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Abstract. Consider the image restoration from incomplete noisy frequency

data with total variation and sparsity regularizing penalty terms. Firstly, we
establish an unconstrained optimization model with different smooth approx-

imations on the regularizing terms. Then, to weaken the amount of compu-
tations for cost functional with total variation term, the alternating iterative

scheme is developed to obtain the exact solution through shrinkage threshold-

ing in inner loop, while the nonlinear Euler equation is appropriately linearized
at each iteration in exterior loop, yielding a linear system with diagonal coef-

ficient matrix in frequency domain. Finally the linearized iteration is proven

to be convergent in generalized sense for suitable regularizing parameters, and
the error between the linearized iterative solution and the one gotten from the

exact nonlinear Euler equation is rigorously estimated, revealing the essence of

the proposed alternative iteration scheme. Numerical tests for different con-
figurations show the validity of the proposed scheme, compared with some

existing algorithms.

1. Introduction. Image restorations from incomplete measurement data are typ-
ically ill-posed mathematically, in the sense that the restoration is generally neither
unique nor stable. In order to overcome this ill-posedness, the regularizing penalty
terms should be added into the image restoration models in some suitable way.

Let f = (fm,n) ∈ RN×N be the gray scale matrix for an image in the domain Ω :=⋃N
m,n=1 Ωm,n, with fm,n ∈ [0, 1] the constant grey value at each pixel Ωm,n. The

image restoration from the noisy measurement data gδ requires some generalized
solution to

(1) K[f ] = gδ,

where K is some linear operator representing the known blurring process for exact
image f , and gδ are specified noisy data, including either additive noise or multiplied
noise as well as Possion noise.
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Generally, the noisy measurement data may be incomplete, leading to the non-
unique reconstruction on the desired image f . Moreover, in some engineering areas
such as signal transmission and MRI, the incomplete measurement data may be
specified in frequency domain in terms of some linear sampling operator P. Then
(1) is replaced by

(2) PF [f ] = P[ĝδ],

where ĝδ is the noisy frequency data satisfying ‖ĝδ − ĝ‖ ≤ δ, K := F is the two-
dimensional discrete Fourier transform (DFT) operator converting the spatial ma-

trix f into frequency matrix F [f ] = FT fF := f̂ ∈ CN×N , where F = (e−i
2π
N mn) ∈

CN×N is the unitary Fourier transform matrix. P represents some linear sampling
operator projecting the full frequency data in CN×N into a lower dimensional space
CM1×M2 with M1,M2 � N , generating incomplete data.

In many situations, the number of salient features hidden in an image is much
fewer than its resolution, which means that the image f is usually sparse or com-
pressible under some suitable basis by compressive sensing (CS) theory [5, 6, 9]. In
other words, by the standard arguments in CS such as the wavelet expansions of a
signal, the original image could be considered as sparse. Due to the high Nyquist
sampling rate in wide applications such as in digital images and dynamic images,
the compressions for an image are necessary prior to its storage and transmission
[29], which leads to the sparse representation of an image. The basic CS theory [6, 9]
has justified that it is of high probability to reconstruct an image signal accurately
from its sparse or compressible information.

In the mathematical aspect, a sparse signal can be reconstructed from its small
projections onto certain subspace with K(K � N) dominant components. The
sparse signal is called K−sparse under the basis Ψ, if the number of nonzeros
in the sparse signal is no more than K. To recover the sparsity of an image,
the most useful method is to minimize ‖ · ‖l1 approximately [32, 34]. Considering
the piecewise smooth property of an image, the restoration model with double
regularization terms based on (2) and CS theory is considered in a recent work [14],
by minimizing the unconstraint cost functional

(3) Jgenα (f) :=
1

2

∥∥PF [f ]− P[ĝδ]
∥∥2
F

+ α1‖Ψ−1[f ]‖l1 + α2|f |TV

with regularizing parameters α := (α1, α2) > 0, where ‖ · ‖F is the Frobenius norm
of an N × N matrix, and Ψ is a known N × N matrix determined by the base

function {ψm,n : m,n = 1, · · · , N}, mapping the sparse representation f̃ ∈ RN2×1

into f ∈ RN×N by f̃ = vect[f̃ ] for f̃ := (f̃m,n) ∈ RN×N with f̃m,n = 〈f, ψm,n〉RN×N
[8]. The operator vect maps any K × L matrix (not necessarily K = L) as a
KL−dimensional column vector by standard way. We would like to emphasize that
two penalty terms in (3) are necessary from the point of view of image process,
since we should consider both the sparsity and the piecewise smoothness of an
image. Of course, the cost functional with two penalty terms requires large amount
of computations as compared with that with only one penalty term.

The sparse basis Ψ is difficult to specify for expanding a general image, which
is another important topic for image representation, even though the orthogonal
(biorthogonal) basis can be applied. However, in sparse representation of an image,
the specified bases like Danbechies wavelet bases can be considered as a bounded
operator mapping the image to the expansion coefficients, and consequently the
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norm
∥∥Ψ−1[f ]

∥∥
l1

has similar behavior to ‖vect[f ]‖l1 in the cost functional theoret-
ically, although their values are different. Hence, for optimization procedure, with
some modified parameters α1, α2 > 0, instead of the functional (3), we consider

(4) Jsimα (f) :=
1

2

∥∥PF [f ]− P[ĝδ]
∥∥2
F

+ α1‖vect[f ]‖l1 + α2|f |TV

directly for the simplicity of our theoretical analysis.
The image restoration models with multiple regularizing terms have obtained

considerable attentions, with main focuses on the efficient implementations on op-
timizing (4). Due to the non-differentiability of the penalty terms, the optimization
of (4) is realized by solving its convex and smooth surrogates. The most general
smooth approximation to the penalty term is the Charbonnier approximation which
adds small perturbation on absolute value function |x| [24], while the surrogate |x|α
called smooth L1 approximation is proposed to approach |x| in [20], which takes
advantage of the non-negative projection operator (x)+ := max{x, 0} ≈ p(x, α) =
x + 1/α ln(1 + e−αx). Since the approximation |x|α := p(x, α) + p(−x, α) → |x|
requires α→∞, the optimization algorithm is hard to implement in numerics.

Instead of using the surrogate functions to deal with the non-smooth penalty
terms like TV, some implementable and efficient algorithms were proposed, for
example, the weighted total variation measure TVl1 which exploited the continuity
and sparsity simultaneously in the partial gradient domain [22]; the Chambolle’s
projection method [7] where the cost function in terms of dual variables is often
continually differentiable by the duality-based approach. Although the algorithms
of iterative type with one regularizing term are popular for CS algorithms, the strict
math theory about the convergence property are quite limited, to say nothing of
the optimization for the cost functional with multiple penalty terms. Moreover, to
implement the iterative schemes efficiently, some linearized process are introduced,
which will lead to extra errors for the algorithms.

There have been many schemes to deal with the non-differentiability of the
penalty term, such as the Gauss-Seidel algorithm [21], the Grafting algorithm [18],
the shooting algorithm [10], and the Bregman iterations [11, 17, 30, 31], which
belong to the category of sub-gradient method. In the recent work, we did the
comparison between the Bregman iteration and the direct method (DM) proposed
in [14] and gave the benefits of DM.

