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Abstract
We consider an inverse time-dependent source problem governed by a dis-
tributed time-fractional diffusion equation using interior measurement data.
Such a problem arises in some ultra-slow diffusion phenomena in many applied
areas. Based on the regularity result of the solution to the direct problem, we
establish the solvability of this inverse problem as well as the conditional sta-
bility in suitable function space with a weak norm. By a variational identity
connecting the unknown time-dependent source and the interior measurement
data, the conjugate gradient method is also introduced to construct the inversion
algorithm under the framework of regularizing scheme. We show the validity
of the proposed scheme by several numerical examples.

Keywords: diffusion process, distributed order time-fractional derivative,
uniqueness, conditional stability, numerics

(Some figures may appear in colour only in the online journal)

1. Introduction

It was found by physicists in recent decades that the ultraslow diffusion phenomena arise
in many applied areas such as polymer physics and particle’s motion in a quenched ran-
dom force field, where the mean square displacement (MSD) has a logarithmic growth [1–5].
Mathematically, such phenomena should be described by a diffusion equation with distributed
order time-fractional derivatives, instead of classical advection–diffusion or time-fractional
derivatives. The reason is that the MSD of the diffusive particles described by classical advec-
tion–diffusion equation behaves like O(t) as t →∞, and a typical behavior of MSD in the
framework of the time-fractional derivative model is O(tα) with α ∈ (0, 1) as t →∞ [6]. Thus,
to describe the ultraslow diffusion phenomena, a distributed-order time fractional derivative
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D(μ)z(t) ≡ D(μ)
0+z(t) :=

∫ 1

0
μ(α)∂α

0+z(t) dα (1.1)

with some weight functionμ(α) � 0 forα ∈ [0, 1] should be introduced in terms of the Caputo
fractional left derivative

∂α
0+z(t) :=

1
Γ(1 − α)

∫ t

0

z′(τ )
(t − τ )α

dτ , 0 < α < 1, (1.2)

where Γ(·) is the Gamma function.
To describe ultraslow diffusion phenomena in a bounded domain Ω ⊂ R

d (d = 1, 2, 3) with
piecewise smooth boundary∂Ω, we consider the following distributed time-fractional diffusion
system

⎧⎪⎪⎨
⎪⎪⎩

D(μ)u(x, t) − Lu = F(x, t), (x, t) ∈ Ω× (0, T] :=ΩT ,

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T] =: ∂ΩT ,

u(x, 0) = a(x), x ∈ Ω

(1.3)

for internal source F(x, t), where L � :=∇ · (σ(x)∇�) is a known elliptic operator with
σ(·) ∈ C1(Ω), σ

∣∣
Ω
> 0.

The time-fractional derivatives which have been applied to describe some slow diffusion
phenomena, for example see [7–9], can be considered as the special case of the deriva-
tive in (1.3). Indeed, if we replace the smooth weight function μ(α) in (1.3) by an impulse
function μ(α) = δ(α− α0) for known α0 ∈ (0, 1), we can immediately deduce the so-called
time-fractional diffusion equation

∂α0
0+u(x, t) − Lu = F(x, t), (x, t) ∈ ΩT . (1.4)

The direct problem for the governed equation (1.4) and the related inverse problems have drawn
extensive attentions of researchers during the recent years, see [10] for a tutorial review and
also [11–15] for several concrete inverse problems. Especially for the inverse source problems
aiming to the determination of the source F(x, t) in some special form in (1.4), we refer the
readers to [8, 9, 16–18] for the uniqueness and stability.

However, to our knowledge, for the diffusion system (1.3) with more general weight func-
tion such as μ(·) ∈ C[0, 1], there are few literatures concerned with both the direct problems
and the related inverse problems. In fact, the well-posedness of the direct problem (1.3) depends
heavily on the properties of the weight function μ(α) as well as the sources F(x, t), a(x), see
[6, 19–21] and the references therein.

For the inverse problems, the uniqueness for recovering μ(α) from interior measurement
data based on the well-posedness for (1.3) have been considered in [19, 20, 22, 23]. The
essences of these problems is to detect the system properties represented by the weight function
μ(α), i.e., to what extent of this system diffuses slowly.

However, in many engineering configurations, the ultraslow diffusion system is given or
known, people are often required to detect the unknown sources leading to the diffusion
phenomena governed by this system, from some measurable data of the physical field. In
this case, the source term F(x, t) in (1.3) is unknown. Motivated by the above situations,
we are interested in the identification of F(x, t) in special form β(t) f (x) with unknown
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time-dependent ingredient β(t) and known f (x) in (1.3), from the interior measurement
data

h(x, t) := u(x, t), (x, t) ∈ Ω0 × [0, T], (1.5)

where Ω0 ⊂⊂ Ω is the observation domain. Although this inverse problem is linear, such an
inverse problem is novel and difficult due to the average effect of the distributed time-fractional
derivative including the slow diffusion effects for all α ∈ (0, 1), i.e., the local information
(1.5) about t represents the average message of the slow diffusion described by ∂α

t u for each
α ∈ (0, 1). We will prove the uniqueness and stability of the inverse problem in suitable
functional spaces, with specified weight function μ(α).

This paper is organized as follows. In section 2, we state some well-known equivalent
expressions of fractional derivatives, and analyze the property of the ordinary differential
equation with distributed fractional derivative. Then we establish the regularity of the solution
to direct diffusion system, which is crucial to the solvability of our inverse problem (1.3)–(1.5)
in a suitable function space in section 3. In section 4, we construct a variational identity specify-
ing the relation between the unknown time-dependent source and interior measurements. Based
on this identity, the uniqueness and conditional stability of the inverse problem are established.
Then a conjugate gradient method is utilized to solve the optimization version of the inverse
problem with several examples in section 5.

2. Preliminaries

For constructing the adjoint system in our inversion scheme, we need the right-hand side
Caputo fractional derivative given by

∂α
T−z(t) := − 1

Γ(1 − α)

∫ T

t

z′(s)
(s − t)α

ds, α ∈ (0, 1) (2.1)

and the corresponding right-hand side distributed-order fractional derivative

D(μ)
T−z(t) :=

∫ 1

0
μ(α)∂α

T−z(t) dα. (2.2)

Moreover, for α ∈ (0, 1), the Riemann-Liouville fractional left (right) integral operators⎧⎪⎪⎪⎨
⎪⎪⎪⎩

IR,α
0+ z(t) :=

1
Γ(α)

∫ t

0

z(s)
(t − s)1−α

ds, 0 < t � T,

IR,α
T− z(t) :=

1
Γ(α)

∫ T

t

z(s)
(s − t)1−α

ds, 0 � t < T

(2.3)

and the Riemann-Liouville fractional left (right) derivatives⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∂R,α

0+ z(t) :=
1

Γ(1 − α)
d
dt

∫ t

0

z(s)
(t − s)α

ds, 0 < t � T,

∂R,α
T− z(t) := − 1

Γ(1 − α)
d
dt

∫ T

t

z(s)
(s − t)α

ds, 0 � t < T,

(2.4)

as well as the Carputo derivatives have the relations

3
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⎧⎪⎨
⎪⎩
∂α

0+z(t) = (IR,1−α
0+ z′)(t), ∂α

T−z(t) = −(IR,1−α
T− z′)(t),

∂R,α
0+ z(t) =

d
dt

(IR,1−α
0+ z)(t), ∂R,α

T− z(t) = − d
dt

(IR,1−α
T− z)(t)

(2.5)

for z ∈ AC[0, T] [24, 25].
Denote by (·, ·) the L2(Ω) inner product and ‖·‖ 2 the corresponding L2 norm. To repre-

sent the solution of the direct problem in terms of the eigenfunctions, introduce {λn,ϕn}∞n=1
the Dirichlet eigensystem of −L satisfying 0 < λ1 � λ2 � . . . � λn →∞ as n →∞, while
{ϕn: n ∈ N} ⊂ H2(Ω) ∩ H1

0(Ω) is L2-unified orthogonal eigenfunction set forming the basis of
L2(Ω). Then the operator (−L)γ for γ � 0 is defined by

(−L)γv :=
∞∑

n=1

λγ
n (v,ϕn)ϕn

with the domain D((−L)γ) :=
{
v ∈ L2(Ω):

∑∞
n=1 λ

2γ
n (v,ϕn)2 < ∞

}
, which is a Hilbert space

with the norm

‖v‖D((−L)γ ) =

( ∞∑
n=1

|λγ
n (v,ϕn)|2

)1/2

.

It is well-known that D((−L)γ) ⊂ H2γ(Ω) for γ > 0 and especially there hold

D((−L)0) = L2(Ω), D((−L)1/2) = H1
0(Ω), D((−L)1) = H2(Ω) ∩ H1

0(Ω).

Furthermore, we setD((−L)−γ) = (D((−L)γ))′ for γ > 0. For 1 � p � ∞ and a Banach space
X, we say that f ∈ Lp(0, T; X) provided

‖ f ‖Lp(0,T;X) :=

⎧⎨
⎩
(∫ T

0 ‖ f (·, t)‖p
X dt

)1/p
< ∞, if 1 � p < ∞,

ess sup0<t<T‖ f (·, t)‖X < ∞, if p = ∞.
(2.6)

Similarly, for 0 � t0 < T , denote by C([t0, T]; X) the space with the norm ‖ f ‖C([t0,T];X) :=
max[t0,T]‖ f (·, t)‖X and define

C((0, T]; X) :=
⋂

0<t0<T

C([t0, T]; X), C([0,∞); X) :=
⋂
T>0

C([0, T]; X). (2.7)

By W1
t ((0, T]; X) and W2

t ((0, T]; X) we denote the space of functions g ∈ C1((0, T]; X) such
that g′ ∈ L1(0, T; X) and g′ ∈ L2(0, T; X), respectively.

