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Abstract
Consider the problem of reconstructing unknown Robin inclusions inside 
a heat conductor from boundary measurements. This problem arises from 
active thermography and is formulated as an inverse boundary value problem 
for the heat equation. In our previous works, we proposed a sampling-type 
method for reconstructing the boundary of the Robin inclusion and gave 
its rigorous mathematical justification. This method is non-iterative and 
based on the characterization of the solution to the so-called Neumann- 
to-Dirichlet map gap equation. In this paper, we give a further investigation 
of the reconstruction method from both the theoretical and numerical points 
of view. First, we clarify the solvability of the Neumann-to-Dirichlet map 
gap equation  and establish a relation of its solution to the Green function 
associated with an initial-boundary value problem for the heat equation inside 
the Robin inclusion. This naturally provides a way of computing this Green 
function from the Neumann-to-Dirichlet map and explains what is the input 
for the linear sampling method. Assuming that the Neumann-to-Dirichlet 
map gap equation  has a unique solution, we also show the convergence 
of our method for noisy measurements. Second, we give the numerical 
implementation of the reconstruction method for two-dimensional spatial 
domains. The measurements for our inverse problem are simulated by solving 
the forward problem via the boundary integral equation method. Numerical 
results are presented to illustrate the efficiency and stability of the proposed 
method. By using a finite sequence of transient input over a time interval, we 
propose a new sampling method over the time interval by single measurement 
which is most likely to be practical.
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1. Introduction

Any anomaly in a conductor affects the propagation of the heat flow inside the conductor and 
as a result it also affects the temperature distribution on its surface. In many practical situa-
tions, the anomalies such as cavities, inclusions and cracks inside the conductor are unknown 
and hard to be detected directly. Active thermography is a widely used non-destructive testing 
technique in industrial engineering [22, 36], aiming to extract the internal structure of a heat 
conductor such as the size, location and shape of anomalies. Single measurement of active 
thermography is to inject a heat flux by using a heater, a flush lamp or laser to the conductor 
and measure the corresponding temperature distribution on its surface by using an infrared 
light camera. This is a non-contact and very fast measurement which can be easily repeated 
many times.

Let ( )R⊂Ω =d 2, 3d  be a heat conductor and D be a Robin inclusion with impedance 
compactly embedded in Ω. We assume that the boundaries ∂Ω and ∂D of Ω and D belong to 
class C2 and that \Ω D  is connected. Injecting a heat flux g on ∂Ω over some time interval 
( )T0, , the corresponding temperature distribution ( )u x t,  in ( \ ) ( )Ω ×D T0,  can be modeled 
by the following initial-boundary value problem:

( )  ( \ ) ( )
  ( )

  ( )
 

⎧

⎨
⎪⎪

⎩
⎪
⎪

λ
∂−∆ = Ω ×
∂ − = ∂ ×
∂ = ∂Ω×
= =

ν

ν

u D T
u u D T
u g T

u t

0 in 0, ,
0 on 0, ,

on 0, ,
0 at 0,

t

 (1.1)

where ( ) ( )λ λ< = ∈ ∂x C D0 1  is the real-valued reciprocal of impedance and ν on ∂D (or ∂Ω) 
is the unit normal vector directed into the exterior of D (or Ω). We have shown in [35] that 
the initial-boundary value problem (1.1) is well-posed in a suitable Sobolev space. Due to the 
positivity of λ, we can easily show that the influence of the input decays exponentially fast in 
time, which means that the single measurement is very fast and can be repeated many times. 
Based on this, we define the Neumann-to-Dirichlet map ΛD by ( )Λ |∂Ω×�g u: TD 0, , which 
is the idealized measurement for active thermography. When D is a rigid inclusion ( )λ = ∞  
or a cavity ( )λ = 0 ; see, e.g. [27] for the physical explanation, we can formulate the initial-
boundary value problem and define the Neumann-to-Dirichlet map analogously. The inverse 
problem for active thermography is to reconstruct D from the measured data ΛD. We note 
that λ is unknown in our inverse problem. Actually, it can also be uniquely determined from 
boundary measurements [24].

There are many theoretical results for the above inverse problem; see, for example, [3, 13–
15, 24], where some uniqueness results and stability estimates are established. It should be 
mentioned that in [14, 15] the unknown inclusions can depend on time. However, compared 
with inverse problems for elliptic equations, numerical studies for inverse boundary value prob-
lems for parabolic equations  are rather limited. In [7, 8], Newton-type iteration algorithms 
based on domain derivatives are introduced. In [19, 20], the inverse problem is form ulated as 
a shape optimization problem and is solved by optimization methods. A meshless method of 
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fundamental solutions is proposed in [12], where | =u t 0 is nonzero and D can depend on t. This 
method is also applied to simultaneously reconstruct D and λ for the Laplace equation case; see 
[27]. As for non-iterative reconstruction methods, we refer to [10, 11, 23, 25, 26, 29, 39] and the 
references therein, where the dynamical probe method and the enclosure method are developed. 
In addition, a numerical scheme for reconstructing the unknown defect via Feynman–Kac type 
formula is proposed in [28]. The authors established a linear sampling-type method for the heat 
equation in [21, 34]. Recently, this method was extended to the homogeneous Robin boundary 
condition case [35], where the short time asymptotic behavior of the indicator function is also 
investigated. Roughly speaking, our sampling method is based on the characterization of the 
solution to the so-called Neumann-to-Dirichlet map gap equation

( ) ( )( )Λ − Λ =∅ g G x t, ,y sD ,
0 (1.2)

where Λ∅ is the Neumann-to-Dirichlet map when there is no D in Ω, and 

( ) ( )( ) =G x t G x t y s, : , ; ,y s,
0 0  is the Green function for the heat operator ∂−∆t  in ( )Ω× T0,  

with homogeneous Neumann boundary condition. In terms of this characterization, the norm 
of the solution to (1.2) serves as an indicator function and the boundary of D can be recon-
structed approximately by sampling points via computing the values of the indicator function 
at those points. It should be remarked that our method still works for nonzero initial condition, 
with some suitable modifications.

In this paper, assuming that D is a Robin inclusion, we give a further investigation of 
the linear sampling method for the heat equation. In [35], based on the factorization of 
the operator = Λ − Λ∅F : D , we proved that for any ε> 0 there is a function εg  such that 

∥ ( )∥ ⩽( ) ε−εFg G x t,y s,
0 , and the blow-up property of εg  is shown. However, we do not know 

whether the equation  (1.2) has an exact solution and what is the solution. So, as the first 

achievement of this paper, we clarify the solvability of the equation  ( )( )=Fg G x t,y s,
0  and 

specify what is its solution if it exists. For \∈Ωy D, this equation has no solution. For ∈y D, it 
will be shown that this equation has a solution if and only if the initial-boundary value problem

( )   ( )
( ) ( ) ( )  ( ) ( )

 
( ) ( )λ λ

∂−∆ = ×

∂ − = − ∂ − ∂ ×
= =
ν ν

⎧
⎨
⎪

⎩⎪

v D T

v G x t D T

v t

0 in 0, ,

, on 0, ,

0 at 0

t

x y s,
0 (1.3)

is solvable with the solution v satisfying the heat equation in ( )Ω× T0, . Furthermore, if g 
is the solution to (1.2), then we have ( ) ( )= ∂ |ν ∂Ω ×g v T0,  and it is proved that ( )| ×v D T0,  is the 
difference between the Green functions ( )( )G x t,y s

D
,  and ( )( )G x t,y s,

0 , where ( )( )G x t,y s
D

,  is the 
Green function of the heat operator in ( )×D T0,  with homogeneous Robin boundary condi-
tion. Hence, the linear sampling method provides a way of computing the Green function 

( )( )G x t,y s
D

,  from the Neumann-to-Dirichlet map ΛD by solving the equation  (1.2). A conv-

ergence result of our method for noisy measurements is also proved. The linear sampling 

method ejects an input g at time s creating a transient effect ( ) ( )( ) ( )−G x t G x t, ,y s
D

y s, ,
0  in D 

which can be extended to \Ω D . Mathematically this effect in D is related to the reflected 
solution of the fundamental solution which blows up as y tends to ∂D.

