X| + |div(X)|)|α|2dV

for some constant Cn depending only on n.

Proof. The Riemannian metric g on Mn induces a linear map between TMn and T ∗Mn

defined by

g : TMn → T ∗Mn

< g(X), Y >= g(X,Y ),∀X,Y ∈ TMn.

Let g−1 be the inverse of the above map g and h the endomorphism of the bundle 
T ∗Mn → Mn by
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h = LXg ◦ g−1.

The derivation of the Grassmann algebra ΛT ∗Mn induced by h is denoted by i(h). This 
is a linear map such that, if γ ∈ T ∗Mn, then i(h)(γ) = h(γ), and

i(h)(ω1 ∧ ω2) = (i(h)ω1) ∧ ω2 + ω1 ∧ (i(h)ω2) (4.1)

for any ω1, ω2 ∈ ΛT ∗Mn. The following formula is proved in [21].

[LX , ∗]ω = (i(h) − 1
2Trh) ∗ ω (4.2)

for any ω ∈ ΛT ∗Mn.
Let div(X) be the divergence of X with respect to g. As

(LXg)(Y,Z) = g(∇Y X,Z) + g(Y,∇ZX)

for all Y, Z ∈ TMn, we see that Trh = 2div(X). Then by Theorem 4.1, we get∫
Mn

|X|2|α|2dV ≤ Cn

∫
Mn

(|∇X| + |divX|)|α|2dV

for some constant Cn depending only on n. �
Now we prove Theorem 4.1. We firstly need the following lemmas.

Lemma 4.4. For any p form ω, we have

∗iXω = (−1)p−1θ ∧ ∗ω, (4.3)

where ∗ is the Hodge star operator with respect to g.

Proof. For any p − 1 form ξ, we have∫
Mn

ξ ∧ ∗iXω =
∫

Mn

g(ξ, iXω)dV

=
∫

Mn

g(θ ∧ ξ, ω)dV =
∫

Mn

θ ∧ ξ ∧ ∗ω

= (−1)p−1
∫

Mn

ξ ∧ θ ∧ ∗ω.

Hence

∗iXω = (−1)p−1θ ∧ ∗ω. �
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Lemma 4.5. Let β = ∗α, then

dβ − θ ∧ β = 0.

Proof. As d∗α = (−1)n(p+1)+1 ∗ d ∗ α and d∗α + iXα = 0, we get

(−1)n(p+1)+1 ∗ d ∗ α + iXα = 0.

Hence

(−1)n(p+1)+1 ∗ ∗d ∗ α + ∗iXα = 0.

By Lemma 4.4, we have

∗iXα = (−1)p−1θ ∧ ∗α.

It follows that

(−1)pd ∗ α + (−1)p−1θ ∧ ∗α = 0

So

dβ − θ ∧ β = 0. �
Now we proceed to prove Theorem 4.1. As dα + θ ∧ α = 0, we get

iXdα + iX(θ ∧ α) = 0.

So

iXdα ∧ β + |X|2α ∧ β − θ ∧ iXα ∧ β = 0. (4.4)

On the other hand, as dβ − θ ∧ β = 0, we get

iXdβ − iX(θ ∧ β) = 0.

So

iXdβ ∧ α− |X|2β ∧ α + θ ∧ iXβ ∧ α = 0.

Then

α ∧ iXdβ − |X|2α ∧ β + (−1)pθ ∧ α ∧ iXβ = 0. (4.5)
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By (4.4), (4.5), we get

−iXdα ∧ β + α ∧ iXdβ − 2|X|2α ∧ β + θ ∧ iXα ∧ β + (−1)pθ ∧ α ∧ iXβ = 0. (4.6)

Combined with

θ ∧ iXα ∧ β + (−1)pθ ∧ α ∧ iXβ = θ ∧ iX(α ∧ β)

= |X|2α ∧ β − iX(θ ∧ α ∧ β) = |X|2α ∧ β,

we get

−iXdα ∧ β + α ∧ iXdβ = |X|2α ∧ β. (4.7)

Since

d(iXα ∧ β) = diXα ∧ β + (−1)p−1iXα ∧ dβ,

we get ∫
Mn

iXα ∧ dβ = (−1)p
∫

Mn

diXα ∧ β. (4.8)

On the other hand, we have

0 = iX(α ∧ dβ) = iXα ∧ dβ + (−1)pα ∧ iXdβ. (4.9)