To consider the property of operator D(μ), we introduce the function

gμ(t) :=
1
π

∫ ∞

0

e−rt
∫ 1

0 sin(πα)rαμ(α) dα

(
∫ 1

0 cos(πα)rαμ(α) dα)2 + (
∫ 1

0 sin(πα)rαμ(α) dα)2
dr (2.8)

and define a convolution operator I(μ)[z](t) := gμ(t) ∗ z(t) in terms of gμ(t).
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Lemma 2.1. For 0 � μ ∈ L1(0, 1),μ
≡0, it follows that

(a) gμ(·) ∈ L1
loc[0,∞) with the estimate 0 � gμ(t) � Ct−(1−ζ) for t ∈ (0, T], where

C :=C(μ, T) > 0 is a constant independent of t and the constant ζ ∈
(
0, 1

2

)
is determined

from

∫ 1−ζ

ζ

μ(α) dα =
1 − ζ

2

∫ 1

0
μ(α) dα > 0. (2.9)

(b) The operator I(μ) is the inverse of D(μ) in the sense that

D(μ)I(μ)[z](t) = z(t), I(μ)D(μ)[z](t) = z(t) − z(0) for z ∈ AC[0, T].

(2.10)

(c) If μ(α) also meets
∫ 1

1/2 μ(α) dα > 0, then there exists ζ∗ ∈ (1/2, 3/4) determined by

∫ 3/2−ζ∗

ζ∗
μ(α) dα = ζ∗

∫ 1

1/2
μ(α) dα > 0 (2.11)

such that 0 � gμ(t) � Ct−(1−ζ∗) for t ∈ (0, T], where C :=C(μ, T) is a positive constant
independent of t, i.e., gμ(·) ∈ L2(0, T).

Proof. The results (a) and (b) can be found in [21]. Let us prove conclusion (c). Consider
the function H(s):

[
1
2 , 3

4

]
�→ R defined by

H(s) :=
∫ 3/2−s

s
μ(α) dα− s

∫ 1

1/2
μ(α) dα.

Since H(1/2)H(3/4) < 0, there exists ζ∗ ∈ (1/2, 3/4) satisfying

∫ 3/2−ζ∗

ζ∗
μ(α) dα = ζ∗

∫ 1

1/2
μ(α) dα =: ζ∗cμ > 0,

where 0 < cμ < ∞ is a constant due to
∫ 1

1/2 μ(α) dα > 0 andμ ∈ L1(0, 1). Now it follows from

∫ 1

0
rα sin(πα)μ(α) dα �

∫ 3/2−ζ∗

ζ∗
rα sin(πα)μ(α) dα �

{
ζ∗cμ sin(πζ∗)r3/2−ζ∗, 0 < r � 1,

ζ∗cμ sin(πζ∗)rζ
∗
, r � 1

that

5
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gμ(t) � 1
π

∫ ∞

0

e−rt∫ 1
0 rα sin (πα)μ(α) dα

dr

� cμ,ζ∗

(∫ 1

0
e−rtrζ

∗−3/2 dr +
∫ ∞

1
e−rtr−ζ∗ dr

)
=: I1 + I2,

where cμ,ζ∗ := (πζ∗cμ sin(πζ∗))−1 > 0 is a constant. For I1, we have for t, r > 0 that

I1(t) := cμ,ζ∗

∫ 1

0
e−rtrζ

∗−3/2 dr � cμ,ζ∗

∫ 1

0
rζ

∗−3/2 dr =
2cμ,ζ∗

2ζ∗ − 1
. (2.12)

As for I2(t), we have for t > 0 that

I2(t) := cμ,ζ∗

∫ ∞

1
e−rtr−ζ∗ dr � cμ,ζ∗

∫ ∞

0
e−rtr−ζ∗ dr = cμ,ζ∗Γ(1 − ζ∗)t−(1−ζ∗)

(2.13)

due to the Laplace transform L{r−ζ∗}(t) = Γ(1 − ζ∗)tζ
∗−1. Noting ζ∗ ∈ (1/2, 3/4), by (2.12)

we can further obtain for t ∈ (0, T] that

I1(t) � 2cμ,ζ∗

2ζ∗ − 1
=

2cμ,ζ∗ t1−ζ∗

(2ζ∗ − 1)t1−ζ∗ �
(

2cμ,ζ∗T1−ζ∗

2ζ∗ − 1

)
t−(1−ζ∗), 0 < t � T.

(2.14)

Combining (2.13) and (2.14), we immediately have

0 � gμ(t) � I1 + I2 � Cμ,ζ∗ ,T t−(1−ζ∗), 0 < t � T, (2.15)

where Cμ,ζ∗ ,T := max

{
2cμ,ζ∗T1−ζ∗

2ζ∗−1 , cμ,ζ∗Γ(1 − ζ∗)

}
> 0 is a constant independent of t.

Noticing ζ∗ ∈ (1/2, 3/4), it is clear that 2(1 − ζ∗) ∈ (1/2, 1). Thus, (2.15) implies that
gμ(·) ∈ L2(0, T). The proof is complete. �

To represent the solution to (1.3), we define Qn(t) for n ∈ N
+ by the following system

{
D(μ)Qn(t) + λnQn(t) = 0, t ∈ (0, T],

Qn(0) = 1.
(2.16)

The unique existence of solution to (2.16) can be found in [20, 21]. Based on lemma 2.1, Qn(t)
has the following properties.

Lemma 2.2. For 0 � μ ∈ C[0, 1] satisfying μ 
≡0,μ(0) 
= 0, it follows that

(a) Qn(·) ∈ C[0,∞) ∩ C∞(0,∞) for any n ∈ N
+ is completely monotone, which means

(−1)m dm

dtm
Qn(t) � 0 (2.17)

for all t > 0 and m = 0, 1, . . . .

6
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(b) 0 � Qn(t) � 1 for t ∈ [0, T]; t1−ζ d
dt Qn(·) ∈ C[0, T] with the bound

0 � − d
dt

Qn(t) � Cλnt−(1−ζ), t ∈ (0, T], (2.18)

where C > 0 is a constant and the constant ζ ∈ (0, 1/2) is determined by (2.9).
(c) If μ(α) also meets

∫ 1
1/2 μ(α) dα > 0, then t1−ζ∗ d

dt Qn(·) ∈ C[0, T] with the bound

0 � − d
dt

Qn(t) � Cλnt−(1−ζ∗), t ∈ (0, T], (2.19)

where C > 0 is a constant and the constant ζ∗ ∈ (1/2, 3/4) is determined by (2.11).

Proof. The first conclusion can be proven based on the Laplace transform for (2.16), see (i)
and (iii) in theorem 2.3 in [6], corresponding to the case λ = −λn < 0 there.

Now we prove conclusions (b) and (c). By the regularity of Qn stated in conclusion (a), it
follows from lemma 2.1 that the ODE problem (2.16) is equivalent to the following integral
equation

Qn(t) + λn

∫ t

0
gμ(t − τ )Qn(τ ) dτ = 1. (2.20)

Noticing Qn(·) � 0 by conclusion (a), we then have Qn(·) � 1 immediately from gμ � 0.
Differentiating (2.20) with respect to t, we have

− d
dt

Qn(t) − λn

∫ t

0
gμ(t − τ )

d
dt

Qn(τ ) dτ = λngμ(t).

Since − d
dt Qn(·) � 0 from conclusion (a) and gμ(·) � 0, the second term in the left hand side is

nonnegative, therefore we have

0 � − d
dt

Qn(t) � λngμ(t), t ∈ (0, T],

which leads to (2.18) and (2.19) by conclusions (a) and (b) in lemma 2.1 respectively, with
the constant ζ ∈ (0, 1/2) determined by (2.9) and the constant ζ∗ ∈ (1/2, 3/4) determined by
(2.11), respectively. The regularity t1−ζ d

dt Qn(·) ∈ C[0, T] can be found in [21]. The proof is
complete. �

By similar arguments in [26], we give an inequality for right-hand side Caputo fractional
derivative.

Lemma 2.3. For any function v(t) absolutely continuous on [0, T], there holds

v(t)∂α
T−v(t) � 1

2
∂α

T−(v2), α ∈ (0, 1). (2.21)

We also need the following standard result (lemma 2.7 in [24]).

Lemma 2.4. Let α > 0, p � 1, q � 1, and 1/p+ 1/q � 1 + α (p 
= 1 and q 
= 1 in the case
when 1/p+ 1/q = 1 + α). For u ∈ Lp(0, T) and v ∈ Lq(0, T), there holds

7
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∫ T

0
u(t)IR,α

0+ v(t) dt =
∫ T

0
v(t)IR,α

T− u(t) dt.

In the sequel, we always assume that the weight function satisfies

μ ∈ C[0, 1], 0 � μ 
≡ 0, μ(0) 
= 0, (2.22)

and we also use C > 0 to represent a constant which may depends on f , a,Ω, T,μ, but does
not depend on x, t. The values of C may be different in the sequel.

To show the regularity of the solution to the direct problem, we need the following result.