The second achievement of the paper is providing a numerical implementation of the lin-
ear sampling method for the heat equation in two-dimensional spatial domains. Although the 
sampling-type method has been extensively studied in the field of inverse scattering problems 
from the numerical point of view; see [1, 2, 4–6, 9, 16, 17, 30–33, 37, 38] and the references 
therein, very few numerical results for the heat equation case are reported [35]. In this paper, 
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we give a complete investigation on the numerical implementation of the linear sampling 
method in the heat equation case utilizing the freedom to choose the time s. At first, we simulate 
the measurement data ΛD by solving the forward problem (1.1), and compute the Neumann- 

to-Dirichlet map Λ∅ and the Green function ( )( )G x t,y s,
0  by solving the problem (1.1) with 

= ∅D . By expressing the solution as a single-layer heat potential, the initial-boundary value 
problem is transformed into a system of boundary integral equations  [7, 8]. A numerical 
scheme for solving the resulting integral equations is presented. Then, we solve the discre-
tized Neumann-to-Dirichlet map gap equation using the Tikhonov regularization method. We 
provide numer ical results for the following three cases: (i) fixing the transient input time s and 
measuring over (0, T); (ii) fixing s and measuring over a short time interval; (iii) giving tran-
sient inputs over a finite time series in (0, T) and measuring over a short time interval. The set 
up for the last case provides a sampling method by single measurement and can be achieved 
for instance if the inputs over a time series can be generated by an electronic function genera-
tor for flash lamps or laser. Our numerical results greatly illustrate the effectiveness and fea-
sibility of the reconstruction method. It can be easily seen that the linear sampling method for 
the heat equation allows more noise in the measured data, compared with that for inverse scat-
tering problems. Actually, the stability of numerical reconstructions with respect to the noise 
has already been observed in [19]. Our method also provides good numerical results even for 
the case that there are two reasonably separated Robin inclusions inside the conductor.

The rest of this paper is organized as follows. In section 2, we give a further invest igation of 
the linear sampling method for the heat equation. Some new results and observations are pre-
sented. Then, in section 3, we introduce a numerical scheme for solving the forward problem 
and simulate the Neumann-to-Dirichlet map. Numerical examples are provided in section 4 
to show the effectiveness of the reconstruction method. Finally, in section 5, we give some 
conclusions.

2. Reconstruction method

In this section, we revisit the linear sampling method for the heat equation studied in [35]. 
First, we clarify the solvability of the Neumann-to-Dirichlet map gap equation. Second, if 
this equation is solvable, we further establish the relation of its solution to the Green function 
associated with an initial-boundary value problem for the heat equation  in ( )×D T0, , and 
then give a way of computing this Green function from the Neumann-to-Dirichlet map. Third, 
we show a convergence result of our method for noisy measurements.

To begin with, we denote ( )×X T0,  and ( )∂ ×X T0,  by XT and ( )∂X T, respectively, where 
X is a bounded domain in Rd and ∂X denotes its boundary. We now define the anisotropic 
Sobolev spaces which will be used in this paper. For ⩾p q, 0 we define

( ) ( ( )) ( ( ))× = ∩R R R R R RH L H H L: ; ; .p q d p d q d, 2 2

For ⩽p q, 0 we define the space Hp,q by duality ( ) ( ( ))× = × ′− −R R R RH H:p q d p q d, , . By 
( )H Xp q

T
,  we denote the space of restrictions of elements in ( )×R RHp q d,  to XT. The space 

(( ) )∂H Xp q
T

,  is defined analogously. We also introduce the function space

{ }˜ ( ) ( ( )) ( )    = ∈ × −∞ = <H X u H X T u x t t: , , 0 for 0 .T
1, 1

2 1, 1
2

In [35], we proved that for any (( ) )∈ ∂Ω− −g H T
,1

2
1
4  there exists a unique solution to (1.1) in 

˜ (( \ ) )ΩH D T
1, 1

2 . Thus we define the Neumann-to-Dirichlet map by
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(( ) ) → (( ) ) ( )Λ ∂Ω ∂Ω |− −
∂Ω�H H g u: , ,T TD

1
2

, 1
4

1
2

, 1
4

T

which is an idealized measurement data for active thermography. Our inverse problem is to 
reconstruct D from ΛD.

We denote by Λ∅ the Neumann-to-Dirichlet map when there is no D inside Ω. That is, 

( )Λ = |∅ ∂Ωg v:
T
 with v satisfying

( )  
 ( )

 

∂−∆ = Ω
∂ = ∂Ω
= =
ν

⎧
⎨
⎪

⎩⎪

v
v g

v t

0 in ,
on ,

0 at 0.

t T

T (2.1)

Define the operator

= Λ − Λ∅F : .D

Then our reconstruction scheme is based on the characterization of the solution to the 
Neumann-to-Dirichlet map gap equation

( )( ) ( ) ( ) ( )( )= ∈ ∂ΩFg x t G x t x t, , , ,y s T,
0 (2.2)

for a fixed time ( )∈s T0,  and the sampling point ∈Ωy .
At first, we address the solvability issue of the equation (2.2).

Theorem 2.1. For ∈y D and any fixed ( )∈s T0, , the Neumann-to-Dirichlet map gap 
 equation (2.2) has a solution if and only if the initial-boundary value problem

( )  
( ) ( ) ( )  ( )

 
( )λ λ

∂−∆ =

∂ − = − ∂ − ∂
= =
ν ν

⎧
⎨
⎪

⎩⎪

v D

v G x t D

v t

0 in ,

, on ,

0 at 0

t T

y s T,
0 (2.3)

is solvable with the solution v satisfying the heat equation in ΩT with zero initial condition.