Combining (4.8), (4.9), we get∫
Mn

α ∧ iXdβ = −
∫

Mn

diXα ∧ β. (4.10)

From (4.7), (4.10), we get∫
Mn

|X|2α ∧ β = −
∫

Mn

iXdα ∧ β −
∫

Mn

diXα ∧ β = −
∫

Mn

LXα ∧ β

= −
∫

Mn

LX(α ∧ β) +
∫

Mn

α ∧ LXβ =
∫

Mn

α ∧ LXβ. (4.11)

As β = ∗α, we get∫
α ∧ LXβ =

∫
α ∧ LX ∗ α =

∫
α ∧ ∗LXα +

∫
α ∧ [LX , ∗]α. (4.12)
Mn Mn Mn Mn
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Moreover, ∫
Mn

α ∧ ∗LXα =
∫

Mn

LXα ∧ ∗α

=
∫

Mn

LX(α ∧ ∗α) −
∫

Mn

α ∧ LX ∗ α = −
∫

Mn

α ∧ LX ∗ α

= −
∫

Mn

α ∧ ∗LXα−
∫

Mn

α ∧ [LX , ∗]α.

Hence ∫
Mn

α ∧ ∗LXα = −1
2

∫
Mn

α ∧ [LX , ∗]α. (4.13)

By (4.11), (4.12), (4.13), we get∫
Mn

|X|2|α|2dV = 1
2

∫
Mn

α ∧ [LX , ∗]α.

5. Proof of Theorem 1.4

In this section we give a proof of Theorem 1.4. The proof is based on Corollary 4.3. 
Another crucial tool is the following Poincaré-Sobolev inequality ([2], page 397).

Theorem 5.1. Let (Mn, g) be a closed smooth Riemannian manifold such that for some 
constant b > 0,

rmin(g)D2(g) ≥ −(n− 1)b2,

where D(g) is the diameter of g, Ric(g) is the Ricci curvature of g and

rmin(g) = inf{Ric(g)(u, u) : u ∈ TM, g(u, u) = 1}.

Let R = D(g)
bC(b) , where C(b) is the unique positive root of the equation

x

b∫
0

(cht + xsht)n−1dt =
π∫

0

sinn−1tdt.

Then for each 1 ≤ p ≤ nq
n−q , p < ∞ and f ∈ W 1,q(Mn), we have

‖f − 1
V (g)

∫
fdV ‖p ≤ Sp,q‖df‖q
Mn
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‖f‖p ≤ Sp,q‖df‖q + V (g)1/p−1/q‖f‖q,

where V (g) is the volume of (Mn, g), S(p, q) = (V (g)/vol(Sn(1))1/p−1/qRΣ(n, p, q) and 
Σ(n, p, q) is the Sobolev constant of the canonical unit sphere Sn defined by

Σ(n, p, q) = sup{‖f‖p/‖df‖q : f ∈ W 1,q(Sn), f �= 0,
∫
Sn

f = 0}.

Let p = 2n
n−2 , q = 2 in Theorem 5.1 and apply Theorem 3 and Proposition 6 in [2]

pages 395-396, then we get the following mean value inequality.

Theorem 5.2. Let n ≥ 3 and (Mn, g) be a closed n-dimensional smooth Riemannian 
manifold such that for some constant b > 0,

rmin(g)D2(g) ≥ −(n− 1)b2.

If f ∈ W 1,2(Mn) is a nonnegative continuous function such that fΔf ≥ −cf2 (here Δ
is a negative operator) in the sense of distribution for some positive number c, then

maxx∈Mn |f |2(x) ≤ Bn(σnRc1/2)
∫
Mn f2dV

V (g) ,

where σn = vol(Sn)1/nΣ(n, 2n
n−2 , 2) and Bn : R+ → R+ is a function defined by

Bn(x) =
∞∏
i=0

(xνi(2νi − 1)−1/2 + 1)2ν
−i

, ν = n

n− 2 .

The function Bn satisfies the inequalities

Bn(x) ≤ exp(2x
√
ν/(

√
ν − 1)), 0 ≤ x ≤ 1

Bn(x) ≤ Bn(1)x2ν/(ν−1), x ≥ 1.

In particular, limx→0+Bn(x) = 1 and Bn(x) ≤ Bn(1)xn for x ≥ 1.