Lemma 2.5. For λn > 0 and Qn(t) with μ(α) satisfying (2.22), denote

pn
1 (t) =

∫ t

0
β(τ )

d
dτ

Qn(t − τ ) dτ , t ∈ (0,+∞), (2.23)

pn
2 (t) =

∫ t

0

d
dt
β(t − τ )

d
dτ

Qn(τ ) dτ , t ∈ (0,∞), (2.24)

and define pn
1 (0) = 0, pn

2 (0) = 0 for any n ∈ N
+. Then pn

1 ∈ C[0,+∞) for β(·) ∈ C[0,+∞)
and pn

2 ∈ C[0,+∞) for β(·) ∈ C1[0,+∞).

Proof. For t > 0, n ∈ N
+ and β ∈ C[0,+∞), by lemma 2.2 we have

|pn
1 (t)| =

∣∣∣∣
∫ t

0
β(τ )

d
dτ

Qn(t − τ ) dτ

∣∣∣∣ � ‖β‖∞[1 − Qn(t)] → 0, t → 0+,

(2.25)

hence pn
1 is continuous at t = 0. For β ∈ C1[0, T], we can prove pn

2 (t) is continuous at t = 0
analogously. The continuity of pn

1 (t) and pn
2 (t) for any t > 0 follows from lemma 2.2.

The proof is complete. �

3. Strong solution to direct problem

To establish the conditional stability for our inverse problem in next section, we need high
regularity of solution to (1.3), which is also essential to establish the integration formula by
parts of distributed order fractional derivatives. To this end, we consider the strong solution to
(1.3), which is defined as follows.

Definition 3.1. We call u(x, t) a strong solution to initial-boundary value problem (1.3), if

• u ∈ C(Ω× [0, T]) ∩ W1
t ((0, T]; C(Ω)), D(μ)u ∈ C(Ω× [0, T]);

• The initial condition is satisfied in the sense limt→0+‖u(·, t) − a‖C(Ω) = 0;
• The equation D(μ)u − Lu = F holds in C(Ω× [0, T]).

Theorem 3.2. Let F(x, t) :=β(t) f (x) with β ∈ C1[0, T]. Then for a ∈ D((−L)γ+1) and
f ∈ D((−L)γ) with γ > d

2 , the direct problem (1.3) admits a unique strong solution, which
is represented by

8
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u(x, t) =
∞∑

n=1

(a,ϕn)Qn(t)ϕn(x) +
∞∑

n=1

1
λn

( f ,ϕn)
∫ t

0
β(τ )

d
dτ

Qn(t − τ ) dτϕn(x)

(3.1)

with the estimates

‖u‖C(Ω×[0,T]) � C
(
‖a‖D((−L)γ) + ‖β‖C[0,T]‖ f ‖D((−L)γ−1)

)
, (3.2)

‖D(μ)u‖C(Ω×[0,T]) � C
(
‖a‖D((−L)γ+1) + ‖β‖C[0,T]‖ f ‖D((−L)γ)

)
. (3.3)

Moreover, if
∫ 1

1/2 μ(α)dα > 0, we also have u ∈ W2
t ((0, T]; C(Ω)).

Proof. By the separation of variables, we can obtain a formal solution for the direct problem
(1.3) as (3.1). We will show that (3.1) is the defined strong solution to (1.3).

(a) We firstly verify u ∈ C(Ω× [0, T]) and then give the estimate (3.2). Define

u1(x, t) :=
∞∑

n=1

(a,ϕn)Qn(t)ϕn(x) =
∞∑

n=1

un
1(x, t), (3.4)

u2(x, t) :=
∞∑

n=1

1
λn

( f ,ϕn)
∫ t

0
β(τ )

d
dτ

Qn(t − τ ) dτϕn(x) =
∞∑

n=1

un
2(x, t). (3.5)

We note d
dt Qn(·) � 0, 0 � Qn � 1 from lemma 2.2 and

‖ϕn‖C(Ω) � ‖ϕn‖H2k(Ω) � ‖(−L)kϕn‖L2(Ω) � Cλk
n, n = 1, 2, . . . (3.6)

for k > d
4 . For every t ∈ [0, T], x ∈ Ω, we have for k > d

4 and β ∈ C[0, T] that

|un
1(x, t)| � |(a,ϕn)|‖ϕn‖∞ � Cλk

n|(a,ϕn)| =: Cũn
1 (3.7)

and

|un
2(x, t)| � ‖β‖∞|1 − Qn(t)||( f ,ϕn)| 1

λn
‖ϕn‖∞

� C‖β‖∞λk−1
n |( f ,ϕn)| =: C‖β‖∞ũn

2,

(3.8)

implying that

∞∑
n=1

|un
1(x, t)| � C

∞∑
n=1

|ũn
1| � C

( ∞∑
n=1

1
λ2 m

n

) 1
2
( ∞∑

n=1

λ2(k+m)
n (a,ϕn)2

) 1
2

(3.9)

and

9
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∞∑
n=1

|un
2(x, t)| � C‖β‖∞

∞∑
n=1

|ũn
2|

� C‖β‖∞

( ∞∑
n=1

1
λ2 m

n

) 1
2
( ∞∑

n=1

λ2(k+m−1)
n ( f ,ϕn)2

) 1
2

.

(3.10)

From λn = O(n2/d) for n ∈ N
+, we know 1

λ2 m
n

� C 1

n
4 m

d
. Thus, by choosing m > d

4 which

generates γ :=m + k > d
2 ,

∑∞
n=1

1

λ2 m
n

is convergent and the series in (3.4) and (3.5) are

also convergent in Ω× [0, T] uniformly for a ∈ D((−L)γ) and f ∈ D((−L)γ−1) with γ >
d
2 . Noting un

1, un
2 ∈ C(Ω× [0, T]) for any n ∈ N

+ by lemmas 2.2 and 2.5, we have u ∈
C(Ω× [0, T]). Furthermore, by (3.9) and (3.10) we immediately have the estimate

‖u‖C(Ω×[0,T]) � C
(
‖a‖D((−L)γ) + ‖β‖C[0,T]‖ f ‖D((−L)γ−1)

)
. (3.11)

(b) We further prove Lu, D(μ)u ∈ C(Ω× [0, T]) and (3.3). By (3.1) we know

Lu(x, t) = −
∞∑

n=1

λn(a,ϕn)Qn(t)ϕn(x) −
∞∑

n=1

( f ,ϕn)
∫ t

0
β(τ )

d
dτ

Qn(t − τ ) dτϕn(x)

:= v1(x, t) + v2(x, t).

(3.12)

Similarly, by lemma 2.2, λn = O(n2/d) as well as (3.6), we can prove the series
in v1(x, t) and v2(x, t) are uniformly convergent in Ω× [0, T] for every x ∈ Ω and
t ∈ [0, T], if a ∈ D((−L)γ+1) and f ∈ D((−L)γ) with γ > d

2 . This immediately leads to
Lu ∈ C(Ω× [0, T]) due to lemma 2.5 that the each term in the series in v1(x, t) and v2(x, t)
are continuous in Ω× [0, T] for β ∈ C[0, T]. Also, it is easy to obtain the estimate

‖Lu‖C(Ω×[0,T]) � C
(
‖a‖D((−L)γ+1) + ‖β‖C[0,T]‖ f ‖D((−L)γ)

)
. (3.13)

Henceforth, by the Sobolev embedding D((−L)γ) ⊂ C(Ω) with γ > d
4 , it follows by

(2.16), (3.13) and

D(μ)u(x, t) = Lu(x, t) + β(t) f (x)

that D(μ)u ∈ C(Ω× [0, T]) and

‖D(μ)u‖C(Ω×[0,T]) � C
(
‖a‖D((−L)γ+1) + ‖β‖C[0,T]‖ f ‖D((−L)γ)

)
.

Obviously the equation D(μ)u − Lu = F holds in C(Ω× [0, T]) under the given condi-
tions.

(c) We next prove u ∈ W1
t ((0, T]; C(Ω)). By the formal computation we have

∂u1

∂t
=

∞∑
n=1

d
dt

Qn(t)(a,ϕn)ϕn(x) (3.14)

and

10
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∂u2

∂t
= −

∞∑
n=1

1
λn

( f ,ϕn)ϕn(x)β(0)
d
dt

Qn(t)

−
∞∑

n=1

1
λn

( f ,ϕn)ϕn(x)
∫ t

0

d
dt
β(t − τ )

d
dτ

Qn(τ ) dτ =: Ĩ1(x, t) + Ĩ2(x, t).