Proof. Assume that (( ) )∈ ∂Ω− −g H T
,1

2
1
4  is the solution to (2.2). Let u and v be the solutions 

to (1.1) and (2.1), respectively. Then we have

( )( )  ( \ )
( )( ) ( )  ( )

( )  ( )
 

λ λ
∂−∆ − = Ω
∂ − − = − ∂ − ∂
∂ − = ∂Ω
− = =

ν ν

ν

⎧

⎨
⎪⎪

⎩
⎪⎪

u v D
u v v D

u v
u v t

0 in ,
on ,

0 on ,
0 at 0.

t T

T

T
 (2.4)

Note that

( )  ( )( )− = = ∂Ωu v Fg G x t, ony s T,
0

and

( ) ( )  ( )( )∂ − = = ∂ ∂Ων νu v G x t0 , on .y s T,
0

By the unique continuation principle, we have

( )  ( \ )( )− = Ωu v G x t D, in .y s T,
0 (2.5)
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Then it follows from (2.1) and (2.4) that

( )  
( ) ( ) ( )  ( )

 
( )λ λ

∂−∆ =

∂ − = − ∂ − ∂
= =
ν ν

⎧
⎨
⎪

⎩⎪

v D

v G x t D

v t

0 in ,

, on ,

0 at 0.

t T

y s T,
0 (2.6)

On the other hand, if v is the solution to (2.3) satisfying the heat equation in ΩT, then it can 
be shown that the function ( )= ∂ |ν ∂Ωg v:

T
 meets the equation (2.2). Indeed, we observe from 

(2.3) and (2.4) that

( )( )  ( \ )

( )( )  ( )

( )  ( )

 

( )

( )

( )

( )

λ

∂−∆ − − = Ω

∂ − − − = ∂

∂ − − = ∂Ω

− − = =

ν

ν

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪⎪

u v G D

u v G D

u v G

u v G t

0 in ,

0 on ,

0 on ,

0 at 0.

t y s T

y s T

y s T

y s

,
0

,
0

,
0

,
0

 (2.7)

By the uniqueness of solutions to (2.7), we have

 ( \ )( )− = Ωu v G Din ,y s T,
0

and hence

( ) ( ) ( ) ( )= − | = |∂Ω ∂ΩFg u v G .y s,
0

T T

The proof is complete. □

This theorem clarifies the solvability of the Neumann-to-Dirichlet map gap equation (2.2). 
Moreover, if g is the solution to (2.2), we let v be the solution to (2.1) with the boundary data 

( )∂ | =ν ∂Ωv g
T

. Then we can conclude that

( ) ( )( ) ( )= −v G x t G x t D, , in .y s
D

y s T, ,
0 (2.8)

This result specifies what is the solution of the Neumann-to-Dirichlet map gap equation if it 
exists. We now give the proof of (2.8) as follows. Let ( ) ( )( ) =G x t G x t y s, : , ; ,y s,  be the fun-
damental solution to the heat equation in Rd. Set

ˆ ( ) ( ) ( )( ) ( ) ( )= − ΩG x t G x t G x t, : , , in ,y s y s y s T, ,
0

, (2.9)

which is the reflected solution of the fundamental solution in ΩT and satisfies

( ) ˆ ( )  
ˆ ( ) ( )  ( )

ˆ ( )  

( )

( ) ( )

( )

∂−∆ = Ω

∂ = −∂ ∂Ω

= =

ν ν

⎧

⎨
⎪⎪

⎩
⎪⎪

G x t

G x t G x t

G x t t

, 0 in ,

, , on ,

, 0 at 0.

t y s T

y s y s T

y s

,

, ,

,

 (2.10)

Here we would like to mention that the reflected solution ˆ ( )( )G x t,y s,  and the Green function 
( )( )G x t,y s,

0  are completely determined by the domain Ω, so they are known in our inverse 
problem. Set

˜ ( ) ( ) ( )( ) ( ) ( )= −G x t G x t G x t D, : , , in ,y s y s
D

y s T, , , (2.11)
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which is the reflected solution of the fundamental solution in DT. Observe that ˜ ( )( )G x t,y s,  
satisfies

( ) ˜ ( )  
( ) ˜ ( ) ( ) ( )  ( )
˜ ( )  

( )

( ) ( )

( )

λ λ

∂−∆ =

∂ − = − ∂ − ∂

= =
ν ν

⎧

⎨
⎪

⎩
⎪

G x t D

G x t G x t D

G x t t

, 0 in ,

, , on ,

, 0 at 0.

t y s T

y s y s T

y s

,

, ,

,

 (2.12)

Then we have

( )( ˜ ( ) ˆ ( ) )  

( )( ˜ ( ) ˆ ( ) )  ( )

( ˜ ( ) ˆ ( ) )  

( ) ( )

( ) ( )

( ) ( )

λ

∂−∆ − − =

∂ − − − = ∂

− − = =

ν

⎧

⎨
⎪⎪

⎩
⎪⎪

G x t G x t v D

G x t G x t v D

G x t G x t v t

, , 0 in ,

, , 0 on ,

, , 0 at 0.

t y s y s T

y s y s T

y s y s

, ,

, ,

, ,

It implies that

˜ ( ) ˆ ( )( ) ( )= −v G x t G x t D, , in ,y s y s T, , (2.13)

which yields (2.8). Thus, once we have the solution g to (2.2), we solve the initial- boundary 

value problem (2.1) with the boundary data ∂ =νv g on ( )∂Ω T and then compute the Green 

function ( ) ( )( ) ( )= +G x t v G x t, ,y s
D

y s, ,
0 . In this sense, the linear sampling method for the 

heat equation actually provides a way of computing the Green function ( )( )G x t,y s
D

,  from the 
Neumann-to-Dirichlet map ΛD.

Theorem 2.2. For \∈Ωy D and any fixed ( )∈s T0, , the Neumann-to-Dirichlet map gap 
equation (2.2) has no solution.

Proof. Suppose that there exists a function (( ) )∈ ∂− −g H D T
,1

2
1
4  satisfying the equation (2.2). 

As shown in the proof of theorem 2.1, it follows from the unique continuation principle that

 ( \ ( { }))( ) = − Ω ∪G u v D yin .y s T,
0

This implies that

∥ ∥ ∥ ∥

⩽ ∥( ) ∥

⩽ ˜∥ ∥

( ) ˜ (( \ ) ) ˜ (( \ ) )

(( ) )

(( ) )

λ

= −

∂ −

<∞

ν

Ω Ω

∂

∂Ω

− −

− −

G u v

C v

C g .

y s H D H D

H D

H

,
0

T T

T

T

1, 1
2

1, 1
2

1
2

, 1
4

1
2

, 1
4

However, for \∈Ωy D we have ∥ ∥( ) ˜ (( \ ) )
= ∞

Ω
G y s H D,

0

T
1, 1

2
, which leads to a contradiction. This 

completes the proof. □

According to theorems 2.1 and 2.2, the solvability of (2.2) cannot be guaranteed. However, 
we can always find an approximate solution g in the sense that

∥ ∥( ) (( ) )
ε− <

∂Ω
Fg G y s H,

0

T
1
2

, 1
4

 (2.14)

for any ε> 0, due to the following properties of F concluded from our previous works in [35].

Theorem 2.3. The operator F is injective, compact and has a dense range.