For the implementations of image restorations based on the optimization of reg-
ularizing cost functionals, the main schemes are iteration algorithms for finding the
minimizer of approximately. Except for the extensive studies on the efficient real-
izations of the restoration algorithms, the convergence properties of the iterative
process have also been considered. In [25], the authors establish strong convergence
properties for fast TV algorithm for image denoising, including finite convergence
for some variables and q−linear convergence for the others. They also give the
similar convergence for multichannel image restoration model called multi-channel
TV (MTV) [26], and the model with MTV-L1 data-fitting term [28]. In [27], a
splitting operator method on two penalty terms (TV and L1 based on orthogonal
wavelet frame) has been proposed with the convergence analysis for each variables.
In [19], the authors give the convergence of the proposed iteration scheme for image
restoration model with two different sparse frames, and prove that this method can
be understood as special cases of the Douglas-Rachford split algorithm. However,
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the convergence analysis on the iteration process for minimizing the cost function-
als in image restorations is still in its initial stage, since the convergence depends
heavily on both the cost functional and also the algorithms for finding the solution.

In this paper, we consider two smooth approximations for the penalty terms
for our algorithm implementations, namely, the Charbonnier approximation and
Huber approximation. Our main contributions contain three points. Firstly, we
derive the image restoration model with multi-regularization and different approx-
imation surrogates. Secondly, we propose the alternating iterative scheme, where
the shrinkage soft-thresholding process is carried out in inner iterative step, and the
linearizing version of the nonlinear Euler equation in outer iteration is established,
for which the diagonal coefficient matrix is derived for efficiently solving the iterative
solution. Finally, we prove the convergence property of the linearized alternative
iteration scheme rigorously, the error between the linearized iterative solution and
the one from solving the nonlinear equation is also established. Numerical imple-
mentations are presented to show the validity of our proposed scheme in section 4,
by comparing our results with the existing schemes given in [14] and [29].

2. Reformulation of the image restoration model. In this section, we derive
the surrogates for cost functional (4) with two smoothing functions. The corre-
sponding derivatives for the cost functional and the alternative iteration scheme
based on the linearized Euler equation are also proposed.

2.1. Smooth surrogates for cost functional. For the cost functional (4), two
penalty terms have the representation

‖vect[f ]‖l1 :=

N∑
m,n=1

|fm,n|, |f |TV :=

N∑
m,n=1

‖(∇f)m,n‖l2

with (∇f)m,n := ((∇x1f)m,n, (∇x2f)m,n)
T ∈ R2×1 of the following components

(∇x1f)m,n =

{
fm+1,n − fm,n, if m < N,

f1,n − fm,n, if m = N,
(5)

(∇x2f)m,n =

{
fm,n+1 − fm,n, if n < N,

fm,1 − fm,n, if n = N
(6)

for m,n = 1, · · · , N due to the periodic boundary condition for f . Notice that the
TV regularizing term is respect to the gradient vector (∇f)m,n ∈ R2×1.

To overcome the non-differentiability of l1 and TV penalty terms in (4), we use
Charbonnier function [1] and Huber function [12] to amend the non-differentiable
absolute value function, which are defined as

φCβ (s) :=
√
s2 + β, φHε (s) :=

{
s2

2ε , |s| ≤ ε,
|s| − ε

2 , |s| > ε,
(7)

with small perturbation β, ε > 0 respectively. Clearly, the Huber function with
Lipschitz C1 continuity can be considered as a better smooth approximation to |x|
[15], compared with the Charbonnier approximation with C∞ continuity.

Although Charbonnier approximation is almost the most general smooth approx-
imation for absolute value function, Huber approximation, which is non-quadratic
but convex, has both better theoretical approximation and better performance [13]
than Charbonnier approximation. The advantage by using Huber approximation
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is that it could smooth small scale noise by the quadratic function for argument
below a threshold ε, i.e., the derivative of Huber function is a quadratic function
in [−ε, ε], while preserve discontinuities at edge regions by the linear function part
above the threshold ε > 0.

Consequently, we are led to the following unconstraint cost functional

(8) JZα,ν(f) :=
1

2

∥∥PF [f ]− P[ĝδ]
∥∥2
F

+ α1‖vect[f ]‖l1,φZν + α2|f |TV ,

which approximates the l1 norm by ‖vect[f ]‖l1,φZν =
N∑

m,n=1
φZν (fm,n) for (Z, ν) =

(C, β) or (Z, ν) = (H, ε). Use f ≡ vect[f ] by the definition and introduce the N×N
matrix

(9) D− :=


−1 1 0 · · · 0 0 0
0 −1 1 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · −1 1 0
0 0 0 · · · 0 −1 1
1 0 0 · · · 0 0 −1

 ,

then ∇f := (∇x1f ,∇x2f)T ∈ R2×N2

has the representation in terms of its compo-
nents by

(∇x1f)j := ((I ⊗D−)f)j , (∇x2f)j := ((D− ⊗ I)f)j , j = 1, · · · , N2,(10)

where I⊗D−, D−⊗I ∈ RN2×N2

are block-circulant-circulant-block (BCCB) matri-
ces [24] with tensor product ⊗, representing two first-order forward finite difference
operators for f with periodic boundary conditions along x1, x2 directions [16]. So
the penalty term in (8) can be expressed as

(11) |f |TV =

N2∑
j=1

‖((∇x1f)j , (∇x2f)j)‖l2 , ‖f‖l1,φZν =

N2∑
j=1

φZν (fj),

where j := j(m,n) = (n− 1)×N +m for m,n = 1, · · · , N .
Consider the data-matching term in (4). The two-dimensional discrete Fourier

transform (DFT) operating on image vector f has the representation f̂ = (F ⊗
F )f := Ff , where F ∈ CN2×N2

is the two-dimensional DFT matrix. The partial
frequency data can be generated from different sampling operators P, such as and
random band sampling (RBS) method P∗ [14], radial sampling method [29] and
band sampling method [33]. Denoted by P ∈ RN×N the corresponding sampling
matrix for ĝδ ∈ CN×N , which is generated from identity matrix I by setting its
(N −M) rows as null vectors with M � N . The corresponding sampling matrix

acting on the vector gδ ∈ CN2×1 is denoted by P ∈ RN2×N2

[14]. More over, we
use Rtotal, Rcenter to represent the sampling ratio and the efficient elements among
all the sampling elements [14].

By using the argument f instead of f in both the data-fitting term and penalty
terms, we finally establish the following unconstrained optimization models for im-
age restoration

min
f

{
JZα,ν(f) :=

1

2

∥∥∥PFf −Pĝδ
∥∥∥2
l2

+ α1‖f‖l1,φZν + α2|f |TV
}

(12)
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with (Z, ν) = (C, β) or (Z, ν) = (H, ε) using Charbonnier function and Huber
function to smoothen the penalty terms, respectively.

2.2. The alternative iteration scheme. The TV penalty term |f |TV in (12) is
inconvenient for establishing the gradient type iteration algorithms. To overcome
this difficulty, we introduce the new argument w to represent ∇f and consider the
corresponding alternative iteration scheme for optimizing (12).

Let w = (w1, · · · ,wN2) ∈ R2×N2

with wj = (w1
j ,w

2
j )
T ∈ R2×1. We rewrite (12)

as the following constrained onemin
w,f

J̃Zα,ν(w, f)

s.t. wj − (∇f)j = (0, 0)T , j = 1, · · · , N2
(13)

with the cost functional defined by

J̃Zα,ν(w, f) := 1
2

∥∥∥PFf −Pĝδ
∥∥∥2
l2

+ α1‖f‖l1,φZν + α2

N2∑
j=1

‖wj‖l2 .(14)

To minimize (13), we use the alternating iterative scheme by augmented Lagrange
method with multiplier method [23] in inner iteration for updating w and then solve
the Euler equation of the cost functional in outer iteration for updating f , instead
of using the classic alternating direction method with multiplier [4].