(3.15)

We note that each term in the series in (3.14) and (3.15) are continuous in Ω× (0, T] due
to lemmas 2.2 and 2.5. Similar as before, we have for every 0 < t � T and x ∈ Ω that

∣∣∣∣∂u1

∂t
(x, t)

∣∣∣∣ �
∞∑

n=1

∣∣∣∣ d
dt

Qn(t)

∣∣∣∣ |(a,ϕn)|‖ϕn‖∞ � C‖a‖D((−L)γ+1)t
−(1−ζ), (3.16)

∣∣̃I1(x, t)
∣∣ �

∞∑
n=1

1
λn

|( f ,ϕn)| ‖ϕn‖∞
∣∣∣∣β(0)

d
dt

Qn(t)

∣∣∣∣ � C|β(0)|‖ f ‖D((−L)γ)t
−(1−ζ),

(3.17)

and

∣∣̃I2(x, t)
∣∣ �

∞∑
n=1

1
λn

|( f ,ϕn)| ‖ϕn‖∞
∣∣∣∣
∫ t

0

d
dt
β(t − τ )

d
dτ

Qn(τ ) dτ

∣∣∣∣
� ‖β‖C1[0,T]

∞∑
n=1

1
λn

|( f ,ϕn)|‖ϕn‖∞[1 − Qn(t)]

� ‖β‖C1[0,T]

∞∑
n=1

1
λn

|( f ,ϕn)|‖ϕn‖∞ � C‖β‖C1[0,T]‖ f ‖D((−L)γ−1),

where ζ ∈ (0, 1/2) is determined by (2.9). This implies the series rep-
resentations in (3.14) and (3.15) are uniformly convergent in Ω×
[t0, T] with any small 0 < t0 < T and the above differentiations make
sense in C(Ω) for 0 < t � T , if β ∈ C1[0, T], a ∈ D((−L)γ+1) and
f ∈ D((−L)γ) with γ > d/2. Therefore, we have u ∈ C1((0, T]; C(Ω)) and estimate∥∥∥∥∂u

∂t
(·, t)

∥∥∥∥
C(Ω)

� C
(
‖a‖D((−L)γ+1)t

−(1−ζ) + ‖β‖C1[0,T]‖ f ‖D((−L)γ)(1 + t−(1−ζ))
)

, (3.18)

which implies ∂tu ∈ L1(0, T; C(Ω)).
If μ(α) also meets

∫ 1
1/2 μ(α) dα > 0, then we have the estimate (2.19) in lemma

2.2. Therefore, replacing ζ ∈ (0, 1/2) in (3.16) and (3.17) by ζ∗ ∈ (1/2, 3/4), we
know ∂ tu(x, ·) ∈ L2(0, T) for every x ∈ Ω and ∂tu ∈ L2(0, T; C(Ω)), which implies
u ∈ W2

t ((0, T]; C(Ω)).
(d) We finally prove the uniqueness of the strong solution to problem (1.3). It is

enough to prove that the system (1.3) has only a trivial solution under the condition
F(x, t) :=β(t) f (x) = 0, a = 0. Denote un(t) = (u(·, t),ϕn), we obtain

11
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{
D(μ)un(t) + λnun(t) = 0, t ∈ (0, T],

un(0) = 0.

Due to the existence and uniqueness of the ordinary distributed order fractional differential
equation [20], we obtain that un(t) ≡ 0 for any n ∈ N

+, which implies u = 0 inΩ× [0, T].
The proof is complete. �

By analogous arguments to the proof of theorem 3.2, we immediately have

Remark 3.3. Let F(x, t) :=β(t) f (x) with β ∈ C[0, T]. For f (x) and a(x) satisfying the
conditions in theorem 3.2, (3.1) admits a unique solution to problem (1.3) in the sense
that

u ∈ C(Ω× [0, T]), D(μ)u ∈ C(Ω× [0, T]), lim
t→0+

‖u(·, t) − a‖C(Ω) = 0,

(3.19)

and equation D(μ)u − Lu = F holds in L2(ΩT). We also have the estimates (3.2) and (3.3).

4. Uniqueness and stability of inverse problem

Without loss of generality, we assume the null initial status, i.e., we consider the identification
of the time-dependent source β(t) in the system

⎧⎪⎪⎨
⎪⎪⎩

D(μ)u(x, t) − Lu = β(t) f (x), (x, t) ∈ ΩT ,

u(x, t) = 0, (x, t) ∈ ∂ΩT ,

u(x, 0) = 0, x ∈ Ω,

(4.1)

from the interior measurement given by (1.5).
We focus on the uniqueness and stability of this inverse problem.

4.1. Uniqueness of inverse problem

We will show the uniqueness of inverse problem based on the explicit expression of solu-
tion and its regularity D(μ)u ∈ C(Ω× [0, T]). The similar arguments have been applied
for the inverse source problem in the case of μ(α) = δ(α− α0) with given α0 ∈ (0, 1) in
[7, 9].

Theorem 4.1. Suppose β ∈ C[0, T], f ∈ D
(
(−L)γ+1

)
with γ > d

2 and f (x0) 
= 0 for the
observation point x0 ∈ Ω0. Then there exists a constant C :=C(Ω, T, f , x0, ζ) > 0 such that

‖β1 − β2‖C[0,T] � C‖D(μ) (u[β1](x0, ·) − u[β2](x0, ·)) ‖C[0,T]. (4.2)

Proof. For given f ∈ D((−L)γ) with γ > d
2 , denote U = u[β1] − u[β2], β̃ = β1 − β2 ∈

C[0, T]. Then U(x, t) solves

12
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⎧⎪⎪⎨
⎪⎪⎩

D(μ)U − LU = β̃(t) f (x), (x, t) ∈ ΩT ,

U(x, t) = 0, (x, t) ∈ ∂ΩT ,

U(x, 0) = 0, x ∈ Ω.

(4.3)

By remark 3.3, we obtain

D(μ)U(x, t) = β̃(t) f (x) +
∞∑

n=1

( f ,ϕn)
∫ t

0
β̃(τ )

d
dt

Qn(t − τ ) dτϕn(x) (4.4)

in C(Ω× [0, T]). Henceforth, we have

D(μ)U(x0, t) = β̃(t) f (x0) +
∞∑

n=1

( f ,ϕn)
∫ t

0
β̃(τ )

d
dt

Qn(t − τ ) dτϕn(x0) (4.5)

for t ∈ [0, T]. Setting

P(x0, t) :=
∞∑

n=1

( f ,ϕn)t1−ζ d
dt

Qn(t)ϕn(x0) (4.6)

with ζ determined by (2.9), we have

D(μ)U(x0, t) = β̃(t) f (x0) +
∫ t

0
β̃(τ )(t − τ )ζ−1P(x0, t − τ ) dτ (4.7)

in C[0, T]. By lemma 2.2 we know t1−ζ d
dt Qn(·) ∈ C[0, T] and

∣∣t1−ζ d
dt Qn(t)

∣∣ � Cλn for each
n ∈ N. Then it follows by the asymptotic λn = O(n2/d) and the regularity of ϕn as shown in
(3.6) that

∞∑
n=1

∥∥∥∥( f ,ϕn)t1−ζ d
dt

Qn(t)ϕn(x0)

∥∥∥∥
C[0,T]

� C
∞∑

n=1

|λn( f ,ϕn)|‖ϕn(x)‖C(Ω) � C̃‖ f ‖D((−L)γ+1) (4.8)

for t ∈ [0, T] uniformly. Therefore the series in (4.6) is uniformly convergent on [0, T] for
f ∈ D((−L)γ+1) with γ > d

2 , which says P(x0, ·) ∈ C[0, T]. So we have

β̃(t) =
D(μ)U(x0, t)

f (x0)
− 1

f (x0)

∫ t

0
β̃(τ )(t − τ )ζ−1P(x0, t − τ ) dτ , t ∈ [0, T]

(4.9)

from f (x0) 
= 0, which leads to

|β̃(t)| � 1
| f (x0)|

(∥∥D(μ)U(x0, t)
∥∥

C[0,T] + ‖P(x0, ·)‖C[0,T]

∫ t

0
(t − τ )ζ−1|β̃(τ )| dτ

)
, t ∈ [0, T].

Applying the inequality of Gronwall type with weakly singular kernel (t − τ )ζ−1 (e.g.
lemma 7.1.1 in [27] or theorem 1 in [28]), the above inequality leads to

13
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|β̃(t)| � C(t)
∥∥D(μ)U(x0, t)

∥∥
C[0,T]

, t ∈ [0, T], (4.10)

where the constant C(t) :=
(
1 + ζ−1tζ

)
max

{
| f (x0)|−1, ‖P(x0, ·)‖C[0,T]

}
> 0.

The proof is complete. �

As a direct result of this estimate and the regularity u[βi] ∈ C(Ω× [0, T]), we have proven
the following uniqueness result for our inverse problem.

Theorem 4.2. For known spatial function f (x) satisfying the condition in theorem 4.1 and
βi ∈ C[0, T], it holds β1(t) = β2(t) in C[0, T], if u[β1](x0, ·) = u[β2](x0, ·) in C[0, T].

Remark 4.3. The a priori requirement f (x0) 
= 0 is assumed for the observation location
for our uniqueness result. Such a restriction can be relaxed, by specifying the observation data
in a domain Ω0 ⊂⊂ Ω satisfying

∫
Ω0

f (x) dx 
= 0, rather than a fixed point x0 ∈ Ω, due to the
following identity

D(μ)
∫
Ω0

U(x, t)dx = β̃(t)
∫
Ω0

f (x)dx +
∫ t

0
β̃(τ )(t − τ )ζ−1

∫
Ω0

P(x, t − τ )dx dτ

(4.11)

in C[0, T] by (4.7) from which we can also show the uniqueness for the inverse problem. On
the other hand, we should also point out that, from the theoretical point of view, the condition∫
Ω0

f (x) dx 
= 0 leads to f (x0) 
= 0 for some x0 ∈ Ω0 immediately. However
∫
Ω0

f (x)dx 
= 0 is
easy to be guaranteed by the average measurement in Ω0 satisfying supp f (x) ⊂⊂ Ω0.

4.2. Variational identity

To establish a variational identity which is necessary for establishing the stability for our
inverse problem, we firstly introduce the adjoint problem⎧⎪⎪⎨

⎪⎪⎩
S (μ)

T−φ− Lφ = F(x, t), (x, t) ∈ Ω× (0, T),

φ(x, t) = 0, (x, t) ∈ ∂Ω× [0, T),

I(μ),R
T− φ(x, T) = 0, x ∈ Ω,

(4.12)

where the operator S (μ)
T−φ := − ∂tI

(μ),R
T− φ, and the distributed order right integral operator I(μ),R

T−
is defined by

I(μ),R
T− φ:=

∫ 1

0
μ(α)IR,1−α

T− φ dα, (4.13)

where IR,1−α
T− defined by (2.3) denotes the (1 − α)-th order Riemann-Liouville fractional right

integral operator.
Now we consider the weak solution to adjoint problem (4.12).