We are now in a position to state the blow-up properties of the approximate solution g sat-
isfying (2.14); see [35] for the proofs.
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Theorem 2.4. Let ( )∈s T0,  be fixed. We have the following conclusions:

 (1) if ∈y D, then for any ε> 0 there exists a function (( ) )∈ ∂Ω− −g H T
,1

2
1
4  satisfying

ε− <
∂Ω

Fg G y s H,
0

T
1
2

, 1
4

∥ ∥( ) (( ) )

  such that

∥ ∥
→ (( ) )

= ∞
∂ ∂Ω− −glim

y D H T
1
2

, 1
4 (2.15)

  and

∥ ∥
→ ˜ ( )

= ∞
∂

Sglim ,
y D H DT

1, 1
2 (2.16)

  where the operator S is defined by

(( ) ) → ˜ ( )∂Ω |− − �S H H D g v: , ,T T D

1
2

, 1
4

1, 1
2

T

with v being the solution to (2.1);
 (2) if \∈Ωy D, then for any ε η>, 0 there exists a function (( ) )∈ ∂Ω− −g H T

,1
2

1
4  satisfying

∥ ∥( ) (( ) )
ε η− < +

∂Ω
Fg G y s H,

0

T
1
2

, 1
4

  such that

∥ ∥
→ (( ) )

= ∞
η ∂Ω− −glim

H0 T
1
2

, 1
4 (2.17)

  and

∥ ∥
→ ˜ ( )

= ∞
η

Sglim .
H D0 T

1, 1
2 (2.18)

Based on theorem 2.4, we can define an indicator function

( ) ∥ ∥
(( ) )

=
∂Ω− −I y g: y

H T
1
2

, 1
4

and reconstruct the location and shape of D by the following algorithm.

Algorithm 2.5. 

 1. Fix ( )∈s T0,  and select a set of ‘sampling points y’ in Ω;
 2. Compute an approximate solution to the equation (2.2);
 3. Assert that ∈y D if and only if ( ) ⩽I y C, where the cut-off constant C should be chosen 

properly.

In practice, the measured data always contain some noise, so the operator F cannot be given 
exactly and some regularization technique is needed in numerical implementations. Denote by 
δF  the perturbed operator of F with

∥ ∥ ⩽ δ−δF F ,

where δ is the noise level and ∥ ∥⋅  is the operator norm. Using the Tikhonov regularization 
method, we construct an approximate solution to the perturbed Neumann-to-Dirichlet map 
gap equation

G Nakamura and H Wang Inverse Problems 33 (2017) 055002
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( )=δF g G y s,
0

by

[ ( ) ] ( ) [ ]( )α= +α δ
δ δ δ∗ − ∗g I F F F G: ,y

y s,
1

,
0 (2.19)

where ( )α α δ=:  is the regularization parameter. Define the operator H by

( ) ( )λ− ∂ − |ν ∂�H g v: ,D T

where v is the solution to (2.1). Then we have the following convergence result.

Theorem 2.6. Let ∈y D and the Neumann-to-Dirichlet map gap equation  (2.2) have a 

unique solution. Suppose that ( ) →α δ 0 and →
( )/
δ

α δ
03 2  as →δ 0. Then it holds that

∥ [ ] ( ) ∥ →   →( ) ( ) (( ) )
λ δ− ∂ − |α δ ν ∂ ∂− −H g G 0 as 0.y

y s D H D, ,
0

T T
1
2

, 1
4

 (2.20)

Proof. By direct calculations, we have

α α

α

α λ

− = + − +

+ + −

+ + − ∂ − |

α δ
δ δ δ

δ

ν

∗ − ∗ − ∗

∗ − ∗ ∗

∗ − ∗
∂

H g h H I F F I F F F G

H I F F F F G

H I F F F G G .

y
y s

y s

y s y s D

,
1 1

,
0

1
,

0

1
,

0
,

0
T

[ ] {[ ( ) ] [ ] } ( ) [ ]

[ ] [( ) ] [ ]

[ ] [ ] ( )

( )

( )

( ) ( ) ( )

 

(2.21)

Using the estimate

∥[ ( ) ] [ ] ∥ ⩽ /α α
δ
α

+ − +δ δ∗ − ∗ −I F F I F F
2

,1 1
3 2

we have

{[ ( ) ] [ ] } ( ) [ ]

⩽ ∥ ∥ ∥( ) ∥ ∥ ∥

( )

( ) /

α α
δ
α

+ − +δ δ δ

δ

∗ − ∗ − ∗

∗

H I F F I F F F G

H F G
2

.

y s

y s

1 1
,

0

,
0

3 2

 
(2.22)

Note that the estimate

∥( ) ∥ ⩽α
α

+ −I B
11

holds for any self-adjoint and positive operator B in Hilbert space. Then we obtain that

∥ [ ( ) ] [( ) ] [ ] ∥ ⩽ ∥ ∥ ∥ ∥( ) ( )α
δ
α

+ −δ δ δ∗ − ∗ ∗H I F F F F G H G .y s y s
1

,
0

,
0 (2.23)

Let gy be the exact solution to (2.2) and define

[ ] [ ]( )α= +α
∗ − ∗g I F F F G: .y

y s
1

,
0
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Then it follows that

→   →ααg g as 0.y y (2.24)

Let αv  be such that

( )  
 ( )

 

∂−∆ = Ω
∂ = ∂Ω
= =

α

ν α α

α

⎧
⎨
⎪

⎩⎪

v

v g

v t

0 in ,
on ,

0 at 0.

t T
y

T

Define v as the solution to

( )  
 ( )

 

∂−∆ = Ω
∂ = ∂Ω
= =
ν

⎧
⎨
⎪

⎩⎪

v
v g

v t

0 in ,
on ,

0 at 0.

t T
y

T

By the well-posedness of the above initial-boundary value problems, we obtain from (2.24) 

that →αv v in ˜ ( )ΩH T
1, 1

2  as →α 0, and hence ( ) → ( )λ λ∂ − ∂ −ν α νv v in (( ) )∂− −H D T
,1

2
1
4  as →α 0. 

On the other hand, we note from the proof of theorem 2.1 that ( ) ( ) ( )λ λ∂ − = − ∂ −ν νv G y s,
0  on 

( )∂D T. Hence, we have

∥ [ ] [ ] ( ) ∥ →   →( ) ( ) ( ) (( ) )
α λ α+ − ∂ − |ν

∗ − ∗
∂ ∂− −H I F F F G G 0 as 0.y s y s D H D

1
,

0
,

0
T T

1
2

, 1
4

Thus, the proof is completed by combining it with the estimates (2.22) and (2.23). □

Let ¯ ( )( )G x t,y s,  be the solution to the following initial-boundary value problem:

( ) ¯ ( )  

( ) ¯ ( ) ( ) ( )  ( )
¯ ( )  

( )

( ) ( )

( )

λ λ

∂−∆ =

∂ − = − ∂ − ∂

= =
ν ν

⎧

⎨
⎪

⎩
⎪

G x t D

G x t G x t D

G x t t

, 0 in ,

, , on ,

, 0 at 0.

t y s T

y s y s T

y s

,

, ,
0

,

 (2.25)

Take u and v as solutions to (1.1) and (2.1), respectively, where the Neumann boundary data 
on ( )∂Ω T is given by (2.19). Then we obtain from (2.20) that

∥( )( ¯ )∥ →   →( ) (( ) )λ δ∂ − −ν ∂− −v G 0 as 0.y s H D,
T

1
2

, 1
4

By the well-posedness of the initial-boundary value problem for the heat equation in DT, we 
conclude that

∥ ¯ ∥ →   →( ) ˜ ( )
δ−α δSg G 0 as 0.y

y s H D, ,
T

1, 1
2 (2.26)

Note that

¯ ( ) ˜ ( ) ˆ ( ) ( ) ( )  ( ) ( ) ( ) ( ) ( )= − = −G x t G x t G x t G x t G x t D, , , , , in .y s y s y s y s
D

y s T, , , , ,
0

Then we have

∥ [ ( )] ( )∥ →   →( ) ( ) ˜ ( )
δ+ −α δSg G x t G x t, , 0 as 0.y

y s y s
D

H D, ,
0

,
T

1, 1
2

This gives the convergence of our algorithm for computing the Green function ( )( )G x t,y s
D

,  
from the Neumann-to-Dirichlet map.