Let Mn be a closed Riemannian manifold with nonzero first de Rham cohomology 
group and admits a sequence of Riemannian metrics gi such that

Ric(gi) ≥ −n− 1
i

D(gi) ≤ 1.

Moreover, the curvature operator of gi is uniformly bounded from below by −Id. For any 
[θ] ∈ H1

dR(Mn), [θ] �= 0, we are going to prove that there exists some t ∈ R, t �= 0 such 
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that Hp(Mn, tθ) = 0 for any p. If n = 2, since the first Betti number of M2 is bounded 
by 2 (see e.g. [2]), the genus of M2 is at most 1 and Hp(M2, tθ) = 0 by Example 1. Now 
we assume that n ≥ 3. Let d∗ be the formal L2 adjoint of d with respect to gi. By Hodge 
theory, we can choose a harmonic one form θi in the cohomology class [θ]. Then

dθi = 0

d∗θi = 0

θi �= 0.

Let ti = ( V (gi)∫
Mn |Xi|2dVi

)1/2 > 0, where V (gi) is the volume of (Mn, gi), dVi is the 

volume form of gi, |Xi|2 = gi(Xi, Xi) and Xi is the dual vector field of θi defined by 
gi(Xi, Y ) = θ(Y ). We claim that for sufficiently large i, Hp(Mn, tiθi) = 0 for any p. 
Choose a Δtiθi harmonic form αi in Hp(Mn, tiθi). Then

dαi + tiθi ∧ αi = 0

d∗αi + itiXi
αi = 0.

The goal is to prove that αi = 0. By Theorem 2.1, we can assume that 1 ≤ deg(αi) ≤
n − 1. As Ric(gi) ≥ −n−1

i , applying Bochner formula to Xi [20], we get

1
2Δ|Xi|2 = |∇Xi|2 + Ric(gi)(Xi, Xi) ≥ |∇Xi|2 −

n− 1
i

|Xi|2, (5.1)

where Δ is the Laplacian acting on functions which is a negative operator. Then∫
Mn

|∇Xi|2dVi ≤
n− 1
i

∫
Mn

|Xi|2dVi. (5.2)

Let div(Xi) be the divergence of Xi with respect to gi. As θi is a harmonic one form, 
we see div(Xi) = 0 (see e.g. Proposition 31 in [20] page 206). By Corollary 4.3, we have∫

Mn

t2i |Xi|2|αi|2dVi ≤ Cn

∫
Mn

ti|∇Xi||αi|2dVi, (5.3)

for some constant Cn depending only on n. Applying Hölder’s inequality on (5.3) and 
using (5.2), we get ∫

Mn

t2i |Xi|2|αi|2dVi ≤ Cn

∫
Mn

ti|∇Xi||αi|2dVi

≤ Cn(
∫

t2i |∇Xi|2dVi)
1
2 (

∫
|αi|4dVi)

1
2

Mn Mn
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≤ Cn√
i
|αi|∞(

∫
Mn

t2i |Xi|2dVi)
1
2 (

∫
Mn

|αi|2dVi)
1
2 , (5.4)

where |αi|∞ = maxx∈Mn |αi|(x).

Lemma 5.3.

|Xi|2∞ =: maxx∈Mn |Xi|2(x) ≤ Bn(σnRi

√
n− 1
i

)
∫
Mn |Xi|2dVi

V (gi)
, (5.5)

|αi|2∞ =: maxx∈Mn |αi|2(x) ≤ Bn(σnRi(t2i |Xi|2∞ + Cn) 1
2 )

∫
Mn |αi|2dVi

V (gi)
, (5.6)

where Ri = D(gi)
1√
i
C( 1√

i
) , C( 1√

i
), σn, Bn(x) are defined in Theorem 5.1 and Theorem 5.2 and 

Cn is a positive constant depending only on n.

Proof. Since θi is a harmonic one form, divXi = 0. As Ric(gi) ≥ −n−1
i , applying Bochner 

formula to Xi, we get

1
2Δ|Xi|2 = |∇Xi|2 + Ric(gi)(Xi, Xi) ≥ |∇Xi|2 −

n− 1
i

|Xi|2, (5.7)

where Δ is the Laplacian acting on functions which is a negative operator. On the other 
hand, by Kato’s inequality [2], we have |∇Xi| ≥ |∇|Xi||. It follows that

|Xi|Δ|Xi| ≥ −n− 1
i

|Xi|2. (5.8)

Since Ric(gi) ≥ −n−1
i , D(gi) ≤ 1, we have

rmin(gi)D2(gi) ≥ −n− 1
i

.