Definition 4.4. For F ∈ L2(ΩT), we call φ(x, t) a weak solution to (4.12), if

• φ ∈ L2(0, T; H2(Ω) ∩ H1
0(Ω)), S (μ)

T−φ ∈ L2(ΩT);
• The final condition holds in the sense limt→T−

∥∥∥I(μ),R
T− φ(·, t)

∥∥∥
L2(Ω)

= 0;
• The equation S (μ)

T−φ− Lφ = F(x, t) holds in the sense

14
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(S (μ)
T−φ− Lφ, η) = (F(· , t), η), ∀η ∈ L2(Ω), t > 0.

Then we show the well-posedness of adjoint problem (4.12) in the sense of definition 4.4.

Theorem 4.5. Let F(x, t) ∈ L2(ΩT ). Then there exists a unique weak solution to (4.12),
which meets the estimate

‖φ‖L2(0,T;H2(Ω)) + ‖S (μ)
T−φ‖L2(ΩT ) � 3‖F‖L2(ΩT ). (4.14)

Moreover, if
∫ 1

1/2 μ(α) dα > 0, we also have φ ∈ C([0, T]; L2(Ω)).

Proof. The proof is under the same framework as that for theorem 4 in [21], which was
basically based on the formal representation of the solution in terms of the eigenvalue function
expansions for the existence of the solution and then the energy estimate for the regularity of
the solution. Here we only give the outline of the proof.

Firstly we extend F by odd reflection to the interval (0, T) and set zero elsewhere. For the
standard smoothing kernel ξε(t) with the support in [−ε, ε], denote by ∗ the convolution on real
line and set

F 1
N

(x, t) := ξ 1
N

(·)∗F(x, ·)(t). (4.15)

We then construct

φN(x, t) =
N∑

n=1

φN
n (t)ϕn(x), N ∈ N

+, (4.16)

which will be proven to generate the weak solution to (4.12) as N →∞ in some way, where
φN

n (t) is determined by

⎧⎨
⎩
S (μ)

T−φ
N
n (t) + λnφ

N
n (t) = FN

n (t) :=
(

F 1
N

(·, t),ϕn

)
L2(Ω)

, t ∈ [0, T),

I(μ),R
T− φN

n (T) = 0
(4.17)

with the operator I(μ),R
T− defined in (4.13). To ensure the well-posedness of (4.17), we firstly

notice that, it was proven in lemma 11 in [21] that, for F ∈ L2(ΩT ), there exists a unique solution
to

{
D(μ)ψN

n (t) + λnψ
N
n (t) = FN

n (T − t), t ∈ (0, T],

ψN
n (0) = 0,

in AC[0, T]. Therefore ψ̃N
n (t) :=ψN

n (T − t) ∈ AC[0, T] meets

{
D(μ)

T−ψ̃
N
n (t) + λnψ̃

N
n (t) = FN

n (t), t ∈ [0, T),

ψ̃N
n (T) = 0.

On the other hand, for ψ̃N
n (t) ∈ AC[0, T], it follows

15
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S (μ)
T−ψ̃

N
n := −

∫ 1

0
μ(α)∂tI

R,1−α
T− ψ̃N

n dα =

∫ 1

0
μ(α)∂R,α

T− ψ̃N
n dα

=

∫ 1

0
μ(α)∂α

T−ψ̃
N
n dα =: D(μ)

T−ψ̃
N
n

due to ψ̃N
n (T) = 0. So there exists a unique solution φN

n (t) := ψ̃N
n (t) ∈ AC[0, T] to (4.17).

Multiplying both sides of the equation in (4.17) by φN
n (t) ∈ AC[0, T] and integrating for

t ∈ (0, T), we have

∫ 1

0
μ(α)

∫ T

0
φN

n (t)∂α
T−φ

N
n (t) dt dα+ λn‖φN

n ‖2
L2(0,T) =

(
FN

n ,φN
n

)
L2(0,T). (4.18)

Using (2.5) and lemma 2.3 for φN
n (t) ∈ AC[0, T], we have

∫ T

0
φN

n (t)∂α
T−φ

N
n (t)dt �

∫ T

0

1
2
∂α

T−(φN
n )2 dt = −

∫ T

0

1
2

d
dt

(
1

Γ(1 − α)

∫ T

t

(
φN

n (τ )
)2

(τ − t)α
dτ

)
dt

=
1

2Γ(1 − α)

∫ T

0

(
φN

n (τ )
)2

τα
dτ � 0.

So (4.18) leads to λn

∥∥φN
n

∥∥
L2(0,T)

�
∥∥FN

n

∥∥
L2(0,T)

, which also generates

∥∥∥S (μ)
T−φ

N
n

∥∥∥
L2(0,T)

=
∥∥∥D(μ)

T−φ
N
n

∥∥∥
L2(0,T)

� λn

∥∥φN
n

∥∥
L2(0,T)

+
∥∥FN

n

∥∥
L2(0,T)

� 2
∥∥FN

n

∥∥
L2(0,T)

(4.19)

from the equation in (4.17). Based on these estimates on φN
n , for φN constructed in (4.16),

similarly to the arguments in section 3.3 in [21], there exists a subsequence of {φN: n ∈ N
+},

denoted by {φN j: j = 1, 2, . . .}, weakly converging to φ ∈ L2(0, T; H2(Ω)) in L2(0, T; H2(Ω)),
and I(μ),R

T− φN j ⇀ I(μ),R
T− φ in 0H1(0, T; L2(Ω)) which meansS (μ)

T−φ
N j ⇀ S (μ)

T−φ in L2(ΩT). Therefore
the first two-point in the definition 4.4 is verified for φ. On the other hand, it is easy to see that

S (μ)
T−φ

N − LφN =

N∑
n=1

FN
n (t)ϕn(x) =

N∑
n=1

(F(·, t),ϕn)ϕn(x) −
N∑

n=1

(F(·, t) − F 1
N

(·, t),ϕn)ϕn(x)

and

∥∥∥∥∥
N∑

n=1

(F(·, t) − F 1
N

(·, t),ϕn)ϕn(x)

∥∥∥∥∥
2

L2(Ω)

=

N∑
n=1

(F(·, t) − F 1
N

(·, t),ϕn)2

�
∞∑

n=1

(F(·, t) − F 1
N

(·, t),ϕn)2 = ‖F(·, t) − F 1
N

(·, t)‖2
L2(Ω),

which verify the third point of definition 4.4 by taking N →∞. So we have the existence of
the weak solution.
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By the above convergence property, we also have

‖φ‖2
L2(0,T;H2(Ω) � lim

N j→∞

∥∥φN j
∥∥2

L2(0,T;H2(Ω))

= lim
N j→∞

N j∑
n=1

λ2
n

∥∥∥φN j
n

∥∥∥2

L2(0,T)
� lim

N j→∞

N j∑
n=1

∥∥∥F
N j
n

∥∥∥2

L2(0,T)

� lim
N j→∞

∞∑
n=1

∥∥∥F
N j
n

∥∥∥2

L2(0,T)
= lim

N j→∞

∥∥∥∥F 1
N j

∥∥∥∥
2

L2(ΩT )

� ‖F‖2
L2(ΩT )

and ‖S (μ)
T−φ‖L2(ΩT ) � 2‖F‖L2(ΩT ) analogously by (4.19). So we prove the estimate (4.14).

As for the higher regularity φ ∈ C([0, T], L2(Ω)) for the weight function satisfying∫ 1
1/2 μ(α) dα > 0, the readers are referred to the proof of theorem 4 in [21].

The proof is complete. �

In the sequel, we always assume

∫ 1

1/2
μ(α) dα > 0, (4.20)

which is essential to ensure the regularity of solution u ∈ W2
t ((0, T]; C(Ω)) to (4.1). Then we

can establish the integration relation between (4.1) and its adjoint system (4.12).

Lemma 4.6. Let u(x, t) be the strong solution to problem (4.1) for β ∈ C1[0, T],
f ∈ D((−L)γ) with γ > d

2 and φ(x, t) be the weak solution to problem (4.12) for F ∈ L2(ΩT).
Then u(x, t) and φ(x, t) have the relation

∫ T

0

∫
Ω

D(μ)u(x, t)φ(x, t) dxdt =
∫ T

0

∫
Ω

u(x, t)S (μ)
T−φ(x, t) dxdt. (4.21)

Proof. Noting the assumption (4.20) for μ(α), by theorems 4.5 and 3.2, we know
φ[ω](·, ·) ∈ L2(0, T; H2(Ω) ∩ H1

0(Ω)) and u ∈ C(Ω× [0, T]) ∩ W2
t ((0, T]; C(Ω)), which

implies φ(x, ·) ∈ L2(0, T) and ∂ tu(x, ·) ∈ L2(0, T), respectively. Thus, for every fixed x ∈ Ω
and all α ∈ (0, 1), lemma 2.4 is applicable for φ(x, ·) and ∂ tu(x, ·). Then, by applying
u(x, 0) = 0, (2.4) and (2.5) as well as lemma 2.4, we have for any fixed x ∈ Ω that

∫ T

0
(∂α

0+u)φ dt =
∫ T

0

(
IR,1−α
0+ ∂tu

)
· φ dt =

∫ T

0
∂tu ·

(
IR,1−α
T− φ

)
dt

= u · (IR,1−α
T− φ)|t=T

t=0 −
∫ T

0
u · ∂t

(
IR,1−α
T− φ

)
dt

= u(x, T) · IR,1−α
T− φ(x, T) −

∫ T

0
u · ∂t

(
IR,1−α
T− φ

)
dt,

(4.22)

where we should understand IR,1−α
T− φ(x, T) in the sense limt→T− IR,1−α

T− φ(x, t).
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Multiplying both sides of (4.22) by μ(α) and integrating for α ∈ (0, 1) and x ∈ Ω yield

∫ 1

0
μ(α)

∫ T

0

∫
Ω

(∂α
0+u)φ dxdtdα = u(x, T) ·

∫ 1

0
μ(α)IR,1−α

T− φ(x, T) dα

−
∫ 1

0
μ(α)

∫ T

0

∫
Ω

u · ∂t

(
IR,1−α
T− φ

)
dxdtdα

= u(x, T) · I(μ),R
T− φ(x, T) +

∫ T

0

∫
Ω

u · S (μ)
T−φ dxdt.