G Nakamura and H Wang Inverse Problems 33 (2017) 055002



11

3. Numerical realization of the Neumann-to-Dirichlet map

In this section, we present a numerical scheme to solve the forward problem (1.1) and simulate 
the operator = Λ − Λ∅F D  for two-dimensional spatial domains. By expressing the solution 
as a single-layer heat potential, the initial-boundary value problem (1.1) is transformed into a 
system of boundary integral equations for an unknown density. To solve this system numer-
ically, we apply a collocation method using piecewise constant interpolation with respect 
to the time variable on the equidistant grid /= = �t nT N n N: , 0, ,n , and then employ the 
Nyström method using the trapezoidal rule with respect to the space variable on the equidis-
tant grid /α π= = −�j M j M: , 0, , 2 1j ; see [7, 8] for the details. In this way, the Neumann-

to-Dirichlet map ΛD is discretized as a matrix. In addition, the Green function ( )( )G x t,y s,
0  and 

the Neumann-to-Dirichlet map Λ∅ for the homogeneous conductor involved in (2.2) are also 
simulated by solving (2.1).

Define the following heat layer potentials:

[ ]( ) ( ) ( ) ( ) ( ) ( )

[ ]( ) ( )
( )

( ) ( ) ( ) ( )

∫ ∫

∫ ∫

ϕ ϕ σ

ϕ
ν

ϕ σ

= ∈ ×

=
∂
∂

∈ ×

V x t G x t y s y s y s x t S T

N x t
G x t y s

x
y s y s x t S T

, : , ; , , d d , , 0, ,

, :
, ; ,

, d d , , 0, .

ij

t

S
j

ij

t

S
j

0

0

i

i

In this paper we take =i j, 1, 2 with = ∂S D1  and = ∂ΩS2 . First, we express the solution to 
(1.1) by the single-layer potential

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( \ )

∫ ∫

∫ ∫

ϕ σ

ϕ σ

=

+ ∈ Ω

∂

∂Ω

u x t G x t y s y s y s

G x t y s y s y s x t D

, , ; , , d d

, ; , , d d , , ,

t

D
t

T

0
1

0
2

 

(3.1)

where ϕ1 and ϕ2 are density functions to be determined. Using jump relations of heat layer 
potentials, we can verify that ( )u x t,  expressed by (3.1) is the solution to (1.1) provide that ϕ1 
and ϕ2 satisfy

[ ] [ ] [ ] [ ]ϕ ϕ λ ϕ ϕ λ ϕ− + − + − =N V N V2 2 2 2 0,1 11 1 11 1 21 2 21 2 (3.2)

[ ] [ ]ϕ ϕ ϕ+ + =N N g2 2 2 .12 1 2 22 2 (3.3)

Note that the integral kernels of N V,21 21 and N12 are smooth, while those of N V,11 11 and N22 
are singular at ( ) ( )=x t y s, , . To numerically solve the equations (3.2) and (3.3), we present 
a discretization scheme as follows.

Assume that the boundaries ∂D and ∂Ω have the parametric representations

{ ( ) ( ) ( ( ) ( )) ⩽ ⩽ }
{ ( ) ( ) ( ( ) ( )) ⩽ ⩽ }
α α α α α π
α α α α α π

∂ = =
∂Ω = =

D x x x x
x x x x

: , , 0 2 ,
: , , 0 2 ,

1 1 11 12

2 2 21 22

where ( ) ( )=x x i j, 1, 2ij  are of class C2 and π2 -periodic functions. Notice that

( )
( )

( ) ( )
( ) ( )ν
ν

π
∂
∂

=
− ⋅
−

−
| − |
−

>
⎛
⎝
⎜

⎞
⎠
⎟G x t y s

x

y x x

t s

x y

t s
t s

, ; ,

8
exp

4
, .

2

2

The unit outward normal vector on ∂D and ∂Ω are given by
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( ) ( ( ) ( ))
( )

( ) ( ( ) ( ))
( )

ν α
α α
α

ν α
α α
α

=
−

| |
=

−
| |

′ ′
′

′ ′
′

x x

x

x x

x

,
and

,
,1

12 11

1
2

22 21

2

respectively. Set ˜ ( ) ( ( ) )ϕ β ϕ β=s x s, : ,i i i  for =i 1, 2, ( ) ( ) ( )α β α β=| − |r x x,ij j i , and

( ) ( ( ) ( ) )

( )
( ( ) ( )) ( ) ( )

( )
( )
( )

α β α β

α β
β α ν α β

π

α β

=

=
− ⋅ | |

−
−

−

′ ⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

K t s G x t x s

L t s
x x x

t s

r

t s

, ; , : , ; , ,

, ; , :
8

exp
,

4
.

ij j i

ij
i j j i ij

2

2

Then, by direct calculations, we have

( )
( )

( )

( )
( ( ) ( )) ( ) ( )

( )

( )
( )

∫ ∫

∫

α β
π

α β

α β
β α ν α β

π α β

α β

= −
−

=
− ⋅ | |

−
−

′

−

−

−

−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

K t s s
t

r

t t t
t

L t s s
x x x

r

r

t t

, ; , d
1

4
exp

,

4
d ,

, ; , d
2 ,

exp
,

4
.

t

t

ij n
ij

n n

t

t

ij n
i j j i

ij

ij

n n

0

1 2

1

2

2

1

n

n

n

n

1

1

For m  <  n, we have

( )
( )

( ) ( )

( )
( )

( )
( )

∫ ∫

∫ ∫

∫ ∫

α β
π

α β

π

α β

π

α β

π

α β

π

α β

= −

= − − −

= −
−

− −
−

−

−

− −

−

−

−

−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

K t s s
t

r

t
t

t

r

t
t

t

r

t
t

t

r

t t t
t

t

r

t t t
t

, ; , d
1

4
exp

,

4
d

1

4
exp

,

4
d

1

4
exp

,

4
d

1

4
exp

,

4
d

1

4
exp

,

4
d

t

t

ij n
t t

t t ij

t t ij t t ij

ij

n m

ij

n m

2

0

2

0

2

0

1 2

1 0

1 2

m

m

n m

n m

n m n m

1

1

1

and

( )
( ( ) ( )) ( ) ( )

( )

( )
( )

( )
( )⎪ ⎪

⎪ ⎪
⎧
⎨
⎩

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
⎫
⎬
⎭

∫ α β
β α ν α β

π α β

α β α β

=
− ⋅ | |

× −
−

− −
−

′

−

−

L t s s
x x x

r

r

t t

r

t t

, ; , d
2 ,

exp
,

4
exp

,

4
.