In alternative iteration scheme, we fix one argument either w or f and optimize
the functional with respect to the other argument at each iteration step. Firstly,
for fixed f (k), which is just an approximation to the minimizer of (13), we minimize
(13) with respect to w, which is equivalent to minimize the sub-problemmin

w

N2∑
j=1

‖wj‖l2

s.t.
∥∥wj − (∇f (k))j

∥∥
l2
≤ εtol, j = 1, · · · , N2,

(15)

where εtol is some specified error indicating the approximation level f (k). In the

sequel, we use ∇f
(k)
j := (∇f (k))j for the simplicity of notations.

By the K-T Theorem, the sub-problem (15) can be solved by the first-order
optimal condition [23] for its Lagrange functional

Lλ(w) =

N2∑
j=1

‖wj‖l2 − (λT1 , · · · ,λTN2)
(

(w1 −∇f
(k)
1 )T , · · · , (wN2 −∇f

(k)
N2 )T

)T
with the Lagrange multiplier λ := (λ1, · · · ,λN2) ∈ R2×N2

. However, to make the
iterative process stable, we consider the enhanced Lagrange method, i.e., instead of
minimizing Lλ(w), we consider the unconstrained optimization problem for

Lλ,τ (w) : = Lλ(w) +
τ

2

∥∥∥((w1 −∇f
(k)
1 ), · · · , (wN2 −∇f

(k)
N2 )

)∥∥∥2
l2

≡
N2∑
j=1

(
‖wj‖l2 +

τ

2

∥∥∥∥wj −∇f
(k)
j − 1

τ
λj

∥∥∥∥2
l2
− 1

2τ
‖λj‖2l2

)
(16)

with some weight τ > 0. The motivation on considering Lλ,τ (w) is to ensure the
approximate minimizer of (13) can be reached by minimizing Lλ,τ (w) within finite
iterative steps, by weakening the morbidity of the Hessian matrix of Lλ(w) [3].
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Since the optimal Lagrange multiplier λ∗ satisfying the first-order optimal condi-
tions for Lλ(w) is unknown, it is required to update λ from some initial multiplier
λ(k),0 such that λ(k),l → λ∗ as l → ∞ when updating the cost functional Lλ,τ (w)
for fixed τ > 0. So the constrained optimization problem (13) is reformulated
as minimizing the augmented Lagrangian with multiplier method using the inner
iteration process, i.e., the unconstrained problem

(17) min
w

J̃Z,λ,τα,ν (w, f (k)),

where the cost functional is defined as

J̃Z,λ,τα,ν (w, f (k)) =
1

2

∥∥∥PFf (k) −Pĝδ
∥∥∥2
l2

+ α1‖f (k)‖l1,φZν +

α2

N2∑
j=1

(
‖wj‖l2 +

τ

2

∥∥∥∥wj −∇f
(k)
j − 1

τ
λj

∥∥∥∥2
l2
− 1

2τ
‖λj‖2l2

)
(18)

with the multi-regularizing parameters α > 0, smoothing factor ν > 0, multiplier
parameter λ and the penalty factor τ > 0.

In generating the minimizer w(k+1) from (17) by inner iteration, the artificially
introduced parameters λ and τ should be specified. For simplicity, we take a
fixed value τ > 0 and only update λ in the iteration process. For λ(k),l with
l = 0, 1, · · · and λ(k),0 := λ(k) at the l−th inner iteration step, the minimization of

J̃Z,λ
(k),l,τ

α,ν (w, f (k)) with respect to w can be carried out easily, because all wj are

separated each other. The Euler equation for J̃Z,λ
(k),l,τ

α,ν (w, f (k)) with respect to w
can be written in terms of each component wj as

wj

‖wj‖l2
+ τ(wj − t

(k),l
j ) = 0, j = 1, · · · , N2(19)

with t
(k),l
j := ∇f

(k)
j + λ

(k),l
j /τ ∈ R2×1. The solution to (19) is

(20) w
(k),l+1
j = max

1− 1

τ

1∥∥∥t(k),lj

∥∥∥
l2

, 0

 t
(k),l
j .

Once we have w
(k),l+1
j , we then update λ(k),l in the inner iteration by

λ
(k),l+1
j : = λ

(k),l
j − τ(w

(k),l+1
j −∇f

(k)
j )

=


w

(k),l+1
j∥∥∥w(k),l+1
j

∥∥∥
l2

, w
(k),l+1
j 6= 0,

λ
(k),l
j + τ∇f

(k)
j , w

(k),l+1
j = 0

(21)

due to (19). By (20), w
(k),l+1
j = 0 means

∥∥∥t(k),lj

∥∥∥
l2
≤ 1

τ , i.e., we always have∥∥∥λ(k),l+1
j

∥∥∥ ≤ 1 for all l = 1, · · · at any fixed k and j = 1, · · · , N2.

The advantage of Lagrange multiplier method is the weight τ should not be
large enough. On the other words, convergence in Lagrange multiplier method can
usually be attained without the need to increase τ to infinity thereby alleviating
the ill-posed conditioning problem that plagues the penalty method. The inner
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iteration will be stopped, if

(22)
∥∥∥w(k),l+1 −∇f (k)

∥∥∥
l2
≤ εtol

at some step l = L(k) for specified small tolerance εtol > 0. Then the main loop is
going on with

(23) w(k+1) := w(k),L(k)+1, λ(k+1) := λ(k),L(k)+1.

With the above updated w(k+1) and λ(k+1), the AIS leads to

(24) min
f
J̃Z,λ

(k+1),τ
α,ν (w(k+1), f)

for updating f (k). Define the N ×N matrix D+ := −DT
−. Using the identity

∂

∂fl

N2∑
j=1

(λj)
T (wj −∇fj) =

∂

∂fl

N2∑
j=1

[
(λ1j (w

1
j − (∇x1f)j) + λ2j (w

2
j − (∇x2f)j))

]
for l = 1, · · · , N2 and defining λi =

(
λi1, · · · , λiN2

)
for i = 1, 2, the vector represen-

tation of the derivative for the Lagrange multiplier term is

∇f

N2∑
j=1

(λj)
T (wj −∇fj)

 = (I ⊗D+)(λ1)T + (D+ ⊗ I)(λ2)T

= (I ⊗D+, D+ ⊗ I)~λ,(25)

where ~λ := (λ1,λ2)T ≡ vect[λT ] ∈ R2N2×1.

Analogously, the gradient of the penalty term
∑N2

j=1 ‖wj − ∇fj‖2l2 with respect
to f has the form

∇f

N2∑
j=1

‖wj −∇fj‖2l2

 = 2 (I ⊗D+, D+ ⊗ I)

[
~w −

(
I ⊗D−
D− ⊗ I

)
f

]
,(26)

where ~w :=
(
w1

1, · · · ,w1
N2 ,w2

1, · · · ,w2
N2

)T ≡ vect[wT ] ∈ R2N2×1.
For smoothing function ‖f‖l1,φZν , it follows that

∂

∂fj′(m′,n′)
‖f‖l1,φCβ =

fj′(m′,n′)√
|fj′(m′,n′)|2 + β

,(27)

∂

∂fj′(m′,n′)
‖f‖l1,φHε =

{
fj′(m′,n′)/ε, |fj′(m′,n′)| ≤ ε
sgn(fj′(m′,n′)), |fj′(m′,n′)| > ε

(28)

for j′ = 1, · · · , N2 which are defined as j′ := j′(m′, n′) = (n′ − 1)N + m′ for
m′, n′ = 1, · · · , N . Therefore, for l = 1, · · · , N2, we have

∂

∂fl
‖f‖l1,φZν = aZl [f ]fl,(29)

where

aCl [f ] :=
1√

|fl|2 + β
, aHl [f ] :=

{
1/ε, |fl| ≤ ε,

sgn(fl)/fl, |fl| > ε.