Apply Theorem 5.2 to |Xi|, we get

|Xi|2∞ =: maxx∈Mn |Xi|2(x) ≤ Bn(σnRi

√
n− 1
i

)
∫
Mn |Xi|2dVi

V (gi)
, (5.9)

where Ri = D(gi)
1√
i
C( 1√

i
) . As 1 ≤ deg(αi) ≤ n − 1, applying Bochner formula to αi (Theo-

rem 51 in page 221 in [20]), we get

1
2Δ|αi|2 ≥ |∇αi|2 − |dαi|2 − |d∗αi|2 + 1

4λk|[Θk, αi]|2, (5.10)

where λk are the eigenvalues of the curvature operator of gi and Θk the dual of eigen-
vectors for the curvature operator. Since the curvature operator of gi is bounded from 
below by −Id, we have
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1
4λk|[Θk, αi]|2 ≥ −Cn|αi|2

for some positive constant Cn depending only on n.

Lemma 5.4.

t2i |Xi|2|αi|2 = |dαi|2 + |d∗αi|2.

Proof. Firstly, we have

t2i |Xi|2|αi|2dVi = tiθi ∧ itiXi
(αi ∧ ∗αi)

= t2i θi ∧ iXi
αi ∧ ∗αi + (−1)pt2i θi ∧ αi ∧ iXi

(∗αi)

= (−1)p−1t2i iXi
αi ∧ θi ∧ ∗αi + (−1)pt2i θi ∧ αi ∧ iXi

(∗αi). (5.11)

By Lemma 4.4, we get

∗iXi
αi = (−1)p−1θi ∧ ∗αi; (5.12)

∗iXi
(∗αi) = (−1)n−p−1θi ∧ ∗ ∗ αi = (−1)n−p−1(−1)np+pθi ∧ αi. (5.13)

Hence

θi ∧ ∗αi = (−1)p−1 ∗ iXi
αi (5.14)

iXi
(∗αi) = (−1)n(n−p−1)+n−p−1 ∗ ∗iXi

(∗αi) = (−1)p ∗ (θi ∧ αi). (5.15)

By (5.11), (5.14), (5.15), we get

t2i |Xi|2|αi|2dVi =t2i iXi
αi ∧ ∗(iXi

αi) + t2i θi ∧ αi ∧ ∗(θi ∧ αi)

=
(
t2i |iXi

αi|2 + t2i |θi ∧ αi|2
)
dVi. (5.16)

Since dαi + tiθi ∧ αi = 0, d∗αi + itiXi
αi = 0, we get

t2i |Xi|2|αi|2 = |dαi|2 + |d∗αi|2. �
Given Lemma 5.4, we have

1
2Δ|αi|2 ≥ |∇αi|2 − t2i |Xi|2|αi|2 − Cn|αi|2. (5.17)

By Kato’s inequality, we have |∇αi| ≥ |∇|αi||. It follows that

|αi|Δ|αi| ≥ −(t2i |Xi|2 + Cn)|αi|2 ≥ −(t2i |Xi|2∞ + Cn)|αi|2. (5.18)

Applying Theorem 5.2 to |αi|, we get
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|αi|2∞ =: maxx∈Mn |αi|2(x) ≤ Bn(σnRi(t2i |Xi|2∞ + Cn) 1
2 )

∫
Mn |αi|2dVi

V (gi)
. �

Lemma 5.5.∫
Mn |Xi|2dVi

V (gi)

∫
Mn

|αi|2dVi ≤
∫

Mn

|Xi|2|αi|2dVi

+ 2Cn|αi|2∞√
i

Ri

√
Bn(σnRi

√
n− 1
i

)
∫

Mn

|Xi|2dVi (5.19)

for some constant Cn depending only n.