(4.23)

Noting the definition of D(μ)u and I(μ),R
T− φ(x, T) = 0 which should be understood in the sense

limt→T−‖I(μ),R
T− φ(·, t)‖L2(Ω) = 0, we immediately have (4.21). The proof is complete. �

Based on lemma 4.6, we can establish the following variational identity.

Theorem 4.7. For f ∈ D((−L)γ) with γ > d
2 and βi ∈ C1[0, T] for i = 1, 2, u[βi](x, t) and

βi have the relation

∫
ΩT

(β1 − β2)(t) f (x)φ[ω](x, t) dxdt ≡
∫ T

0

∫
Ω0

(u[β1] − u[β2])(x, t)ω(x, t) dxdt,

(4.24)

where φ[ω](x, t) is the weak solution to (4.12) with the specified source F ∈ L2(ΩT) given by

F(x, t) :=

{
ω(x, t), (x, t) ∈ Ω0 × [0, T),

0, (x, t) ∈ Ω\Ω0 × [0, T)
(4.25)

for ω ∈ L2(Ω0 × (0, T)).

Proof. Let u[βi](x, t) be the strong solution to direct problem (4.1) corresponding to βi for
i = 1, 2, then U := u[β1] − u[β2] satisfies

⎧⎪⎪⎨
⎪⎪⎩

D(μ)U(x, t) − LU = f (x)(β1(t) − β2(t)), (x, t) ∈ ΩT ,

U(x, t) = 0, (x, t) ∈ ∂ΩT ,

U(x, 0) = 0, x ∈ Ω.

(4.26)

Let φ(x, t) :=φ[ω](x, t) be the weak solution to (4.12) with the source term given by (4.25).
Then, multiplying two sides of the equation in (4.26) by φ(x, t) and integrating on ΩT , we
get

∫ T

0

∫
Ω

(
D(μ)U − LU

)
φ(x, t) dxdt =

∫ T

0

∫
Ω

(β1 − β2)(t) f (x)φ(x, t) dxdt.

Using lemma 4.6 and Green formula, we know
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∫ T

0

∫
Ω

(D(μ)U − LU)φ dxdt =
∫ T

0

∫
Ω

U(S (μ)
T−φ− Lφ) dxdt =

∫ T

0

∫
Ω0

U · ω(x, t) dxdt.

The proof is complete. �

4.3. Lipschitz stability of inverse problem

Now we apply theorem 4.7 to establish the Lipschitz stability by some weak norm to our inverse
problem, as done in [16]. For f ∈ D((−L)γ+1) with γ > d

2 and f 
≡0 in Ω0, we define a bilinear
functional with respect to β(t) and ω(x, t) in terms of f (x) by

B(β,ω) :=
∫
ΩT

β(t) f (x)φ[ω](x, t) dxdt, (4.27)

whereφ[ω](x, t) is a linear functional ofω ∈ L2(Ω0 × (0, T)) defined by (4.12) with source term
given by (4.25). It is easy to see from theorem 4.5 that B( f ,ω) is well defined for β ∈ C1[0, T]
and ω ∈ L2(Ω0 × (0, T)). Define

‖β‖B :=
1

‖ f ‖L2(Ω)
sup
ω∈W

|B(β,ω)|
‖ω‖L2(Ω0×(0,T))

, (4.28)

where W := {ω:ω ∈ L2(Ω0 × (0, T)),ω 
≡0}.

Lemma 4.8. For β ∈ C1[0, T], ‖β‖B is a norm of β and ‖β‖B � C‖β‖L2(0,T).

Proof. Firstly, it is easy to see that ‖ f ‖B is well-defined. In fact, it follows that

|B(β,ω)| � C‖β‖L2(0,T)‖ f ‖L2(Ω)‖φ[ω]‖L2(ΩT )

� C‖β‖L2(0,T)‖ f ‖L2(Ω)‖ω‖L2(Ω0×(0,T)) (4.29)

due to theorem 4.5, which says |B(β,ω)|
‖ f ‖L2(Ω)‖ω‖L2(Ω0×(0,T))

� C‖β‖L2(0,T) uniformly for all ω ∈ W. So

‖β‖B is well-defined satisfying ‖β‖B � C‖β‖L2(0,T). Now we prove that this quantity is also a
norm for β ∈ C1[0, T]. It is enough to prove that ‖β‖B = 0 leads to β = 0.

In fact, if ‖β‖B = 0, we have

|B(β,ω)|
‖ f ‖L2(Ω)‖ω‖L2(Ω0×(0,T))

� ‖β‖B = 0, ∀ω ∈ W (4.30)

and B(β,ω) = 0 for ω = 0 due to φ[ω]|ω=0 = 0 by theorem 4.5. Therefore we have
B(β,ω) = 0 for any ω ∈ L2(Ω0 × (0, T)), which leads to

∫ T

0

∫
Ω0

u[β](x, t)ω(x, t) dxdt = 0, ∀ω ∈ L2(Ω0 × (0, T)) (4.31)

by variational identity (4.24), so u[β](x, t) = 0 in L2(Ω0 × (0, T)). By theorem 3.2 we see that
u[β] ∈ C(Ω0 × [0, T]) under the given conditions for β(t) and f (x), so we have u[β](x, t) = 0
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in C(Ω0 × [0, T]). Finally by theorem 4.1, we have β(t) = 0, i.e., ‖β‖B is a norm of β. The
proof is complete. �

Now we can establish the conditional stability of Lipschitz type for the inverse problem by
the weighted norm ‖β‖B.

Theorem 4.9. For the direct problem (4.1) with f ∈ D((−L)γ+1), γ > d
2 and f 
≡ 0 in Ω0,

denote by u[βi](x, t) the solution corresponding to βi ∈ C1[0, T] for i = 1, 2. Then it follows
that

‖β1 − β2‖B � 1
‖ f ‖L2(Ω)

‖u[β1] − u[β2]‖L2(Ω0×(0,T)). (4.32)

Proof. By (4.24) and the definition (4.28), we have

‖β1 − β2‖B = sup
ω∈W

|B(β1 − β2,ω)|
‖ f ‖L2(Ω)‖ω‖L2(Ω0×(0,T))

= sup
ω∈W

|
∫ T

0

∫
Ω0

(u[β1] − u[β2])ω(x, t) dxdt|
‖ f ‖L2(Ω)‖ω‖L2(Ω0×(0,T))

. (4.33)

The proof is complete from the Cauchy inequality. �

Remark 4.10. In this theorem, for the unknown β restricted in C1[0, T], we only established
its Lipschitz continuous dependance by our introducedB-norm, which is even weaker than the
L2(0, T)-norm in terms of our lemma 4.8. Therefore, theorem 4.9 is essentially the conditional
stability for our inverse problem in the sense that we use the weak norm for a very smooth
function.

5. Inversion algorithm and implementations

In this section, we first introduce the conjugate gradient method (CGM) based on the the-
oretical results in above. Then we present the numerical inversions for three examples in
one-dimensional and two-dimensional cases to show the effectiveness of the proposed CG
algorithm.

5.1. The conjugate gradient method

For known f ∈ D((−L)γ) with γ > d
2 , (4.1) defines an observation operator

G:β ∈ C1[0, T] �→ u[β] ∈ C(Ω× [0, T]) ∩ W2
t ((0, T]; C(Ω)), where u[β] is a strong solution

to (4.1) for given β(t). Then the inverse problem is to solve the operator equation

G[β](x, t) = h(x, t), (x, t) ∈ Ω0 × [0, T]. (5.1)

By theorem 3.2, G is a well-defined linear bounded operator. For exact observation data, this
equation has a unique solution from theorem 4.2. For given noisy data hδ(x, t) satisfying

‖hδ − h‖L2(Ω0×(0,T)) � δ, (5.2)

we consider the approximate solution of (5.1) by the minimizer of the cost functional
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Jδ,η(β) :=
1
2
‖G[β] − hδ‖2

L2(Ω0×(0,T)) +
η

2
‖β‖2

L2(0,T) (5.3)

for specified η > 0.
Based on the regularity of direct problem shown in theorems 3.2 and 4.5, we will show

the differentiability of Jδ,η(β) and compute its gradient for our inversion algorithm by the
variational identity in theorem 4.7.