So the gradient form under each smoothing function is

(30) ∇f‖f‖l1,φZν = ΛZ [f ]f ,

where ΛZ [f ] := diag(aZ1 [f ], aZ2 [f ], · · · , aZN2 [f ]) for Z = C,H.
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Combining all the above analysis, the Euler equation for the cost functional

J̃Z,λ
(k+1),τ

α,ν (w(k+1), f) with respect to f in vector form is

F
T
PT (PFf −Pĝδ)− α2(I ⊗D+, D+ ⊗ I)~λ(k+1) +

α2τ (I ⊗D+, D+ ⊗ I)

[
~w(k+1) −

(
I ⊗D−
D− ⊗ I

)
f

]
+ α1ΛZ [f ]f = 0(31)

for Z = C,H respectively. Introduce AZ(k) := max{aZj [f (k)] : j = 1, · · · , N2}. We

propose to linearize the nonlinear term ΛZ [f ]f of (31) near f (k) by

ΛZ [f ]f ≈ AZ(k)f + ΛZ [f (k)]f (k) −AZ(k)f
(k),

which leads to the linear equation

(32) L(k)f (k+1) = b(k)

for solving f (k+1) from f (k), where
L(k) = −α2τ (I ⊗D+, D+ ⊗ I)

(
I ⊗D−
D− ⊗ I

)
+ α1A

Z
(k)I + F

T
PTPF,

b(k) = α2 (I ⊗D+, D+ ⊗ I)
(
−τ ~w(k+1) + ~λ(k+1)

)
+ F

T
PTPĝδ+

α1(AZ(k)I− ΛZ [f (k)])f (k).

The motivation to replace the nonlinear Euler equation (31) by (32) is that we try
to find the minimizer in an efficient way, which can be realized by solving (32). In
fact, applying two-dimensional DFT operator F on (32), we obtain

(33) L̃(k)f̂ (k+1) = b̂(k),

where f̂ (k+1) = F [f (k+1)] = Ff (k+1) and

b̂(k) = F
[
α2(I ⊗D+, D+ ⊗ I)

(
−τ ~w(k+1) + ~λ(k+1)

)]
+ PTPĝδ +

α1F(AZ(k)I− ΛZ [f (k)])f (k),(34)

L̃(k) = FL(k)F−1

= −α2τF [(I ⊗D+)(I ⊗D−) + (D+ ⊗ I)(D− ⊗ I)] F−1 +

α1A
Z
(k)I + PTP

: = −α2τF (D1 + D2) F−1 + α1A
Z
(k)I + PTP,(35)

where Di(i = 1, 2) are the N2 ×N2 symmetric block-circulate-circulate-block
(BCCB) matrices generated by D1 := bccb◦D∗,D2 := bccb◦DT

∗ for N×N matrix
D∗ = (d∗,0, · · · ,0), where

d∗ = (−2, 2)T for N = 2, d∗ = (−2, 1, 0, · · · , 0︸ ︷︷ ︸
N−3

, 1)T for N = 3, 4, · · · ,(36)

where bccb is the standard recursion operator, see [24]. With the commuta-
tivity of Fourier transform on BCCB matrix Di , it follows that F (D1 + D2) =
− (L1 + L2) F, where Li(i = 1, 2) are diagonal matrices, with the elements be-
ing the negative eigenvalues of Di(i = 1, 2) (Prop. 5.31 in [24]). More pre-

cisely, by straightforward computations on L1 + L2 = −F (D1 + D2) F
T

, it follows
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L1 + L2 = diag(vec[L]) with the elements of L being

(37) lm,n = 4− 2

(
cos

2π

N
(m− 1) + cos

2π

N
(n− 1)

)
, m, n = 1, · · · , N.

Therefore L̃(k) has the expression

(38) L̃(k) = α2τ (L1 + L2) + α1A
Z
(k)I + PTP.

The last term PTP is also a diagonal matrix for both random band sampling and
radiative sampling [14]. So for (33) with diagonal coefficient matrix, it can be solved

simply to yield f̂ (k+1) in frequency domain, and then generate f (k+1) = F
T
f̂ (k+1)

by the inverse Fourier transform.
Since f represents the grey values of an image, we always embed the a-priori

information f ∈ [0, 1] into our iterative algorithm, i.e., we further set the cut-off
process

f
(k+1)
j =


f
(k+1)
j , if 0 ≤ f

(k+1)
j ≤ 1,

0, if f
(k+1)
j < 0,

1, if f
(k+1)
j > 1.

(39)

Then the alternating iteration process is stopped under the condition

either
∥∥∥Pf̂ (k+1) −Pĝδ

∥∥∥
l2
≤ δ or ‖f (k+1) − f (k)‖l2 ≤ ε or k ≤ K0,(40)

where δ is the noise level, and K0 is the maximum iteration number. Under the
reasonable restriction (39), we find that (40) can be realized efficiently, although
the cut-off process (39) is rarely excited.

Algorithm Alternative iteration scheme

Input: noisy frequency data {ĝδm′,n′ : m′, n′ = 1, · · · , N}, sampling matrix

P ∈ RN2×N2

, parameters α1, α2, β, ε, τ,K0, tolerance εtol.

Set initial value f (0) = 0 ∈ RN2×1,λ(0) = 0 ∈ R2×N2

.
Do exterior loop from k = 1, 2, · · ·
While

∥∥∥PFf (k) −Pĝδ
∥∥∥
l2
> δ or k < K0

Do inner loop from l = 0, 1, · · · with λ(k),0 = λ(k−1) ∈ R2×N2

.
{ Compute:

Determine w
(k),l+1
j by (20) for all j;

Update: λ
(k),l+1
j ← λ

(k),l
j − τ(w

(k),l+1
j −∇f

(k)
j ) by (21) for all j;

If
∥∥w(k),l+1 −∇f (k)

∥∥
l2
≤ εtol Break. }

w(k+1) := w(k),l+1, λ(k+1) := λ(k),l+1.
Determine f (k+1) by solving (33) and then taking IFFT.

Modify f (k+1) by (39).
End while
f (k+1) ∈ RN×N ← f (k+1) ∈ RN2×1 and output.
End

To sum up, we propose to solve the unconstrained optimization problem

min
f
JZα,ν(f) by solving the constrained optimization problem min

w,f
J̃Zα,ν(w, f) under

the constraint w = ∇f . By applying the augmented Lagrange multiplier method,
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the AIS is applied to solve the unconstrained problem min
w,f

J̃Z,λ,τα,ν (w, f) with arti-

ficially introduced weights λ, τ by two iterations. The first iteration is to update
(λ,w) for which the solution can be expressed explicitly, and the second iteration is
to update f by solving a linear equation in frequency domain, which has a diagonal
coefficient matrix and consequently can be solved efficiently. Such a nice iterative
equation is generated by further modifying the linearized Euler equation for the
cost functional.

The essence of the proposed simplified scheme for yielding f is to solve the non-
linear Euler equation approximately from its linearizing version. Consequently, we
need to deal with the convergence property of this iterative sequence {(w(k), f (k)) :
k ∈ N} as well as its error with the minimizer by solving the nonlinear Euler equa-
tion, which will be the topic in the next section.

3. Convergence property of iteration process. In this section, we will estab-
lish the convergence property of the iterative process for the model with Charbonnier
approximation, but the analysis is also applicable to Charbonnier approximation.
However, the numerical tests in section 4 will be implemented for these two approx-
imations. To simplify the notations, we use ‖ · ‖ := ‖ · ‖l2 to represent the norm of
a vector, while ‖ · ‖2 represents the norm of an matrix.