Proof. Let hi = |Xi|2 and hi =
∫
Mn |Xi|2dVi

V (gi) . By Theorem 5.1 in the case p = q = 2, we 
get ∫

Mn

|hi − hi||αi|2dVi ≤ |αi|2∞(
∫

Mn

|hi − hi|2dVi)
1
2 (V (gi))

1
2

≤ Cn|αi|2∞Ri(
∫

Mn

|∇hi|2dVi)
1
2 (V (gi))

1
2

= 2Cn|αi|2∞Ri(
∫

Mn

|Xi|2|∇|Xi||2|dVi)
1
2 (V (gi))

1
2

≤ 2Cn|αi|2∞Ri(
∫

Mn

|Xi|2|∇Xi|2dVi)
1
2 (V (gi))

1
2

≤ 2Cn|αi|2∞Ri|Xi|∞(V (gi))
1
2 (

∫
Mn

|∇Xi|2dVi)
1
2

≤ 2Cn|αi|2∞Ri

√
Bn(σnRi

√
n− 1
i

)(
∫

Mn

|Xi|2dVi)
1
2 (

∫
Mn

|∇Xi|2dVi)
1
2

≤ 2Cn|αi|2∞√
i

Ri

√
Bn(σnRi

√
n− 1
i

)
∫

Mn

|Xi|2dVi.

It follows that∫
Mn |Xi|2dVi

V (gi)

∫
Mn

|αi|2dVi ≤
∫

Mn

|Xi|2|αi|2dVi

+ 2Cn|αi|2∞√
i

Ri

√
Bn(σnRi

√
n− 1
i

)
∫

|Xi|2dVi. �

Mn
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Lemma 5.6. Let C(b) be the function defined in Theorem 5.1. Namely, C(b) is the unique 
positive root of the equation

x

b∫
0

(cht + xsht)n−1dt =
π∫

0

sinn−1tdt.

Then

lim inf
b→0

bC(b) ≥ an > 0 (5.20)

for some constant an depending only on n.

Proof. Let ωn =
∫ π

0 sinn−1tdt. Then

ωn = C(b)
b∫

0

(cht + C(b)sht)n−1dt = C(b)
b∫

0

(e
t + e−t

2 + C(b)e
t − e−t

2 )n−1dt ≥ C(b)b.

On the other hand, for any sequence bi → 0, we have

ωn = C(bi)
bi∫

0

(e
t + e−t

2 + C(bi)
et − e−t

2 )n−1dt

≤ C(bi)
bi∫

0

(e + e−1

2 + C(bi)
et − e−t

2 )n−1dt

≤ C(bi)bi(
e + e−1

2 + 2biC(bi))n−1

≤ C(bi)bi(
e + e−1

2 + 2ωn)n−1

Hence for some constant an depending only on n, we have

lim inf
b→0

bC(b) ≥ an > 0 �
By (5.4), (5.5), (5.6) and (5.19), we get∫
Mn t2i |Xi|2dVi

V (gi)

∫
Mn

|αi|2dVi

≤
∫

t2i |Xi|2|αi|2dVi
Mn
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+ 2Cn|αi|2∞√
i

Ri

√
Bn(σnRi

√
n− 1
i

)
∫

Mn

t2i |Xi|2dVi

≤ Cn√
i
|αi|∞(

∫
Mn

t2i |Xi|2dVi)
1
2 (

∫
Mn

|αi|2dVi)
1
2

+ 2Cn|αi|2∞√
i

Ri

√
Bn(σnRi

√
n− 1
i

)
∫

Mn

t2i |Xi|2dVi

≤
Cn

√
Bn(σnRi(t2i |Xi|2∞ + Cn) 1

2 )
√
i

√∫
Mn t2i |Xi|2dVi

V (gi)

∫
Mn

|αi|2dVi

+ 2CnBn(σnRi(t2i |Xi|2∞ + Cn) 1
2 )√

i
Ri

√
Bn(σnRi

√
n− 1
i

)
∫
Mn t2i |Xi|2dVi

V (gi)

∫
Mn

|αi|2dVi,

(5.21)

where

|Xi|2∞ =: maxx∈Mn |Xi|2(x) ≤ Bn(σnRi

√
n− 1
i

)
∫
Mn |Xi|2dVi

V (gi)
.

As ti = ( V (gi)∫
Mn |Xi|2dVi

)1/2, we see

∫
Mn t2i |Xi|2dVi

V (gi)
= 1. (5.22)

Recall that Ri = D(gi)
1√
i
C( 1√

i
) and D(gi) ≤ 1. By (5.20), (5.21) and (5.22), using the prop-

erties of Bn(x) in Theorem 5.2, we see that for sufficiently large i,∫
Mn

|αi|2dVi ≤
1
2

∫
Mn

|αi|2dVi.

Hence αi ≡ 0 and Hp(Mn, tiθi) = 0 when n ≥ 3.
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