t

t

ij n
i j j i

ij

ij

n m

ij

n m

2

2

1

2

m

m

1

Take

( )

( )

( )
( )

( )
( ) α β

π

α β

π

α β

π

α β
=

=

+
− = −

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪⎪

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ �

K

E
Nr

T
p

E
Nr

T p
E

Nr

Tp
p N

, :

1

4

,

4
, 0,

1

4

,

4 1

1

4

,

4
, 1, , 1,

ij
p

ij

ij ij

1

2

1

2

1

2

 

(3.4)

where E1 is the exponential integral function defined by

( )
/

∫ ∫= =
+∞ − −

E z
t

t
u

u
e

d
e

d .
tz z u

1
1 0

1
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From the expansion

( ) ( )
∑γ= − − −
−

=

+∞

E z z
z

n n
ln

1

!n

n n

1
1

 (3.5)

with γ = 0.557 21 being Euler’s constant, we conclude that ( )K jj
0  has a logarithmic singularity 

and can be decomposed into

( ) ˜ ( )( ) ( )α β
π

α β
α β α β= −

−
+ ≠⎜ ⎟

⎛
⎝

⎞
⎠K

e
K,

1

4
ln

4
sin

2
, , ,jj jj

0 2 0

where

˜ ( ) ( )( ) ( )α β α β
π

α β
α β= +

−
≠⎜ ⎟

⎛
⎝

⎞
⎠K K

e
, ,

1

4
ln

4
sin

2
,jj jj

0 0 2

with

˜ ( )
( )

→

( ) α β
γ
π π

α
= − −

| |′

β α

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟K

eN x

T
lim ,

4

1

4
ln

4
.jj

j0
2

In addition, it is evident that

( )
→

( ) α β
π

=
+

= −
β α

�K
p

p
p Nlim ,

1

4
ln

1
, 1, , 1.jj

p

For ≠i j the kernels ( )Kij
p  are continuous for = −�p N0, 1, , 1.

Set

�
⎪ ⎪

⎪ ⎪

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎧
⎨
⎩

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
⎫
⎬
⎭

α β

β α ν α β

π α β

α β

β α ν α β

π α β

α β α β
=

− ⋅ | |
− =

− ⋅ | |
−

+
− − = −

′

′
L

x x x

r

Nr

T
p

x x x

r

Nr

T p

Nr

Tp
p N

, :
2 ,

exp
,

4
, 0,

2 ,
exp

,

4 1
exp

,

4
, 1, , 1.

ij
p

i j j i

ij

ij

i j j i

ij

ij ij

2

2

2

2 2
( )

( ( ) ( )) ( ) ( )
( )

( )

( ( ) ( )) ( ) ( )
( )

( )
( )

( )
( )

For i  =  j, we can easily show that

( )
( ) ( ) ( ) ( )

( )→

( ) ″ ″
α β

α α α α

π α
=

−

| |

′ ′

′β α
L

x x x x

x
lim ,

4
,jj

j j j j

j

0 1 2 1 2

2 (3.6)

( )
→

( ) α β = = −
β α

�L p Nlim , 0, 1, , 1.jj
p

 (3.7)

For ≠i j, the kernels ( )Lij
p  are continuous for = −�p N0, 1, , 1.

Now we apply a collocation method using piecewise constant interpolation with respect to 
the time variable on the equidistant grid /= = �t nT N n N: , 0, 1, ,n . That is, we approximate 
the density ˜ ( )ϕ β s,i  by
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˜ ( ) ˜ ( ) ( )∑ϕ β ϕ β≈ Φ
=

s s, ,i
n

N

i n n
1

,

where ˜ ( ) ˜ ( )ϕ β ϕ β= t: ,i n i n,  and

( ) ⩽
Φ =

<−⎧
⎨
⎩s

t s t
:

1, ,
0, otherwise.n

n n1

Then, we have

[ ]( ( ) ) ( ) ˜ ( ) ( )

( ) ˜ ( ) ( )

˜ ( ) ( ) ( )

( ) ˜ ( ) ( )( )

∫ ∫

∫ ∫

∫ ∫

∫

∑

∑

∑

ϕ α α β ϕ β β β

α β ϕ β β β

ϕ β α β β β

α β ϕ β β β

= | |

= | |

≈ | |

≈ | |

′

′

′

′

π

π

π

π

=

=

=

−

−

−

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

V x t K t s s x s

K t s s s x

K t s s x

K x

, , ; , , d d

, ; , , d d

, ; , d d

, d

ij i j n

t

ij n i i

m

n

t

t

ij n i i

m

n

i m
t

t

ij n i

m

n

ij
n m

i m i

0 0

2

0

2

1

0

2

1
,

1 0

2

,

n

m

m

m

m

1

1

and

[ ]( ( ) ) ( ) ˜ ( )

˜ ( ) ( )

( ) ˜ ( )( )

∫ ∫

∫ ∫

∫

∑

∑

ϕ α α β ϕ β β

ϕ β α β β

α β ϕ β β

=

≈

≈

π

π

π
=

=

−

−

⎛

⎝
⎜

⎞

⎠
⎟

N x t L t s s s

L t s s

L

, , ; , , d d

, ; , d d

, d .

ij i j n

t

ij n i

m

n

i m
t

t

ij n

m

n

ij
n m

i m

0 0

2

0

2

1
,

1 0

2

,

n

m

m

1

Using these approximations and setting t  =  tn for (3.2) and (3.3), we have the following 
Fredholm integral equations of the second kind:

˜ ( ) ( ) ˜ ( ) ˜( ) ( ) ( ) ˜ ( )

( ) ˜ ( ) ˜( ) ( ) ( ) ˜ ( )

( ) ( )

( ) ( )

∫ ∫

∫ ∫

∑

∑ ∑

ϕ α α β ϕ β β λ α α β β ϕ β β

α β ϕ β β λ α α β β ϕ β β

− + − | |

= − − | |

′

′

π π

π π

=

= =

−
− −

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

L K x

L K x

2 , d , d

2 , d , d ,

n
k

k k n k k k n

k m

n

k
n m

k m k
n m

k k m

1,
1

2

0

2

1
0

,
0

2

1
0

,

1

2

1

1

0

2

1 ,
0

2

1 ,

 (3.8)

˜ ( ) ( ) ˜ ( )

˜( ) ( ) ˜ ( )

( )

( )

∫

∫

∑

∑ ∑

ϕ α α β ϕ β β

α α β ϕ β β

+

= −

π

π

=

= =

−
−

L

g t L

2 , d

, 2 , d ,

n
k

k k n

n
k m

n

k
n m

k m

2,
1

2

0

2

2
0

,

1

2

1

1

0

2

2 ,

 (3.9)

where ˜( ) ( ( ))λ α λ α= x1  and ˜( ) ( ( ) )α α=g t g x t, 2 ,n n2 .
For the discretization with respect to the space variable, we apply the Nyström 

method to the above integral equations using the trapezoidal rule on the equidistant mesh 
/β π= = −�j M j M: , 0, , 2 1j . Especially, for the integral involving ( )( ) α βK ,11