By representing the grey function of an image in vector form, we take the mini-

mizer fα,β∗ of JCα,β(f) as our approximation to the image. Then this unconstrained

optimization problem is rewritten as (13), the constrained one, which is solved by
AIS for w and f .

The main difficulties for the convergence come from two points. Firstly, the con-
strained problem (13) is solved at each fixed outer iteration step by the augmented
Lagrange multiplier scheme for w through inner iteration, where both w and the ar-
tificially introduced weight λ are updated by (20)-(21). Secondly, when we update
f (k) in outer iteration, the exact nonlinear Euler function (31) for the cost func-

tional J̃C,λ
(k+1),τ

α,β (w(k+1), f) is linearized and decomposed as (33) for simplifying
our computations in frequency domain.

We will firstly show the convergence property of {(w(k), f (k)) : k ∈ N} from our
linearized iterative scheme. In fact we can only establish some “almost convergent”
property for the iterative sequence.

Definition 3.1. We call the sequence {a(k) : k ∈ N} ⊂ X, where X is a complete
normed space, is almost convergent, if for ∀ε > 0, there exists a positive integer N
such that for all m,n > N , it holds∥∥∥a(m) − a(n)

∥∥∥ < ε+ εtol,

where εtol > 0 is some known small constant.

In case of εtol = 0, this definition ensures that {a(k) : k ∈ N} is a Cauchy
sequence in X, and therefore is convergent in the classical sense. So the difference
between the classical convergence and the above proposed “almost convergent” is
that here {a(k) : k ∈ N} is just a Cauchy sequence approximately due to εtol > 0.

Theorem 3.2. For any fixed α1, α2 > 0, if we take τ > 0 small and β > 0 large
appropriately, the iterative sequences {f (k) : k ∈ N} from the proposed AIS almost
converges for small tolerance εtol > 0.
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Proof. For any fixed k and j = 1, · · · , N2, it follows
∥∥∥λ(k),l+1

j

∥∥∥
l2
≤ 1 from (21) for

all l = 0, 1, · · · . So there exists a subsequence of {λ(k),l
j : l ∈ N}, still denoted

by {λ(k),l
j : l ∈ N} such that λ

(k),l
j → λ

(k),∗
j as l → ∞, which leads to w

(k),l+1
j −

∇f
(k)
j → 0 from (21) as l → ∞. This convergence means (22) can be satisfied for

given small εtol > 0.
Now for w(k+1),λ(k+1) given by (23) from inner iteration, we update f (k) by

solving (24) approximately using the linearized scheme with the restriction (39). In

terms of the expressions of L̃(k) and b̂(k), (33) can be written as(
α2τ (L1 + L2) + α1A

C
(k)I + PTP

)
f̂ (k+1)

= α2F(I ⊗D+, D+ ⊗ I)
(
−τ ~w(k+1) + ~λ(k+1)

)
+ PTPĝδ +

α1F(AC(k)I− ΛC [f (k)])f (k),(41)

which generates(
α2τ (L1 + L2) + α1A

C
(k)I + PTP

)
(f̂ (k+1) − f̂ (k))

= α2F(I ⊗D+, D+ ⊗ I)
(
−τ(~w(k+1) − ~w(k)) + (~λ(k+1) − ~λ(k))

)
+

α1F(AC(k−1)I− ΛC [f (k)])(f (k) − f (k−1)) +

α1F(ΛC [f (k−1)]− ΛC [f (k)])f (k−1).(42)

For ~w(k+1) = vect[(w(k+1))T ] ∈ R2N2×1 with w(k+1) ∈ R2×N2

, using

(43) w(k+1) = ∇f (k) + qkεtol

with ‖qk‖ ≤ 1 and the representation of ∇f (k), we have

~w(k+1) =

(
I ⊗D−
D− ⊗ I

)
f (k) + q̃kεtol,

which says

~w(k+1) − ~w(k) =

(
I ⊗D−
D− ⊗ I

)
(f (k) − f (k−1)) + (q̃k − q̃k−1)εtol(44)

with ‖q̃k‖ = ‖qk‖ ≤ 1. Therefore (42) becomes(
α2τ (L1 + L2) + α1A

C
(k)I + PTP

)
(f̂ (k+1) − f̂ (k))

= α2τ(L1 + L2)(f̂ (k) − f̂ (k−1))− α2τεtolF(q̃k − q̃k−1) +

α2F(I ⊗D+, D+ ⊗ I)(~λ(k+1) − ~λ(k)) +

α1F(AC(k−1)I− ΛC [f (k)])(f (k) − f (k−1)) +

α1F(ΛC [f (k−1)]− ΛC [f (k)])f (k−1).(45)

On the other hand, the updating process λ
(k+1)
j := λ

(k)
j − τ(w

(k+1)
j − ∇f

(k)
j )

means λ(k+1) − λ(k) = −τ(w(k+1) −∇f (k)). So we have

~λ(k+1) − ~λ(k) = vect[(λ(k+1) − λ(k))T ] = −τvect[(w(k+1) −∇f (k))T ],

which generates

(46)
∥∥∥~λ(k+1) − ~λ(k)

∥∥∥ ≤ τεtol
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from (43). Moreover, we have∥∥∥ΛC [f (k−1)]− ΛC [f (k)]
∥∥∥ , ∥∥∥ΛC [f (k−1)]− ΛC [f (k)]

∥∥∥ ≤ 1√
β3

∥∥fk − fk−1
∥∥

from the expression of ΛC [f ] and
∥∥f (k)∥∥ ,∥∥f (k−1)∥∥ ≤ 1. Consequently, using ‖f‖ =∥∥∥f̂∥∥∥, it follows from (45) and (46) that

∥∥∥f (k+1) − f (k)
∥∥∥ ≤ 8α2τ

α1AC(k)

∥∥∥f (k) − f (k−1)
∥∥∥+

1

α1AC(k)

[
Cα2τεtol + α1

C√
β3

∥∥∥f (k) − f (k−1)
∥∥∥](47)

using

∥∥∥∥(α2τ (L1 + L2) + α1A
C
(k)I + PTP

)−1∥∥∥∥
∞
≤ 1

α1AC(k)
from 0 ≤ lj ≤ 8 due to

(37) and pj = 0, 1. So we have

∥∥∥f (k+1) − f (k)
∥∥∥ ≤ √1 + β

α1

[(
8α2τ +

Cα1√
β3

)∥∥∥f (k) − f (k−1)
∥∥∥+ Cα2τεtol

]

due to 1√
1+β
≤ AC(k) ≤

1√
β

. If we take the parameters α1, α2, β, τ > 0 such that

(48) q1 :=

√
1 + β

α1

(
8α2τ +

Cα1√
β3

)
∈ (0, 1), q2 :=

C
√

1 + β

α1
α2τ ∈ (0, 1),

then we finally have

(49)
∥∥∥f (k+1) − f (k)

∥∥∥ ≤ qk1 ∥∥∥f (1) − f (0)
∥∥∥+

1

1− q1
εtol.

This estimate means, if εtol = 0, then {f (k) : k ∈ N} is a Cauchy sequence. However,
in our inner iteration, it is very hard to make εtol = 0 which means w(k+1) = ∇fk.
But when the tolerance εtol > 0 is small enough, {f (k) : k ∈ N} is almost a Cauchy
series. On the other hand, since the convergence of {f (k) : k ∈ N} is based on the
convergence of subsequence of {λ(k),l : l ∈ N} in inner iteration, the convergence of
{f (k) : k ∈ N} is also in the sense of convergence for some subsequence. We call this
phenomena as almost convergence. The proof is complete.