Theorem 5.1. The functional Jδ,η is Fréchet differentiable. For given f (x) and any fixed
η > 0, the Fréchet derivative of Jδ,η defined in (5.3) is

J ′
δ,η(β)(t) =

∫
Ω

f (x)φ[ωβ,δ](x, t) dx + ηβ(t), (5.4)

where φ :=φ[ωβ,δ](x, t) satisfies the adjoint problem (4.12) corresponding to the input

F(x, t) =

{
ωβ,δ(x, t) :=G[β](x, t) − hδ(x, t), (x, t) ∈ Ω0 × [0, T),

0, (x, t) ∈ Ω\Ω0 × [0, T).
(5.5)

Proof. For β, β + δβ ∈ C1[0, T], it follows from (5.3) that

Jδ,η(β + δβ) − Jδ,η(β)

=

∫ T

0

∫
Ω0

(G[β] − hδ)(G[β + δβ] − G[β]) dxdt + η

∫ T

0
β δβdt + o(‖δβ‖2),

(5.6)

Let β1 = β + δβ, β2 = β and take the input for the adjoint problem (4.12) as (5.5). Since
β1, β2 ∈ C1[0, T] and F ∈ L2(ΩT), the variational identity (4.24) is applicable for G[β1], G[β2]
and φ[ωβ,δ](x, t). Then combining (4.24) with (5.6) yields that

J ′
δ,η(β) • δβ =

∫ T

0

∫
Ω0

ωβ,δ(x, t)(G[β1] − G[β2]) dxdt + η

∫ T

0
β δβdt

=

∫ T

0

∫
Ω

f (x) δβ(t) · φ[ωβ,δ](x, t) dxdt + η

∫ T

0
β δβdt, (5.7)

i.e., the Fréchet derivative of Jδ,η is (5.4). The proof is complete. �

By the gradient J ′
δ,η(β), we propose an iteration scheme applying the conjugate gradient

(CG) method for generating the minimizer of Jδ,η approximately. We approximate β(t) by the
following iterative process

βk+1 = βk + rkdk, k = 0, 1, . . . (5.8)

for suitably chosen step size rk > 0 and initial guess β0, where dk is the iterative direction
defined by
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dk =

{
−J ′

δ,η(β0), if k = 0,

−J ′
δ,η(βk) + skdk−1, if k > 0

(5.9)

with

sk =
‖J ′

δ,η(βk)‖2
2

‖J ′
δ,η(βk−1)‖2

2

, rk = arg min
r�0

Jδ,η(βk + rdk). (5.10)

Since the operator G is linear, we have G[βk + rkdk] = G[βk] + rkG[dk]. Then there holds

Jδ,η(βk + rkdk) =
1
2

[
‖G[βk] − hδ‖2

2 + rk
2‖G[dk]‖2

2

]
+ rk

(
G[βk] − hδ , G[dk]

)
+

η

2

(
‖βk‖2

2 + rk
2‖dk‖2

2 + 2rk(βk, dk)
)
. (5.11)

To determine the step size rk, by
dJδ,η (βk+rdk )

dr = 0, it is easy to obtain

rk = −
(
G[βk] − hδ , G[dk]

)
2
+ η(βk, dk)2

‖G[dk]‖2
2 + η‖dk‖2

2

. (5.12)

We summarize the CGM for reconstructing the unknown β(t) as follows:

• Step 1: set k = 0, the initial guess β0.
• Step 2: compute d0(t) = −J ′

δ,η(β0) from (5.4).
• Step 3: compute the step size r0 > 0 from (5.12) and update β1(t) = β0(t) + r0d0(t).
• Step 4: for k = 1, . . . , compute sk, dk(t) and rk by (5.9), (5.10) and (5.12), respectively.
• Step 5: update βk+1(t) = βk(t) + rkdk(t). If a stopping criterion is satisfied, output βk+1(t)

and stop. Otherwise, set k + 1 ⇒ k and go to step 4.

5.2. The finite difference scheme to direct problem

Without the loss of generality, we consider the following one-dimensional problem

⎧⎪⎪⎨
⎪⎪⎩

D(μ)u(x, t) = uxx(x, t) + F(x, t), (x, t) ∈ (0, l) × (0, T],

u(0, t) = u(l, t) = 0, t ∈ (0, T],

u(x, 0) = a(x), x ∈ [0, l].

(5.13)

Firstly we discrete the space domain by xi = iΔh(i = 0, 1, . . . , M), and the time domain
by tn = nτ (n = 0, 1, . . . , N), here Δh = l/M is the space mesh step and τ = T/N is the
time mesh step. For the weight function μ(α),α ∈ [0, 1], we discrete its variable by
αs = sΔα(s = 0, 1, . . . , 2S) with the mesh step size Δα = 1/(2S). By the composite trapezoid
formula we have for the distributed order fractional derivative that

D(μ)u(xi, tn+1) =
2S∑

s=0

rs∂
αs
0+u(xi, tn+1) + O(Δα2), (5.14)

where the coefficients rs :=Δαcsμ(αs) with c1 = c2S = 1/2 and cs = 1 for 2 � s � 2S − 1.
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For the fractional derivative ∂α
0+u(x, t) with different order, we define

∂α
0+u(x, t) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u(x, t) − u(x, 0), α = 0,

1
Γ(1 − α)

∫ t

0

1
(t − τ )α

∂u
∂τ

(x, τ ) dτ , 0 < α < 1,

∂u
∂t

(x, t), α = 1.

(5.15)

Then, by the well-known L1 approximation we compute (5.15) for αs ∈ [0, 1] that

∂αs
0+u(xi, tn+1) =

τ−αs

Γ(2 − αs)

n∑
k=0

[
u(xi, tn+1−k) − u(xi, tn−k)

]
eαs

k + O(τ ), (5.16)

where we defined

eαk :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(k + 1)1−α − k1−α, 0 < α < 1, k = 0, 1, . . . , n,

1, α = 0, k = 0, 1, . . . , n,

1, α = 1, k = 0,

0, α = 1, k = 1, . . . , n.

(5.17)

As for the integer-order derivative uxx in (1.1), we apply the central difference scheme given
as

uxx(xi, tn+1) =
u(xi+1, tn+1) − 2u(xi, tn+1) + u(xi−1, tn+1)

Δh2
+ O(Δh2). (5.18)

Denote by un
i = u(xi, tn), Fn

i = F(xi, tn), ai = a(xi), μs = μ(αs) and substituting
(5.14)–(5.18) into (1.1), and ignoring the remainder terms, we get

{
−pun+1

i−1 + (1 + 2p)un+1
i − pun+1

i+1 = un
i −

∑n
k=1 qk(un+1−k

i − un−k
i ) + 1

R Fn+1
i ,

u0
i = ai, un

0 = un
M = 0

(5.19)

together with the initial and boundary value conditions, where the coefficients are defined by

⎧⎪⎨
⎪⎩

R :=
∑2S

s=0 rs
τ−αs

Γ(2−αs) , p := 1
RΔh2 ,

qk :=
1
R

∑2S
s=0 rs

τ−αs

Γ(2−αs) e
αs
k , k = 0, 1, . . . , n.

(5.20)

By (2.22) we know rs � 0 for s = 0, 1, . . . , 2S and there exists at least one s ∈ {1, . . . , 2S − 1}
such that rs > 0 and R > 0.

For n = 1, 2, . . . , N, we define the vectors

Un = (un
1, un

2, . . . , un
M−1)T , F

n = (Fn
1, Fn

2, . . . , Fn
M−1)T , a = (a1, a2, . . . , aM−1)T
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and the matrix B = (bi j)(M−1)×(M−1), with the elements for i, j = 1, . . . , M − 1 that

bi j =

⎧⎪⎪⎨
⎪⎪⎩
−p, j = i ± 1,

1 + 2p, j = i,

0, else.

(5.21)

Then, with the help of the coefficients {zk: k = 1, . . . , n} defined by

z1 := 1 − q1, zk := qk−1 − qk for k = 2, . . . , n, (5.22)

we get the implicit finite difference scheme in matrix form⎧⎪⎨
⎪⎩

BU1 = U0 +
F

1

R
, U0 = a;

BUn+1 = z1Un + z2Un−1 + · · ·+ znU1 + qnU0 +
F

n+1

R

(5.23)

for solving Un iteratively.

Proposition 5.2. The matrix B is strictly diagonally dominant, so the iterative scheme
(5.23) can be uniquely solved. For zk and qk given by (5.22) and (5.20), respectively, there
hold zk > 0 (k = 1, 2, . . . , n), and

n∑
k=1

zk + qn = 1. (5.24)

Proof. By (5.20), (5.22) and the definition (5.17), we have

zk = qk−1 − qk =
1
R

2S∑
s=0

rs
τ−αs

Γ(2 − αs)
[eαs

k−1 − eαs
k ]

=
1
R

2S−1∑
s=1

rs
τ−αs

Γ(2 − αs)
[eαs

k−1 − eαs
k ] +

1
R

r2Sτ
−1[e1

k−1 − e1
k]

� 1
R

2S−1∑
s=1

rs
τ−αs

Γ(2 − αs)
[2k1−αs − (k − 1)1−αs − (k + 1)1−αs].

Since 2k1−αs − (k − 1)1−αs − (k + 1)1−αs > 0 holds for k = 1, . . . , n and all αs ∈ (0, 1), we
immediately have zk > 0 for k = 1, 2, . . . , n. Noting q0 = 1, (5.24) is clear. �

Proposition 5.3. If the coefficients rs � 0 for s = 0, 1, . . . , 2S, and there exists at least one
s ∈ {1, . . . , 2S − 1} such that rs > 0 and R > 0, then p > 0 and

bii � 1 +
M−1∑

j=1, j
=i

|bi j|, 1 � i � M − 1

M−1∑
j=1, j
=i

bi j < 0, 1 � i � M − 1.