0 , we need to 
treat the singular integral of the form
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( )∫
α β

ϕ β β
−π

⎜ ⎟
⎛
⎝

⎞
⎠e

ln
4

sin
2

d .
0

2
2

In fact, it can be computed approximately by the following quadrature rule

( ) ( )∫ ∑
α β

ϕ β β π ϕ α
−

≈
π

=

−

| − |⎜ ⎟
⎛
⎝

⎞
⎠e

Rln
4

sin
2

d 2i

j

M

i j j
0

2
2

0

2 1

 (3.10)

with the weights

( ) ( )
�

⎧
⎨
⎩

⎫
⎬
⎭∑ α= − + +

−
= −

=

−

R
M m

m
M

j M:
1

2
1 2

1
cos

1
, 0, 1, , 2 1.j

m

M

j

j

1

1

Thus we have the following linear system:

˜ ( ) ˜ ˜( ) ( ) ˜

˜( ) ˜ ( ) ( ) ˜ ˜( ) ( ) ( ) ˜

( ( ) ˜ ˜( ) ( ) ( ) ˜ )

( )

( ) ( )

( ) ( )

∑ ∑ ∑

∑ ∑

∑ ∑ ∑

ϕ
π

β β ϕ λ β β ϕ

λ β
π

β β β ϕ λ β
π

β β β ϕ

π
β β ϕ λ β β β β ϕ

− + + | |

− | | − | |

= − − | |

′

′ ′

′

= =

−

=

−

| − |

=

−

=

−

= =

−

=

−
− −

M
L R x

M
K x

M
K x

M
L K x

2 ,

2 , 2 ,

2 , , ,

n i
k j

M

k i j k n j i
j

M

i j j n j

i
j

M

i j j n j i
j

M

i j j n j

k m

n

j

M

k
n m

i j k m j i k
n m

i j k j k m j

1, ;
1

2

0

2 1

1
0

, ;
0

2 1

1 1, ;

0

2 1

11
0

1 1, ;
0

2 1

21
0

2 2, ;

1

2

1

1

0

2 1

1 , ; 1 , ;

 

(3.11)

˜ ( ) ˜

˜( ) ( ) ˜

( )

( )

∑ ∑

∑ ∑ ∑

ϕ
π

β β ϕ

β
π

β β ϕ

+

= −

= =

−

= =

−

=

−
−

M
L

g t
M

L

2 ,

, 2 , ,

n i
k j

M

k i j k n j

i n
k m

n

j

M

k
n m

i j k m j

2, ;
1

2

0

2 1

2
0

, ;

1

2

1

1

0

2 1

2 , ;

 

(3.12)

for approximate values ˜ ˜ ( ) ˜ ˜ ( )ϕ ϕ β ϕ ϕ β≈ ≈ = − =� �i M n N, , 0, , 2 1, 1, ,n i n i n i n i1, ; 1, 2, ; 2, . 
This system can be solved recursively for = �n N1, , .

Once we obtain the density functions ϕ1 and ϕ2 approximately by solving the above linear 
system, we can compute ( ) ( )| ∂Ωu x t,

T
 in terms of (3.1):

( ( ) ) ( ) ( ) ˜ ( ) ˜

˜ ( ) ( ) ˜

( ) ( ) ˜

( )

( )

( )

∑ ∑ ∑

∑

∑ ∑

β
π

β β β ϕ β ϕ

π
β β β ϕ

π
β β β ϕ

≈ | | − | |

+ | |

+ | |

′ ′

′

′

= =

−
−

=

−

| − |

=

−

=

−

=

−
−

u x t
M

K x R x

M
K x

M
K x

, ,
1

2

,

,

i n
m

n

j

M
n m

i j j m j
j

M

i j j n j

j

M

i j j n j

m

n

j

M
n m

i j j m j

2
1 0

2 1

12 1 1, ;
0

2 1

2 2, ;

0

2 1

22
0

2 2, ;

1

1

0

2 1

22 2 2, ;

 

(3.13)

for � �= − =i M n N0, 1, , 2 1, 1, 2, , .
Let

( ( ( ) ) ( ( ) ) ( ( ) ) ( ( ) ))β β β β= − −U � � �u x t u x t u x t u x t, , , , , , , , , , ,M N M N
T

2 0 1 2 2 1 1 2 0 2 2 1

( ( ( ) ) ( ( ) ) ( ( ) ) ( ( ) ))β β β β β= − −� � �g x t g x t g x t g x t, , , , , , , , , , .M N M N
T

2 0 1 2 2 1 1 2 0 2 2 1
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Then, in view of (3.11)–(3.13) we can assemble a matrix ∈ ×A R MN MN
D

2 2  such that

β=U A .D (3.14)

Thus, we finally get the discretized version AD of the Neumann-to-Dirichlet map ΛD, which is 
the measured data for our inverse problem.

In the same way as described above, we can obtain the discretized version ∅A  of the 
Neumann-to-Dirichlet map Λ∅ by considering the following initial-boundary value problem:

( )  
 ( )

 

∂−∆ = Ω
∂ = ∂Ω
= =
ν

⎧
⎨
⎪

⎩⎪

v
v g

v t

0 in ,
on ,

0 at 0.

t T

T (3.15)

So the operator F is discretized as the matrix = − ∅F A A: D . Note that the Green 

function ( ) ( ) ˆ ( )( ) ( ) ( )= +G x t G x t G x t, , ,y s y s y s,
0

, , , where ˆ ( )( )G x t,y s,  satisfies (3.15) with 
( )( ) ( )= −∂νg G x t,x y s, . The function ˆ ( )( )G x t,y s,  can be computed by the above numerical 

method and the Green function ( )( )G x t,y s,
0  are therefore synthesized. Let

( ( ( ) ) ( ( ) )

( ( ) ) ( ( ) ))

( ) ( ) ( )

( ) ( )

β β

β β

= −

−

G �

� �

G x t G x t

G x t G x t

, , , , ,

, , , , , .

y s y s y s M

y s N y s M N
T

, ,
0

2 0 1 ,
0

2 2 1 1

,
0

2 0 ,
0

2 2 1

Then we are led to the following linear equation:

( )β =F G ,y s, (3.16)

which is the discretized version of the Neumann-to-Dirichlet map gap equation (2.2).

4. Numerical results and discussions

In this section, we present some numerical results to show the performance of the linear 
sampling method for the heat equation. First, we simulate the operator = Λ − Λ∅F D  and 

compute the Green function ( )( )G x t,y s,
0  by the numerical scheme provided in section 3. Then, 

taking the synthetic data as our measurements, the discretized Neumann-to-Dirichlet map gap 
 equation (3.16) is solved by the classical Tikhonov regularization method, where the regu-
larization parameter is chosen by generalized cross validation criterion and the Matlab code 
developed in [18] is used in our computations. In the first example, we implement the recon-
struction method for one Robin inclusion of three different shapes. The second example is 
devoted to the numerical reconstruction of two well-separated Robin inclusions inside the heat 
conductor. We also test the method with short time measurements in the last two examples.