In Theorem 3.1, we only prove the convergence of our linearized AIS process,

where we can solve f̂ (k+1) efficiently from an linear equation (33) with diagonal
matrix. Obviously, the limitation of {f (k) : k ∈ N} by this iteration process is

only the approximation of f∗, the minimizer of J̃C,λ,τα,β (w, f). The iterative sequence

{f (k) : k ∈ N} can not approach to f∗ up to arbitrary accuracy by taking large
k, the error always has the lower bound O(εtol), which reveals the characteristics
of our alternative iteration scheme for (w(k+1), f (k+1)), since the inner iteration for
yielding w(k+1) which approaches to ∇f (k) always stops with the error εtol. Because

the AIS algorithm finds the minimizer of (18) iteratively, denote by {f (k+1)
E : k ∈ N}
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the sequence generated by solving the nonlinear Euler equation

F
T

(PTPFf
(k+1)
E −Pĝδ)− α2(I ⊗D+, D+ ⊗ I)~λ

(k+1)
E +

α2τ (I ⊗D+, D+ ⊗ I)

[
~w

(k+1)
E −

(
I ⊗D−
D− ⊗ I

)
f
(k+1)
E

]
+

α1ΛC [f
(k+1)
E ]f

(k+1)
E = 0(50)

from known ~w
(k+1)
E ,~λ

(k+1)
E determined from outer iteration (23). Since this equation

is nonlinear, we need to clarify the relation between {f (k) : k ∈ N} solving the linear

system and {f (k)E : k ∈ N} solving (50).

Theorem 3.3. If {f (k) : k ∈ N} and {f (k)E : k ∈ N} are generated from the same

initial guess f (0), then for small α2, τ, εtol > 0 and large α1, β > 0, it follows

(51) lim
k→∞

∥∥∥f (k) − f
(k)
E

∥∥∥ ≈ 0

up to the accuracy O(α2 + τεtol), where lim
k→∞

f (k) is the minimizer of the cost func-

tional lim
k→∞

J̃C,λ
(k),τ

α,β (∇f , f) related to f (0),λ(0).

Proof. It follows from direct computations that f (k) − f
(k)
E meets

F
T
PTPF(f (k+1) − f

(k+1)
E )− α2(I ⊗D+, D+ ⊗ I)(~λ(k+1) − ~λ(k+1)

E ) +

α2τ(D1 + D2)
(

(f (k) − f
(k)
E ) + (q̃k − q̃k,E)εtol − (f (k+1) − f

(k+1)
E )

)
+

+α1A
C
(k)f

(k+1) + α1(ΛC [f (k)]−AC(k))f
(k) − α1ΛC [f

(k+1)
E ]f

(k+1)
E = 0.(52)

Define z(k+1) := f (k+1) − f
(k+1)
E . Replacing k as k − 1 in this relation and doing

substraction, we have

F
T
PTPF(z(k+1) − z(k))−

α2(I ⊗D+, D+ ⊗ I)
(

(~λ(k+1) − ~λ(k))− (~λ
(k+1)
E − ~λ(k)

E )
)

+

α2τ(D1 + D2)
(

(z(k) − z(k−1)) + (Q̃k − Q̃k,E)εtol − (z(k+1) − z(k))
)

+

α1

(
AC(k)f

(k+1) + (ΛC [f (k)]−AC(k)I)f (k)
)
−

α1

(
AC(k−1)f

(k) + (ΛC [f (k−1)]−AC(k−1)I)f (k−1)
)

+

α1

(
ΛC [f

(k+1)
E ]z(k+1) − ΛC [f

(k)
E ]z(k) + ΛC [f

(k)
E ]f (k) − ΛC [f

(k+1)
E ]f (k+1)

)
= 0.

We can rewrite it as

(PTP + α2τ(L1 + L2) + α1FΛC [f
(k+1)
E ]F

T
)(ẑ(k+1) − ẑ(k))

= α2F(I ⊗D+, D+ ⊗ I)
(

(~λ(k+1) − ~λ(k))− (~λ
(k+1)
E − ~λ(k)

E )
)

+

α2τ(L1 + L2)(ẑ(k) − ẑ(k−1)) + α2τ(L1 + L2)( ˆ̃Qk − ˆ̃Qk,E)εtol +

α1F
(

(AC(k−1)I− ΛC [f
(k)
E ])f (k) + (ΛC [f (k−1)]−AC(k−1)I)f (k−1)

)
−

α1F
(

(AC(k)I− ΛC [f
(k+1)
E ])f (k+1) + (ΛC [f (k)]−AC(k)I)f (k)

)
−

α1F
(

ΛC [f
(k+1)
E ]− ΛC [f

(k)
E ]
)

z(k).
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For matrix B := PTP + α2τ(L1 + L2) + α1FΛC [f
(k+1)
E ]F

T
, since

A := α1FΛC [f
(k+1)
E ]F

T ∼ α1ΛC [f
(k+1)
E ]

which is diagonal, by Bauer-Fick theorem |λ(B) − λ(A)| ≤ ‖B− A‖2 [2], we can
estimate λ(B), the eigenvalues of B, by

|λ(B)| ≥ |λ(A)| − ‖B− A‖2 ≥
α1√
1 + β

− (1 + 8α2τ),

notice that B − A = PTP + α2τ(L1 + L2) is diagonal with the elements between
[0, 1 + 8α2τ ]. Using the norm equivalence for the matrix and the known estimate∥∥∥~λ(k+1) − ~λ(k)

∥∥∥ , ∥∥∥~λ(k+1)
E − ~λ(k)

E

∥∥∥ ≤ τεtol
together with the bound 1√

β3
α1 on the last three terms containing α1, we have

∥∥∥z(k+1) − z(k)
∥∥∥ ≤ 1

|λ(B)|

[
α2τεtol + α2τ

∥∥∥z(k) − z(k−1)
∥∥∥+

α1√
β3

]
≤ α2τ

α1√
1+β
− (1 + 8α2τ)

∥∥∥z(k) − z(k−1)
∥∥∥+

1
α1√
1+β
− (1 + 8α2τ)

(
α2τεtol +

α1√
β3

)
.(53)

So, for the parameters satisfying α1 > (1 + 8α2τ)
√

1 + β with small τεtol > 0 and
large β > 0, it follows that

∥∥z(k+1) − z(k)
∥∥ ≤ q1

∥∥z(k) − z(k−1)
∥∥ + q2 for constants

q1, q2 ∈ (0, 1), which leads to∥∥∥z(k+1) − z(k)
∥∥∥ ≤ qk1 ∥∥∥z(1) − z(0)

∥∥∥+
1

1− q1
q2,

i.e., {z(k) : k ∈ N} is almost a Cauchy sequence and consequently almost converges.