(5.25)
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Based on propositions 5.2 and 5.3, we can prove the implicit scheme (5.23) along time
direction is unconditionally stable and convergent with analogous method to that used in [29]
for multi-term time fractional equation, i.e., the case of μ(α) =

∑K
k=1 rkδ(α− αk), where

δ(α− αk) is the Dirac function with αk ∈ (0, 1).

5.3. Numerical inversions

Since the uniqueness of the inverse problem from input data at one fixed observation x0 ∈ Ω
satisfying f (x0) 
= 0 is ensured by theorem 4.1, instead of using the noisy data hδ(·, t) in
the domain Ω0 satisfying (5.2), here we consider the numerical implementations using the
data at one fixed point x0 ∈ Ω0. Such data can also reduce the computational costs of inver-
sion algorithm from practical points of view. In fact, from our numerical performances, the
reconstructions are indeed satisfactory.

Let βk be the iterative source function at kth iteration step. We stop the iteration by using
the well-known Morozov’s discrepancy principle. In the sequel, we denote by βtrue, β0, βδ

rec
the exact source, initial guess and the reconstructed source function, respectively. To show the
accuracy of reconstruction, we define the relative error in L2 norm by

Err :=
‖βδ

rec − βtrue‖2

‖βtrue‖2
. (5.26)

In our numerical implementations for the observation data with one fixed point x0 ∈ Ω0,
similarly to the derivations in theorem 5.1, the gradient expression (5.4) still holds, but
φ[ωβ,δ](x, t) satisfies (4.12) corresponding to the input data

F(x, t) = ωβ,δ(x, t) := δ(x − x0)(G[β](x0, t) − hδ(x0, t)), (x, t) ∈ Ω× [0, T).

(5.27)

In this case, (4.12) is an initial boundary value problem for φ[ωβ,δ](x, t) with spatial impulse
source δ(x − x0), which can be solved by approximating singular function δ(x − x0) with a
smooth function numerically, or expanding the solution in terms of the eigenfunctions and then
determining the expansion coefficients as done in [30]. In our computations, we take finite dif-
ference method to solve the direct problem and adjoint problem where δ(x − x0) is replaced
by a smooth function approximately at each iteration step. The noisy data are generated
by

hδ(x0, t j) = G[βtrue](x0, t j) + δ × G[βtrue](x0, t j) × (2 rand ( j) − 1) (5.28)

for observation instants t j ∈ [0, T], where δ > 0 is the noise level, and rand ( j) ∈ [0, 1] is the
random number. We divide the interval [0, 1] for α into 100 equidistant meshes, and test our
inversion algorithm for two cases:

Case 1: fixed observation point x0 and different noise levels δ > 0;
Case 2: fixed noise level δ > 0 and different observation points x0.
We start with the one-dimensional case, with the space-time region [0, 1] × [0, 1] into

100 × 100 equidistant meshes.

Example 1. Let μ(α) = Γ(2 − α). Consider the following one-dimensional system
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Table 1. The reconstructions for (5.30).

δ(x0 = 0.5) 0.1% 1% 3% 5% 10%
Err 0.0066 0.0082 0.0185 0.0304 0.0608
x0(δ = 5%) 0.05 0.1 0.2 0.6 0.8
Err 0.0259 0.0211 0.0283 0.0302 0.0282

Figure 1. The reconstructions for example 1.

⎧⎪⎪⎨
⎪⎪⎩

D(μ)u(x, t) = uxx(x, t) + sin(πx)β(t), (x, t) ∈ (0, 1) × (0, 1],

u(0, t) = 0, u(1, t) = 0, t ∈ (0, 1],

u(x, 0) = 0, x ∈ (0, 1),

(5.29)

which is a particular case of (4.1) with σ(x) = 1 and

βtrue(t) =
t − 1
ln t

+ π2t. (5.30)

(5.29) has the exact solution u(x, t) = t sin(πx). For this example, we take the initial guess
β0(t) :=βtrue(t) − 30t(1 − t).

The quantitative descriptions for the reconstructions are shown in table 1. We also give the
reconstructions in figure 1(a) for case 1 and figure 1(b) for case 2, respectively.

Form table 1 and figure 1, it can be observed that the reconstructions are satisfactory for
exact solution both for case 1 and case 2. By table 1 and figure 1(a), we can see that the relative
error Err decreases as the noise level in the data decreases and the numerical results are quite
accurate up to 5% noise added in the exact data G[βtrue](x0, t), implying our proposed CGM
scheme is very stable against the measurement noise, which is consistent with the theoretical
estimate in theorem 4.1. On the other hand, it can be seen from table 1 and figure 1(b) that the
reconstructions by our proposed CGM scheme are not sensitive to the observation position x0.
In other words, our proposed algorithm is really robust against the choice of observation point.
Here we should mention that the initial choice β0(t) has some influence on the accuracy of
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Table 2. The reconstructions for (5.32).

δ(x0 = 0.8) 1% 5% 10% 15%
Err 0.0166 0.0413 0.0803 0.0858
x0(δ = 5%) 0.02 0.1 0.4 0.95
Err 0.0366 0.0414 0.0418 0.0366

Figure 2. The reconstructions for example 2.

our reconstruction at t = T . Generally we need to choose an initial guess β0(t) such that β0(t)
could provide exact information at t = T . This is because we cannot update βk(T) if η = 0 in
(5.4). Such fact has been verified in [16, 30].

Example 2. Let μ(α) = Γ(4 − α). Consider the one-dimensional system⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∂α

t u(x, t) =
∂

∂x

(
σ(x)

∂u
∂x

)
+ sin(πx)β(t), (x, t) ∈ (0, 1) × (0, 1),

u(0, t) = 0, u(1, t) = 0, t ∈ (0, 1),

u(x, 0) = 0, x ∈ (0, 1)

(5.31)

with σ(x) = 2 + cos(2πx) and exact time-dependent source

βtrue(t) = 2 sin(4πt) + exp(t). (5.32)

For this example, the analytic expression of exact solution is unknown. We simulate the interior
measurement data by solving the direct problem using finite difference method.

We set the initial guess β0(t) = exp(t). The numerical reconstructions for case 1 and case 2
are shown in table 2 and figure 2. We can see that the numerical results are very accurate up to
5% nose added in the exact measurements. By figure 2(a) we can see that the reconstructions
on the corner become difficult as the noise level increases. On the other hand, it can be read-
ily observed from table 2 and figure 2(b) that the numerical result is satisfactory even if the
observation point is very close to the boundary, which reflects the robustness of the proposed
algorithm again.
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Table 3. The reconstructions for (5.35).

δ((x0, y0) = (0.3, 0.7)) 0.1% 1% 5% 10%
Err 0.0175 0.0182 0.0346 0.0607
(x0, y0)(δ = 5%)

(
1

10 , 1
10

) (
3
10 , 3

10

) (
3
5 , 3

5

) (
4
5 , 4

5

)

Err 0.0356 0.0344 0.0344 0.0359

Figure 3. The reconstructions for example 3.

Now we proceed to the two-dimensional case, where we divide the space-time region
Ω× [0, T] = [0, 1]2 × [0, 1] into a 402 × 100 equidistant meshes. Similarly to the one-
dimensional cases, we will test the numerical performances of proposed CGM scheme for
case 1 and case 2. We notice that all the tested observation points in examples 1 and 2 satisfy
f (x0) 
= 0, which means that the observation point should locate in the inside of the spatial
source. However, such a restriction on the observation location is in general not realistic,
because for some inverse source problems such as the nuclear radiative sources, people cannot
have access to the source, the measurement can only be implemented at points away from the
source distribution. Thus, we will also consider the case of observation point that f (x0) = 0 in
the following example.

Example 3. Let μ(α) = Γ(3 − α). Consider two-dimensional diffusion system

⎧⎪⎪⎨
⎪⎪⎩

D(μ)u(x, y, t) = uxx + uyy + f (x, y)β(t), (x, y) ∈ (0, 1)2, t ∈ (0, 1],

u|∂Ω = 0, t ∈ (0, 1],

u(x, y, 0) = 0, (x, y) ∈ (0, 1)2

(5.33)

with the space-dependent source function

f (x, y) =

{
1, (x, y) ∈ [1/4, 3/4]2,

0, (x, y) /∈ [1/4, 3/4]2,
(5.34)
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and the time-dependent source

βtrue(t) = 2 cos(3πt) + 3t + 2 (5.35)

to be recovered. The reconstructions from one observation point (x0, y0) and initial guess
β0(t) = −t + 4 for case 1 and case 2 are shown in table 3 and figure 3.

It can be observed by the numerical results shown in table 3 and figure 3 that the reconstruc-
tions are in good agreement with the exact shape even for the two-dimensional case. By table 3
we can see that the relative errors for the cases of (x0, y0) = (1/10, 1/10), (4/5, 4/5) satisfying
f (x0, y0) = 0 are Err = 0.0356, 0.0359, respectively, while the the errors are almost always
0.0344 for the cases of (x0, y0) = (3/10, 3/10), (3/5, 3/5) satisfying f (x0, y0) 
= 0. Since we
applied the same noisy data set for different observation points, the reconstructions from the
cases of f (x0, y0) = 0 are a little bit worse than the ones from the cases of f (x0, y0) 
= 0,
which is consistent with the expected results (e.g., [31, 32] for the parabolic case). However,
we can also see that the improvement of reconstruction by choosing observation inside the
source is not excellent. Indeed, the reconstructions from the cases of f (x0, y0) = 0 are also
satisfactory.

Summarizing the numerical results obtained from examples 1–3, we have observed that our
proposed CGM scheme is very stable against the noise in measurements and robust against the
choice of observation points.
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