In all examples, we take = =N M100, 16. Based on the numerical scheme for solving the 
forward problem, we obtain a ×3200 3200 matrix ( )=F f: ij  which is the discretized version 
of the operator = Λ − Λ∅F D . The uniform random noise is added to F via

( )δ= × +δf f rd1 ,ij ij ij

where δ is the noise level and (rdij) is a matrix whose elements are normally distributed with 
mean value 0 and standard deviation 1. In numerics, we let Ω be a circle with radius r and 
center at the origin. We choose ×20 32 sampling points in Ω specified by

( ( ) ( ))α α α
π

= = = = =� �y r r
r

i j i jcos , sin ,
20

,
16

, 1, , 20, 1, , 32.ij i j j i j

 

(4.1)
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For each sampling point yij, we solve the discretized Neumann-to-Dirichlet map gap equa-
tion (3.16) by the Tikhonov regularization method and compute the indicator function I(yij) 
defined by

( ) / (∥ ∥ )=I y g: 1 ln .ij
y

L
ij 2 (4.2)

Example 1. We test the reconstruction method for one Robin inclusion. Let Ω be a circle 
with radius 3 centered at the origin. For D, we consider the following three different shapes, 
namely, kite-shaped, boat-shaped and pear-shaped domains parameterized by

α α α α π
α α α α π
α α α α π

∂ = + − ∈
∂ = − − ∈
∂ = + ∈

D
D
D

‘Kite’ : cos 0.65 cos 2 0.65, 1.5 sin : 0, 2 ;
‘Boat’ : 0.25 cos 0.05 sin 4 , 0.75 sin : 0, 2 ;
‘Pear’ : 2 0.3 cos 3 cos , sin : 0, 2 .

{( ( ) ( ) ( )) [ ]}
{( ( ) ( ) ( )) [ ]}
{( ( ))( ( ) ( )) [ ]}

Set λ δ= = =T 1, 1, 0.05.

Theoretically, our reconstruction method should work for any ( )∈s T0, , so we test it for 
each shape using s  =  0.3 and s  =  0.6. In figures 1–3, we show the numerical reconstructions 
of D with 100 contour lines of the indicator function. It can be easily seen that the L2 norm 
of gy becomes significantly large as the sampling point y approaches the boundary ∂D and 
remains large outside D. Moreover, changing the values of s does not have evident influence 
on the reconstruction results. These observations greatly support our theoretical analysis. The 
numerical results indicate that our reconstruction method is effective and works for Robin 
inclusions of different shapes. We also observe that the linear sampling method for the heat 
equation has a high tolerance for the measurement noise, compared with inverse scattering 
problems in frequency domain. This may be benefited from the dynamical measured data.

Example 2. We test the reconstruction method for the case when there are two well- 
separated Robin inclusions in the heat conductor. Let Ω be a circle with radius 6 centered at 
the origin, and D D,1 2 have different shapes parameterized by

α α α α π
α α α α π

α α α α π
α α α α π

∂ = + − ∈
∂ = + + ∈
∂ = − − − ∈
∂ = + + ∈

D
D
D
D

‘Kite’and‘Pear’ : cos 0.65 cos 2 2.65, 1.5 sin : 0, 2 ,
2 0.3 cos 3 cos 2, sin : 0, 2 ;

‘Boat’and‘Pear’ : 0.25 cos 0.05 sin 4 2, 0.75 sin : 0, 2 ,
2 0.3 cos 3 cos 2, sin : 0, 2 .

1

2

1

2

{( ( ) ( ) ( )) [ ]}
{( ( ))( ( ) ( )) [ ]}
{( ( ) ( ) ( )) [ ]}
{( ( ))( ( ) ( )) [ ]}

Set T  =  1 and the Robin coefficients on ∂D1 and ∂D2 are taken as λ λ= = 11 2 .

In figures 4 and 5, we show the numerical reconstructions of two Robin inclusions using 
100 contour lines, where s is taken to be 0.3. When these are reasonably well-separated, the 
location and shape of each of them can be approximately reconstructed, although the adja-
cent parts cannot be captured very well. But as the distance between them becomes large, the 
reconstruction results will be greatly improved.

Example 3. We test the reconstruction method for one Robin inclusion with short time 
measurements. Let Ω be a circle with radius 3 centered at the origin and D be the pear-shaped 
domain given in example 1. T and λ are set to be the same as in example 1.

Instead of the full measurements ΛD for ( )∈t T0, , we here use the short time measure-
ments ΛD with t in a small interval ( )+s s s,0 0 1 . The numerical reconstructions of D are shown 
in figure 6, where we fix s1  =  0.3 and test the method for s0  =  0.3 and s0  =  0.6, respectively. 
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Figure 1. Kite-shaped domain: s  =  0.3 (left), s  =  0.6 (right).

Figure 2. Boat-shaped domain: s  =  0.3 (left), s  =  0.6 (right).

Figure 3. Pear-shaped domain: s  =  0.3 (left), s  =  0.6 (right).
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The numerical results indicate that some information on D could still be captured, although 
the shape may not be clearly recovered.

Now we propose a new sampling method which can approximately recover ∂D by a single 
measurement over (0,T). This kind of sampling method is most likely to be practical.

Example 4. Let the configuration of the conductor be the same as that in example 3. Let 
{yij} be the sampling points given by (4.1). Consider the absolute linear order ≺ for any two 
different pairs ( )� m,  and ( )′ ′� m,  of �y m,  and ′ ′�y m,  by

� ≺ � � � � �> = >′ ′ ′ ′ ′m m m m, , if either the case or the case and .( ) ( )              

Numerate these pairs ( )� m,  of �y m, ’s by this linear absolute order so that {( )} { }=� m k,  with 

Figure 4. Kite-shaped and pear-shaped domains: s  =  0.3.

Figure 5. Boat-shaped and pear-shaped domains: s  =  0.3.
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= �k 1, 2, , 640. Consider a finite time series {˜ } ( )⊂=s T0,k k 1
640  such that ˜ ˜ ˜< < <�s s s1 2 640. At 

each s̃k we give the transient input as before and measure over ( ˜ ˜ )τ+s s,k k  with τ being a small 
number. With these measurements, we get the numerical reconstruction of D as displayed in 
figure 7.

5. Conclusions

This paper gave a further investigation of the linear sampling method for the heat equation, 
based on our previous works in [21, 35]. We first clarified the solvability of the Neumann-
to-Dirichlet map gap equation and established the relation of its solution to the Green func-

tion ( )( )G x t,y s
D

,  in DT. Consequently, we showed what is the input for the linear sampling 

method and provided a way of computing the Green function associated with an interior 

Figure 6. Pear-shaped domain with short time measurement: s  =  0.3 (left), s  =  0.6 
(right).

Figure 7. Pear-shaped domain with a time series.
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initial-boundary value problem in DT. Using the boundary integral equation method for the 
heat equation, we presented a numerical scheme for simulating the Neumann-to-Dirichlet map 

and the Green function ( )( )G x t,y s,
0  which is known for our inverse problem. The discretized 

Neumann-to-Dirichlet map gap equation  was solved by using the Tikhonov regularization 
method. As for the numerical experiments, we showed that the linear sampling method for 
the heat equation is effective and relatively stable to noise. We also proposed a new sampling 
method which may approximately recover ∂D from single measurement over a time interval. 
In future, we intend to investigate our method for the case that D depends on time.
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