Therefore {f (k)E : k ∈ N} is almost convergent. Denote by

f
(k)
E → fE , ~λ

(k+1)
E → ~λE , f (k) → f , ~λ(k+1) → ~λ

as k →∞. By taking limit in (52), we have(
F
T
PTPF + α1(ΛC [f ] + ΛC [fE ])

)
(f − fE)

= α2(I ⊗D+, D+ ⊗ I)(~λ− ~λE)−
α1(ΛC [fE ]− ΛC [f ])f − α2τ(D1 + D2) lim

k→∞
(q̃k − q̃k,E)εtol.(54)

By updating process for λ
(k)
j at each inner iteration, we have

λ
(k+1)
j = λ

k,L(k)+1
j = λ

k,L(k)
j − τ(w

k,L(k)+1
j −∇f

(k)
j ) = λ

k,L(k)
j − τ(w

(k+1)
j −∇f

(k)
j ),

and consequently ~λ(k+1) = vect[(λk,L(k))T − τ(w(k+1)−∇f (k))T ]. Analogously, we

also have ~λ
(k+1)
E = vect[(λ

k,L(k)
E )T−τ(w

(k+1)
E −∇f

(k)
E )T ]. Since

∥∥λk,L(k)∥∥ ,∥∥∥λk,L(k)E

∥∥∥
≤ 1,

∥∥w(k+1) −∇f (k)
∥∥ ,∥∥∥w(k+1)

E −∇f
(k)
E

∥∥∥ ≤ εtol, we have

(55)
∥∥∥~λ(k+1) − ~λ(k+1)

E

∥∥∥ ≤ C(1 + τεtol).
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We again apply the Bauer-Fick theorem to get∣∣∣λ(F
T
PTPF + α1(ΛC [f ] + ΛC [fE ])

)∣∣∣
≥

∣∣λ (α1(ΛC [f ] + ΛC [fE ])
)∣∣− ∥∥∥FTPTPF

∥∥∥
2
≥ α1√

β + 1
− 1

due to pj = 0 or 1, which leads to

(56)

∥∥∥∥(F
T
PTPF + α1(ΛC [f ] + ΛC [fE ])

)−1∥∥∥∥
2

≤ 1
α1√
β+1
− 1

.

On the other hand, we also have

(57)
∥∥ΛC [f ]− ΛC [fE ]

∥∥ ≤ C√
β3
‖f − fE‖ .

Inserting (55)-(57) into (54) yields

‖f − fE‖ ≤ C
α1

√
β + 1

α1 −
√
β + 1

[
1√
β3
‖f − fE‖+

α2

α1
(1 + τεtol)

]
.(58)

So for α1 >
√
β + 1 with large β > 0 and small τεtol, α2 > 0, we finally have

‖f − fE‖ ≤ C(α2 + τεtol).

The proof is complete.

4. Numerical experiments. In this section, we implement the AIS algorithm
from noisy frequency sampling data numerically for different images with grey values
between [0, 1], which are shown in Fig.1, where Fig.1(A) and Fig.1(B) are model
images with grey values {0, 1}, {0, 128255 , 1} respectively, while Fig.1(C) is a standard
phantom from Matlab, and Fig.1(D) is an MRI chest image. The number of pixels
for these four images is 256× 256, 512× 512, 256× 256, 512× 512, respectively.

(A) (B) (C) (D)

Figure 1. Object images: (A) circles under black background;
(B) circles under gray background; (C) a phantom from Matlab;
(D) an MRI chest image.

For testing our algorithm, we add the additive random noise in the frequency
data of the image to yield the the noisy frequency data by

(59) ĝδm′,n′ = f̂Rm′,n′ + δ × rand(em′,n′) + i · (f̂ Im′,n′ + δ × r̃and(em′,n′)),

with fixed noise level δ = 0.01 and rand(em′,n′), r̃and(em′,n′) ∈ [−1, 1] for m′, n′ =

1, · · · , N , where f̂Rm′,n′+ i · f̂ Im′,n′ are the frequency data of exact image f . Then the

inversion input data are sampling from (59) by some sampling operator P. More
precisely, the sampling masks P{ĝδm′,n′ : m′, n′ = 1, · · · , N} for each image are
specified as follows.
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• P for Fig.1(A) and Fig.1(B)(random band sampling):
For Fig.1(A), we sample 20 rows and 20 columns with Rcenter = 0.3 and

sampling ratio Rtotal = 15.02%, the sampling matrix is

P = diag(0, · · · , 0, p9, 0, · · · , 0, p19, 0, · · · , 0, p37, 0, · · · , 0, p75, 0, · · · ,
0, p80, 0, 0, p83, 0 · · · , 0, p114, 0, 0, p117, 0, · · · , 0, p125, p126, p127,
p128, p129, p130, 0, · · · , 0, p172, 0, · · · , 0, p182, p183, 0, · · · , 0,
p191, 0, · · · , 0, p198, 0, · · · , p210, 0, · · · ),(60)

where pi = 1 for i = 9, 19, 37, · · · , 210.
For Fig.1(B), we sample 40 rows and 40 columns with Rcenter = 0.3 and

sampling ratio Rtotal = 7.66%. The sampling matrix is

P = diag(0, · · · , 0, p9, 0, · · · , 0, p19, 0, · · · , 0, p37, 0, · · · , 0, p75, 0, · · · , 0,
p80, 0, 0, p83, 0 · · · , 0, p114, 0, 0, p117, 0, · · · , 0, p166, 0, · · · , 0, p176,
p177, 0, · · · , 0, p185, 0, · · · , 0, p192, 0, · · · , 0, p204, 0, · · · , 0, p250, p251,
p252, p253, p254, p255, p256, p257, p258, p259, p260, p261, 0, · · · , 0, p282,
0, · · · , 0, p293, 0, · · · , 0, p332, 0, · · · , 0, p346, 0, p348, 0, · · · , 0, p376,
0, · · · , 0, p392, 0, · · · , 0, p424, 0, p426, 0, p428, 0, · · · , 0, p444, 0, · · · , 0,
p476, 0, · · · , 0, p496, 0, · · · , 0, p501, 0, · · · , 0),(61)

where pi = 1 for i = 9, 19, 37, · · · , 501.
• P for Fig.1(C) and Fig.1(D)(radial sampling):

For Fig.1(C), we sample 22 lines with Rtotal = 9.36%, while we sample
sampling 44 lines with Rtotal = 9.64%.

The sampling masks in frequency domain for the above four configurations are
shown in Fig.2, respectively.

(A) (B) (C) (D)

Figure 2. Masks: (A) random sampling with 20 rows and 20
columns; (B) random sampling with 40 rows and 40 columns; (C)
radial sampling with 22 lines; (D) radial sampling with 44 lines.

For the multi-regularizing pars, we choose regularizing parameters α1 = δ3, α2 =
δ2, τ = 10, the small approximation threshold β = 0.01 (or ε = 0.1), the inner
iteration for w is stopped with εtol = 10−3, while the maximum iteration number
for outer recursion is K0 = 100. All numerical implementations are performed in
MATLAB R2017b on a laptop with 1.6GHz Intel Core i5 processor and 8 GB of
memory.

We introduce a new SNR index called improved signal to noise ratio (ISNR)
together with the relative error (ReErr) to measure the reconstruction quality for
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an image, which are defined as

(62) ISNR = 10 lg

(
‖f∗ −F−1 ◦Pĝδ‖l2∥∥f (k) − f∗

∥∥
l2

)
, ReErr =

∥∥f (k) − f∗
∥∥
l2

‖f∗‖l2
,

where f (k) and f∗ are the reconstructed and exact image, respectively. Essentially,
ISNR measures the reconstruction performance in terms of the ratio between input
data error and reconstruction error, while ReErr is the standard relative error. The
iteration number (IterNum) and the CPU time are used to evaluate the computa-
tional costs roughly.

(A) (B) (C) (D) (E) (F)

Figure 3. Reconstructions by random band sampling. From left
to right: exact images, images by back projections, images by DM,
images by RecPF, images by C-SMRM, images by H-SMRM.

To show the performances of our proposed scheme, we firstly give the recon-
structions F−1[Pĝδ] (the second column in Fig.3 and Fig.5), which take the inverse
Fourier transform on noisy sampling data directly without any iterative scheme. We
call this method as back projection scheme. Then we compare our numerics with the
iterative type schemes, i.e., direct method (DM) in [14] and the reconstruction from
partial Fourier image data (RecPF) in [29] for each simplified multi-regularization
model with Charbonnier approximation (C-SMRM) and Huber approximation (H-
SMRM), respectively. With the stopping rules in (40), our experiments for alternat-
ing iterative algorithm stopped at minimum of

∥∥f (k+1) − f (k)
∥∥
l2

within maximum

iterations K0. The direct method (DM) considered the computations with wavelet
sparsity of an image, by solving the Euler equation for f directly, without the
introduction of alternative iterations, while RecPF method used the alternating di-
rection method with multipliers (ADMM) to obtain the image restoration with an
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outstanding performance. The source codes of above methods in [14, 29] are pub-
licly downloaded from the website. For fair comparisons, we have carefully adjusted
the parameters in their algorithms so that their best reconstructions are compared
with ours.

We firstly check the reconstruction performances for random band sampling. The
reconstructions for different images are shown in Fig.3, and the error distributions
are shown in Fig.4. The computational costs are given in Tab.1.
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Figure 4. Errors by random band sampling: ‖f (k+1)−f (k)‖l2 (top
line); ‖f (k+1)−f∗‖l2 (bottom line). The first column is for C-SMRM
method, while the second column is for H-SMRM method.

From the above figures, it can be found that all the schemes can reconstruct
the objective image from the incomplete noisy frequency data. The direct method
shown in Fig.3(C) can restore the image, but the grey values 1 for the circles part is
not recovered well, and the reconstructed MRI image is no value for treatment, even
though the direct method is much efficient to restore the image with multiplicative
noise. Meanwhile, the circles image and gray-scale image as well as phantom image
obtained by RecPF method is more clear especially for edge-preservation as shown
in Fig.3(D), while the MRI chest image result obtained by RecPF is indistinct and
lose much structured details. With the stopping rules in (40), the reconstruction
results by both approximation approaches could be smaller than the results on the
last step, i.e., the cost functionals are decreasing with respect to iteration times.

It is well known that the RecPF method with ADMM algorithm is a very compet-
itive method for compressive sensing (CS) image restoration due to its remarkable
performance. However, for these tested images in Fig.3, the performance of RecPF
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Table 1. Computational costs for random band sampling.

image scheme ISNR(dB) ReErr(%) CPU time(s) IterNum

circles
direct 3.0437 17.0221 1.5734 40
RecPF 14.6056 1.0492 0.2680 27

C-SMRM 14.2219 1.1462 1.9248 100
H-SMRM 14.7205 1.0265 1.3517 100

grayscale
direct 1.8183 5.7418 9.6594 40
RecPF 11.9131 0.5245 1.0943 21

C-SMRM 11.5221 0.5627 1.9255 100
H-SMRM 13.5264 0.2621 39.1639 100

phantom
direct 1.7383 8.7405 2.1778 40
RecPF 11.3009 1.9514 0.3689 38

C-SMRM 11.4490 1.8190 1.2895 100
H-SMRM 14.4623 0.8047 50.9566 100

chest
direct 2.6484 3.8296 2.1683 40
RecPF 11.4839 1.0310 0.2189 21

C-SMRM 11.5464 0.9734 1.7518 100
H-SMRM 17.4996 0.0164 45.6364 100

method is undesirable (maybe due to the different sampling method). The alter-
native iteration scheme for both C-SMRM and H-SMRM can restore the image
characteristics very well, i.e., it gives rise to better piecewise constant property and
the image edges shown in the last two columns of Fig.3, than the details shown
in Fig.3(C)-3(D). Obviously, our simplified model and approaches achieve the best
visual quality and highest ISNR value among all test methods. This observation
can be verified quantitatively from Tab.1, namely, H-SMRM from our algorithm
achieves the best reconstruction performance with the index either ISNR or relative
error, as compared with other schemes. From the definition of ISNR, the larger
ISNR is, the smaller the error

∥∥f (k) − f∗
∥∥
l2

, which means that the reconstruction
error is smaller than the error obtained from using back projections.

Now we check the performances for radial sampling scheme for the complex situa-
tions, the phontam from Matlab and the MRI chest image. The reconstructions are
given in Fig.5, while the decreasing behaviors of the errors with respect to the iter-
ation times are given in Fig.6. The quantitative descriptions on the computational
costs are shown in Tab.2.

From Fig.5 and Fig.6 together with Tab.2, we can reach the same observations
for complex images (phantom from Matlab and MRI chest image) using radial sam-
pling scheme as those using random band sampling data, i.e., H-SMRM from the
AIS yield the best reconstructions, but with a little bitter large computational cost.
The reconstruction differences between Charbonnier approximation and Huber ap-
proximation (shown in Fig.5(E) and Fig.5(F)) can be seen from Tab.2 quantitatively.

5. Conclusion. We consider an image reconstruction model from the data-fitting
models with two regularizing terms. By modifying the total variational penalty term
and l1-norm penalty term using two smooth approximation, the corresponding op-
timization problem is solved by alternative iteration scheme (AIS) with augmented
Lagrange penalty term. For this optimization problem, we propose an iterative
scheme for updating two arguments as well as the weight of Lagrange penalty term
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(A) (B) (C) (D) (E) (F)

Figure 5. Reconstructions by radial sampling. From left to right:
exact images, images by back projections, images by DM, images
by RecPF, images by C-SMRM, images by H-SMRM.

Table 2. Computational costs for radial sampling.

image scheme ISNR(dB) ReErr(%) CPU time(s) IterNum

phantom
direct 3.8014 11.1883 2.4127 40
RecPF 12.3966 2.7976 0.4137 36

C-SMRM 12.0596 3.0233 1.3909 100
H-SMRM 13.0561 2.2250 45.5967 100

chest
direct 4.0305 4.3061 2.2478 40
RecPF 2.6372 4.5132 0.2848 22

C-SMRM 11.4866 0.6724 1.3651 100
H-SMRM 12.5369 3.5845 37.5576 100

by inner and outer iterations. The solution in the inner iteration has an explicit
solution, while the solution in outer iteration can be determined by solving a lin-
ear system with diagonal coefficient matrix in frequency domain. Therefore the
proposed AIS can be realized efficiently.

For this linearized iterative scheme, we further prove the convergence property of
the iterative sequence in some generalized sense rigorously under suitably specified
regularizing parameters. Such a generalized convergence reveals the essence of the
AIS due to the finite accuracy approximation in inner iteration. Moreover, the error
between the solution obtained from the linearize system and the solution from the
nonlinear Euler equation at each step in outer iteration is quantitatively estimated.
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Figure 6. Error distributions by radial sampling. ‖f (k+1)−f (k)‖l2
(top line), ‖f (k+1) − f∗‖l2 (bottom line). The first column is for
C-SMRM, the second column is for H-SMRM.

We would like to emphasize that our work establishes the above theoretical anal-
ysis only on some type of images, and also the amount of computations is a little
bitter heavy due to the introduction of two regularizing terms in the cost functional
as compared with the cost functional with only one regularizing term. Such an
extra cost is unavoidable, since both the sparsity and the discontinuity of an image
are recovered in some balanced way.

As for the numerical performances, the alternative iteration scheme for both C-
SMRM and H-SMRM model can improve the quality of restorations in an acceptable
calculating time, noticing that our initial guess for the iteration is f (0) = 0. How-
ever, the relative error from proposed simplified model is smaller. For different
smooth approximations, the optimization problem C-SMRM can yield a better re-
construction spending less time, as compared with the results by DM and RecPF.
Additionally, the H-SMRM model can improve the quality of reconstructions ob-
viously, even though the CPU time is longer than other approaches for identifying
different structures of the objective images. Moreover, if we take the results by back
projection scheme (shown in Fig.3(B) and Fig.5(B)) as our initial guess instead of
f (0) = 0, the iterative process will converge quickly, leading to the decreasing of
computational costs.
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